cola Report for GDS1956

Date: 2019-12-25 20:17:12 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 21168   121

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
ATC:kmeans 2 1.000 0.994 0.997 **
ATC:skmeans 4 0.968 0.952 0.981 ** 2,3
ATC:NMF 2 0.966 0.950 0.980 **
MAD:NMF 2 0.963 0.954 0.980 **
CV:kmeans 2 0.956 0.957 0.976 **
SD:mclust 2 0.948 0.931 0.974 *
CV:NMF 2 0.932 0.940 0.975 *
MAD:kmeans 2 0.919 0.956 0.980 *
CV:skmeans 3 0.917 0.895 0.953 * 2
MAD:skmeans 4 0.917 0.899 0.948 * 2
ATC:pam 6 0.906 0.858 0.940 * 2,3
MAD:mclust 3 0.882 0.915 0.950
SD:skmeans 2 0.874 0.952 0.972
SD:NMF 2 0.866 0.929 0.968
MAD:pam 6 0.856 0.817 0.908
CV:mclust 5 0.841 0.860 0.929
CV:pam 5 0.744 0.762 0.884
SD:pam 5 0.742 0.752 0.877
ATC:mclust 3 0.710 0.931 0.945
SD:kmeans 2 0.698 0.927 0.952
ATC:hclust 2 0.674 0.887 0.943
MAD:hclust 5 0.641 0.763 0.829
SD:hclust 4 0.592 0.629 0.747
CV:hclust 2 0.305 0.759 0.868

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.866           0.929       0.968          0.501 0.498   0.498
#> CV:NMF      2 0.932           0.940       0.975          0.500 0.500   0.500
#> MAD:NMF     2 0.963           0.954       0.980          0.502 0.497   0.497
#> ATC:NMF     2 0.966           0.950       0.980          0.504 0.496   0.496
#> SD:skmeans  2 0.874           0.952       0.972          0.503 0.497   0.497
#> CV:skmeans  2 1.000           0.983       0.993          0.503 0.497   0.497
#> MAD:skmeans 2 1.000           0.989       0.995          0.503 0.497   0.497
#> ATC:skmeans 2 0.983           0.956       0.983          0.504 0.496   0.496
#> SD:mclust   2 0.948           0.931       0.974          0.499 0.500   0.500
#> CV:mclust   2 0.590           0.903       0.928          0.464 0.497   0.497
#> MAD:mclust  2 0.805           0.914       0.957          0.497 0.502   0.502
#> ATC:mclust  2 0.533           0.895       0.915          0.442 0.506   0.506
#> SD:kmeans   2 0.698           0.927       0.952          0.489 0.497   0.497
#> CV:kmeans   2 0.956           0.957       0.976          0.497 0.497   0.497
#> MAD:kmeans  2 0.919           0.956       0.980          0.500 0.499   0.499
#> ATC:kmeans  2 1.000           0.994       0.997          0.503 0.498   0.498
#> SD:pam      2 0.295           0.648       0.840          0.470 0.508   0.508
#> CV:pam      2 0.408           0.732       0.872          0.480 0.506   0.506
#> MAD:pam     2 0.474           0.813       0.895          0.485 0.521   0.521
#> ATC:pam     2 1.000           0.976       0.990          0.499 0.504   0.504
#> SD:hclust   2 0.248           0.684       0.821          0.425 0.521   0.521
#> CV:hclust   2 0.305           0.759       0.868          0.437 0.543   0.543
#> MAD:hclust  2 0.204           0.583       0.805          0.433 0.521   0.521
#> ATC:hclust  2 0.674           0.887       0.943          0.481 0.514   0.514
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.539           0.634       0.834          0.325 0.727   0.507
#> CV:NMF      3 0.577           0.667       0.849          0.322 0.728   0.511
#> MAD:NMF     3 0.537           0.679       0.842          0.319 0.760   0.555
#> ATC:NMF     3 0.652           0.738       0.884          0.317 0.749   0.537
#> SD:skmeans  3 0.751           0.872       0.935          0.322 0.729   0.507
#> CV:skmeans  3 0.917           0.895       0.953          0.316 0.770   0.569
#> MAD:skmeans 3 0.866           0.911       0.960          0.331 0.739   0.521
#> ATC:skmeans 3 0.922           0.939       0.971          0.257 0.822   0.658
#> SD:mclust   3 0.599           0.652       0.823          0.277 0.780   0.593
#> CV:mclust   3 0.702           0.766       0.863          0.371 0.804   0.625
#> MAD:mclust  3 0.882           0.915       0.950          0.310 0.821   0.651
#> ATC:mclust  3 0.710           0.931       0.945          0.387 0.809   0.648
#> SD:kmeans   3 0.604           0.761       0.871          0.336 0.684   0.449
#> CV:kmeans   3 0.663           0.823       0.903          0.325 0.725   0.501
#> MAD:kmeans  3 0.841           0.844       0.925          0.335 0.691   0.458
#> ATC:kmeans  3 0.563           0.579       0.791          0.301 0.736   0.515
#> SD:pam      3 0.525           0.651       0.803          0.384 0.555   0.317
#> CV:pam      3 0.566           0.604       0.817          0.361 0.801   0.618
#> MAD:pam     3 0.673           0.794       0.903          0.371 0.720   0.505
#> ATC:pam     3 0.920           0.904       0.960          0.281 0.806   0.634
#> SD:hclust   3 0.366           0.411       0.698          0.459 0.699   0.480
#> CV:hclust   3 0.354           0.678       0.777          0.416 0.825   0.682
#> MAD:hclust  3 0.312           0.573       0.680          0.440 0.688   0.471
#> ATC:hclust  3 0.747           0.856       0.912          0.362 0.811   0.635
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.546           0.627       0.769          0.117 0.821   0.537
#> CV:NMF      4 0.555           0.509       0.716          0.123 0.806   0.517
#> MAD:NMF     4 0.578           0.476       0.692          0.125 0.831   0.559
#> ATC:NMF     4 0.690           0.776       0.869          0.116 0.840   0.577
#> SD:skmeans  4 0.829           0.900       0.944          0.129 0.844   0.576
#> CV:skmeans  4 0.858           0.846       0.931          0.134 0.817   0.524
#> MAD:skmeans 4 0.917           0.899       0.948          0.121 0.850   0.590
#> ATC:skmeans 4 0.968           0.952       0.981          0.120 0.895   0.724
#> SD:mclust   4 0.630           0.774       0.851          0.104 0.840   0.593
#> CV:mclust   4 0.657           0.745       0.832          0.132 0.847   0.603
#> MAD:mclust  4 0.707           0.806       0.879          0.107 0.924   0.786
#> ATC:mclust  4 0.787           0.897       0.921          0.196 0.844   0.613
#> SD:kmeans   4 0.705           0.788       0.881          0.132 0.834   0.556
#> CV:kmeans   4 0.710           0.719       0.864          0.130 0.802   0.487
#> MAD:kmeans  4 0.767           0.768       0.870          0.120 0.906   0.725
#> ATC:kmeans  4 0.849           0.905       0.939          0.141 0.808   0.501
#> SD:pam      4 0.648           0.667       0.836          0.130 0.910   0.746
#> CV:pam      4 0.547           0.536       0.730          0.136 0.689   0.310
#> MAD:pam     4 0.646           0.629       0.805          0.124 0.800   0.488
#> ATC:pam     4 0.780           0.845       0.902          0.162 0.844   0.596
#> SD:hclust   4 0.592           0.629       0.747          0.142 0.774   0.449
#> CV:hclust   4 0.505           0.395       0.709          0.107 0.945   0.860
#> MAD:hclust  4 0.554           0.739       0.838          0.168 0.886   0.682
#> ATC:hclust  4 0.717           0.796       0.858          0.107 0.929   0.789
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.620           0.564       0.731         0.0679 0.898   0.639
#> CV:NMF      5 0.623           0.547       0.731         0.0650 0.853   0.537
#> MAD:NMF     5 0.612           0.538       0.738         0.0634 0.819   0.436
#> ATC:NMF     5 0.746           0.744       0.860         0.0690 0.887   0.606
#> SD:skmeans  5 0.784           0.799       0.884         0.0434 0.944   0.786
#> CV:skmeans  5 0.762           0.721       0.853         0.0463 0.951   0.806
#> MAD:skmeans 5 0.769           0.749       0.856         0.0467 0.960   0.843
#> ATC:skmeans 5 0.812           0.743       0.862         0.0702 0.946   0.820
#> SD:mclust   5 0.831           0.810       0.891         0.1028 0.916   0.703
#> CV:mclust   5 0.841           0.860       0.929         0.0797 0.913   0.698
#> MAD:mclust  5 0.838           0.845       0.916         0.0862 0.899   0.666
#> ATC:mclust  5 0.850           0.830       0.913         0.0657 0.908   0.675
#> SD:kmeans   5 0.731           0.730       0.815         0.0623 0.956   0.829
#> CV:kmeans   5 0.694           0.598       0.750         0.0616 0.913   0.677
#> MAD:kmeans  5 0.748           0.642       0.811         0.0541 0.898   0.656
#> ATC:kmeans  5 0.787           0.707       0.836         0.0584 0.978   0.912
#> SD:pam      5 0.742           0.752       0.877         0.0645 0.869   0.574
#> CV:pam      5 0.744           0.762       0.884         0.0740 0.888   0.603
#> MAD:pam     5 0.769           0.764       0.881         0.0657 0.902   0.642
#> ATC:pam     5 0.805           0.840       0.917         0.0699 0.879   0.582
#> SD:hclust   5 0.569           0.568       0.717         0.0638 0.868   0.578
#> CV:hclust   5 0.522           0.509       0.670         0.0586 0.842   0.573
#> MAD:hclust  5 0.641           0.763       0.829         0.0644 0.944   0.791
#> ATC:hclust  5 0.734           0.536       0.781         0.0639 0.879   0.594
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.727           0.712       0.819         0.0387 0.946   0.752
#> CV:NMF      6 0.709           0.669       0.799         0.0435 0.895   0.582
#> MAD:NMF     6 0.736           0.695       0.824         0.0406 0.927   0.683
#> ATC:NMF     6 0.757           0.756       0.850         0.0419 0.925   0.661
#> SD:skmeans  6 0.778           0.626       0.752         0.0436 0.921   0.663
#> CV:skmeans  6 0.753           0.594       0.764         0.0407 0.884   0.543
#> MAD:skmeans 6 0.749           0.545       0.739         0.0405 0.927   0.695
#> ATC:skmeans 6 0.776           0.762       0.832         0.0549 0.890   0.597
#> SD:mclust   6 0.795           0.610       0.783         0.0511 0.936   0.717
#> CV:mclust   6 0.815           0.741       0.859         0.0593 0.913   0.638
#> MAD:mclust  6 0.802           0.669       0.813         0.0435 0.925   0.672
#> ATC:mclust  6 0.820           0.791       0.847         0.0321 0.932   0.720
#> SD:kmeans   6 0.770           0.531       0.745         0.0398 0.924   0.689
#> CV:kmeans   6 0.726           0.597       0.698         0.0366 0.896   0.572
#> MAD:kmeans  6 0.756           0.647       0.789         0.0380 0.899   0.607
#> ATC:kmeans  6 0.781           0.647       0.756         0.0422 0.898   0.595
#> SD:pam      6 0.805           0.675       0.827         0.0475 0.925   0.685
#> CV:pam      6 0.734           0.623       0.806         0.0384 0.924   0.663
#> MAD:pam     6 0.856           0.817       0.908         0.0351 0.958   0.800
#> ATC:pam     6 0.906           0.858       0.940         0.0391 0.963   0.820
#> SD:hclust   6 0.697           0.631       0.778         0.0555 0.944   0.776
#> CV:hclust   6 0.547           0.601       0.734         0.0596 0.920   0.702
#> MAD:hclust  6 0.706           0.722       0.829         0.0412 0.965   0.841
#> ATC:hclust  6 0.787           0.695       0.821         0.0533 0.928   0.705

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>               n disease.state(p) k
#> SD:NMF      119         1.77e-09 2
#> CV:NMF      118         2.16e-09 2
#> MAD:NMF     119         2.13e-09 2
#> ATC:NMF     117         1.51e-11 2
#> SD:skmeans  121         1.64e-11 2
#> CV:skmeans  119         4.11e-11 2
#> MAD:skmeans 121         1.64e-11 2
#> ATC:skmeans 118         2.26e-12 2
#> SD:mclust   115         2.16e-12 2
#> CV:mclust   119         2.00e-11 2
#> MAD:mclust  115         4.59e-13 2
#> ATC:mclust  120         1.97e-13 2
#> SD:kmeans   121         1.64e-11 2
#> CV:kmeans   119         4.11e-11 2
#> MAD:kmeans  119         4.11e-11 2
#> ATC:kmeans  121         1.03e-12 2
#> SD:pam      100         1.70e-07 2
#> CV:pam      105         2.16e-07 2
#> MAD:pam     117         4.39e-11 2
#> ATC:pam     119         9.88e-12 2
#> SD:hclust   108         2.55e-07 2
#> CV:hclust   112         1.59e-07 2
#> MAD:hclust   91         3.47e-13 2
#> ATC:hclust  114         5.47e-10 2
test_to_known_factors(res_list, k = 3)
#>               n disease.state(p) k
#> SD:NMF       95         4.31e-15 3
#> CV:NMF       96         5.04e-18 3
#> MAD:NMF     100         1.57e-13 3
#> ATC:NMF     107         3.98e-15 3
#> SD:skmeans  119         4.44e-25 3
#> CV:skmeans  115         3.53e-24 3
#> MAD:skmeans 117         9.06e-25 3
#> ATC:skmeans 120         2.66e-15 3
#> SD:mclust   100         1.65e-22 3
#> CV:mclust   112         4.74e-26 3
#> MAD:mclust  117         2.26e-23 3
#> ATC:mclust  120         5.94e-26 3
#> SD:kmeans   104         2.49e-24 3
#> CV:kmeans   118         4.50e-24 3
#> MAD:kmeans  106         4.12e-25 3
#> ATC:kmeans   71         1.25e-06 3
#> SD:pam      107         3.79e-30 3
#> CV:pam      100         3.72e-15 3
#> MAD:pam     107         9.17e-24 3
#> ATC:pam     116         1.99e-18 3
#> SD:hclust    56         9.31e-09 3
#> CV:hclust   110         9.28e-15 3
#> MAD:hclust   90         5.69e-24 3
#> ATC:hclust  117         3.22e-14 3
test_to_known_factors(res_list, k = 4)
#>               n disease.state(p) k
#> SD:NMF       97         7.14e-25 4
#> CV:NMF       73         3.18e-18 4
#> MAD:NMF      64         6.35e-14 4
#> ATC:NMF     112         7.37e-29 4
#> SD:skmeans  120         5.03e-32 4
#> CV:skmeans  114         2.92e-32 4
#> MAD:skmeans 114         1.20e-29 4
#> ATC:skmeans 119         3.26e-18 4
#> SD:mclust   116         3.19e-34 4
#> CV:mclust   103         4.17e-33 4
#> MAD:mclust  115         1.30e-28 4
#> ATC:mclust  118         2.68e-31 4
#> SD:kmeans   110         2.30e-33 4
#> CV:kmeans   106         1.87e-32 4
#> MAD:kmeans  107         2.49e-29 4
#> ATC:kmeans  116         7.41e-26 4
#> SD:pam       96         2.55e-35 4
#> CV:pam       72         4.64e-18 4
#> MAD:pam      84         1.16e-28 4
#> ATC:pam     113         1.64e-25 4
#> SD:hclust    94         1.06e-28 4
#> CV:hclust    69         4.80e-20 4
#> MAD:hclust  110         2.57e-33 4
#> ATC:hclust  110         4.29e-17 4
test_to_known_factors(res_list, k = 5)
#>               n disease.state(p) k
#> SD:NMF       82         2.70e-33 5
#> CV:NMF       73         1.17e-18 5
#> MAD:NMF      73         2.37e-23 5
#> ATC:NMF     102         3.44e-31 5
#> SD:skmeans  111         8.59e-43 5
#> CV:skmeans  105         7.43e-42 5
#> MAD:skmeans 110         3.19e-42 5
#> ATC:skmeans 104         7.19e-22 5
#> SD:mclust   113         9.45e-45 5
#> CV:mclust   115         1.41e-43 5
#> MAD:mclust  116         5.98e-42 5
#> ATC:mclust  113         1.40e-34 5
#> SD:kmeans   105         3.35e-37 5
#> CV:kmeans    87         1.90e-28 5
#> MAD:kmeans   96         5.51e-30 5
#> ATC:kmeans  103         2.03e-20 5
#> SD:pam      106         3.02e-45 5
#> CV:pam      110         1.01e-33 5
#> MAD:pam     104         5.26e-42 5
#> ATC:pam     112         2.20e-27 5
#> SD:hclust    91         9.57e-31 5
#> CV:hclust    82         1.06e-22 5
#> MAD:hclust  115         1.30e-33 5
#> ATC:hclust   71         7.26e-13 5
test_to_known_factors(res_list, k = 6)
#>               n disease.state(p) k
#> SD:NMF      105         1.88e-43 6
#> CV:NMF       98         1.30e-39 6
#> MAD:NMF     102         8.44e-42 6
#> ATC:NMF     112         4.38e-45 6
#> SD:skmeans   89         2.00e-36 6
#> CV:skmeans   85         6.27e-33 6
#> MAD:skmeans  74         3.02e-25 6
#> ATC:skmeans 109         2.94e-30 6
#> SD:mclust    88         5.61e-29 6
#> CV:mclust   104         1.88e-35 6
#> MAD:mclust   91         3.80e-29 6
#> ATC:mclust  110         2.94e-36 6
#> SD:kmeans    81         6.33e-29 6
#> CV:kmeans    93         5.65e-30 6
#> MAD:kmeans   94         3.94e-30 6
#> ATC:kmeans  101         1.16e-28 6
#> SD:pam       97         1.16e-51 6
#> CV:pam       88         3.06e-33 6
#> MAD:pam     111         4.15e-37 6
#> ATC:pam     112         2.66e-32 6
#> SD:hclust    96         1.37e-30 6
#> CV:hclust    92         5.23e-26 6
#> MAD:hclust  106         2.64e-31 6
#> ATC:hclust  109         2.14e-23 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.248           0.684       0.821         0.4254 0.521   0.521
#> 3 3 0.366           0.411       0.698         0.4595 0.699   0.480
#> 4 4 0.592           0.629       0.747         0.1418 0.774   0.449
#> 5 5 0.569           0.568       0.717         0.0638 0.868   0.578
#> 6 6 0.697           0.631       0.778         0.0555 0.944   0.776

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.9393     0.5906 0.356 0.644
#> GSM74357      2  0.9323     0.6071 0.348 0.652
#> GSM74358      2  0.9323     0.6071 0.348 0.652
#> GSM74359      1  0.4939     0.7651 0.892 0.108
#> GSM74360      1  0.4939     0.7651 0.892 0.108
#> GSM74361      1  0.9993    -0.0645 0.516 0.484
#> GSM74362      1  0.9993    -0.0645 0.516 0.484
#> GSM74363      2  0.9323     0.6071 0.348 0.652
#> GSM74402      1  0.0000     0.7733 1.000 0.000
#> GSM74403      1  0.0000     0.7733 1.000 0.000
#> GSM74404      1  0.0000     0.7733 1.000 0.000
#> GSM74406      1  0.0000     0.7733 1.000 0.000
#> GSM74407      1  0.0672     0.7745 0.992 0.008
#> GSM74408      1  0.0000     0.7733 1.000 0.000
#> GSM74409      1  0.0000     0.7733 1.000 0.000
#> GSM74410      1  0.0000     0.7733 1.000 0.000
#> GSM119936     1  0.0000     0.7733 1.000 0.000
#> GSM119937     1  0.1633     0.7750 0.976 0.024
#> GSM74411      2  0.8443     0.7201 0.272 0.728
#> GSM74412      2  0.8443     0.7201 0.272 0.728
#> GSM74413      2  0.8443     0.7201 0.272 0.728
#> GSM74414      2  0.7528     0.7508 0.216 0.784
#> GSM74415      2  0.8443     0.7201 0.272 0.728
#> GSM121379     2  0.0000     0.7517 0.000 1.000
#> GSM121380     2  0.0000     0.7517 0.000 1.000
#> GSM121381     2  0.0000     0.7517 0.000 1.000
#> GSM121382     2  0.0000     0.7517 0.000 1.000
#> GSM121383     2  0.0000     0.7517 0.000 1.000
#> GSM121384     2  0.0000     0.7517 0.000 1.000
#> GSM121385     2  0.0000     0.7517 0.000 1.000
#> GSM121386     2  0.0000     0.7517 0.000 1.000
#> GSM121387     2  0.0000     0.7517 0.000 1.000
#> GSM121388     2  0.0000     0.7517 0.000 1.000
#> GSM121389     2  0.0000     0.7517 0.000 1.000
#> GSM121390     2  0.0000     0.7517 0.000 1.000
#> GSM121391     2  0.0000     0.7517 0.000 1.000
#> GSM121392     2  0.0000     0.7517 0.000 1.000
#> GSM121393     2  0.0000     0.7517 0.000 1.000
#> GSM121394     2  0.0000     0.7517 0.000 1.000
#> GSM121395     2  0.0000     0.7517 0.000 1.000
#> GSM121396     2  0.1633     0.7573 0.024 0.976
#> GSM121397     2  0.0000     0.7517 0.000 1.000
#> GSM121398     2  0.0000     0.7517 0.000 1.000
#> GSM121399     2  0.0000     0.7517 0.000 1.000
#> GSM74240      2  0.8661     0.7051 0.288 0.712
#> GSM74241      2  0.8661     0.7051 0.288 0.712
#> GSM74242      2  0.8661     0.7051 0.288 0.712
#> GSM74243      2  0.8661     0.7051 0.288 0.712
#> GSM74244      2  0.8661     0.7051 0.288 0.712
#> GSM74245      2  0.8661     0.7051 0.288 0.712
#> GSM74246      2  0.8661     0.7051 0.288 0.712
#> GSM74247      2  0.8661     0.7051 0.288 0.712
#> GSM74248      2  0.8661     0.7051 0.288 0.712
#> GSM74416      1  0.0000     0.7733 1.000 0.000
#> GSM74417      1  0.0000     0.7733 1.000 0.000
#> GSM74418      1  0.0000     0.7733 1.000 0.000
#> GSM74419      1  0.0376     0.7740 0.996 0.004
#> GSM121358     2  0.8555     0.7141 0.280 0.720
#> GSM121359     2  0.8555     0.7141 0.280 0.720
#> GSM121360     1  0.5059     0.7635 0.888 0.112
#> GSM121362     1  0.5059     0.7635 0.888 0.112
#> GSM121364     1  0.4939     0.7651 0.892 0.108
#> GSM121365     2  0.8661     0.7056 0.288 0.712
#> GSM121366     2  0.8555     0.7141 0.280 0.720
#> GSM121367     2  0.8555     0.7141 0.280 0.720
#> GSM121370     2  0.8555     0.7141 0.280 0.720
#> GSM121371     2  0.8555     0.7141 0.280 0.720
#> GSM121372     2  0.8555     0.7141 0.280 0.720
#> GSM121373     1  0.4939     0.7651 0.892 0.108
#> GSM121374     1  0.4939     0.7651 0.892 0.108
#> GSM121407     2  0.7815     0.7443 0.232 0.768
#> GSM74387      2  0.4161     0.7645 0.084 0.916
#> GSM74388      2  0.1184     0.7576 0.016 0.984
#> GSM74389      1  0.9209     0.4836 0.664 0.336
#> GSM74390      2  0.7883     0.7446 0.236 0.764
#> GSM74391      1  0.7299     0.6882 0.796 0.204
#> GSM74392      1  0.9710     0.3083 0.600 0.400
#> GSM74393      1  0.9710     0.3083 0.600 0.400
#> GSM74394      2  0.1843     0.7601 0.028 0.972
#> GSM74239      1  0.4431     0.7667 0.908 0.092
#> GSM74364      1  0.4431     0.7654 0.908 0.092
#> GSM74365      1  0.9815     0.2335 0.580 0.420
#> GSM74366      2  0.7815     0.7208 0.232 0.768
#> GSM74367      1  0.9286     0.4696 0.656 0.344
#> GSM74377      2  0.8016     0.7115 0.244 0.756
#> GSM74378      2  0.8016     0.7115 0.244 0.756
#> GSM74379      2  0.9044     0.6058 0.320 0.680
#> GSM74380      2  0.8661     0.6702 0.288 0.712
#> GSM74381      2  0.8144     0.7033 0.252 0.748
#> GSM121357     2  0.5294     0.7619 0.120 0.880
#> GSM121361     2  0.1184     0.7576 0.016 0.984
#> GSM121363     2  0.1184     0.7576 0.016 0.984
#> GSM121368     2  0.1184     0.7576 0.016 0.984
#> GSM121369     2  0.1414     0.7586 0.020 0.980
#> GSM74368      1  0.8661     0.5963 0.712 0.288
#> GSM74369      1  0.8661     0.5963 0.712 0.288
#> GSM74370      1  0.5178     0.7593 0.884 0.116
#> GSM74371      1  0.0000     0.7733 1.000 0.000
#> GSM74372      1  0.9129     0.5017 0.672 0.328
#> GSM74373      2  0.9608     0.4303 0.384 0.616
#> GSM74374      1  0.9427     0.4199 0.640 0.360
#> GSM74375      2  0.8267     0.6976 0.260 0.740
#> GSM74376      2  0.8016     0.7061 0.244 0.756
#> GSM74405      2  0.8267     0.6987 0.260 0.740
#> GSM74351      1  0.0000     0.7733 1.000 0.000
#> GSM74352      2  0.8016     0.7100 0.244 0.756
#> GSM74353      1  0.7745     0.6709 0.772 0.228
#> GSM74354      1  0.9460     0.4120 0.636 0.364
#> GSM74355      2  0.7950     0.7131 0.240 0.760
#> GSM74382      1  0.0376     0.7736 0.996 0.004
#> GSM74383      1  0.7745     0.6597 0.772 0.228
#> GSM74384      2  0.7950     0.7131 0.240 0.760
#> GSM74385      1  0.0000     0.7733 1.000 0.000
#> GSM74386      1  0.9522     0.4047 0.628 0.372
#> GSM74395      1  0.9170     0.4999 0.668 0.332
#> GSM74396      1  0.9170     0.4999 0.668 0.332
#> GSM74397      1  0.9000     0.5346 0.684 0.316
#> GSM74398      2  0.8267     0.6929 0.260 0.740
#> GSM74399      2  0.8016     0.7094 0.244 0.756
#> GSM74400      2  0.8608     0.6765 0.284 0.716
#> GSM74401      2  0.8608     0.6765 0.284 0.716

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.9464    0.05545 0.180 0.408 0.412
#> GSM74357      3  0.9334    0.05714 0.164 0.408 0.428
#> GSM74358      3  0.9334    0.05714 0.164 0.408 0.428
#> GSM74359      1  0.5016    0.68464 0.760 0.000 0.240
#> GSM74360      1  0.5016    0.68464 0.760 0.000 0.240
#> GSM74361      3  0.9953    0.15168 0.344 0.288 0.368
#> GSM74362      3  0.9955    0.15249 0.348 0.288 0.364
#> GSM74363      3  0.9334    0.05714 0.164 0.408 0.428
#> GSM74402      1  0.0592    0.77389 0.988 0.000 0.012
#> GSM74403      1  0.0000    0.77210 1.000 0.000 0.000
#> GSM74404      1  0.0000    0.77210 1.000 0.000 0.000
#> GSM74406      1  0.0592    0.77389 0.988 0.000 0.012
#> GSM74407      1  0.1289    0.77050 0.968 0.000 0.032
#> GSM74408      1  0.0237    0.77317 0.996 0.000 0.004
#> GSM74409      1  0.0237    0.77317 0.996 0.000 0.004
#> GSM74410      1  0.0237    0.77317 0.996 0.000 0.004
#> GSM119936     1  0.0237    0.77317 0.996 0.000 0.004
#> GSM119937     1  0.2448    0.75594 0.924 0.000 0.076
#> GSM74411      2  0.8403    0.01157 0.084 0.468 0.448
#> GSM74412      2  0.8403    0.01157 0.084 0.468 0.448
#> GSM74413      2  0.8403    0.01157 0.084 0.468 0.448
#> GSM74414      2  0.8056    0.16719 0.068 0.532 0.400
#> GSM74415      2  0.8403    0.01157 0.084 0.468 0.448
#> GSM121379     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121380     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121381     2  0.0237    0.75447 0.000 0.996 0.004
#> GSM121382     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121383     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121384     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121385     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121386     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121387     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121388     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121389     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121390     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121391     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121392     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121393     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121394     2  0.0237    0.75447 0.000 0.996 0.004
#> GSM121395     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121396     2  0.1989    0.73083 0.004 0.948 0.048
#> GSM121397     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121398     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM121399     2  0.0000    0.75634 0.000 1.000 0.000
#> GSM74240      3  0.8395    0.02193 0.084 0.436 0.480
#> GSM74241      3  0.8395    0.02193 0.084 0.436 0.480
#> GSM74242      3  0.8395    0.02193 0.084 0.436 0.480
#> GSM74243      3  0.8395    0.02193 0.084 0.436 0.480
#> GSM74244      3  0.8395    0.02193 0.084 0.436 0.480
#> GSM74245      3  0.8395    0.02193 0.084 0.436 0.480
#> GSM74246      3  0.8395    0.02193 0.084 0.436 0.480
#> GSM74247      3  0.8395    0.02193 0.084 0.436 0.480
#> GSM74248      3  0.8395    0.02193 0.084 0.436 0.480
#> GSM74416      1  0.0424    0.77163 0.992 0.000 0.008
#> GSM74417      1  0.0424    0.77163 0.992 0.000 0.008
#> GSM74418      1  0.0424    0.77163 0.992 0.000 0.008
#> GSM74419      1  0.0829    0.77364 0.984 0.004 0.012
#> GSM121358     3  0.8404   -0.01185 0.084 0.452 0.464
#> GSM121359     3  0.8404   -0.01185 0.084 0.452 0.464
#> GSM121360     1  0.5058    0.68053 0.756 0.000 0.244
#> GSM121362     1  0.5058    0.68053 0.756 0.000 0.244
#> GSM121364     1  0.5016    0.68464 0.760 0.000 0.240
#> GSM121365     3  0.8581   -0.00120 0.096 0.448 0.456
#> GSM121366     3  0.8404   -0.01185 0.084 0.452 0.464
#> GSM121367     3  0.8404   -0.01185 0.084 0.452 0.464
#> GSM121370     3  0.8404   -0.01185 0.084 0.452 0.464
#> GSM121371     3  0.8404   -0.01185 0.084 0.452 0.464
#> GSM121372     3  0.8404   -0.01185 0.084 0.452 0.464
#> GSM121373     1  0.5016    0.68464 0.760 0.000 0.240
#> GSM121374     1  0.5016    0.68464 0.760 0.000 0.240
#> GSM121407     2  0.8093    0.12742 0.068 0.516 0.416
#> GSM74387      2  0.6143    0.49289 0.012 0.684 0.304
#> GSM74388      2  0.5016    0.57987 0.000 0.760 0.240
#> GSM74389      1  0.8965    0.27666 0.564 0.240 0.196
#> GSM74390      2  0.8936    0.03488 0.128 0.484 0.388
#> GSM74391      1  0.6705    0.57272 0.740 0.176 0.084
#> GSM74392      1  0.9474    0.11770 0.496 0.272 0.232
#> GSM74393      1  0.9474    0.11770 0.496 0.272 0.232
#> GSM74394      2  0.5098    0.57030 0.000 0.752 0.248
#> GSM74239      1  0.5591    0.60662 0.696 0.000 0.304
#> GSM74364      1  0.5621    0.60179 0.692 0.000 0.308
#> GSM74365      3  0.7310    0.00815 0.324 0.048 0.628
#> GSM74366      3  0.5115    0.39788 0.004 0.228 0.768
#> GSM74367      3  0.7309   -0.18824 0.416 0.032 0.552
#> GSM74377      3  0.4978    0.40553 0.004 0.216 0.780
#> GSM74378      3  0.4978    0.40553 0.004 0.216 0.780
#> GSM74379      3  0.6318    0.41796 0.068 0.172 0.760
#> GSM74380      3  0.6007    0.41998 0.044 0.192 0.764
#> GSM74381      3  0.5109    0.40878 0.008 0.212 0.780
#> GSM121357     2  0.6677    0.45179 0.024 0.652 0.324
#> GSM121361     2  0.4931    0.59329 0.000 0.768 0.232
#> GSM121363     2  0.4931    0.59329 0.000 0.768 0.232
#> GSM121368     2  0.4931    0.59329 0.000 0.768 0.232
#> GSM121369     2  0.4974    0.58826 0.000 0.764 0.236
#> GSM74368      1  0.7575    0.34125 0.504 0.040 0.456
#> GSM74369      1  0.7575    0.34125 0.504 0.040 0.456
#> GSM74370      1  0.5480    0.66732 0.732 0.004 0.264
#> GSM74371      1  0.3192    0.72876 0.888 0.000 0.112
#> GSM74372      3  0.6442   -0.23515 0.432 0.004 0.564
#> GSM74373      3  0.7202    0.35369 0.124 0.160 0.716
#> GSM74374      3  0.6282   -0.13703 0.384 0.004 0.612
#> GSM74375      3  0.5366    0.41267 0.016 0.208 0.776
#> GSM74376      3  0.5551    0.40250 0.016 0.224 0.760
#> GSM74405      3  0.5455    0.41422 0.020 0.204 0.776
#> GSM74351      1  0.0237    0.77195 0.996 0.000 0.004
#> GSM74352      3  0.5360    0.40605 0.012 0.220 0.768
#> GSM74353      1  0.7158    0.47036 0.596 0.032 0.372
#> GSM74354      3  0.6264   -0.13302 0.380 0.004 0.616
#> GSM74355      3  0.5024    0.40328 0.004 0.220 0.776
#> GSM74382      1  0.4605    0.68103 0.796 0.000 0.204
#> GSM74383      1  0.6295    0.37642 0.528 0.000 0.472
#> GSM74384      3  0.5070    0.40059 0.004 0.224 0.772
#> GSM74385      1  0.3816    0.70559 0.852 0.000 0.148
#> GSM74386      3  0.7969   -0.15895 0.396 0.064 0.540
#> GSM74395      3  0.7232   -0.20842 0.428 0.028 0.544
#> GSM74396      3  0.7232   -0.20842 0.428 0.028 0.544
#> GSM74397      3  0.7274   -0.26266 0.452 0.028 0.520
#> GSM74398      3  0.5772    0.40912 0.024 0.220 0.756
#> GSM74399      3  0.5202    0.40509 0.008 0.220 0.772
#> GSM74400      3  0.5951    0.41801 0.040 0.196 0.764
#> GSM74401      3  0.5951    0.41801 0.040 0.196 0.764

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.2530     0.6661 0.000 0.004 0.896 0.100
#> GSM74357      3  0.2197     0.6817 0.000 0.004 0.916 0.080
#> GSM74358      3  0.2197     0.6817 0.000 0.004 0.916 0.080
#> GSM74359      4  0.7718     0.5477 0.004 0.240 0.272 0.484
#> GSM74360      4  0.7718     0.5477 0.004 0.240 0.272 0.484
#> GSM74361      3  0.5394     0.5049 0.000 0.060 0.712 0.228
#> GSM74362      3  0.5426     0.4980 0.000 0.060 0.708 0.232
#> GSM74363      3  0.2197     0.6817 0.000 0.004 0.916 0.080
#> GSM74402      4  0.0592     0.7203 0.000 0.000 0.016 0.984
#> GSM74403      4  0.1209     0.7101 0.004 0.032 0.000 0.964
#> GSM74404      4  0.1209     0.7101 0.004 0.032 0.000 0.964
#> GSM74406      4  0.0707     0.7206 0.000 0.000 0.020 0.980
#> GSM74407      4  0.1302     0.7160 0.000 0.000 0.044 0.956
#> GSM74408      4  0.0672     0.7199 0.000 0.008 0.008 0.984
#> GSM74409      4  0.0672     0.7199 0.000 0.008 0.008 0.984
#> GSM74410      4  0.0672     0.7199 0.000 0.008 0.008 0.984
#> GSM119936     4  0.0672     0.7199 0.000 0.008 0.008 0.984
#> GSM119937     4  0.2334     0.6965 0.000 0.004 0.088 0.908
#> GSM74411      3  0.0921     0.7115 0.000 0.028 0.972 0.000
#> GSM74412      3  0.0921     0.7115 0.000 0.028 0.972 0.000
#> GSM74413      3  0.0921     0.7115 0.000 0.028 0.972 0.000
#> GSM74414      3  0.3323     0.6321 0.060 0.064 0.876 0.000
#> GSM74415      3  0.0921     0.7115 0.000 0.028 0.972 0.000
#> GSM121379     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121380     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121381     2  0.5024     0.9888 0.008 0.632 0.360 0.000
#> GSM121382     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121383     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121384     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121385     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121386     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121387     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121388     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121389     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121390     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121391     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121392     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121393     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121394     2  0.5024     0.9888 0.008 0.632 0.360 0.000
#> GSM121395     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121396     2  0.5193     0.8973 0.008 0.580 0.412 0.000
#> GSM121397     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121398     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM121399     2  0.5007     0.9945 0.008 0.636 0.356 0.000
#> GSM74240      3  0.0188     0.7232 0.000 0.004 0.996 0.000
#> GSM74241      3  0.0188     0.7232 0.000 0.004 0.996 0.000
#> GSM74242      3  0.0188     0.7232 0.000 0.004 0.996 0.000
#> GSM74243      3  0.0188     0.7232 0.000 0.004 0.996 0.000
#> GSM74244      3  0.0188     0.7232 0.000 0.004 0.996 0.000
#> GSM74245      3  0.0188     0.7232 0.000 0.004 0.996 0.000
#> GSM74246      3  0.0188     0.7232 0.000 0.004 0.996 0.000
#> GSM74247      3  0.0188     0.7232 0.000 0.004 0.996 0.000
#> GSM74248      3  0.0188     0.7232 0.000 0.004 0.996 0.000
#> GSM74416      4  0.2345     0.6906 0.000 0.100 0.000 0.900
#> GSM74417      4  0.2345     0.6906 0.000 0.100 0.000 0.900
#> GSM74418      4  0.2345     0.6906 0.000 0.100 0.000 0.900
#> GSM74419      4  0.0707     0.7207 0.000 0.000 0.020 0.980
#> GSM121358     3  0.0469     0.7214 0.000 0.012 0.988 0.000
#> GSM121359     3  0.0469     0.7214 0.000 0.012 0.988 0.000
#> GSM121360     4  0.7845     0.5445 0.008 0.240 0.272 0.480
#> GSM121362     4  0.7845     0.5445 0.008 0.240 0.272 0.480
#> GSM121364     4  0.7718     0.5477 0.004 0.240 0.272 0.484
#> GSM121365     3  0.0804     0.7216 0.000 0.008 0.980 0.012
#> GSM121366     3  0.0469     0.7214 0.000 0.012 0.988 0.000
#> GSM121367     3  0.0469     0.7214 0.000 0.012 0.988 0.000
#> GSM121370     3  0.0469     0.7214 0.000 0.012 0.988 0.000
#> GSM121371     3  0.0469     0.7214 0.000 0.012 0.988 0.000
#> GSM121372     3  0.0469     0.7214 0.000 0.012 0.988 0.000
#> GSM121373     4  0.7718     0.5477 0.004 0.240 0.272 0.484
#> GSM121374     4  0.7718     0.5477 0.004 0.240 0.272 0.484
#> GSM121407     3  0.2363     0.6734 0.024 0.056 0.920 0.000
#> GSM74387      3  0.6977     0.0610 0.212 0.204 0.584 0.000
#> GSM74388      3  0.7754    -0.2031 0.336 0.244 0.420 0.000
#> GSM74389      3  0.6443    -0.0932 0.004 0.056 0.472 0.468
#> GSM74390      3  0.5880     0.4598 0.232 0.008 0.692 0.068
#> GSM74391      4  0.5523     0.5487 0.012 0.032 0.260 0.696
#> GSM74392      3  0.6212     0.1832 0.000 0.060 0.560 0.380
#> GSM74393      3  0.6212     0.1832 0.000 0.060 0.560 0.380
#> GSM74394      3  0.7705    -0.1812 0.312 0.244 0.444 0.000
#> GSM74239      4  0.7285     0.2378 0.300 0.180 0.000 0.520
#> GSM74364      4  0.7254     0.2429 0.300 0.176 0.000 0.524
#> GSM74365      1  0.5826     0.5835 0.680 0.064 0.004 0.252
#> GSM74366      1  0.1174     0.7540 0.968 0.020 0.012 0.000
#> GSM74367      1  0.6265     0.4702 0.588 0.072 0.000 0.340
#> GSM74377      1  0.0779     0.7590 0.980 0.016 0.004 0.000
#> GSM74378      1  0.0779     0.7590 0.980 0.016 0.004 0.000
#> GSM74379      1  0.2317     0.7521 0.928 0.036 0.004 0.032
#> GSM74380      1  0.1697     0.7598 0.952 0.016 0.004 0.028
#> GSM74381      1  0.0779     0.7607 0.980 0.016 0.004 0.000
#> GSM121357     3  0.6303     0.2071 0.148 0.192 0.660 0.000
#> GSM121361     3  0.7758    -0.2193 0.308 0.260 0.432 0.000
#> GSM121363     3  0.7758    -0.2193 0.308 0.260 0.432 0.000
#> GSM121368     3  0.7758    -0.2193 0.308 0.260 0.432 0.000
#> GSM121369     3  0.7733    -0.2078 0.304 0.256 0.440 0.000
#> GSM74368      1  0.7276     0.2830 0.496 0.120 0.008 0.376
#> GSM74369      1  0.7276     0.2830 0.496 0.120 0.008 0.376
#> GSM74370      4  0.7627     0.3358 0.252 0.240 0.004 0.504
#> GSM74371      4  0.6010     0.5914 0.104 0.220 0.000 0.676
#> GSM74372      1  0.6536     0.4305 0.560 0.088 0.000 0.352
#> GSM74373      1  0.3836     0.7254 0.852 0.092 0.004 0.052
#> GSM74374      1  0.6300     0.5126 0.608 0.084 0.000 0.308
#> GSM74375      1  0.0524     0.7615 0.988 0.008 0.000 0.004
#> GSM74376      1  0.1396     0.7571 0.960 0.032 0.004 0.004
#> GSM74405      1  0.1114     0.7624 0.972 0.016 0.004 0.008
#> GSM74351      4  0.1305     0.7140 0.004 0.036 0.000 0.960
#> GSM74352      1  0.1229     0.7596 0.968 0.020 0.004 0.008
#> GSM74353      4  0.6677     0.0304 0.400 0.060 0.012 0.528
#> GSM74354      1  0.6242     0.5153 0.612 0.080 0.000 0.308
#> GSM74355      1  0.0895     0.7578 0.976 0.020 0.004 0.000
#> GSM74382      4  0.6719     0.4501 0.204 0.180 0.000 0.616
#> GSM74383      1  0.7037     0.2240 0.464 0.120 0.000 0.416
#> GSM74384      1  0.1004     0.7568 0.972 0.024 0.004 0.000
#> GSM74385      4  0.6673     0.5284 0.140 0.252 0.000 0.608
#> GSM74386      1  0.6762     0.4673 0.596 0.088 0.012 0.304
#> GSM74395      1  0.6310     0.4534 0.576 0.072 0.000 0.352
#> GSM74396      1  0.6310     0.4534 0.576 0.072 0.000 0.352
#> GSM74397      1  0.6698     0.3832 0.540 0.072 0.008 0.380
#> GSM74398      1  0.1362     0.7625 0.964 0.020 0.004 0.012
#> GSM74399      1  0.0779     0.7592 0.980 0.016 0.004 0.000
#> GSM74400      1  0.1510     0.7601 0.956 0.028 0.000 0.016
#> GSM74401      1  0.1510     0.7601 0.956 0.028 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.5579     0.6888 0.000 0.216 0.676 0.080 0.028
#> GSM74357      3  0.5273     0.6975 0.000 0.216 0.696 0.064 0.024
#> GSM74358      3  0.5273     0.6975 0.000 0.216 0.696 0.064 0.024
#> GSM74359      3  0.6526    -0.1116 0.000 0.000 0.452 0.344 0.204
#> GSM74360      3  0.6526    -0.1116 0.000 0.000 0.452 0.344 0.204
#> GSM74361      3  0.6443     0.5915 0.000 0.136 0.632 0.168 0.064
#> GSM74362      3  0.6475     0.5873 0.000 0.136 0.628 0.172 0.064
#> GSM74363      3  0.5273     0.6975 0.000 0.216 0.696 0.064 0.024
#> GSM74402      4  0.1211     0.7745 0.000 0.000 0.016 0.960 0.024
#> GSM74403      4  0.2136     0.7276 0.000 0.000 0.008 0.904 0.088
#> GSM74404      4  0.2136     0.7276 0.000 0.000 0.008 0.904 0.088
#> GSM74406      4  0.1216     0.7731 0.000 0.000 0.020 0.960 0.020
#> GSM74407      4  0.2446     0.7247 0.000 0.000 0.044 0.900 0.056
#> GSM74408      4  0.0290     0.7788 0.000 0.000 0.008 0.992 0.000
#> GSM74409      4  0.0290     0.7788 0.000 0.000 0.008 0.992 0.000
#> GSM74410      4  0.0290     0.7788 0.000 0.000 0.008 0.992 0.000
#> GSM119936     4  0.0290     0.7788 0.000 0.000 0.008 0.992 0.000
#> GSM119937     4  0.3033     0.6788 0.000 0.000 0.084 0.864 0.052
#> GSM74411      3  0.3534     0.7020 0.000 0.256 0.744 0.000 0.000
#> GSM74412      3  0.3534     0.7020 0.000 0.256 0.744 0.000 0.000
#> GSM74413      3  0.3534     0.7020 0.000 0.256 0.744 0.000 0.000
#> GSM74414      3  0.5120     0.6166 0.056 0.292 0.648 0.000 0.004
#> GSM74415      3  0.3534     0.7020 0.000 0.256 0.744 0.000 0.000
#> GSM121379     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0404     0.8455 0.000 0.988 0.012 0.000 0.000
#> GSM121382     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.0162     0.8516 0.000 0.996 0.004 0.000 0.000
#> GSM121389     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121393     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121394     2  0.0404     0.8455 0.000 0.988 0.012 0.000 0.000
#> GSM121395     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121396     2  0.1410     0.8070 0.000 0.940 0.060 0.000 0.000
#> GSM121397     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.8545 0.000 1.000 0.000 0.000 0.000
#> GSM74240      3  0.4355     0.7130 0.000 0.224 0.732 0.000 0.044
#> GSM74241      3  0.4355     0.7130 0.000 0.224 0.732 0.000 0.044
#> GSM74242      3  0.4355     0.7130 0.000 0.224 0.732 0.000 0.044
#> GSM74243      3  0.4355     0.7130 0.000 0.224 0.732 0.000 0.044
#> GSM74244      3  0.4355     0.7130 0.000 0.224 0.732 0.000 0.044
#> GSM74245      3  0.4355     0.7130 0.000 0.224 0.732 0.000 0.044
#> GSM74246      3  0.4355     0.7130 0.000 0.224 0.732 0.000 0.044
#> GSM74247      3  0.4355     0.7130 0.000 0.224 0.732 0.000 0.044
#> GSM74248      3  0.4355     0.7130 0.000 0.224 0.732 0.000 0.044
#> GSM74416      4  0.3098     0.6779 0.000 0.000 0.016 0.836 0.148
#> GSM74417      4  0.3141     0.6747 0.000 0.000 0.016 0.832 0.152
#> GSM74418      4  0.3141     0.6747 0.000 0.000 0.016 0.832 0.152
#> GSM74419      4  0.1117     0.7738 0.000 0.000 0.020 0.964 0.016
#> GSM121358     3  0.3424     0.7117 0.000 0.240 0.760 0.000 0.000
#> GSM121359     3  0.3424     0.7117 0.000 0.240 0.760 0.000 0.000
#> GSM121360     3  0.6661    -0.1088 0.004 0.000 0.452 0.340 0.204
#> GSM121362     3  0.6661    -0.1088 0.004 0.000 0.452 0.340 0.204
#> GSM121364     3  0.6526    -0.1116 0.000 0.000 0.452 0.344 0.204
#> GSM121365     3  0.3779     0.7136 0.000 0.236 0.752 0.012 0.000
#> GSM121366     3  0.3424     0.7117 0.000 0.240 0.760 0.000 0.000
#> GSM121367     3  0.3424     0.7117 0.000 0.240 0.760 0.000 0.000
#> GSM121370     3  0.3424     0.7117 0.000 0.240 0.760 0.000 0.000
#> GSM121371     3  0.3424     0.7117 0.000 0.240 0.760 0.000 0.000
#> GSM121372     3  0.3424     0.7117 0.000 0.240 0.760 0.000 0.000
#> GSM121373     3  0.6526    -0.1116 0.000 0.000 0.452 0.344 0.204
#> GSM121374     3  0.6526    -0.1116 0.000 0.000 0.452 0.344 0.204
#> GSM121407     3  0.4442     0.6605 0.028 0.284 0.688 0.000 0.000
#> GSM74387      2  0.6746     0.2373 0.204 0.492 0.292 0.000 0.012
#> GSM74388      2  0.5756     0.5396 0.324 0.588 0.076 0.000 0.012
#> GSM74389      3  0.7691     0.2085 0.004 0.132 0.392 0.384 0.088
#> GSM74390      3  0.8010     0.4470 0.216 0.224 0.468 0.020 0.072
#> GSM74391      4  0.6825     0.3017 0.012 0.104 0.184 0.620 0.080
#> GSM74392      3  0.7345     0.3966 0.000 0.136 0.480 0.308 0.076
#> GSM74393      3  0.7345     0.3966 0.000 0.136 0.480 0.308 0.076
#> GSM74394      2  0.5945     0.5371 0.300 0.588 0.100 0.000 0.012
#> GSM74239      5  0.6129     0.6440 0.160 0.000 0.004 0.264 0.572
#> GSM74364      5  0.6129     0.6421 0.160 0.000 0.004 0.264 0.572
#> GSM74365      1  0.5821     0.3387 0.564 0.000 0.008 0.084 0.344
#> GSM74366      1  0.0693     0.6821 0.980 0.000 0.012 0.000 0.008
#> GSM74367      1  0.6452     0.1191 0.480 0.000 0.004 0.164 0.352
#> GSM74377      1  0.0671     0.6909 0.980 0.000 0.004 0.000 0.016
#> GSM74378      1  0.0566     0.6876 0.984 0.000 0.004 0.000 0.012
#> GSM74379      1  0.2672     0.6616 0.872 0.000 0.008 0.004 0.116
#> GSM74380      1  0.2054     0.6813 0.916 0.000 0.008 0.004 0.072
#> GSM74381      1  0.0898     0.6913 0.972 0.000 0.008 0.000 0.020
#> GSM121357     2  0.6502     0.0381 0.136 0.472 0.380 0.000 0.012
#> GSM121361     2  0.5790     0.5583 0.296 0.604 0.088 0.000 0.012
#> GSM121363     2  0.5790     0.5583 0.296 0.604 0.088 0.000 0.012
#> GSM121368     2  0.5790     0.5583 0.296 0.604 0.088 0.000 0.012
#> GSM121369     2  0.5865     0.5526 0.292 0.600 0.096 0.000 0.012
#> GSM74368      1  0.7608    -0.1232 0.384 0.000 0.072 0.168 0.376
#> GSM74369      1  0.7608    -0.1232 0.384 0.000 0.072 0.168 0.376
#> GSM74370      5  0.8098     0.3841 0.132 0.000 0.200 0.256 0.412
#> GSM74371      5  0.4787     0.2747 0.004 0.000 0.012 0.456 0.528
#> GSM74372      1  0.6768     0.0258 0.440 0.000 0.020 0.148 0.392
#> GSM74373      1  0.3880     0.5994 0.772 0.000 0.020 0.004 0.204
#> GSM74374      1  0.6507     0.1811 0.488 0.000 0.016 0.128 0.368
#> GSM74375      1  0.1341     0.6806 0.944 0.000 0.000 0.000 0.056
#> GSM74376      1  0.1356     0.6874 0.956 0.012 0.004 0.000 0.028
#> GSM74405      1  0.1124     0.6912 0.960 0.000 0.004 0.000 0.036
#> GSM74351      4  0.3656     0.6036 0.000 0.000 0.020 0.784 0.196
#> GSM74352      1  0.0992     0.6862 0.968 0.000 0.008 0.000 0.024
#> GSM74353      4  0.7521    -0.4298 0.324 0.000 0.040 0.380 0.256
#> GSM74354      1  0.6575     0.1914 0.492 0.000 0.020 0.128 0.360
#> GSM74355      1  0.0324     0.6873 0.992 0.000 0.004 0.000 0.004
#> GSM74382      5  0.5674     0.5675 0.072 0.000 0.004 0.388 0.536
#> GSM74383      5  0.6928     0.2549 0.320 0.000 0.020 0.192 0.468
#> GSM74384      1  0.0613     0.6850 0.984 0.004 0.004 0.000 0.008
#> GSM74385      5  0.4517     0.4576 0.008 0.000 0.004 0.372 0.616
#> GSM74386      1  0.6993     0.1080 0.476 0.000 0.048 0.124 0.352
#> GSM74395      1  0.6453     0.1035 0.468 0.000 0.004 0.160 0.368
#> GSM74396      1  0.6453     0.1035 0.468 0.000 0.004 0.160 0.368
#> GSM74397      1  0.6894    -0.0274 0.440 0.000 0.012 0.212 0.336
#> GSM74398      1  0.1059     0.6918 0.968 0.000 0.004 0.008 0.020
#> GSM74399      1  0.0451     0.6889 0.988 0.000 0.004 0.000 0.008
#> GSM74400      1  0.2953     0.6353 0.844 0.000 0.012 0.000 0.144
#> GSM74401      1  0.2953     0.6353 0.844 0.000 0.012 0.000 0.144

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.2487    0.72919 0.000 0.000 0.876 0.032 0.092 0.000
#> GSM74357      3  0.2147    0.74411 0.000 0.000 0.896 0.020 0.084 0.000
#> GSM74358      3  0.2147    0.74411 0.000 0.000 0.896 0.020 0.084 0.000
#> GSM74359      5  0.4536    0.90753 0.000 0.000 0.180 0.120 0.700 0.000
#> GSM74360      5  0.4536    0.90753 0.000 0.000 0.180 0.120 0.700 0.000
#> GSM74361      3  0.4408    0.36877 0.000 0.000 0.656 0.052 0.292 0.000
#> GSM74362      3  0.4463    0.36061 0.000 0.000 0.652 0.056 0.292 0.000
#> GSM74363      3  0.2147    0.74411 0.000 0.000 0.896 0.020 0.084 0.000
#> GSM74402      4  0.2355    0.81471 0.008 0.000 0.004 0.876 0.112 0.000
#> GSM74403      4  0.1524    0.74111 0.060 0.000 0.000 0.932 0.008 0.000
#> GSM74404      4  0.1643    0.73518 0.068 0.000 0.000 0.924 0.008 0.000
#> GSM74406      4  0.2400    0.81328 0.004 0.000 0.008 0.872 0.116 0.000
#> GSM74407      4  0.3343    0.75550 0.004 0.000 0.024 0.796 0.176 0.000
#> GSM74408      4  0.1814    0.82056 0.000 0.000 0.000 0.900 0.100 0.000
#> GSM74409      4  0.1814    0.82056 0.000 0.000 0.000 0.900 0.100 0.000
#> GSM74410      4  0.1814    0.82056 0.000 0.000 0.000 0.900 0.100 0.000
#> GSM119936     4  0.1814    0.82056 0.000 0.000 0.000 0.900 0.100 0.000
#> GSM119937     4  0.4062    0.71268 0.004 0.000 0.060 0.744 0.192 0.000
#> GSM74411      3  0.0937    0.79778 0.000 0.040 0.960 0.000 0.000 0.000
#> GSM74412      3  0.0937    0.79778 0.000 0.040 0.960 0.000 0.000 0.000
#> GSM74413      3  0.0937    0.79778 0.000 0.040 0.960 0.000 0.000 0.000
#> GSM74414      3  0.2822    0.74310 0.000 0.076 0.864 0.000 0.004 0.056
#> GSM74415      3  0.0937    0.79778 0.000 0.040 0.960 0.000 0.000 0.000
#> GSM121379     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121380     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121381     2  0.1267    0.87504 0.000 0.940 0.060 0.000 0.000 0.000
#> GSM121382     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121383     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121384     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121385     2  0.0937    0.88940 0.000 0.960 0.040 0.000 0.000 0.000
#> GSM121386     2  0.0937    0.88940 0.000 0.960 0.040 0.000 0.000 0.000
#> GSM121387     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121388     2  0.1141    0.88051 0.000 0.948 0.052 0.000 0.000 0.000
#> GSM121389     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121390     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121391     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121392     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121393     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121394     2  0.1267    0.87504 0.000 0.940 0.060 0.000 0.000 0.000
#> GSM121395     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121396     2  0.1910    0.83862 0.000 0.892 0.108 0.000 0.000 0.000
#> GSM121397     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121398     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM121399     2  0.0865    0.89131 0.000 0.964 0.036 0.000 0.000 0.000
#> GSM74240      3  0.2604    0.78242 0.076 0.008 0.880 0.000 0.036 0.000
#> GSM74241      3  0.2604    0.78242 0.076 0.008 0.880 0.000 0.036 0.000
#> GSM74242      3  0.2604    0.78242 0.076 0.008 0.880 0.000 0.036 0.000
#> GSM74243      3  0.2604    0.78242 0.076 0.008 0.880 0.000 0.036 0.000
#> GSM74244      3  0.2604    0.78242 0.076 0.008 0.880 0.000 0.036 0.000
#> GSM74245      3  0.2604    0.78242 0.076 0.008 0.880 0.000 0.036 0.000
#> GSM74246      3  0.2604    0.78242 0.076 0.008 0.880 0.000 0.036 0.000
#> GSM74247      3  0.2604    0.78242 0.076 0.008 0.880 0.000 0.036 0.000
#> GSM74248      3  0.2604    0.78242 0.076 0.008 0.880 0.000 0.036 0.000
#> GSM74416      4  0.2163    0.70992 0.092 0.000 0.000 0.892 0.016 0.000
#> GSM74417      4  0.2214    0.70678 0.096 0.000 0.000 0.888 0.016 0.000
#> GSM74418      4  0.2214    0.70678 0.096 0.000 0.000 0.888 0.016 0.000
#> GSM74419      4  0.2445    0.81340 0.004 0.000 0.008 0.868 0.120 0.000
#> GSM121358     3  0.0547    0.80195 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM121359     3  0.0547    0.80195 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM121360     5  0.4496    0.90443 0.000 0.000 0.180 0.116 0.704 0.000
#> GSM121362     5  0.4496    0.90443 0.000 0.000 0.180 0.116 0.704 0.000
#> GSM121364     5  0.4536    0.90753 0.000 0.000 0.180 0.120 0.700 0.000
#> GSM121365     3  0.0909    0.80007 0.000 0.020 0.968 0.012 0.000 0.000
#> GSM121366     3  0.0547    0.80195 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM121367     3  0.0547    0.80195 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM121370     3  0.0547    0.80195 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM121371     3  0.0547    0.80195 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM121372     3  0.0547    0.80195 0.000 0.020 0.980 0.000 0.000 0.000
#> GSM121373     5  0.4536    0.90753 0.000 0.000 0.180 0.120 0.700 0.000
#> GSM121374     5  0.4536    0.90753 0.000 0.000 0.180 0.120 0.700 0.000
#> GSM121407     3  0.2152    0.77483 0.000 0.068 0.904 0.000 0.004 0.024
#> GSM74387      3  0.6374   -0.10129 0.000 0.368 0.412 0.000 0.024 0.196
#> GSM74388      2  0.5644    0.53281 0.000 0.552 0.108 0.000 0.020 0.320
#> GSM74389      3  0.6563   -0.24686 0.020 0.000 0.416 0.256 0.304 0.004
#> GSM74390      3  0.5271    0.53332 0.064 0.008 0.680 0.000 0.048 0.200
#> GSM74391      4  0.6408    0.17109 0.020 0.000 0.228 0.512 0.228 0.012
#> GSM74392      3  0.5780   -0.06655 0.004 0.000 0.496 0.168 0.332 0.000
#> GSM74393      3  0.5780   -0.06655 0.004 0.000 0.496 0.168 0.332 0.000
#> GSM74394      2  0.5828    0.54639 0.000 0.552 0.132 0.000 0.024 0.292
#> GSM74239      1  0.6081    0.66217 0.604 0.000 0.000 0.188 0.104 0.104
#> GSM74364      1  0.6145    0.66473 0.596 0.000 0.000 0.192 0.108 0.104
#> GSM74365      6  0.5884    0.30624 0.348 0.000 0.000 0.032 0.104 0.516
#> GSM74366      6  0.0622    0.63969 0.000 0.000 0.008 0.000 0.012 0.980
#> GSM74367      6  0.6385    0.09759 0.396 0.000 0.000 0.092 0.076 0.436
#> GSM74377      6  0.0820    0.64802 0.016 0.000 0.000 0.000 0.012 0.972
#> GSM74378      6  0.0717    0.64564 0.008 0.000 0.000 0.000 0.016 0.976
#> GSM74379      6  0.2909    0.61146 0.136 0.000 0.000 0.000 0.028 0.836
#> GSM74380      6  0.2176    0.63581 0.080 0.000 0.000 0.000 0.024 0.896
#> GSM74381      6  0.1092    0.64791 0.020 0.000 0.000 0.000 0.020 0.960
#> GSM121357     3  0.5784    0.26715 0.000 0.300 0.548 0.000 0.020 0.132
#> GSM121361     2  0.5714    0.56503 0.000 0.568 0.120 0.000 0.024 0.288
#> GSM121363     2  0.5714    0.56503 0.000 0.568 0.120 0.000 0.024 0.288
#> GSM121368     2  0.5714    0.56503 0.000 0.568 0.120 0.000 0.024 0.288
#> GSM121369     2  0.5766    0.56231 0.000 0.564 0.128 0.000 0.024 0.284
#> GSM74368      6  0.7107   -0.01428 0.300 0.000 0.004 0.056 0.308 0.332
#> GSM74369      6  0.7107   -0.01428 0.300 0.000 0.004 0.056 0.308 0.332
#> GSM74370      5  0.5973   -0.04582 0.284 0.000 0.000 0.064 0.564 0.088
#> GSM74371      1  0.5442    0.40085 0.496 0.016 0.000 0.412 0.076 0.000
#> GSM74372      6  0.6899    0.04277 0.356 0.000 0.000 0.092 0.148 0.404
#> GSM74373      6  0.3963    0.56043 0.164 0.000 0.000 0.000 0.080 0.756
#> GSM74374      6  0.6390    0.17546 0.368 0.000 0.000 0.044 0.144 0.444
#> GSM74375      6  0.1995    0.62470 0.052 0.000 0.000 0.000 0.036 0.912
#> GSM74376      6  0.1180    0.64550 0.016 0.012 0.000 0.000 0.012 0.960
#> GSM74405      6  0.1168    0.64815 0.028 0.000 0.000 0.000 0.016 0.956
#> GSM74351      4  0.4175    0.57140 0.136 0.000 0.004 0.752 0.108 0.000
#> GSM74352      6  0.0820    0.64493 0.016 0.000 0.000 0.000 0.012 0.972
#> GSM74353      6  0.7820   -0.23370 0.212 0.000 0.004 0.272 0.236 0.276
#> GSM74354      6  0.6346    0.17831 0.380 0.000 0.000 0.048 0.128 0.444
#> GSM74355      6  0.0260    0.64429 0.000 0.000 0.000 0.000 0.008 0.992
#> GSM74382      1  0.5363    0.63885 0.580 0.000 0.000 0.320 0.080 0.020
#> GSM74383      1  0.6644    0.23375 0.504 0.000 0.000 0.096 0.132 0.268
#> GSM74384      6  0.0508    0.64206 0.000 0.004 0.000 0.000 0.012 0.984
#> GSM74385      1  0.5207    0.54091 0.588 0.016 0.000 0.324 0.072 0.000
#> GSM74386      6  0.6785    0.15695 0.300 0.000 0.008 0.040 0.208 0.444
#> GSM74395      6  0.6391    0.08631 0.412 0.000 0.000 0.076 0.092 0.420
#> GSM74396      6  0.6391    0.08631 0.412 0.000 0.000 0.076 0.092 0.420
#> GSM74397      6  0.7014   -0.00771 0.372 0.000 0.004 0.116 0.116 0.392
#> GSM74398      6  0.0713    0.64880 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM74399      6  0.0260    0.64593 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM74400      6  0.5356    0.45246 0.184 0.020 0.004 0.000 0.136 0.656
#> GSM74401      6  0.5356    0.45246 0.184 0.020 0.004 0.000 0.136 0.656

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:hclust 108         2.55e-07 2
#> SD:hclust  56         9.31e-09 3
#> SD:hclust  94         1.06e-28 4
#> SD:hclust  91         9.57e-31 5
#> SD:hclust  96         1.37e-30 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.698           0.927       0.952         0.4895 0.497   0.497
#> 3 3 0.604           0.761       0.871         0.3365 0.684   0.449
#> 4 4 0.705           0.788       0.881         0.1317 0.834   0.556
#> 5 5 0.731           0.730       0.815         0.0623 0.956   0.829
#> 6 6 0.770           0.531       0.745         0.0398 0.924   0.689

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.6623      0.853 0.172 0.828
#> GSM74357      2  0.8081      0.783 0.248 0.752
#> GSM74358      2  0.8081      0.783 0.248 0.752
#> GSM74359      1  0.0000      0.987 1.000 0.000
#> GSM74360      1  0.0000      0.987 1.000 0.000
#> GSM74361      2  0.7139      0.835 0.196 0.804
#> GSM74362      2  0.8081      0.783 0.248 0.752
#> GSM74363      2  0.6623      0.853 0.172 0.828
#> GSM74402      1  0.0000      0.987 1.000 0.000
#> GSM74403      1  0.0000      0.987 1.000 0.000
#> GSM74404      1  0.0000      0.987 1.000 0.000
#> GSM74406      1  0.0000      0.987 1.000 0.000
#> GSM74407      1  0.0000      0.987 1.000 0.000
#> GSM74408      1  0.0000      0.987 1.000 0.000
#> GSM74409      1  0.0000      0.987 1.000 0.000
#> GSM74410      1  0.0000      0.987 1.000 0.000
#> GSM119936     1  0.0000      0.987 1.000 0.000
#> GSM119937     1  0.0000      0.987 1.000 0.000
#> GSM74411      2  0.1184      0.918 0.016 0.984
#> GSM74412      2  0.0938      0.919 0.012 0.988
#> GSM74413      2  0.0938      0.919 0.012 0.988
#> GSM74414      2  0.0938      0.919 0.012 0.988
#> GSM74415      2  0.5946      0.870 0.144 0.856
#> GSM121379     2  0.0938      0.919 0.012 0.988
#> GSM121380     2  0.0938      0.919 0.012 0.988
#> GSM121381     2  0.0938      0.919 0.012 0.988
#> GSM121382     2  0.0938      0.919 0.012 0.988
#> GSM121383     2  0.0938      0.919 0.012 0.988
#> GSM121384     2  0.0938      0.919 0.012 0.988
#> GSM121385     2  0.0938      0.919 0.012 0.988
#> GSM121386     2  0.0938      0.919 0.012 0.988
#> GSM121387     2  0.0938      0.919 0.012 0.988
#> GSM121388     2  0.0938      0.919 0.012 0.988
#> GSM121389     2  0.0938      0.919 0.012 0.988
#> GSM121390     2  0.0938      0.919 0.012 0.988
#> GSM121391     2  0.0938      0.919 0.012 0.988
#> GSM121392     2  0.0938      0.919 0.012 0.988
#> GSM121393     2  0.0938      0.919 0.012 0.988
#> GSM121394     2  0.0938      0.919 0.012 0.988
#> GSM121395     2  0.0938      0.919 0.012 0.988
#> GSM121396     2  0.0938      0.919 0.012 0.988
#> GSM121397     2  0.0938      0.919 0.012 0.988
#> GSM121398     2  0.0938      0.919 0.012 0.988
#> GSM121399     2  0.0938      0.919 0.012 0.988
#> GSM74240      2  0.7815      0.790 0.232 0.768
#> GSM74241      2  0.7299      0.819 0.204 0.796
#> GSM74242      2  0.9608      0.529 0.384 0.616
#> GSM74243      2  0.9608      0.529 0.384 0.616
#> GSM74244      2  0.7056      0.831 0.192 0.808
#> GSM74245      2  0.7815      0.790 0.232 0.768
#> GSM74246      2  0.7056      0.831 0.192 0.808
#> GSM74247      2  0.7056      0.831 0.192 0.808
#> GSM74248      2  0.7950      0.781 0.240 0.760
#> GSM74416      1  0.0000      0.987 1.000 0.000
#> GSM74417      1  0.0000      0.987 1.000 0.000
#> GSM74418      1  0.0000      0.987 1.000 0.000
#> GSM74419      1  0.0000      0.987 1.000 0.000
#> GSM121358     2  0.6343      0.861 0.160 0.840
#> GSM121359     2  0.0938      0.919 0.012 0.988
#> GSM121360     1  0.0000      0.987 1.000 0.000
#> GSM121362     1  0.0000      0.987 1.000 0.000
#> GSM121364     1  0.0000      0.987 1.000 0.000
#> GSM121365     2  0.6343      0.861 0.160 0.840
#> GSM121366     2  0.5519      0.877 0.128 0.872
#> GSM121367     2  0.6343      0.861 0.160 0.840
#> GSM121370     2  0.6343      0.861 0.160 0.840
#> GSM121371     2  0.6343      0.861 0.160 0.840
#> GSM121372     2  0.0938      0.919 0.012 0.988
#> GSM121373     1  0.0000      0.987 1.000 0.000
#> GSM121374     1  0.0000      0.987 1.000 0.000
#> GSM121407     2  0.0938      0.919 0.012 0.988
#> GSM74387      2  0.1633      0.916 0.024 0.976
#> GSM74388      2  0.0938      0.919 0.012 0.988
#> GSM74389      1  0.0000      0.987 1.000 0.000
#> GSM74390      1  0.0000      0.987 1.000 0.000
#> GSM74391      1  0.0000      0.987 1.000 0.000
#> GSM74392      1  0.0000      0.987 1.000 0.000
#> GSM74393      1  0.0000      0.987 1.000 0.000
#> GSM74394      2  0.1184      0.918 0.016 0.984
#> GSM74239      1  0.0000      0.987 1.000 0.000
#> GSM74364      1  0.0000      0.987 1.000 0.000
#> GSM74365      1  0.0000      0.987 1.000 0.000
#> GSM74366      1  0.5737      0.838 0.864 0.136
#> GSM74367      1  0.0000      0.987 1.000 0.000
#> GSM74377      1  0.0376      0.983 0.996 0.004
#> GSM74378      1  0.5737      0.838 0.864 0.136
#> GSM74379      1  0.0000      0.987 1.000 0.000
#> GSM74380      1  0.0000      0.987 1.000 0.000
#> GSM74381      1  0.1414      0.968 0.980 0.020
#> GSM121357     2  0.0938      0.919 0.012 0.988
#> GSM121361     2  0.0938      0.919 0.012 0.988
#> GSM121363     2  0.0938      0.919 0.012 0.988
#> GSM121368     2  0.0938      0.919 0.012 0.988
#> GSM121369     2  0.1633      0.916 0.024 0.976
#> GSM74368      1  0.0000      0.987 1.000 0.000
#> GSM74369      1  0.0000      0.987 1.000 0.000
#> GSM74370      1  0.0000      0.987 1.000 0.000
#> GSM74371      1  0.0000      0.987 1.000 0.000
#> GSM74372      1  0.0000      0.987 1.000 0.000
#> GSM74373      1  0.0376      0.983 0.996 0.004
#> GSM74374      1  0.0000      0.987 1.000 0.000
#> GSM74375      1  0.0000      0.987 1.000 0.000
#> GSM74376      1  0.0000      0.987 1.000 0.000
#> GSM74405      1  0.0000      0.987 1.000 0.000
#> GSM74351      1  0.0000      0.987 1.000 0.000
#> GSM74352      1  0.6247      0.813 0.844 0.156
#> GSM74353      1  0.0000      0.987 1.000 0.000
#> GSM74354      1  0.0000      0.987 1.000 0.000
#> GSM74355      1  0.4690      0.881 0.900 0.100
#> GSM74382      1  0.0000      0.987 1.000 0.000
#> GSM74383      1  0.0000      0.987 1.000 0.000
#> GSM74384      1  0.6247      0.813 0.844 0.156
#> GSM74385      1  0.0000      0.987 1.000 0.000
#> GSM74386      1  0.0000      0.987 1.000 0.000
#> GSM74395      1  0.0000      0.987 1.000 0.000
#> GSM74396      1  0.0000      0.987 1.000 0.000
#> GSM74397      1  0.0000      0.987 1.000 0.000
#> GSM74398      1  0.0000      0.987 1.000 0.000
#> GSM74399      1  0.0000      0.987 1.000 0.000
#> GSM74400      1  0.0000      0.987 1.000 0.000
#> GSM74401      1  0.0000      0.987 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.1482      0.688 0.012 0.020 0.968
#> GSM74357      3  0.1491      0.691 0.016 0.016 0.968
#> GSM74358      3  0.1491      0.691 0.016 0.016 0.968
#> GSM74359      3  0.4842      0.689 0.224 0.000 0.776
#> GSM74360      3  0.5138      0.675 0.252 0.000 0.748
#> GSM74361      3  0.1491      0.691 0.016 0.016 0.968
#> GSM74362      3  0.1491      0.691 0.016 0.016 0.968
#> GSM74363      3  0.1711      0.680 0.008 0.032 0.960
#> GSM74402      3  0.6180      0.446 0.416 0.000 0.584
#> GSM74403      3  0.6260      0.377 0.448 0.000 0.552
#> GSM74404      3  0.6260      0.377 0.448 0.000 0.552
#> GSM74406      3  0.5138      0.675 0.252 0.000 0.748
#> GSM74407      3  0.6008      0.525 0.372 0.000 0.628
#> GSM74408      3  0.5138      0.675 0.252 0.000 0.748
#> GSM74409      3  0.5138      0.675 0.252 0.000 0.748
#> GSM74410      3  0.5058      0.680 0.244 0.000 0.756
#> GSM119936     3  0.5138      0.675 0.252 0.000 0.748
#> GSM119937     3  0.5138      0.675 0.252 0.000 0.748
#> GSM74411      2  0.6126      0.578 0.004 0.644 0.352
#> GSM74412      2  0.5115      0.755 0.004 0.768 0.228
#> GSM74413      2  0.5656      0.691 0.004 0.712 0.284
#> GSM74414      2  0.1765      0.879 0.004 0.956 0.040
#> GSM74415      3  0.6264      0.178 0.004 0.380 0.616
#> GSM121379     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121380     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121381     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121382     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121383     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121384     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121385     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121386     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121387     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121388     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121389     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121390     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121391     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121392     2  0.0237      0.891 0.004 0.996 0.000
#> GSM121393     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121394     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121395     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121396     2  0.0747      0.889 0.000 0.984 0.016
#> GSM121397     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121398     2  0.0000      0.894 0.000 1.000 0.000
#> GSM121399     2  0.0000      0.894 0.000 1.000 0.000
#> GSM74240      3  0.0983      0.681 0.016 0.004 0.980
#> GSM74241      3  0.5723      0.433 0.016 0.240 0.744
#> GSM74242      3  0.0475      0.683 0.004 0.004 0.992
#> GSM74243      3  0.0475      0.683 0.004 0.004 0.992
#> GSM74244      3  0.5723      0.433 0.016 0.240 0.744
#> GSM74245      3  0.0983      0.681 0.016 0.004 0.980
#> GSM74246      3  0.6096      0.363 0.016 0.280 0.704
#> GSM74247      3  0.6448      0.261 0.016 0.328 0.656
#> GSM74248      3  0.0983      0.681 0.016 0.004 0.980
#> GSM74416      3  0.6260      0.377 0.448 0.000 0.552
#> GSM74417      3  0.6260      0.377 0.448 0.000 0.552
#> GSM74418      3  0.6295      0.316 0.472 0.000 0.528
#> GSM74419      3  0.5138      0.675 0.252 0.000 0.748
#> GSM121358     3  0.6529      0.214 0.012 0.368 0.620
#> GSM121359     2  0.5480      0.717 0.004 0.732 0.264
#> GSM121360     3  0.5926      0.550 0.356 0.000 0.644
#> GSM121362     3  0.6008      0.522 0.372 0.000 0.628
#> GSM121364     3  0.4974      0.684 0.236 0.000 0.764
#> GSM121365     3  0.6529      0.214 0.012 0.368 0.620
#> GSM121366     3  0.6247      0.190 0.004 0.376 0.620
#> GSM121367     3  0.6529      0.214 0.012 0.368 0.620
#> GSM121370     3  0.6529      0.214 0.012 0.368 0.620
#> GSM121371     3  0.6529      0.214 0.012 0.368 0.620
#> GSM121372     2  0.5623      0.697 0.004 0.716 0.280
#> GSM121373     3  0.4974      0.684 0.236 0.000 0.764
#> GSM121374     3  0.4974      0.684 0.236 0.000 0.764
#> GSM121407     2  0.4883      0.773 0.004 0.788 0.208
#> GSM74387      2  0.8286      0.652 0.140 0.624 0.236
#> GSM74388      2  0.5466      0.782 0.160 0.800 0.040
#> GSM74389      3  0.2711      0.713 0.088 0.000 0.912
#> GSM74390      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74391      3  0.5098      0.678 0.248 0.000 0.752
#> GSM74392      3  0.4750      0.692 0.216 0.000 0.784
#> GSM74393      3  0.1753      0.703 0.048 0.000 0.952
#> GSM74394      2  0.7829      0.703 0.164 0.672 0.164
#> GSM74239      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74364      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74365      1  0.0237      0.980 0.996 0.000 0.004
#> GSM74366      1  0.1163      0.952 0.972 0.028 0.000
#> GSM74367      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74377      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74378      1  0.0892      0.961 0.980 0.020 0.000
#> GSM74379      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74380      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74381      1  0.0000      0.980 1.000 0.000 0.000
#> GSM121357     2  0.2200      0.872 0.004 0.940 0.056
#> GSM121361     2  0.5875      0.777 0.160 0.784 0.056
#> GSM121363     2  0.5816      0.782 0.156 0.788 0.056
#> GSM121368     2  0.5816      0.782 0.156 0.788 0.056
#> GSM121369     2  0.8212      0.670 0.168 0.640 0.192
#> GSM74368      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74369      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74370      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74371      1  0.0892      0.976 0.980 0.000 0.020
#> GSM74372      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74373      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74374      1  0.0424      0.980 0.992 0.000 0.008
#> GSM74375      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74376      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74405      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74351      1  0.2356      0.908 0.928 0.000 0.072
#> GSM74352      1  0.1289      0.947 0.968 0.032 0.000
#> GSM74353      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74354      1  0.0592      0.980 0.988 0.000 0.012
#> GSM74355      1  0.0424      0.973 0.992 0.008 0.000
#> GSM74382      1  0.2959      0.863 0.900 0.000 0.100
#> GSM74383      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74384      1  0.1289      0.947 0.968 0.032 0.000
#> GSM74385      1  0.0892      0.976 0.980 0.000 0.020
#> GSM74386      1  0.0592      0.980 0.988 0.000 0.012
#> GSM74395      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74396      1  0.0747      0.979 0.984 0.000 0.016
#> GSM74397      1  0.0892      0.976 0.980 0.000 0.020
#> GSM74398      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74399      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74400      1  0.0000      0.980 1.000 0.000 0.000
#> GSM74401      1  0.0000      0.980 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.2345      0.866 0.000 0.000 0.900 0.100
#> GSM74357      3  0.2408      0.864 0.000 0.000 0.896 0.104
#> GSM74358      3  0.2408      0.864 0.000 0.000 0.896 0.104
#> GSM74359      4  0.3707      0.822 0.028 0.000 0.132 0.840
#> GSM74360      4  0.0921      0.905 0.028 0.000 0.000 0.972
#> GSM74361      3  0.2345      0.866 0.000 0.000 0.900 0.100
#> GSM74362      3  0.2469      0.863 0.000 0.000 0.892 0.108
#> GSM74363      3  0.2345      0.866 0.000 0.000 0.900 0.100
#> GSM74402      4  0.1302      0.904 0.044 0.000 0.000 0.956
#> GSM74403      4  0.1389      0.903 0.048 0.000 0.000 0.952
#> GSM74404      4  0.1389      0.903 0.048 0.000 0.000 0.952
#> GSM74406      4  0.1022      0.907 0.032 0.000 0.000 0.968
#> GSM74407      4  0.1211      0.906 0.040 0.000 0.000 0.960
#> GSM74408      4  0.1022      0.907 0.032 0.000 0.000 0.968
#> GSM74409      4  0.1022      0.907 0.032 0.000 0.000 0.968
#> GSM74410      4  0.1022      0.907 0.032 0.000 0.000 0.968
#> GSM119936     4  0.1022      0.907 0.032 0.000 0.000 0.968
#> GSM119937     4  0.1022      0.907 0.032 0.000 0.000 0.968
#> GSM74411      3  0.4034      0.745 0.008 0.192 0.796 0.004
#> GSM74412      3  0.3893      0.740 0.008 0.196 0.796 0.000
#> GSM74413      3  0.4034      0.745 0.008 0.192 0.796 0.004
#> GSM74414      2  0.5280      0.699 0.128 0.752 0.120 0.000
#> GSM74415      3  0.2271      0.871 0.008 0.012 0.928 0.052
#> GSM121379     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0188      0.886 0.000 0.996 0.000 0.004
#> GSM121383     2  0.0188      0.886 0.000 0.996 0.000 0.004
#> GSM121384     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0188      0.886 0.000 0.996 0.000 0.004
#> GSM121388     2  0.0376      0.884 0.000 0.992 0.004 0.004
#> GSM121389     2  0.0188      0.886 0.000 0.996 0.000 0.004
#> GSM121390     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121393     2  0.0188      0.886 0.000 0.996 0.000 0.004
#> GSM121394     2  0.0188      0.886 0.000 0.996 0.000 0.004
#> GSM121395     2  0.0188      0.886 0.000 0.996 0.000 0.004
#> GSM121396     2  0.2125      0.823 0.000 0.920 0.076 0.004
#> GSM121397     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000      0.886 0.000 1.000 0.000 0.000
#> GSM74240      3  0.1398      0.862 0.004 0.000 0.956 0.040
#> GSM74241      3  0.1398      0.862 0.004 0.000 0.956 0.040
#> GSM74242      3  0.1398      0.862 0.004 0.000 0.956 0.040
#> GSM74243      3  0.1398      0.862 0.004 0.000 0.956 0.040
#> GSM74244      3  0.1398      0.862 0.004 0.000 0.956 0.040
#> GSM74245      3  0.1398      0.862 0.004 0.000 0.956 0.040
#> GSM74246      3  0.1398      0.862 0.004 0.000 0.956 0.040
#> GSM74247      3  0.1398      0.862 0.004 0.000 0.956 0.040
#> GSM74248      3  0.1398      0.862 0.004 0.000 0.956 0.040
#> GSM74416      4  0.1389      0.903 0.048 0.000 0.000 0.952
#> GSM74417      4  0.1389      0.903 0.048 0.000 0.000 0.952
#> GSM74418      4  0.1389      0.903 0.048 0.000 0.000 0.952
#> GSM74419      4  0.1022      0.907 0.032 0.000 0.000 0.968
#> GSM121358     3  0.2665      0.870 0.004 0.008 0.900 0.088
#> GSM121359     3  0.4192      0.733 0.004 0.208 0.780 0.008
#> GSM121360     4  0.6494      0.591 0.232 0.000 0.136 0.632
#> GSM121362     4  0.6680      0.536 0.260 0.000 0.136 0.604
#> GSM121364     4  0.3653      0.825 0.028 0.000 0.128 0.844
#> GSM121365     3  0.2665      0.870 0.004 0.008 0.900 0.088
#> GSM121366     3  0.2528      0.871 0.004 0.008 0.908 0.080
#> GSM121367     3  0.2665      0.870 0.004 0.008 0.900 0.088
#> GSM121370     3  0.2597      0.871 0.004 0.008 0.904 0.084
#> GSM121371     3  0.2665      0.870 0.004 0.008 0.900 0.088
#> GSM121372     3  0.4294      0.735 0.008 0.204 0.780 0.008
#> GSM121373     4  0.3760      0.822 0.028 0.000 0.136 0.836
#> GSM121374     4  0.3707      0.822 0.028 0.000 0.132 0.840
#> GSM121407     3  0.4192      0.730 0.008 0.208 0.780 0.004
#> GSM74387      3  0.4610      0.764 0.100 0.100 0.800 0.000
#> GSM74388      2  0.6552      0.318 0.440 0.484 0.076 0.000
#> GSM74389      3  0.5500      0.140 0.016 0.000 0.520 0.464
#> GSM74390      1  0.0188      0.852 0.996 0.000 0.004 0.000
#> GSM74391      4  0.1022      0.907 0.032 0.000 0.000 0.968
#> GSM74392      4  0.3707      0.822 0.028 0.000 0.132 0.840
#> GSM74393      3  0.3870      0.758 0.004 0.000 0.788 0.208
#> GSM74394      1  0.7558     -0.165 0.428 0.192 0.380 0.000
#> GSM74239      1  0.4428      0.683 0.720 0.000 0.004 0.276
#> GSM74364      1  0.4837      0.548 0.648 0.000 0.004 0.348
#> GSM74365      1  0.0817      0.854 0.976 0.000 0.000 0.024
#> GSM74366      1  0.0336      0.850 0.992 0.000 0.008 0.000
#> GSM74367      1  0.3583      0.800 0.816 0.000 0.004 0.180
#> GSM74377      1  0.0000      0.855 1.000 0.000 0.000 0.000
#> GSM74378      1  0.0188      0.853 0.996 0.000 0.004 0.000
#> GSM74379      1  0.0000      0.855 1.000 0.000 0.000 0.000
#> GSM74380      1  0.0000      0.855 1.000 0.000 0.000 0.000
#> GSM74381      1  0.0000      0.855 1.000 0.000 0.000 0.000
#> GSM121357     2  0.6701      0.420 0.120 0.584 0.296 0.000
#> GSM121361     2  0.7007      0.303 0.432 0.452 0.116 0.000
#> GSM121363     2  0.7006      0.313 0.428 0.456 0.116 0.000
#> GSM121368     2  0.7006      0.313 0.428 0.456 0.116 0.000
#> GSM121369     3  0.7007      0.217 0.432 0.116 0.452 0.000
#> GSM74368      1  0.3751      0.788 0.800 0.000 0.004 0.196
#> GSM74369      1  0.3791      0.784 0.796 0.000 0.004 0.200
#> GSM74370      1  0.3751      0.789 0.800 0.000 0.004 0.196
#> GSM74371      4  0.5165     -0.144 0.484 0.000 0.004 0.512
#> GSM74372      1  0.3356      0.804 0.824 0.000 0.000 0.176
#> GSM74373      1  0.0000      0.855 1.000 0.000 0.000 0.000
#> GSM74374      1  0.2704      0.828 0.876 0.000 0.000 0.124
#> GSM74375      1  0.0000      0.855 1.000 0.000 0.000 0.000
#> GSM74376      1  0.0188      0.853 0.996 0.000 0.004 0.000
#> GSM74405      1  0.0000      0.855 1.000 0.000 0.000 0.000
#> GSM74351      4  0.2125      0.876 0.076 0.000 0.004 0.920
#> GSM74352      1  0.0376      0.850 0.992 0.004 0.004 0.000
#> GSM74353      1  0.3791      0.784 0.796 0.000 0.004 0.200
#> GSM74354      1  0.2944      0.826 0.868 0.000 0.004 0.128
#> GSM74355      1  0.0000      0.855 1.000 0.000 0.000 0.000
#> GSM74382      4  0.2053      0.880 0.072 0.000 0.004 0.924
#> GSM74383      1  0.3583      0.800 0.816 0.000 0.004 0.180
#> GSM74384      1  0.0524      0.847 0.988 0.004 0.008 0.000
#> GSM74385      1  0.5060      0.412 0.584 0.000 0.004 0.412
#> GSM74386      1  0.3583      0.800 0.816 0.000 0.004 0.180
#> GSM74395      1  0.3710      0.790 0.804 0.000 0.004 0.192
#> GSM74396      1  0.3494      0.805 0.824 0.000 0.004 0.172
#> GSM74397      1  0.4920      0.499 0.628 0.000 0.004 0.368
#> GSM74398      1  0.0188      0.855 0.996 0.000 0.000 0.004
#> GSM74399      1  0.0000      0.855 1.000 0.000 0.000 0.000
#> GSM74400      1  0.1022      0.853 0.968 0.000 0.000 0.032
#> GSM74401      1  0.1022      0.853 0.968 0.000 0.000 0.032

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.1522     0.8139 0.000 0.000 0.944 0.044 0.012
#> GSM74357      3  0.2139     0.8003 0.000 0.000 0.916 0.052 0.032
#> GSM74358      3  0.2139     0.8003 0.000 0.000 0.916 0.052 0.032
#> GSM74359      4  0.4847     0.6998 0.000 0.000 0.080 0.704 0.216
#> GSM74360      4  0.4150     0.7230 0.000 0.000 0.036 0.748 0.216
#> GSM74361      3  0.1522     0.8139 0.000 0.000 0.944 0.044 0.012
#> GSM74362      3  0.5123     0.5963 0.000 0.000 0.696 0.144 0.160
#> GSM74363      3  0.1205     0.8171 0.000 0.000 0.956 0.040 0.004
#> GSM74402      4  0.2074     0.7904 0.104 0.000 0.000 0.896 0.000
#> GSM74403      4  0.2233     0.7892 0.104 0.000 0.000 0.892 0.004
#> GSM74404      4  0.2233     0.7892 0.104 0.000 0.000 0.892 0.004
#> GSM74406      4  0.0510     0.8064 0.016 0.000 0.000 0.984 0.000
#> GSM74407      4  0.2074     0.7904 0.104 0.000 0.000 0.896 0.000
#> GSM74408      4  0.0510     0.8064 0.016 0.000 0.000 0.984 0.000
#> GSM74409      4  0.0510     0.8064 0.016 0.000 0.000 0.984 0.000
#> GSM74410      4  0.0404     0.8054 0.012 0.000 0.000 0.988 0.000
#> GSM119936     4  0.0794     0.8063 0.028 0.000 0.000 0.972 0.000
#> GSM119937     4  0.0703     0.8067 0.024 0.000 0.000 0.976 0.000
#> GSM74411      3  0.3888     0.7565 0.000 0.072 0.812 0.004 0.112
#> GSM74412      3  0.3888     0.7565 0.000 0.072 0.812 0.004 0.112
#> GSM74413      3  0.3888     0.7565 0.000 0.072 0.812 0.004 0.112
#> GSM74414      5  0.7246     0.6208 0.064 0.392 0.124 0.000 0.420
#> GSM74415      3  0.3166     0.7971 0.000 0.012 0.856 0.020 0.112
#> GSM121379     2  0.0162     0.9822 0.000 0.996 0.000 0.000 0.004
#> GSM121380     2  0.0162     0.9822 0.000 0.996 0.000 0.000 0.004
#> GSM121381     2  0.0162     0.9822 0.000 0.996 0.000 0.000 0.004
#> GSM121382     2  0.0162     0.9805 0.000 0.996 0.000 0.000 0.004
#> GSM121383     2  0.0162     0.9805 0.000 0.996 0.000 0.000 0.004
#> GSM121384     2  0.0162     0.9822 0.000 0.996 0.000 0.000 0.004
#> GSM121385     2  0.0162     0.9822 0.000 0.996 0.000 0.000 0.004
#> GSM121386     2  0.0162     0.9822 0.000 0.996 0.000 0.000 0.004
#> GSM121387     2  0.0162     0.9805 0.000 0.996 0.000 0.000 0.004
#> GSM121388     2  0.1041     0.9595 0.000 0.964 0.004 0.000 0.032
#> GSM121389     2  0.0609     0.9710 0.000 0.980 0.000 0.000 0.020
#> GSM121390     2  0.0162     0.9822 0.000 0.996 0.000 0.000 0.004
#> GSM121391     2  0.0000     0.9816 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0162     0.9822 0.000 0.996 0.000 0.000 0.004
#> GSM121393     2  0.0794     0.9657 0.000 0.972 0.000 0.000 0.028
#> GSM121394     2  0.0000     0.9816 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0794     0.9657 0.000 0.972 0.000 0.000 0.028
#> GSM121396     2  0.3115     0.7822 0.000 0.852 0.112 0.000 0.036
#> GSM121397     2  0.0162     0.9822 0.000 0.996 0.000 0.000 0.004
#> GSM121398     2  0.0162     0.9822 0.000 0.996 0.000 0.000 0.004
#> GSM121399     2  0.0000     0.9816 0.000 1.000 0.000 0.000 0.000
#> GSM74240      3  0.3727     0.7723 0.000 0.000 0.768 0.016 0.216
#> GSM74241      3  0.3663     0.7735 0.000 0.000 0.776 0.016 0.208
#> GSM74242      3  0.3630     0.7732 0.000 0.000 0.780 0.016 0.204
#> GSM74243      3  0.3630     0.7732 0.000 0.000 0.780 0.016 0.204
#> GSM74244      3  0.3663     0.7735 0.000 0.000 0.776 0.016 0.208
#> GSM74245      3  0.3696     0.7732 0.000 0.000 0.772 0.016 0.212
#> GSM74246      3  0.3696     0.7724 0.000 0.000 0.772 0.016 0.212
#> GSM74247      3  0.3696     0.7724 0.000 0.000 0.772 0.016 0.212
#> GSM74248      3  0.3727     0.7723 0.000 0.000 0.768 0.016 0.216
#> GSM74416      4  0.2338     0.7854 0.112 0.000 0.000 0.884 0.004
#> GSM74417      4  0.2338     0.7854 0.112 0.000 0.000 0.884 0.004
#> GSM74418      4  0.2338     0.7854 0.112 0.000 0.000 0.884 0.004
#> GSM74419      4  0.0703     0.8067 0.024 0.000 0.000 0.976 0.000
#> GSM121358     3  0.1356     0.8198 0.000 0.012 0.956 0.028 0.004
#> GSM121359     3  0.3043     0.7685 0.000 0.080 0.864 0.000 0.056
#> GSM121360     4  0.6982     0.5730 0.132 0.000 0.080 0.568 0.220
#> GSM121362     4  0.7479     0.4957 0.200 0.000 0.080 0.500 0.220
#> GSM121364     4  0.4847     0.6998 0.000 0.000 0.080 0.704 0.216
#> GSM121365     3  0.1356     0.8198 0.000 0.012 0.956 0.028 0.004
#> GSM121366     3  0.1267     0.8198 0.000 0.012 0.960 0.024 0.004
#> GSM121367     3  0.1356     0.8198 0.000 0.012 0.956 0.028 0.004
#> GSM121370     3  0.1356     0.8198 0.000 0.012 0.956 0.028 0.004
#> GSM121371     3  0.1356     0.8198 0.000 0.012 0.956 0.028 0.004
#> GSM121372     3  0.3110     0.7663 0.000 0.080 0.860 0.000 0.060
#> GSM121373     4  0.4847     0.6998 0.000 0.000 0.080 0.704 0.216
#> GSM121374     4  0.4847     0.6998 0.000 0.000 0.080 0.704 0.216
#> GSM121407     3  0.3362     0.7549 0.000 0.080 0.844 0.000 0.076
#> GSM74387      3  0.5652     0.2082 0.020 0.044 0.556 0.000 0.380
#> GSM74388      5  0.7199     0.7983 0.216 0.256 0.040 0.000 0.488
#> GSM74389      4  0.6246     0.3776 0.000 0.000 0.292 0.528 0.180
#> GSM74390      1  0.3612     0.5798 0.732 0.000 0.000 0.000 0.268
#> GSM74391      4  0.1568     0.8023 0.020 0.000 0.000 0.944 0.036
#> GSM74392      4  0.4605     0.7131 0.000 0.000 0.076 0.732 0.192
#> GSM74393      3  0.6507     0.0482 0.000 0.000 0.432 0.376 0.192
#> GSM74394      5  0.7771     0.7636 0.200 0.144 0.168 0.000 0.488
#> GSM74239      1  0.2561     0.6527 0.856 0.000 0.000 0.144 0.000
#> GSM74364      1  0.3266     0.5884 0.796 0.000 0.000 0.200 0.004
#> GSM74365      1  0.0865     0.7180 0.972 0.000 0.000 0.004 0.024
#> GSM74366      1  0.4242     0.3930 0.572 0.000 0.000 0.000 0.428
#> GSM74367      1  0.1197     0.7236 0.952 0.000 0.000 0.048 0.000
#> GSM74377      1  0.3857     0.5602 0.688 0.000 0.000 0.000 0.312
#> GSM74378      1  0.4242     0.3930 0.572 0.000 0.000 0.000 0.428
#> GSM74379      1  0.3003     0.6617 0.812 0.000 0.000 0.000 0.188
#> GSM74380      1  0.3039     0.6598 0.808 0.000 0.000 0.000 0.192
#> GSM74381      1  0.4060     0.5034 0.640 0.000 0.000 0.000 0.360
#> GSM121357     5  0.7800     0.6643 0.072 0.304 0.228 0.000 0.396
#> GSM121361     5  0.7504     0.8302 0.204 0.252 0.068 0.000 0.476
#> GSM121363     5  0.7483     0.8322 0.200 0.252 0.068 0.000 0.480
#> GSM121368     5  0.7509     0.8336 0.196 0.252 0.072 0.000 0.480
#> GSM121369     5  0.7708     0.7119 0.200 0.104 0.216 0.000 0.480
#> GSM74368      1  0.1410     0.7194 0.940 0.000 0.000 0.060 0.000
#> GSM74369      1  0.1410     0.7194 0.940 0.000 0.000 0.060 0.000
#> GSM74370      1  0.1410     0.7194 0.940 0.000 0.000 0.060 0.000
#> GSM74371      1  0.4415     0.0272 0.552 0.000 0.000 0.444 0.004
#> GSM74372      1  0.1357     0.7242 0.948 0.000 0.000 0.048 0.004
#> GSM74373      1  0.4074     0.4981 0.636 0.000 0.000 0.000 0.364
#> GSM74374      1  0.1168     0.7244 0.960 0.000 0.000 0.032 0.008
#> GSM74375      1  0.2929     0.6754 0.820 0.000 0.000 0.000 0.180
#> GSM74376      1  0.4227     0.4085 0.580 0.000 0.000 0.000 0.420
#> GSM74405      1  0.4114     0.4810 0.624 0.000 0.000 0.000 0.376
#> GSM74351      4  0.4321     0.3991 0.396 0.000 0.000 0.600 0.004
#> GSM74352      1  0.4227     0.4085 0.580 0.000 0.000 0.000 0.420
#> GSM74353      1  0.1410     0.7194 0.940 0.000 0.000 0.060 0.000
#> GSM74354      1  0.0880     0.7240 0.968 0.000 0.000 0.032 0.000
#> GSM74355      1  0.4227     0.4085 0.580 0.000 0.000 0.000 0.420
#> GSM74382      4  0.4288     0.4252 0.384 0.000 0.000 0.612 0.004
#> GSM74383      1  0.1197     0.7236 0.952 0.000 0.000 0.048 0.000
#> GSM74384      1  0.4242     0.3930 0.572 0.000 0.000 0.000 0.428
#> GSM74385      1  0.4084     0.3563 0.668 0.000 0.000 0.328 0.004
#> GSM74386      1  0.1197     0.7236 0.952 0.000 0.000 0.048 0.000
#> GSM74395      1  0.1341     0.7210 0.944 0.000 0.000 0.056 0.000
#> GSM74396      1  0.1197     0.7236 0.952 0.000 0.000 0.048 0.000
#> GSM74397      1  0.3274     0.5603 0.780 0.000 0.000 0.220 0.000
#> GSM74398      1  0.2561     0.6848 0.856 0.000 0.000 0.000 0.144
#> GSM74399      1  0.3561     0.6101 0.740 0.000 0.000 0.000 0.260
#> GSM74400      1  0.2020     0.7093 0.900 0.000 0.000 0.000 0.100
#> GSM74401      1  0.2020     0.7093 0.900 0.000 0.000 0.000 0.100

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.2113     0.7104 0.004 0.000 0.908 0.028 0.060 0.000
#> GSM74357      3  0.2364     0.6989 0.004 0.000 0.892 0.032 0.072 0.000
#> GSM74358      3  0.2364     0.6989 0.004 0.000 0.892 0.032 0.072 0.000
#> GSM74359      4  0.4789    -0.4750 0.016 0.000 0.024 0.512 0.448 0.000
#> GSM74360      4  0.4563    -0.4527 0.016 0.000 0.012 0.524 0.448 0.000
#> GSM74361      3  0.2173     0.7106 0.004 0.000 0.904 0.028 0.064 0.000
#> GSM74362      3  0.5306     0.0163 0.004 0.000 0.532 0.096 0.368 0.000
#> GSM74363      3  0.1562     0.7255 0.004 0.000 0.940 0.024 0.032 0.000
#> GSM74402      4  0.1700     0.5814 0.080 0.000 0.004 0.916 0.000 0.000
#> GSM74403      4  0.1970     0.5772 0.092 0.000 0.000 0.900 0.008 0.000
#> GSM74404      4  0.1970     0.5772 0.092 0.000 0.000 0.900 0.008 0.000
#> GSM74406      4  0.0405     0.5787 0.008 0.000 0.004 0.988 0.000 0.000
#> GSM74407      4  0.1901     0.5805 0.076 0.000 0.004 0.912 0.008 0.000
#> GSM74408      4  0.0862     0.5721 0.008 0.000 0.004 0.972 0.016 0.000
#> GSM74409      4  0.0951     0.5691 0.008 0.000 0.004 0.968 0.020 0.000
#> GSM74410      4  0.0837     0.5666 0.004 0.000 0.004 0.972 0.020 0.000
#> GSM119936     4  0.0767     0.5780 0.012 0.000 0.004 0.976 0.008 0.000
#> GSM119937     4  0.0964     0.5748 0.012 0.000 0.004 0.968 0.016 0.000
#> GSM74411      3  0.4364     0.7050 0.076 0.032 0.760 0.000 0.132 0.000
#> GSM74412      3  0.4364     0.7050 0.076 0.032 0.760 0.000 0.132 0.000
#> GSM74413      3  0.4364     0.7050 0.076 0.032 0.760 0.000 0.132 0.000
#> GSM74414      6  0.8584     0.2360 0.236 0.268 0.108 0.000 0.116 0.272
#> GSM74415      3  0.4045     0.7095 0.076 0.008 0.776 0.004 0.136 0.000
#> GSM121379     2  0.0291     0.9793 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121380     2  0.0291     0.9793 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121381     2  0.0291     0.9793 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121382     2  0.0146     0.9779 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121383     2  0.0146     0.9779 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121384     2  0.0291     0.9793 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121385     2  0.0291     0.9793 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121386     2  0.0291     0.9793 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121387     2  0.0146     0.9779 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121388     2  0.1882     0.9399 0.020 0.928 0.024 0.000 0.028 0.000
#> GSM121389     2  0.1176     0.9595 0.020 0.956 0.000 0.000 0.024 0.000
#> GSM121390     2  0.0291     0.9793 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121391     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0405     0.9769 0.008 0.988 0.000 0.000 0.004 0.000
#> GSM121393     2  0.1257     0.9574 0.020 0.952 0.000 0.000 0.028 0.000
#> GSM121394     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121395     2  0.1257     0.9574 0.020 0.952 0.000 0.000 0.028 0.000
#> GSM121396     2  0.3476     0.8132 0.024 0.816 0.132 0.000 0.028 0.000
#> GSM121397     2  0.0291     0.9793 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121398     2  0.0291     0.9793 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121399     2  0.0000     0.9787 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      3  0.5285     0.6165 0.108 0.000 0.524 0.000 0.368 0.000
#> GSM74241      3  0.5277     0.6184 0.108 0.000 0.528 0.000 0.364 0.000
#> GSM74242      3  0.5257     0.6165 0.104 0.000 0.524 0.000 0.372 0.000
#> GSM74243      3  0.5257     0.6165 0.104 0.000 0.524 0.000 0.372 0.000
#> GSM74244      3  0.5249     0.6184 0.104 0.000 0.528 0.000 0.368 0.000
#> GSM74245      3  0.5249     0.6184 0.104 0.000 0.528 0.000 0.368 0.000
#> GSM74246      3  0.5312     0.6173 0.112 0.000 0.524 0.000 0.364 0.000
#> GSM74247      3  0.5312     0.6173 0.112 0.000 0.524 0.000 0.364 0.000
#> GSM74248      3  0.5257     0.6165 0.104 0.000 0.524 0.000 0.372 0.000
#> GSM74416      4  0.2003     0.5709 0.116 0.000 0.000 0.884 0.000 0.000
#> GSM74417      4  0.2003     0.5709 0.116 0.000 0.000 0.884 0.000 0.000
#> GSM74418      4  0.2003     0.5709 0.116 0.000 0.000 0.884 0.000 0.000
#> GSM74419      4  0.0692     0.5809 0.020 0.000 0.004 0.976 0.000 0.000
#> GSM121358     3  0.0767     0.7375 0.000 0.012 0.976 0.008 0.004 0.000
#> GSM121359     3  0.1675     0.7292 0.008 0.032 0.936 0.000 0.024 0.000
#> GSM121360     5  0.6060     0.5183 0.076 0.000 0.024 0.428 0.452 0.020
#> GSM121362     5  0.6844     0.5412 0.136 0.000 0.024 0.352 0.444 0.044
#> GSM121364     4  0.4789    -0.4750 0.016 0.000 0.024 0.512 0.448 0.000
#> GSM121365     3  0.0767     0.7375 0.000 0.012 0.976 0.008 0.004 0.000
#> GSM121366     3  0.0653     0.7382 0.000 0.012 0.980 0.004 0.004 0.000
#> GSM121367     3  0.0767     0.7375 0.000 0.012 0.976 0.008 0.004 0.000
#> GSM121370     3  0.0767     0.7375 0.000 0.012 0.976 0.008 0.004 0.000
#> GSM121371     3  0.0767     0.7375 0.000 0.012 0.976 0.008 0.004 0.000
#> GSM121372     3  0.1871     0.7264 0.016 0.032 0.928 0.000 0.024 0.000
#> GSM121373     4  0.4789    -0.4750 0.016 0.000 0.024 0.512 0.448 0.000
#> GSM121374     4  0.4789    -0.4750 0.016 0.000 0.024 0.512 0.448 0.000
#> GSM121407     3  0.2777     0.7094 0.044 0.032 0.880 0.000 0.044 0.000
#> GSM74387      3  0.7467     0.1556 0.268 0.004 0.388 0.000 0.136 0.204
#> GSM74388      6  0.8022     0.3845 0.256 0.208 0.052 0.000 0.108 0.376
#> GSM74389      4  0.5828    -0.5916 0.004 0.000 0.160 0.428 0.408 0.000
#> GSM74390      6  0.5011    -0.1865 0.420 0.000 0.000 0.000 0.072 0.508
#> GSM74391      4  0.2313     0.4745 0.012 0.000 0.004 0.884 0.100 0.000
#> GSM74392      4  0.4460    -0.3999 0.004 0.000 0.024 0.568 0.404 0.000
#> GSM74393      5  0.6114     0.4250 0.004 0.000 0.236 0.348 0.412 0.000
#> GSM74394      6  0.8331     0.3221 0.272 0.096 0.148 0.000 0.128 0.356
#> GSM74239      1  0.4750     0.8236 0.544 0.000 0.000 0.052 0.000 0.404
#> GSM74364      1  0.4983     0.7721 0.564 0.000 0.000 0.080 0.000 0.356
#> GSM74365      6  0.3867    -0.8553 0.488 0.000 0.000 0.000 0.000 0.512
#> GSM74366      6  0.3037     0.4895 0.176 0.000 0.000 0.000 0.016 0.808
#> GSM74367      1  0.3998     0.8745 0.504 0.000 0.000 0.004 0.000 0.492
#> GSM74377      6  0.0937     0.3025 0.040 0.000 0.000 0.000 0.000 0.960
#> GSM74378      6  0.2669     0.4862 0.156 0.000 0.000 0.000 0.008 0.836
#> GSM74379      6  0.3023    -0.2260 0.232 0.000 0.000 0.000 0.000 0.768
#> GSM74380      6  0.2762    -0.1243 0.196 0.000 0.000 0.000 0.000 0.804
#> GSM74381      6  0.0146     0.3572 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM121357     6  0.8688     0.2957 0.248 0.224 0.140 0.000 0.112 0.276
#> GSM121361     6  0.8184     0.3756 0.256 0.208 0.060 0.000 0.120 0.356
#> GSM121363     6  0.8184     0.3756 0.256 0.208 0.060 0.000 0.120 0.356
#> GSM121368     6  0.8184     0.3756 0.256 0.208 0.060 0.000 0.120 0.356
#> GSM121369     6  0.8259     0.3069 0.264 0.072 0.168 0.000 0.136 0.360
#> GSM74368      1  0.4225     0.8772 0.508 0.000 0.000 0.008 0.004 0.480
#> GSM74369      1  0.4225     0.8772 0.508 0.000 0.000 0.008 0.004 0.480
#> GSM74370      1  0.4224     0.8788 0.512 0.000 0.000 0.008 0.004 0.476
#> GSM74371      1  0.5454     0.5341 0.572 0.000 0.000 0.236 0.000 0.192
#> GSM74372      1  0.4491     0.8698 0.500 0.000 0.000 0.008 0.016 0.476
#> GSM74373      6  0.0520     0.3511 0.008 0.000 0.000 0.000 0.008 0.984
#> GSM74374      1  0.4264     0.8674 0.496 0.000 0.000 0.000 0.016 0.488
#> GSM74375      6  0.3374    -0.1895 0.208 0.000 0.000 0.000 0.020 0.772
#> GSM74376      6  0.2631     0.4853 0.152 0.000 0.000 0.000 0.008 0.840
#> GSM74405      6  0.0000     0.3619 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74351      4  0.4660     0.1924 0.416 0.000 0.000 0.540 0.000 0.044
#> GSM74352      6  0.2631     0.4853 0.152 0.000 0.000 0.000 0.008 0.840
#> GSM74353      1  0.4390     0.8782 0.508 0.000 0.000 0.016 0.004 0.472
#> GSM74354      1  0.3868     0.8741 0.508 0.000 0.000 0.000 0.000 0.492
#> GSM74355      6  0.2553     0.4815 0.144 0.000 0.000 0.000 0.008 0.848
#> GSM74382      4  0.4705     0.0430 0.472 0.000 0.000 0.484 0.000 0.044
#> GSM74383      1  0.3996     0.8791 0.512 0.000 0.000 0.004 0.000 0.484
#> GSM74384      6  0.3071     0.4896 0.180 0.000 0.000 0.000 0.016 0.804
#> GSM74385      1  0.5420     0.6299 0.572 0.000 0.000 0.172 0.000 0.256
#> GSM74386      1  0.3867     0.8763 0.512 0.000 0.000 0.000 0.000 0.488
#> GSM74395      1  0.3996     0.8793 0.512 0.000 0.000 0.004 0.000 0.484
#> GSM74396      1  0.3997     0.8781 0.508 0.000 0.000 0.004 0.000 0.488
#> GSM74397      1  0.5071     0.7908 0.540 0.000 0.000 0.084 0.000 0.376
#> GSM74398      6  0.3373    -0.3131 0.248 0.000 0.000 0.000 0.008 0.744
#> GSM74399      6  0.1644     0.2272 0.076 0.000 0.000 0.000 0.004 0.920
#> GSM74400      6  0.4567    -0.5172 0.332 0.000 0.000 0.000 0.052 0.616
#> GSM74401      6  0.4567    -0.5172 0.332 0.000 0.000 0.000 0.052 0.616

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:kmeans 121         1.64e-11 2
#> SD:kmeans 104         2.49e-24 3
#> SD:kmeans 110         2.30e-33 4
#> SD:kmeans 105         3.35e-37 5
#> SD:kmeans  81         6.33e-29 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.874           0.952       0.972         0.5028 0.497   0.497
#> 3 3 0.751           0.872       0.935         0.3223 0.729   0.507
#> 4 4 0.829           0.900       0.944         0.1292 0.844   0.576
#> 5 5 0.784           0.799       0.884         0.0434 0.944   0.786
#> 6 6 0.778           0.626       0.752         0.0436 0.921   0.663

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.2778      0.946 0.048 0.952
#> GSM74357      2  0.6438      0.846 0.164 0.836
#> GSM74358      2  0.6438      0.846 0.164 0.836
#> GSM74359      1  0.0000      0.979 1.000 0.000
#> GSM74360      1  0.0000      0.979 1.000 0.000
#> GSM74361      2  0.2778      0.946 0.048 0.952
#> GSM74362      2  0.6438      0.846 0.164 0.836
#> GSM74363      2  0.2778      0.946 0.048 0.952
#> GSM74402      1  0.0000      0.979 1.000 0.000
#> GSM74403      1  0.0000      0.979 1.000 0.000
#> GSM74404      1  0.0000      0.979 1.000 0.000
#> GSM74406      1  0.0000      0.979 1.000 0.000
#> GSM74407      1  0.0000      0.979 1.000 0.000
#> GSM74408      1  0.0000      0.979 1.000 0.000
#> GSM74409      1  0.0000      0.979 1.000 0.000
#> GSM74410      1  0.0000      0.979 1.000 0.000
#> GSM119936     1  0.0000      0.979 1.000 0.000
#> GSM119937     1  0.0000      0.979 1.000 0.000
#> GSM74411      2  0.0000      0.964 0.000 1.000
#> GSM74412      2  0.0000      0.964 0.000 1.000
#> GSM74413      2  0.0000      0.964 0.000 1.000
#> GSM74414      2  0.0000      0.964 0.000 1.000
#> GSM74415      2  0.0000      0.964 0.000 1.000
#> GSM121379     2  0.0000      0.964 0.000 1.000
#> GSM121380     2  0.0000      0.964 0.000 1.000
#> GSM121381     2  0.0000      0.964 0.000 1.000
#> GSM121382     2  0.0000      0.964 0.000 1.000
#> GSM121383     2  0.0000      0.964 0.000 1.000
#> GSM121384     2  0.0000      0.964 0.000 1.000
#> GSM121385     2  0.0000      0.964 0.000 1.000
#> GSM121386     2  0.0000      0.964 0.000 1.000
#> GSM121387     2  0.0000      0.964 0.000 1.000
#> GSM121388     2  0.0000      0.964 0.000 1.000
#> GSM121389     2  0.0000      0.964 0.000 1.000
#> GSM121390     2  0.0000      0.964 0.000 1.000
#> GSM121391     2  0.0000      0.964 0.000 1.000
#> GSM121392     2  0.0000      0.964 0.000 1.000
#> GSM121393     2  0.0000      0.964 0.000 1.000
#> GSM121394     2  0.0000      0.964 0.000 1.000
#> GSM121395     2  0.0000      0.964 0.000 1.000
#> GSM121396     2  0.0000      0.964 0.000 1.000
#> GSM121397     2  0.0000      0.964 0.000 1.000
#> GSM121398     2  0.0000      0.964 0.000 1.000
#> GSM121399     2  0.0000      0.964 0.000 1.000
#> GSM74240      2  0.6438      0.846 0.164 0.836
#> GSM74241      2  0.2948      0.944 0.052 0.948
#> GSM74242      2  0.8144      0.729 0.252 0.748
#> GSM74243      2  0.8144      0.729 0.252 0.748
#> GSM74244      2  0.2948      0.944 0.052 0.948
#> GSM74245      2  0.6343      0.850 0.160 0.840
#> GSM74246      2  0.2948      0.944 0.052 0.948
#> GSM74247      2  0.2948      0.944 0.052 0.948
#> GSM74248      2  0.6438      0.846 0.164 0.836
#> GSM74416      1  0.0000      0.979 1.000 0.000
#> GSM74417      1  0.0000      0.979 1.000 0.000
#> GSM74418      1  0.0000      0.979 1.000 0.000
#> GSM74419      1  0.0000      0.979 1.000 0.000
#> GSM121358     2  0.2603      0.947 0.044 0.956
#> GSM121359     2  0.0000      0.964 0.000 1.000
#> GSM121360     1  0.0000      0.979 1.000 0.000
#> GSM121362     1  0.0000      0.979 1.000 0.000
#> GSM121364     1  0.0000      0.979 1.000 0.000
#> GSM121365     2  0.2603      0.947 0.044 0.956
#> GSM121366     2  0.2423      0.949 0.040 0.960
#> GSM121367     2  0.2603      0.947 0.044 0.956
#> GSM121370     2  0.2603      0.947 0.044 0.956
#> GSM121371     2  0.2603      0.947 0.044 0.956
#> GSM121372     2  0.0000      0.964 0.000 1.000
#> GSM121373     1  0.0000      0.979 1.000 0.000
#> GSM121374     1  0.0000      0.979 1.000 0.000
#> GSM121407     2  0.0000      0.964 0.000 1.000
#> GSM74387      2  0.0000      0.964 0.000 1.000
#> GSM74388      2  0.0000      0.964 0.000 1.000
#> GSM74389      1  0.0376      0.977 0.996 0.004
#> GSM74390      1  0.1184      0.971 0.984 0.016
#> GSM74391      1  0.0000      0.979 1.000 0.000
#> GSM74392      1  0.0000      0.979 1.000 0.000
#> GSM74393      1  0.0376      0.977 0.996 0.004
#> GSM74394      2  0.0000      0.964 0.000 1.000
#> GSM74239      1  0.0000      0.979 1.000 0.000
#> GSM74364      1  0.0000      0.979 1.000 0.000
#> GSM74365      1  0.0000      0.979 1.000 0.000
#> GSM74366      1  0.6343      0.839 0.840 0.160
#> GSM74367      1  0.0000      0.979 1.000 0.000
#> GSM74377      1  0.2603      0.954 0.956 0.044
#> GSM74378      1  0.6048      0.853 0.852 0.148
#> GSM74379      1  0.2423      0.956 0.960 0.040
#> GSM74380      1  0.2423      0.956 0.960 0.040
#> GSM74381      1  0.2603      0.954 0.956 0.044
#> GSM121357     2  0.0000      0.964 0.000 1.000
#> GSM121361     2  0.0000      0.964 0.000 1.000
#> GSM121363     2  0.0000      0.964 0.000 1.000
#> GSM121368     2  0.0000      0.964 0.000 1.000
#> GSM121369     2  0.0000      0.964 0.000 1.000
#> GSM74368      1  0.0000      0.979 1.000 0.000
#> GSM74369      1  0.0000      0.979 1.000 0.000
#> GSM74370      1  0.0000      0.979 1.000 0.000
#> GSM74371      1  0.0000      0.979 1.000 0.000
#> GSM74372      1  0.0000      0.979 1.000 0.000
#> GSM74373      1  0.2603      0.954 0.956 0.044
#> GSM74374      1  0.0000      0.979 1.000 0.000
#> GSM74375      1  0.2603      0.954 0.956 0.044
#> GSM74376      1  0.2603      0.954 0.956 0.044
#> GSM74405      1  0.2603      0.954 0.956 0.044
#> GSM74351      1  0.0000      0.979 1.000 0.000
#> GSM74352      1  0.6438      0.834 0.836 0.164
#> GSM74353      1  0.0000      0.979 1.000 0.000
#> GSM74354      1  0.0000      0.979 1.000 0.000
#> GSM74355      1  0.5842      0.863 0.860 0.140
#> GSM74382      1  0.0000      0.979 1.000 0.000
#> GSM74383      1  0.0000      0.979 1.000 0.000
#> GSM74384      1  0.6438      0.834 0.836 0.164
#> GSM74385      1  0.0000      0.979 1.000 0.000
#> GSM74386      1  0.0000      0.979 1.000 0.000
#> GSM74395      1  0.0000      0.979 1.000 0.000
#> GSM74396      1  0.0000      0.979 1.000 0.000
#> GSM74397      1  0.0000      0.979 1.000 0.000
#> GSM74398      1  0.0000      0.979 1.000 0.000
#> GSM74399      1  0.2603      0.954 0.956 0.044
#> GSM74400      1  0.2603      0.954 0.956 0.044
#> GSM74401      1  0.2603      0.954 0.956 0.044

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74357      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74358      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74359      3  0.3340      0.846 0.120 0.000 0.880
#> GSM74360      3  0.4504      0.797 0.196 0.000 0.804
#> GSM74361      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74362      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74363      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74402      1  0.5397      0.591 0.720 0.000 0.280
#> GSM74403      1  0.5058      0.659 0.756 0.000 0.244
#> GSM74404      1  0.5058      0.659 0.756 0.000 0.244
#> GSM74406      3  0.5291      0.715 0.268 0.000 0.732
#> GSM74407      1  0.5497      0.567 0.708 0.000 0.292
#> GSM74408      3  0.5016      0.753 0.240 0.000 0.760
#> GSM74409      3  0.4702      0.783 0.212 0.000 0.788
#> GSM74410      3  0.4121      0.819 0.168 0.000 0.832
#> GSM119936     3  0.5291      0.715 0.268 0.000 0.732
#> GSM119937     3  0.6204      0.373 0.424 0.000 0.576
#> GSM74411      2  0.3941      0.844 0.000 0.844 0.156
#> GSM74412      2  0.2625      0.908 0.000 0.916 0.084
#> GSM74413      2  0.3941      0.844 0.000 0.844 0.156
#> GSM74414      2  0.0000      0.965 0.000 1.000 0.000
#> GSM74415      2  0.6244      0.319 0.000 0.560 0.440
#> GSM121379     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121380     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121381     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121382     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121383     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121384     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121385     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121386     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121387     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121388     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121389     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121390     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121391     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121392     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121393     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121394     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121395     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121396     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121397     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121398     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121399     2  0.0000      0.965 0.000 1.000 0.000
#> GSM74240      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74241      3  0.0747      0.877 0.000 0.016 0.984
#> GSM74242      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74243      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74244      3  0.0592      0.879 0.000 0.012 0.988
#> GSM74245      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74246      3  0.1163      0.871 0.000 0.028 0.972
#> GSM74247      3  0.1643      0.863 0.000 0.044 0.956
#> GSM74248      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74416      1  0.5058      0.659 0.756 0.000 0.244
#> GSM74417      1  0.5058      0.659 0.756 0.000 0.244
#> GSM74418      1  0.5016      0.665 0.760 0.000 0.240
#> GSM74419      3  0.5178      0.732 0.256 0.000 0.744
#> GSM121358     3  0.2066      0.853 0.000 0.060 0.940
#> GSM121359     2  0.3941      0.844 0.000 0.844 0.156
#> GSM121360     3  0.4842      0.776 0.224 0.000 0.776
#> GSM121362     3  0.5968      0.550 0.364 0.000 0.636
#> GSM121364     3  0.3941      0.827 0.156 0.000 0.844
#> GSM121365     3  0.2066      0.853 0.000 0.060 0.940
#> GSM121366     3  0.2165      0.850 0.000 0.064 0.936
#> GSM121367     3  0.2066      0.853 0.000 0.060 0.940
#> GSM121370     3  0.2066      0.853 0.000 0.060 0.940
#> GSM121371     3  0.2066      0.853 0.000 0.060 0.940
#> GSM121372     2  0.3941      0.844 0.000 0.844 0.156
#> GSM121373     3  0.4002      0.824 0.160 0.000 0.840
#> GSM121374     3  0.3941      0.827 0.156 0.000 0.844
#> GSM121407     2  0.1529      0.940 0.000 0.960 0.040
#> GSM74387      2  0.2625      0.908 0.000 0.916 0.084
#> GSM74388      2  0.0000      0.965 0.000 1.000 0.000
#> GSM74389      3  0.0424      0.881 0.008 0.000 0.992
#> GSM74390      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74391      3  0.4931      0.762 0.232 0.000 0.768
#> GSM74392      3  0.3619      0.838 0.136 0.000 0.864
#> GSM74393      3  0.0000      0.882 0.000 0.000 1.000
#> GSM74394      2  0.0000      0.965 0.000 1.000 0.000
#> GSM74239      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74364      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74365      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74366      1  0.4750      0.706 0.784 0.216 0.000
#> GSM74367      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74377      1  0.0237      0.928 0.996 0.004 0.000
#> GSM74378      1  0.3116      0.831 0.892 0.108 0.000
#> GSM74379      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74380      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74381      1  0.0237      0.928 0.996 0.004 0.000
#> GSM121357     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121361     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121363     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121368     2  0.0000      0.965 0.000 1.000 0.000
#> GSM121369     2  0.0000      0.965 0.000 1.000 0.000
#> GSM74368      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74369      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74370      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74371      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74372      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74373      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74374      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74375      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74376      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74405      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74351      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74352      1  0.3941      0.781 0.844 0.156 0.000
#> GSM74353      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74354      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74355      1  0.1031      0.911 0.976 0.024 0.000
#> GSM74382      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74383      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74384      1  0.5098      0.656 0.752 0.248 0.000
#> GSM74385      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74386      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74395      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74396      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74397      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74398      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74399      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74400      1  0.0000      0.931 1.000 0.000 0.000
#> GSM74401      1  0.0000      0.931 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.0469      0.968 0.000 0.000 0.988 0.012
#> GSM74357      3  0.0469      0.968 0.000 0.000 0.988 0.012
#> GSM74358      3  0.0469      0.968 0.000 0.000 0.988 0.012
#> GSM74359      4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM74360      4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM74361      3  0.0592      0.966 0.000 0.000 0.984 0.016
#> GSM74362      3  0.4103      0.655 0.000 0.000 0.744 0.256
#> GSM74363      3  0.0469      0.968 0.000 0.000 0.988 0.012
#> GSM74402      4  0.0188      0.963 0.004 0.000 0.000 0.996
#> GSM74403      4  0.0336      0.961 0.008 0.000 0.000 0.992
#> GSM74404      4  0.0336      0.961 0.008 0.000 0.000 0.992
#> GSM74406      4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM74407      4  0.0188      0.963 0.004 0.000 0.000 0.996
#> GSM74408      4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM74409      4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM74410      4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM119936     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM119937     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM74411      3  0.2281      0.888 0.000 0.096 0.904 0.000
#> GSM74412      2  0.4605      0.511 0.000 0.664 0.336 0.000
#> GSM74413      3  0.2589      0.864 0.000 0.116 0.884 0.000
#> GSM74414      2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM74415      3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM121379     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121388     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121389     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121393     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121394     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121395     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121396     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121397     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM74240      3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM74241      3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM74242      3  0.0188      0.969 0.000 0.000 0.996 0.004
#> GSM74243      3  0.0188      0.969 0.000 0.000 0.996 0.004
#> GSM74244      3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM74245      3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM74246      3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM74247      3  0.0000      0.969 0.000 0.000 1.000 0.000
#> GSM74248      3  0.0188      0.969 0.000 0.000 0.996 0.004
#> GSM74416      4  0.0336      0.961 0.008 0.000 0.000 0.992
#> GSM74417      4  0.0188      0.963 0.004 0.000 0.000 0.996
#> GSM74418      4  0.0336      0.961 0.008 0.000 0.000 0.992
#> GSM74419      4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM121358     3  0.0524      0.969 0.000 0.004 0.988 0.008
#> GSM121359     3  0.1940      0.914 0.000 0.076 0.924 0.000
#> GSM121360     4  0.0188      0.962 0.004 0.000 0.000 0.996
#> GSM121362     4  0.2081      0.883 0.084 0.000 0.000 0.916
#> GSM121364     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM121365     3  0.0524      0.969 0.000 0.004 0.988 0.008
#> GSM121366     3  0.0524      0.969 0.000 0.004 0.988 0.008
#> GSM121367     3  0.0524      0.969 0.000 0.004 0.988 0.008
#> GSM121370     3  0.0524      0.969 0.000 0.004 0.988 0.008
#> GSM121371     3  0.0524      0.969 0.000 0.004 0.988 0.008
#> GSM121372     3  0.1940      0.914 0.000 0.076 0.924 0.000
#> GSM121373     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM121374     4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM121407     2  0.4250      0.621 0.000 0.724 0.276 0.000
#> GSM74387      2  0.6292      0.252 0.060 0.524 0.416 0.000
#> GSM74388      2  0.3157      0.853 0.144 0.852 0.004 0.000
#> GSM74389      4  0.3528      0.759 0.000 0.000 0.192 0.808
#> GSM74390      1  0.0336      0.902 0.992 0.000 0.000 0.008
#> GSM74391      4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM74392      4  0.0000      0.964 0.000 0.000 0.000 1.000
#> GSM74393      4  0.4250      0.618 0.000 0.000 0.276 0.724
#> GSM74394      2  0.3157      0.853 0.144 0.852 0.004 0.000
#> GSM74239      1  0.3172      0.862 0.840 0.000 0.000 0.160
#> GSM74364      1  0.3400      0.847 0.820 0.000 0.000 0.180
#> GSM74365      1  0.0707      0.904 0.980 0.000 0.000 0.020
#> GSM74366      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74367      1  0.2647      0.882 0.880 0.000 0.000 0.120
#> GSM74377      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74378      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74379      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74380      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74381      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM121357     2  0.0000      0.937 0.000 1.000 0.000 0.000
#> GSM121361     2  0.3157      0.853 0.144 0.852 0.004 0.000
#> GSM121363     2  0.3052      0.859 0.136 0.860 0.004 0.000
#> GSM121368     2  0.3052      0.859 0.136 0.860 0.004 0.000
#> GSM121369     2  0.3157      0.853 0.144 0.852 0.004 0.000
#> GSM74368      1  0.3569      0.835 0.804 0.000 0.000 0.196
#> GSM74369      1  0.3074      0.868 0.848 0.000 0.000 0.152
#> GSM74370      1  0.3907      0.797 0.768 0.000 0.000 0.232
#> GSM74371      1  0.4830      0.523 0.608 0.000 0.000 0.392
#> GSM74372      1  0.3528      0.839 0.808 0.000 0.000 0.192
#> GSM74373      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74374      1  0.1940      0.896 0.924 0.000 0.000 0.076
#> GSM74375      1  0.0469      0.905 0.988 0.000 0.000 0.012
#> GSM74376      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74405      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74351      4  0.2760      0.826 0.128 0.000 0.000 0.872
#> GSM74352      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74353      1  0.3356      0.852 0.824 0.000 0.000 0.176
#> GSM74354      1  0.2281      0.891 0.904 0.000 0.000 0.096
#> GSM74355      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74382      4  0.2345      0.864 0.100 0.000 0.000 0.900
#> GSM74383      1  0.2647      0.882 0.880 0.000 0.000 0.120
#> GSM74384      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74385      1  0.4008      0.780 0.756 0.000 0.000 0.244
#> GSM74386      1  0.2921      0.875 0.860 0.000 0.000 0.140
#> GSM74395      1  0.3400      0.849 0.820 0.000 0.000 0.180
#> GSM74396      1  0.2704      0.882 0.876 0.000 0.000 0.124
#> GSM74397      1  0.4817      0.525 0.612 0.000 0.000 0.388
#> GSM74398      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74399      1  0.0000      0.904 1.000 0.000 0.000 0.000
#> GSM74400      1  0.0921      0.904 0.972 0.000 0.000 0.028
#> GSM74401      1  0.0817      0.904 0.976 0.000 0.000 0.024

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0566     0.8478 0.000 0.000 0.984 0.004 0.012
#> GSM74357      3  0.0693     0.8457 0.000 0.000 0.980 0.008 0.012
#> GSM74358      3  0.0693     0.8457 0.000 0.000 0.980 0.008 0.012
#> GSM74359      4  0.2248     0.8525 0.000 0.000 0.012 0.900 0.088
#> GSM74360      4  0.2189     0.8545 0.000 0.000 0.012 0.904 0.084
#> GSM74361      3  0.1041     0.8373 0.000 0.000 0.964 0.004 0.032
#> GSM74362      3  0.4262     0.6271 0.000 0.000 0.776 0.124 0.100
#> GSM74363      3  0.0162     0.8517 0.000 0.000 0.996 0.004 0.000
#> GSM74402      4  0.0510     0.8706 0.016 0.000 0.000 0.984 0.000
#> GSM74403      4  0.0609     0.8694 0.020 0.000 0.000 0.980 0.000
#> GSM74404      4  0.0609     0.8694 0.020 0.000 0.000 0.980 0.000
#> GSM74406      4  0.0693     0.8752 0.000 0.000 0.008 0.980 0.012
#> GSM74407      4  0.0404     0.8715 0.012 0.000 0.000 0.988 0.000
#> GSM74408      4  0.0960     0.8746 0.004 0.000 0.008 0.972 0.016
#> GSM74409      4  0.0798     0.8738 0.000 0.000 0.008 0.976 0.016
#> GSM74410      4  0.1106     0.8719 0.000 0.000 0.012 0.964 0.024
#> GSM119936     4  0.0451     0.8748 0.000 0.000 0.008 0.988 0.004
#> GSM119937     4  0.0613     0.8746 0.004 0.000 0.008 0.984 0.004
#> GSM74411      3  0.5019     0.3982 0.000 0.052 0.632 0.000 0.316
#> GSM74412      3  0.6413     0.2218 0.000 0.224 0.508 0.000 0.268
#> GSM74413      3  0.5180     0.3958 0.000 0.064 0.624 0.000 0.312
#> GSM74414      2  0.0609     0.9279 0.000 0.980 0.000 0.000 0.020
#> GSM74415      3  0.3949     0.3907 0.000 0.000 0.668 0.000 0.332
#> GSM121379     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121389     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121393     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121394     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121396     2  0.0404     0.9287 0.000 0.988 0.012 0.000 0.000
#> GSM121397     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9379 0.000 1.000 0.000 0.000 0.000
#> GSM74240      5  0.2929     0.9152 0.000 0.000 0.180 0.000 0.820
#> GSM74241      5  0.2966     0.9159 0.000 0.000 0.184 0.000 0.816
#> GSM74242      5  0.2929     0.9152 0.000 0.000 0.180 0.000 0.820
#> GSM74243      5  0.2929     0.9152 0.000 0.000 0.180 0.000 0.820
#> GSM74244      5  0.2966     0.9159 0.000 0.000 0.184 0.000 0.816
#> GSM74245      5  0.2966     0.9159 0.000 0.000 0.184 0.000 0.816
#> GSM74246      5  0.2966     0.9159 0.000 0.000 0.184 0.000 0.816
#> GSM74247      5  0.2966     0.9159 0.000 0.000 0.184 0.000 0.816
#> GSM74248      5  0.2929     0.9152 0.000 0.000 0.180 0.000 0.820
#> GSM74416      4  0.0609     0.8694 0.020 0.000 0.000 0.980 0.000
#> GSM74417      4  0.0609     0.8694 0.020 0.000 0.000 0.980 0.000
#> GSM74418      4  0.0703     0.8673 0.024 0.000 0.000 0.976 0.000
#> GSM74419      4  0.0613     0.8747 0.004 0.000 0.008 0.984 0.004
#> GSM121358     3  0.0162     0.8517 0.000 0.000 0.996 0.004 0.000
#> GSM121359     3  0.1041     0.8316 0.000 0.032 0.964 0.000 0.004
#> GSM121360     4  0.2522     0.8437 0.000 0.000 0.012 0.880 0.108
#> GSM121362     4  0.4093     0.8075 0.092 0.000 0.012 0.808 0.088
#> GSM121364     4  0.2248     0.8525 0.000 0.000 0.012 0.900 0.088
#> GSM121365     3  0.0162     0.8517 0.000 0.000 0.996 0.004 0.000
#> GSM121366     3  0.0162     0.8517 0.000 0.000 0.996 0.004 0.000
#> GSM121367     3  0.0162     0.8517 0.000 0.000 0.996 0.004 0.000
#> GSM121370     3  0.0162     0.8517 0.000 0.000 0.996 0.004 0.000
#> GSM121371     3  0.0162     0.8517 0.000 0.000 0.996 0.004 0.000
#> GSM121372     3  0.1041     0.8316 0.000 0.032 0.964 0.000 0.004
#> GSM121373     4  0.2248     0.8525 0.000 0.000 0.012 0.900 0.088
#> GSM121374     4  0.2248     0.8525 0.000 0.000 0.012 0.900 0.088
#> GSM121407     3  0.2513     0.7362 0.000 0.116 0.876 0.000 0.008
#> GSM74387      5  0.7055     0.0408 0.012 0.264 0.320 0.000 0.404
#> GSM74388      2  0.4785     0.7447 0.140 0.740 0.004 0.000 0.116
#> GSM74389      4  0.4800     0.4795 0.000 0.000 0.028 0.604 0.368
#> GSM74390      1  0.2623     0.8153 0.884 0.000 0.004 0.016 0.096
#> GSM74391      4  0.1251     0.8713 0.000 0.000 0.008 0.956 0.036
#> GSM74392      4  0.2248     0.8525 0.000 0.000 0.012 0.900 0.088
#> GSM74393      4  0.5953     0.2697 0.000 0.000 0.112 0.504 0.384
#> GSM74394      2  0.5337     0.6854 0.136 0.684 0.004 0.000 0.176
#> GSM74239      1  0.3586     0.7239 0.736 0.000 0.000 0.264 0.000
#> GSM74364      1  0.3837     0.6636 0.692 0.000 0.000 0.308 0.000
#> GSM74365      1  0.0963     0.8522 0.964 0.000 0.000 0.036 0.000
#> GSM74366      1  0.2068     0.8206 0.904 0.000 0.004 0.000 0.092
#> GSM74367      1  0.2471     0.8220 0.864 0.000 0.000 0.136 0.000
#> GSM74377      1  0.1121     0.8438 0.956 0.000 0.000 0.000 0.044
#> GSM74378      1  0.2011     0.8230 0.908 0.000 0.004 0.000 0.088
#> GSM74379      1  0.0771     0.8488 0.976 0.000 0.000 0.004 0.020
#> GSM74380      1  0.0671     0.8496 0.980 0.000 0.000 0.004 0.016
#> GSM74381      1  0.1282     0.8424 0.952 0.000 0.004 0.000 0.044
#> GSM121357     2  0.1082     0.9197 0.000 0.964 0.008 0.000 0.028
#> GSM121361     2  0.4743     0.7489 0.136 0.744 0.004 0.000 0.116
#> GSM121363     2  0.4743     0.7489 0.136 0.744 0.004 0.000 0.116
#> GSM121368     2  0.4700     0.7528 0.132 0.748 0.004 0.000 0.116
#> GSM121369     2  0.4997     0.7361 0.136 0.728 0.008 0.000 0.128
#> GSM74368      1  0.4473     0.6210 0.656 0.000 0.000 0.324 0.020
#> GSM74369      1  0.3534     0.7314 0.744 0.000 0.000 0.256 0.000
#> GSM74370      1  0.3949     0.6240 0.668 0.000 0.000 0.332 0.000
#> GSM74371      4  0.4283    -0.0615 0.456 0.000 0.000 0.544 0.000
#> GSM74372      1  0.3690     0.7540 0.764 0.000 0.000 0.224 0.012
#> GSM74373      1  0.1502     0.8384 0.940 0.000 0.004 0.000 0.056
#> GSM74374      1  0.1792     0.8447 0.916 0.000 0.000 0.084 0.000
#> GSM74375      1  0.1211     0.8527 0.960 0.000 0.000 0.024 0.016
#> GSM74376      1  0.1892     0.8279 0.916 0.000 0.004 0.000 0.080
#> GSM74405      1  0.1430     0.8398 0.944 0.000 0.004 0.000 0.052
#> GSM74351      4  0.2732     0.7330 0.160 0.000 0.000 0.840 0.000
#> GSM74352      1  0.1768     0.8316 0.924 0.000 0.004 0.000 0.072
#> GSM74353      1  0.3796     0.6811 0.700 0.000 0.000 0.300 0.000
#> GSM74354      1  0.2020     0.8402 0.900 0.000 0.000 0.100 0.000
#> GSM74355      1  0.1638     0.8353 0.932 0.000 0.004 0.000 0.064
#> GSM74382      4  0.2605     0.7512 0.148 0.000 0.000 0.852 0.000
#> GSM74383      1  0.2377     0.8270 0.872 0.000 0.000 0.128 0.000
#> GSM74384      1  0.2068     0.8206 0.904 0.000 0.004 0.000 0.092
#> GSM74385      1  0.4249     0.3997 0.568 0.000 0.000 0.432 0.000
#> GSM74386      1  0.3109     0.7842 0.800 0.000 0.000 0.200 0.000
#> GSM74395      1  0.3707     0.6979 0.716 0.000 0.000 0.284 0.000
#> GSM74396      1  0.2516     0.8240 0.860 0.000 0.000 0.140 0.000
#> GSM74397      4  0.4297    -0.1097 0.472 0.000 0.000 0.528 0.000
#> GSM74398      1  0.0566     0.8512 0.984 0.000 0.000 0.012 0.004
#> GSM74399      1  0.1205     0.8435 0.956 0.000 0.004 0.000 0.040
#> GSM74400      1  0.1408     0.8528 0.948 0.000 0.000 0.044 0.008
#> GSM74401      1  0.1251     0.8527 0.956 0.000 0.000 0.036 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.0405     0.8487 0.004 0.000 0.988 0.008 0.000 0.000
#> GSM74357      3  0.0692     0.8437 0.004 0.000 0.976 0.020 0.000 0.000
#> GSM74358      3  0.0692     0.8437 0.004 0.000 0.976 0.020 0.000 0.000
#> GSM74359      4  0.0551     0.7476 0.004 0.000 0.008 0.984 0.004 0.000
#> GSM74360      4  0.0260     0.7526 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM74361      3  0.2081     0.8102 0.012 0.000 0.916 0.036 0.036 0.000
#> GSM74362      3  0.4594     0.3992 0.004 0.000 0.560 0.404 0.032 0.000
#> GSM74363      3  0.0291     0.8496 0.004 0.000 0.992 0.004 0.000 0.000
#> GSM74402      4  0.3807     0.7205 0.368 0.000 0.000 0.628 0.000 0.004
#> GSM74403      4  0.3872     0.6975 0.392 0.000 0.000 0.604 0.000 0.004
#> GSM74404      4  0.3852     0.7069 0.384 0.000 0.000 0.612 0.000 0.004
#> GSM74406      4  0.2969     0.7917 0.224 0.000 0.000 0.776 0.000 0.000
#> GSM74407      4  0.3819     0.7163 0.372 0.000 0.000 0.624 0.000 0.004
#> GSM74408      4  0.3163     0.7895 0.232 0.000 0.000 0.764 0.004 0.000
#> GSM74409      4  0.2697     0.7909 0.188 0.000 0.000 0.812 0.000 0.000
#> GSM74410      4  0.2902     0.7911 0.196 0.000 0.000 0.800 0.004 0.000
#> GSM119936     4  0.3266     0.7792 0.272 0.000 0.000 0.728 0.000 0.000
#> GSM119937     4  0.3126     0.7870 0.248 0.000 0.000 0.752 0.000 0.000
#> GSM74411      3  0.6186     0.4084 0.140 0.044 0.528 0.000 0.288 0.000
#> GSM74412      3  0.7084     0.3277 0.144 0.152 0.456 0.000 0.248 0.000
#> GSM74413      3  0.6351     0.4112 0.140 0.060 0.524 0.000 0.276 0.000
#> GSM74414      2  0.3404     0.7712 0.184 0.792 0.004 0.000 0.008 0.012
#> GSM74415      3  0.5567     0.4196 0.136 0.008 0.556 0.000 0.300 0.000
#> GSM121379     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0146     0.9787 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121384     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0146     0.9787 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121388     2  0.0146     0.9787 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121389     2  0.0146     0.9787 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121390     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121393     2  0.0146     0.9787 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121394     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121395     2  0.0146     0.9787 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121396     2  0.0508     0.9676 0.000 0.984 0.012 0.000 0.004 0.000
#> GSM121397     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      5  0.0865     0.9986 0.000 0.000 0.036 0.000 0.964 0.000
#> GSM74241      5  0.0865     0.9986 0.000 0.000 0.036 0.000 0.964 0.000
#> GSM74242      5  0.0865     0.9986 0.000 0.000 0.036 0.000 0.964 0.000
#> GSM74243      5  0.0865     0.9986 0.000 0.000 0.036 0.000 0.964 0.000
#> GSM74244      5  0.0865     0.9986 0.000 0.000 0.036 0.000 0.964 0.000
#> GSM74245      5  0.0865     0.9986 0.000 0.000 0.036 0.000 0.964 0.000
#> GSM74246      5  0.0790     0.9951 0.000 0.000 0.032 0.000 0.968 0.000
#> GSM74247      5  0.0790     0.9951 0.000 0.000 0.032 0.000 0.968 0.000
#> GSM74248      5  0.0865     0.9986 0.000 0.000 0.036 0.000 0.964 0.000
#> GSM74416      4  0.3899     0.6834 0.404 0.000 0.000 0.592 0.000 0.004
#> GSM74417      4  0.3727     0.7066 0.388 0.000 0.000 0.612 0.000 0.000
#> GSM74418      4  0.4018     0.6657 0.412 0.000 0.000 0.580 0.000 0.008
#> GSM74419      4  0.3330     0.7746 0.284 0.000 0.000 0.716 0.000 0.000
#> GSM121358     3  0.0146     0.8504 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121359     3  0.0603     0.8421 0.004 0.016 0.980 0.000 0.000 0.000
#> GSM121360     4  0.1728     0.7139 0.064 0.000 0.004 0.924 0.008 0.000
#> GSM121362     4  0.3391     0.6329 0.120 0.000 0.008 0.828 0.008 0.036
#> GSM121364     4  0.0551     0.7476 0.004 0.000 0.008 0.984 0.004 0.000
#> GSM121365     3  0.0146     0.8504 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121366     3  0.0146     0.8504 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121367     3  0.0146     0.8504 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121370     3  0.0146     0.8504 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121371     3  0.0146     0.8504 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121372     3  0.0717     0.8411 0.008 0.016 0.976 0.000 0.000 0.000
#> GSM121373     4  0.0551     0.7476 0.004 0.000 0.008 0.984 0.004 0.000
#> GSM121374     4  0.0551     0.7476 0.004 0.000 0.008 0.984 0.004 0.000
#> GSM121407     3  0.1857     0.8164 0.044 0.028 0.924 0.000 0.004 0.000
#> GSM74387      1  0.8492    -0.1125 0.372 0.132 0.168 0.000 0.196 0.132
#> GSM74388      1  0.6777     0.0399 0.364 0.332 0.000 0.000 0.040 0.264
#> GSM74389      4  0.3141     0.5874 0.000 0.000 0.012 0.788 0.200 0.000
#> GSM74390      6  0.5283     0.4271 0.252 0.000 0.004 0.024 0.080 0.640
#> GSM74391      4  0.3259     0.7919 0.216 0.000 0.000 0.772 0.012 0.000
#> GSM74392      4  0.1078     0.7507 0.016 0.000 0.008 0.964 0.012 0.000
#> GSM74393      4  0.4196     0.5398 0.028 0.000 0.044 0.756 0.172 0.000
#> GSM74394      1  0.7120     0.0859 0.380 0.288 0.004 0.000 0.064 0.264
#> GSM74239      1  0.4755    -0.1677 0.492 0.000 0.000 0.048 0.000 0.460
#> GSM74364      1  0.4824    -0.0725 0.524 0.000 0.000 0.056 0.000 0.420
#> GSM74365      6  0.3690     0.5207 0.308 0.000 0.000 0.008 0.000 0.684
#> GSM74366      6  0.2632     0.5250 0.164 0.000 0.000 0.000 0.004 0.832
#> GSM74367      6  0.4178     0.4299 0.372 0.000 0.000 0.020 0.000 0.608
#> GSM74377      6  0.0260     0.6401 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM74378      6  0.2260     0.5548 0.140 0.000 0.000 0.000 0.000 0.860
#> GSM74379      6  0.1957     0.6379 0.112 0.000 0.000 0.000 0.000 0.888
#> GSM74380      6  0.1765     0.6402 0.096 0.000 0.000 0.000 0.000 0.904
#> GSM74381      6  0.0146     0.6402 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM121357     2  0.3228     0.7852 0.176 0.804 0.012 0.000 0.004 0.004
#> GSM121361     1  0.6895     0.0326 0.360 0.336 0.004 0.000 0.040 0.260
#> GSM121363     1  0.6847     0.0195 0.356 0.344 0.004 0.000 0.036 0.260
#> GSM121368     1  0.6893     0.0382 0.364 0.332 0.004 0.000 0.040 0.260
#> GSM121369     1  0.7473     0.0721 0.372 0.300 0.008 0.020 0.048 0.252
#> GSM74368      1  0.5088    -0.0499 0.516 0.000 0.000 0.068 0.004 0.412
#> GSM74369      1  0.4887    -0.1814 0.476 0.000 0.000 0.048 0.004 0.472
#> GSM74370      1  0.5319    -0.1748 0.456 0.000 0.000 0.088 0.004 0.452
#> GSM74371      1  0.5389     0.1370 0.572 0.000 0.000 0.160 0.000 0.268
#> GSM74372      6  0.5045     0.2562 0.412 0.000 0.000 0.076 0.000 0.512
#> GSM74373      6  0.1007     0.6263 0.044 0.000 0.000 0.000 0.000 0.956
#> GSM74374      6  0.4105     0.4600 0.348 0.000 0.000 0.020 0.000 0.632
#> GSM74375      6  0.2520     0.6228 0.152 0.000 0.000 0.004 0.000 0.844
#> GSM74376      6  0.2362     0.5559 0.136 0.000 0.000 0.000 0.004 0.860
#> GSM74405      6  0.0547     0.6331 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM74351      1  0.5166    -0.2063 0.552 0.000 0.000 0.348 0.000 0.100
#> GSM74352      6  0.2048     0.5721 0.120 0.000 0.000 0.000 0.000 0.880
#> GSM74353      1  0.4868    -0.0640 0.524 0.000 0.000 0.060 0.000 0.416
#> GSM74354      6  0.4237     0.3935 0.396 0.000 0.000 0.020 0.000 0.584
#> GSM74355      6  0.1814     0.5874 0.100 0.000 0.000 0.000 0.000 0.900
#> GSM74382      1  0.5094    -0.1760 0.568 0.000 0.000 0.336 0.000 0.096
#> GSM74383      6  0.4439     0.3104 0.432 0.000 0.000 0.028 0.000 0.540
#> GSM74384      6  0.2703     0.5156 0.172 0.000 0.000 0.000 0.004 0.824
#> GSM74385      1  0.5087     0.0561 0.560 0.000 0.000 0.092 0.000 0.348
#> GSM74386      6  0.4603     0.3254 0.416 0.000 0.000 0.040 0.000 0.544
#> GSM74395      1  0.5033    -0.1639 0.476 0.000 0.000 0.072 0.000 0.452
#> GSM74396      6  0.4574     0.2731 0.440 0.000 0.000 0.036 0.000 0.524
#> GSM74397      1  0.5682     0.1083 0.512 0.000 0.000 0.188 0.000 0.300
#> GSM74398      6  0.2902     0.6020 0.196 0.000 0.000 0.004 0.000 0.800
#> GSM74399      6  0.0260     0.6414 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM74400      6  0.3828     0.5333 0.288 0.000 0.000 0.012 0.004 0.696
#> GSM74401      6  0.3608     0.5495 0.272 0.000 0.000 0.012 0.000 0.716

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> SD:skmeans 121         1.64e-11 2
#> SD:skmeans 119         4.44e-25 3
#> SD:skmeans 120         5.03e-32 4
#> SD:skmeans 111         8.59e-43 5
#> SD:skmeans  89         2.00e-36 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.295           0.648       0.840         0.4697 0.508   0.508
#> 3 3 0.525           0.651       0.803         0.3841 0.555   0.317
#> 4 4 0.648           0.667       0.836         0.1298 0.910   0.746
#> 5 5 0.742           0.752       0.877         0.0645 0.869   0.574
#> 6 6 0.805           0.675       0.827         0.0475 0.925   0.685

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      1  0.9754     0.3157 0.592 0.408
#> GSM74357      1  0.9775     0.3031 0.588 0.412
#> GSM74358      1  0.8909     0.5350 0.692 0.308
#> GSM74359      1  0.2778     0.7646 0.952 0.048
#> GSM74360      1  0.1184     0.7634 0.984 0.016
#> GSM74361      1  0.9661     0.3590 0.608 0.392
#> GSM74362      1  0.8386     0.5991 0.732 0.268
#> GSM74363      2  0.9896     0.2315 0.440 0.560
#> GSM74402      1  0.1184     0.7634 0.984 0.016
#> GSM74403      1  0.0000     0.7581 1.000 0.000
#> GSM74404      1  0.0000     0.7581 1.000 0.000
#> GSM74406      1  0.2236     0.7664 0.964 0.036
#> GSM74407      1  0.4161     0.7535 0.916 0.084
#> GSM74408      1  0.2236     0.7664 0.964 0.036
#> GSM74409      1  0.2236     0.7664 0.964 0.036
#> GSM74410      1  0.2236     0.7664 0.964 0.036
#> GSM119936     1  0.1843     0.7655 0.972 0.028
#> GSM119937     1  0.2236     0.7664 0.964 0.036
#> GSM74411      2  0.6623     0.7236 0.172 0.828
#> GSM74412      2  0.0938     0.8062 0.012 0.988
#> GSM74413      2  0.6438     0.7304 0.164 0.836
#> GSM74414      2  0.0000     0.8075 0.000 1.000
#> GSM74415      2  0.8144     0.6337 0.252 0.748
#> GSM121379     2  0.0000     0.8075 0.000 1.000
#> GSM121380     2  0.0000     0.8075 0.000 1.000
#> GSM121381     2  0.0000     0.8075 0.000 1.000
#> GSM121382     2  0.0000     0.8075 0.000 1.000
#> GSM121383     2  0.0000     0.8075 0.000 1.000
#> GSM121384     2  0.0000     0.8075 0.000 1.000
#> GSM121385     2  0.0000     0.8075 0.000 1.000
#> GSM121386     2  0.0000     0.8075 0.000 1.000
#> GSM121387     2  0.0000     0.8075 0.000 1.000
#> GSM121388     2  0.0376     0.8068 0.004 0.996
#> GSM121389     2  0.0000     0.8075 0.000 1.000
#> GSM121390     2  0.0000     0.8075 0.000 1.000
#> GSM121391     2  0.0376     0.8068 0.004 0.996
#> GSM121392     2  0.0000     0.8075 0.000 1.000
#> GSM121393     2  0.0000     0.8075 0.000 1.000
#> GSM121394     2  0.0376     0.8068 0.004 0.996
#> GSM121395     2  0.0000     0.8075 0.000 1.000
#> GSM121396     2  0.1184     0.8052 0.016 0.984
#> GSM121397     2  0.0000     0.8075 0.000 1.000
#> GSM121398     2  0.0000     0.8075 0.000 1.000
#> GSM121399     2  0.0000     0.8075 0.000 1.000
#> GSM74240      1  0.9944     0.1912 0.544 0.456
#> GSM74241      2  0.6973     0.7074 0.188 0.812
#> GSM74242      1  0.8763     0.5554 0.704 0.296
#> GSM74243      1  0.8207     0.6156 0.744 0.256
#> GSM74244      2  0.9044     0.5169 0.320 0.680
#> GSM74245      1  0.9732     0.3362 0.596 0.404
#> GSM74246      2  0.6887     0.7106 0.184 0.816
#> GSM74247      2  0.6973     0.7074 0.188 0.812
#> GSM74248      1  0.8081     0.6255 0.752 0.248
#> GSM74416      1  0.2236     0.7664 0.964 0.036
#> GSM74417      1  0.0000     0.7581 1.000 0.000
#> GSM74418      1  0.0000     0.7581 1.000 0.000
#> GSM74419      1  0.6801     0.6936 0.820 0.180
#> GSM121358     2  0.9896     0.2315 0.440 0.560
#> GSM121359     2  0.6623     0.7248 0.172 0.828
#> GSM121360     1  0.7528     0.6490 0.784 0.216
#> GSM121362     2  0.9933     0.1735 0.452 0.548
#> GSM121364     1  0.2778     0.7646 0.952 0.048
#> GSM121365     2  0.9896     0.2315 0.440 0.560
#> GSM121366     2  0.9850     0.2560 0.428 0.572
#> GSM121367     2  0.9933     0.1917 0.452 0.548
#> GSM121370     2  0.9944     0.1757 0.456 0.544
#> GSM121371     2  0.9896     0.2315 0.440 0.560
#> GSM121372     2  0.6623     0.7232 0.172 0.828
#> GSM121373     1  0.2948     0.7637 0.948 0.052
#> GSM121374     1  0.2778     0.7646 0.952 0.048
#> GSM121407     2  0.6438     0.7304 0.164 0.836
#> GSM74387      2  0.6531     0.7271 0.168 0.832
#> GSM74388      2  0.0000     0.8075 0.000 1.000
#> GSM74389      1  0.3584     0.7604 0.932 0.068
#> GSM74390      2  0.7056     0.7069 0.192 0.808
#> GSM74391      1  0.7219     0.6742 0.800 0.200
#> GSM74392      1  0.2778     0.7646 0.952 0.048
#> GSM74393      1  0.8016     0.6303 0.756 0.244
#> GSM74394      2  0.0376     0.8074 0.004 0.996
#> GSM74239      1  0.8081     0.5866 0.752 0.248
#> GSM74364      1  0.8207     0.5763 0.744 0.256
#> GSM74365      2  0.9170     0.5530 0.332 0.668
#> GSM74366      2  0.2236     0.7906 0.036 0.964
#> GSM74367      1  0.8443     0.5557 0.728 0.272
#> GSM74377      2  0.3733     0.7822 0.072 0.928
#> GSM74378      2  0.2778     0.7849 0.048 0.952
#> GSM74379      2  0.8207     0.6687 0.256 0.744
#> GSM74380      2  0.9732     0.3356 0.404 0.596
#> GSM74381      2  0.5519     0.7308 0.128 0.872
#> GSM121357     2  0.2043     0.8019 0.032 0.968
#> GSM121361     2  0.0000     0.8075 0.000 1.000
#> GSM121363     2  0.0000     0.8075 0.000 1.000
#> GSM121368     2  0.0000     0.8075 0.000 1.000
#> GSM121369     2  0.6148     0.7395 0.152 0.848
#> GSM74368      2  0.8267     0.6657 0.260 0.740
#> GSM74369      2  0.8386     0.6562 0.268 0.732
#> GSM74370      1  0.9998    -0.0996 0.508 0.492
#> GSM74371      1  0.1184     0.7580 0.984 0.016
#> GSM74372      1  0.7299     0.6409 0.796 0.204
#> GSM74373      2  0.5629     0.7401 0.132 0.868
#> GSM74374      1  0.8207     0.5765 0.744 0.256
#> GSM74375      2  0.9795     0.2665 0.416 0.584
#> GSM74376      2  0.4690     0.7847 0.100 0.900
#> GSM74405      2  0.6531     0.6963 0.168 0.832
#> GSM74351      1  0.0000     0.7581 1.000 0.000
#> GSM74352      2  0.2778     0.7849 0.048 0.952
#> GSM74353      1  0.8555     0.5481 0.720 0.280
#> GSM74354      2  0.9996     0.1338 0.488 0.512
#> GSM74355      2  0.2603     0.7870 0.044 0.956
#> GSM74382      1  0.0000     0.7581 1.000 0.000
#> GSM74383      1  0.8955     0.4900 0.688 0.312
#> GSM74384      2  0.2236     0.7906 0.036 0.964
#> GSM74385      1  0.3733     0.7395 0.928 0.072
#> GSM74386      1  0.9358     0.3873 0.648 0.352
#> GSM74395      1  0.8555     0.5451 0.720 0.280
#> GSM74396      1  0.8207     0.5765 0.744 0.256
#> GSM74397      1  0.8207     0.6086 0.744 0.256
#> GSM74398      1  0.9933     0.1850 0.548 0.452
#> GSM74399      2  0.7219     0.7269 0.200 0.800
#> GSM74400      2  0.9775     0.3103 0.412 0.588
#> GSM74401      2  0.7815     0.6469 0.232 0.768

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.5733     0.6952 0.324 0.000 0.676
#> GSM74357      3  0.5706     0.6959 0.320 0.000 0.680
#> GSM74358      3  0.5678     0.6965 0.316 0.000 0.684
#> GSM74359      3  0.0000     0.6913 0.000 0.000 1.000
#> GSM74360      3  0.0237     0.6879 0.004 0.000 0.996
#> GSM74361      3  0.5706     0.6959 0.320 0.000 0.680
#> GSM74362      3  0.2711     0.7103 0.088 0.000 0.912
#> GSM74363      3  0.5988     0.6821 0.368 0.000 0.632
#> GSM74402      3  0.0000     0.6913 0.000 0.000 1.000
#> GSM74403      3  0.6180    -0.4116 0.416 0.000 0.584
#> GSM74404      3  0.6095    -0.3488 0.392 0.000 0.608
#> GSM74406      3  0.0000     0.6913 0.000 0.000 1.000
#> GSM74407      3  0.0424     0.6942 0.008 0.000 0.992
#> GSM74408      3  0.0000     0.6913 0.000 0.000 1.000
#> GSM74409      3  0.0000     0.6913 0.000 0.000 1.000
#> GSM74410      3  0.0000     0.6913 0.000 0.000 1.000
#> GSM119936     3  0.0000     0.6913 0.000 0.000 1.000
#> GSM119937     3  0.0000     0.6913 0.000 0.000 1.000
#> GSM74411      3  0.6264     0.6735 0.380 0.004 0.616
#> GSM74412      2  0.8033     0.3852 0.424 0.512 0.064
#> GSM74413      3  0.7091     0.6285 0.416 0.024 0.560
#> GSM74414      2  0.6154     0.4925 0.408 0.592 0.000
#> GSM74415      3  0.6008     0.6812 0.372 0.000 0.628
#> GSM121379     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121380     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121381     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121382     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121383     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121384     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121385     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121386     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121387     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121388     2  0.4861     0.7371 0.180 0.808 0.012
#> GSM121389     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121390     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121391     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121392     2  0.0747     0.8887 0.016 0.984 0.000
#> GSM121393     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121394     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121395     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121396     2  0.1267     0.8794 0.004 0.972 0.024
#> GSM121397     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121398     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM121399     2  0.0000     0.8982 0.000 1.000 0.000
#> GSM74240      3  0.5560     0.6749 0.300 0.000 0.700
#> GSM74241      3  0.6252     0.6160 0.444 0.000 0.556
#> GSM74242      3  0.3482     0.7093 0.128 0.000 0.872
#> GSM74243      3  0.2356     0.7092 0.072 0.000 0.928
#> GSM74244      3  0.5988     0.6820 0.368 0.000 0.632
#> GSM74245      3  0.5560     0.7007 0.300 0.000 0.700
#> GSM74246      3  0.6483     0.6020 0.452 0.004 0.544
#> GSM74247      3  0.6654     0.5964 0.456 0.008 0.536
#> GSM74248      3  0.2261     0.7074 0.068 0.000 0.932
#> GSM74416      3  0.0000     0.6913 0.000 0.000 1.000
#> GSM74417      3  0.0000     0.6913 0.000 0.000 1.000
#> GSM74418      3  0.0424     0.6834 0.008 0.000 0.992
#> GSM74419      3  0.1964     0.7072 0.056 0.000 0.944
#> GSM121358     3  0.6209     0.6803 0.368 0.004 0.628
#> GSM121359     3  0.7245     0.6612 0.368 0.036 0.596
#> GSM121360     3  0.5621     0.0110 0.308 0.000 0.692
#> GSM121362     3  0.5650     0.4954 0.312 0.000 0.688
#> GSM121364     3  0.0000     0.6913 0.000 0.000 1.000
#> GSM121365     3  0.5988     0.6821 0.368 0.000 0.632
#> GSM121366     3  0.6209     0.6803 0.368 0.004 0.628
#> GSM121367     3  0.5968     0.6840 0.364 0.000 0.636
#> GSM121370     3  0.5968     0.6840 0.364 0.000 0.636
#> GSM121371     3  0.5988     0.6821 0.368 0.000 0.632
#> GSM121372     3  0.6228     0.6786 0.372 0.004 0.624
#> GSM121373     3  0.0000     0.6913 0.000 0.000 1.000
#> GSM121374     3  0.0000     0.6913 0.000 0.000 1.000
#> GSM121407     3  0.7159     0.5917 0.448 0.024 0.528
#> GSM74387      3  0.7672     0.5438 0.468 0.044 0.488
#> GSM74388      2  0.4654     0.7177 0.208 0.792 0.000
#> GSM74389      3  0.0000     0.6913 0.000 0.000 1.000
#> GSM74390      1  0.6140     0.0648 0.596 0.000 0.404
#> GSM74391      3  0.1753     0.7052 0.048 0.000 0.952
#> GSM74392      3  0.0237     0.6889 0.004 0.000 0.996
#> GSM74393      3  0.2356     0.7066 0.072 0.000 0.928
#> GSM74394      1  0.6291    -0.3249 0.532 0.468 0.000
#> GSM74239      1  0.6168     0.6721 0.588 0.000 0.412
#> GSM74364      1  0.6244     0.6414 0.560 0.000 0.440
#> GSM74365      1  0.4842     0.7157 0.776 0.000 0.224
#> GSM74366      1  0.5650     0.4461 0.688 0.312 0.000
#> GSM74367      1  0.5948     0.7070 0.640 0.000 0.360
#> GSM74377      1  0.0848     0.5929 0.984 0.008 0.008
#> GSM74378      1  0.5678     0.4577 0.684 0.316 0.000
#> GSM74379      1  0.3879     0.6908 0.848 0.000 0.152
#> GSM74380      1  0.5591     0.7219 0.696 0.000 0.304
#> GSM74381      1  0.5873     0.4655 0.684 0.312 0.004
#> GSM121357     2  0.8138     0.3305 0.452 0.480 0.068
#> GSM121361     2  0.4842     0.6989 0.224 0.776 0.000
#> GSM121363     2  0.4605     0.7266 0.204 0.796 0.000
#> GSM121368     2  0.4504     0.7362 0.196 0.804 0.000
#> GSM121369     1  0.8425    -0.3524 0.540 0.096 0.364
#> GSM74368      1  0.4974     0.3474 0.764 0.000 0.236
#> GSM74369      1  0.1031     0.5825 0.976 0.000 0.024
#> GSM74370      1  0.5678     0.7195 0.684 0.000 0.316
#> GSM74371      1  0.6225     0.6517 0.568 0.000 0.432
#> GSM74372      1  0.6008     0.7003 0.628 0.000 0.372
#> GSM74373      1  0.5858     0.7209 0.740 0.020 0.240
#> GSM74374      1  0.6008     0.7003 0.628 0.000 0.372
#> GSM74375      1  0.3941     0.6736 0.844 0.000 0.156
#> GSM74376      1  0.0237     0.5829 0.996 0.004 0.000
#> GSM74405      1  0.3112     0.6568 0.900 0.004 0.096
#> GSM74351      1  0.6309     0.5652 0.504 0.000 0.496
#> GSM74352      1  0.4796     0.5525 0.780 0.220 0.000
#> GSM74353      1  0.5760     0.7181 0.672 0.000 0.328
#> GSM74354      1  0.5678     0.7195 0.684 0.000 0.316
#> GSM74355      1  0.4399     0.5730 0.812 0.188 0.000
#> GSM74382      1  0.6309     0.5648 0.504 0.000 0.496
#> GSM74383      1  0.5988     0.7030 0.632 0.000 0.368
#> GSM74384      1  0.4121     0.5882 0.832 0.168 0.000
#> GSM74385      1  0.6204     0.6600 0.576 0.000 0.424
#> GSM74386      1  0.5835     0.7149 0.660 0.000 0.340
#> GSM74395      1  0.5948     0.7090 0.640 0.000 0.360
#> GSM74396      1  0.6008     0.7003 0.628 0.000 0.372
#> GSM74397      1  0.6260     0.6309 0.552 0.000 0.448
#> GSM74398      1  0.4452     0.6920 0.808 0.000 0.192
#> GSM74399      1  0.0592     0.5921 0.988 0.000 0.012
#> GSM74400      1  0.6301     0.7258 0.712 0.028 0.260
#> GSM74401      1  0.4326     0.6936 0.844 0.012 0.144

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      4  0.4605     0.5138 0.000 0.000 0.336 0.664
#> GSM74357      4  0.4605     0.5138 0.000 0.000 0.336 0.664
#> GSM74358      4  0.4605     0.5138 0.000 0.000 0.336 0.664
#> GSM74359      4  0.0000     0.6964 0.000 0.000 0.000 1.000
#> GSM74360      4  0.0592     0.6874 0.000 0.000 0.016 0.984
#> GSM74361      4  0.4605     0.5138 0.000 0.000 0.336 0.664
#> GSM74362      4  0.1637     0.6811 0.000 0.000 0.060 0.940
#> GSM74363      4  0.4781     0.5098 0.004 0.000 0.336 0.660
#> GSM74402      4  0.0707     0.6955 0.000 0.000 0.020 0.980
#> GSM74403      4  0.4730     0.1350 0.364 0.000 0.000 0.636
#> GSM74404      4  0.4761     0.1129 0.372 0.000 0.000 0.628
#> GSM74406      4  0.0336     0.6965 0.000 0.000 0.008 0.992
#> GSM74407      4  0.0469     0.6963 0.000 0.000 0.012 0.988
#> GSM74408      4  0.0000     0.6964 0.000 0.000 0.000 1.000
#> GSM74409      4  0.0000     0.6964 0.000 0.000 0.000 1.000
#> GSM74410      4  0.0469     0.6963 0.000 0.000 0.012 0.988
#> GSM119936     4  0.0000     0.6964 0.000 0.000 0.000 1.000
#> GSM119937     4  0.0592     0.6963 0.000 0.000 0.016 0.984
#> GSM74411      3  0.4936     0.0946 0.004 0.000 0.624 0.372
#> GSM74412      2  0.6009     0.4249 0.012 0.608 0.348 0.032
#> GSM74413      3  0.6008    -0.1808 0.012 0.020 0.504 0.464
#> GSM74414      2  0.4834     0.7443 0.096 0.784 0.120 0.000
#> GSM74415      3  0.4999    -0.2397 0.000 0.000 0.508 0.492
#> GSM121379     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121388     2  0.3172     0.7781 0.000 0.840 0.160 0.000
#> GSM121389     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0188     0.9046 0.004 0.996 0.000 0.000
#> GSM121393     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121394     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121395     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121396     2  0.2675     0.8306 0.000 0.892 0.100 0.008
#> GSM121397     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000     0.9072 0.000 1.000 0.000 0.000
#> GSM74240      3  0.2660     0.6658 0.056 0.000 0.908 0.036
#> GSM74241      3  0.0188     0.6438 0.004 0.000 0.996 0.000
#> GSM74242      3  0.3074     0.6080 0.000 0.000 0.848 0.152
#> GSM74243      3  0.4382     0.4791 0.000 0.000 0.704 0.296
#> GSM74244      3  0.0469     0.6440 0.000 0.000 0.988 0.012
#> GSM74245      3  0.1022     0.6508 0.000 0.000 0.968 0.032
#> GSM74246      3  0.2408     0.6601 0.104 0.000 0.896 0.000
#> GSM74247      3  0.2345     0.6611 0.100 0.000 0.900 0.000
#> GSM74248      3  0.4406     0.4721 0.000 0.000 0.700 0.300
#> GSM74416      4  0.0000     0.6964 0.000 0.000 0.000 1.000
#> GSM74417      4  0.0000     0.6964 0.000 0.000 0.000 1.000
#> GSM74418      4  0.0592     0.6843 0.016 0.000 0.000 0.984
#> GSM74419      4  0.0469     0.6963 0.000 0.000 0.012 0.988
#> GSM121358     4  0.4920     0.4777 0.004 0.000 0.368 0.628
#> GSM121359     4  0.7130     0.2755 0.004 0.120 0.368 0.508
#> GSM121360     3  0.7261     0.3491 0.152 0.000 0.480 0.368
#> GSM121362     4  0.6732     0.2487 0.220 0.000 0.168 0.612
#> GSM121364     4  0.0000     0.6964 0.000 0.000 0.000 1.000
#> GSM121365     4  0.4920     0.4777 0.004 0.000 0.368 0.628
#> GSM121366     4  0.4920     0.4777 0.004 0.000 0.368 0.628
#> GSM121367     4  0.4746     0.4821 0.000 0.000 0.368 0.632
#> GSM121370     4  0.4746     0.4821 0.000 0.000 0.368 0.632
#> GSM121371     4  0.4920     0.4777 0.004 0.000 0.368 0.628
#> GSM121372     4  0.4920     0.4777 0.004 0.000 0.368 0.628
#> GSM121373     4  0.0000     0.6964 0.000 0.000 0.000 1.000
#> GSM121374     4  0.0000     0.6964 0.000 0.000 0.000 1.000
#> GSM121407     4  0.7787     0.1650 0.012 0.168 0.368 0.452
#> GSM74387      3  0.6990     0.5481 0.168 0.024 0.644 0.164
#> GSM74388      2  0.4008     0.6934 0.244 0.756 0.000 0.000
#> GSM74389      4  0.4304     0.3383 0.000 0.000 0.284 0.716
#> GSM74390      1  0.7451    -0.3132 0.420 0.000 0.408 0.172
#> GSM74391      4  0.4543     0.2493 0.000 0.000 0.324 0.676
#> GSM74392      4  0.2647     0.5855 0.000 0.000 0.120 0.880
#> GSM74393      4  0.4277     0.3646 0.000 0.000 0.280 0.720
#> GSM74394      3  0.5850     0.5538 0.244 0.080 0.676 0.000
#> GSM74239      1  0.3400     0.7898 0.820 0.000 0.000 0.180
#> GSM74364      1  0.3123     0.8090 0.844 0.000 0.000 0.156
#> GSM74365      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74366      1  0.1474     0.8209 0.948 0.052 0.000 0.000
#> GSM74367      1  0.0921     0.8580 0.972 0.000 0.000 0.028
#> GSM74377      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74378      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74379      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74380      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74381      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM121357     2  0.7692     0.4573 0.140 0.596 0.212 0.052
#> GSM121361     2  0.4188     0.6901 0.244 0.752 0.004 0.000
#> GSM121363     2  0.3764     0.7294 0.216 0.784 0.000 0.000
#> GSM121368     2  0.3764     0.7295 0.216 0.784 0.000 0.000
#> GSM121369     3  0.8662     0.5015 0.256 0.136 0.504 0.104
#> GSM74368      1  0.5833     0.4790 0.692 0.000 0.096 0.212
#> GSM74369      1  0.1305     0.8408 0.960 0.000 0.036 0.004
#> GSM74370      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74371      1  0.4585     0.6322 0.668 0.000 0.000 0.332
#> GSM74372      1  0.3649     0.7725 0.796 0.000 0.000 0.204
#> GSM74373      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74374      1  0.2216     0.8423 0.908 0.000 0.000 0.092
#> GSM74375      1  0.2999     0.8226 0.864 0.000 0.004 0.132
#> GSM74376      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74405      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74351      1  0.4790     0.5556 0.620 0.000 0.000 0.380
#> GSM74352      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74353      1  0.2469     0.8359 0.892 0.000 0.000 0.108
#> GSM74354      1  0.0469     0.8595 0.988 0.000 0.000 0.012
#> GSM74355      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74382      1  0.4830     0.5416 0.608 0.000 0.000 0.392
#> GSM74383      1  0.2814     0.8239 0.868 0.000 0.000 0.132
#> GSM74384      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74385      1  0.4406     0.6718 0.700 0.000 0.000 0.300
#> GSM74386      1  0.2921     0.8200 0.860 0.000 0.000 0.140
#> GSM74395      1  0.2760     0.8253 0.872 0.000 0.000 0.128
#> GSM74396      1  0.2408     0.8381 0.896 0.000 0.000 0.104
#> GSM74397      1  0.4585     0.6310 0.668 0.000 0.000 0.332
#> GSM74398      1  0.1637     0.8512 0.940 0.000 0.000 0.060
#> GSM74399      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74400      1  0.0000     0.8598 1.000 0.000 0.000 0.000
#> GSM74401      1  0.0000     0.8598 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.3480     0.6211 0.000 0.000 0.752 0.248 0.000
#> GSM74357      3  0.3480     0.6211 0.000 0.000 0.752 0.248 0.000
#> GSM74358      3  0.3480     0.6211 0.000 0.000 0.752 0.248 0.000
#> GSM74359      4  0.0290     0.7872 0.000 0.000 0.008 0.992 0.000
#> GSM74360      4  0.0290     0.7872 0.000 0.000 0.008 0.992 0.000
#> GSM74361      3  0.3508     0.6151 0.000 0.000 0.748 0.252 0.000
#> GSM74362      4  0.4030     0.4883 0.000 0.000 0.352 0.648 0.000
#> GSM74363      3  0.3480     0.6211 0.000 0.000 0.752 0.248 0.000
#> GSM74402      4  0.3336     0.6801 0.000 0.000 0.228 0.772 0.000
#> GSM74403      4  0.0404     0.7871 0.012 0.000 0.000 0.988 0.000
#> GSM74404      4  0.0771     0.7866 0.020 0.000 0.004 0.976 0.000
#> GSM74406      4  0.3143     0.6992 0.000 0.000 0.204 0.796 0.000
#> GSM74407      4  0.3906     0.6603 0.000 0.000 0.240 0.744 0.016
#> GSM74408      4  0.0510     0.7868 0.000 0.000 0.016 0.984 0.000
#> GSM74409      4  0.0290     0.7872 0.000 0.000 0.008 0.992 0.000
#> GSM74410      4  0.3305     0.6835 0.000 0.000 0.224 0.776 0.000
#> GSM119936     4  0.2280     0.7523 0.000 0.000 0.120 0.880 0.000
#> GSM119937     4  0.2891     0.7226 0.000 0.000 0.176 0.824 0.000
#> GSM74411      3  0.2249     0.7243 0.000 0.000 0.896 0.008 0.096
#> GSM74412      3  0.4562     0.4436 0.000 0.292 0.676 0.000 0.032
#> GSM74413      3  0.0404     0.7762 0.000 0.000 0.988 0.000 0.012
#> GSM74414      2  0.5915     0.2090 0.108 0.508 0.384 0.000 0.000
#> GSM74415      3  0.1774     0.7605 0.000 0.000 0.932 0.016 0.052
#> GSM121379     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.4126     0.3935 0.000 0.620 0.380 0.000 0.000
#> GSM121389     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0162     0.9037 0.000 0.996 0.004 0.000 0.000
#> GSM121393     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121394     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121396     2  0.2561     0.7879 0.000 0.856 0.144 0.000 0.000
#> GSM121397     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9064 0.000 1.000 0.000 0.000 0.000
#> GSM74240      5  0.0000     0.9368 0.000 0.000 0.000 0.000 1.000
#> GSM74241      5  0.0000     0.9368 0.000 0.000 0.000 0.000 1.000
#> GSM74242      5  0.0000     0.9368 0.000 0.000 0.000 0.000 1.000
#> GSM74243      5  0.0000     0.9368 0.000 0.000 0.000 0.000 1.000
#> GSM74244      5  0.0000     0.9368 0.000 0.000 0.000 0.000 1.000
#> GSM74245      5  0.0000     0.9368 0.000 0.000 0.000 0.000 1.000
#> GSM74246      5  0.0000     0.9368 0.000 0.000 0.000 0.000 1.000
#> GSM74247      5  0.0000     0.9368 0.000 0.000 0.000 0.000 1.000
#> GSM74248      5  0.0000     0.9368 0.000 0.000 0.000 0.000 1.000
#> GSM74416      4  0.0451     0.7861 0.008 0.000 0.004 0.988 0.000
#> GSM74417      4  0.0000     0.7863 0.000 0.000 0.000 1.000 0.000
#> GSM74418      4  0.0290     0.7848 0.008 0.000 0.000 0.992 0.000
#> GSM74419      4  0.3395     0.6717 0.000 0.000 0.236 0.764 0.000
#> GSM121358     3  0.0609     0.7854 0.000 0.000 0.980 0.020 0.000
#> GSM121359     3  0.0579     0.7818 0.000 0.008 0.984 0.008 0.000
#> GSM121360     4  0.5332     0.5227 0.072 0.000 0.020 0.688 0.220
#> GSM121362     4  0.6959     0.3286 0.224 0.000 0.144 0.564 0.068
#> GSM121364     4  0.0290     0.7872 0.000 0.000 0.008 0.992 0.000
#> GSM121365     3  0.0510     0.7847 0.000 0.000 0.984 0.016 0.000
#> GSM121366     3  0.0609     0.7854 0.000 0.000 0.980 0.020 0.000
#> GSM121367     3  0.0609     0.7854 0.000 0.000 0.980 0.020 0.000
#> GSM121370     3  0.0609     0.7854 0.000 0.000 0.980 0.020 0.000
#> GSM121371     3  0.0609     0.7854 0.000 0.000 0.980 0.020 0.000
#> GSM121372     3  0.0510     0.7847 0.000 0.000 0.984 0.016 0.000
#> GSM121373     4  0.0290     0.7872 0.000 0.000 0.008 0.992 0.000
#> GSM121374     4  0.0404     0.7869 0.000 0.000 0.012 0.988 0.000
#> GSM121407     3  0.0162     0.7753 0.004 0.000 0.996 0.000 0.000
#> GSM74387      3  0.5664     0.4491 0.168 0.004 0.648 0.000 0.180
#> GSM74388      2  0.3934     0.6760 0.244 0.740 0.016 0.000 0.000
#> GSM74389      4  0.4719     0.6340 0.000 0.000 0.056 0.696 0.248
#> GSM74390      3  0.7214     0.1515 0.376 0.000 0.416 0.040 0.168
#> GSM74391      4  0.4010     0.6823 0.000 0.000 0.032 0.760 0.208
#> GSM74392      4  0.2228     0.7754 0.000 0.000 0.040 0.912 0.048
#> GSM74393      4  0.5741     0.4429 0.000 0.000 0.096 0.544 0.360
#> GSM74394      5  0.6614     0.1291 0.236 0.000 0.316 0.000 0.448
#> GSM74239      1  0.3534     0.6801 0.744 0.000 0.000 0.256 0.000
#> GSM74364      1  0.3274     0.7521 0.780 0.000 0.000 0.220 0.000
#> GSM74365      1  0.0290     0.8978 0.992 0.000 0.000 0.008 0.000
#> GSM74366      1  0.1626     0.8642 0.940 0.044 0.016 0.000 0.000
#> GSM74367      1  0.0963     0.8932 0.964 0.000 0.000 0.036 0.000
#> GSM74377      1  0.0510     0.8966 0.984 0.000 0.016 0.000 0.000
#> GSM74378      1  0.0510     0.8966 0.984 0.000 0.016 0.000 0.000
#> GSM74379      1  0.0404     0.8976 0.988 0.000 0.012 0.000 0.000
#> GSM74380      1  0.0000     0.8984 1.000 0.000 0.000 0.000 0.000
#> GSM74381      1  0.0404     0.8976 0.988 0.000 0.012 0.000 0.000
#> GSM121357     3  0.6062     0.3554 0.168 0.268 0.564 0.000 0.000
#> GSM121361     2  0.4268     0.6673 0.244 0.728 0.024 0.000 0.004
#> GSM121363     2  0.3940     0.6999 0.220 0.756 0.024 0.000 0.000
#> GSM121368     2  0.3970     0.6953 0.224 0.752 0.024 0.000 0.000
#> GSM121369     3  0.7554     0.1990 0.240 0.068 0.468 0.000 0.224
#> GSM74368      1  0.4850     0.5454 0.696 0.000 0.232 0.072 0.000
#> GSM74369      1  0.1597     0.8794 0.940 0.000 0.048 0.012 0.000
#> GSM74370      1  0.0451     0.8986 0.988 0.000 0.008 0.004 0.000
#> GSM74371      4  0.3707     0.5222 0.284 0.000 0.000 0.716 0.000
#> GSM74372      1  0.3424     0.7109 0.760 0.000 0.000 0.240 0.000
#> GSM74373      1  0.0510     0.8966 0.984 0.000 0.016 0.000 0.000
#> GSM74374      1  0.2074     0.8578 0.896 0.000 0.000 0.104 0.000
#> GSM74375      1  0.2970     0.7978 0.828 0.000 0.000 0.168 0.004
#> GSM74376      1  0.0404     0.8976 0.988 0.000 0.012 0.000 0.000
#> GSM74405      1  0.0510     0.8966 0.984 0.000 0.016 0.000 0.000
#> GSM74351      4  0.4161     0.3348 0.392 0.000 0.000 0.608 0.000
#> GSM74352      1  0.0510     0.8966 0.984 0.000 0.016 0.000 0.000
#> GSM74353      1  0.2516     0.8285 0.860 0.000 0.000 0.140 0.000
#> GSM74354      1  0.0609     0.8970 0.980 0.000 0.000 0.020 0.000
#> GSM74355      1  0.0510     0.8966 0.984 0.000 0.016 0.000 0.000
#> GSM74382      4  0.3913     0.4747 0.324 0.000 0.000 0.676 0.000
#> GSM74383      1  0.2852     0.7973 0.828 0.000 0.000 0.172 0.000
#> GSM74384      1  0.0510     0.8966 0.984 0.000 0.016 0.000 0.000
#> GSM74385      4  0.4074     0.3737 0.364 0.000 0.000 0.636 0.000
#> GSM74386      1  0.3452     0.7199 0.756 0.000 0.000 0.244 0.000
#> GSM74395      1  0.2813     0.8002 0.832 0.000 0.000 0.168 0.000
#> GSM74396      1  0.2377     0.8400 0.872 0.000 0.000 0.128 0.000
#> GSM74397      4  0.4653     0.0941 0.472 0.000 0.012 0.516 0.000
#> GSM74398      1  0.1671     0.8729 0.924 0.000 0.000 0.076 0.000
#> GSM74399      1  0.0451     0.8987 0.988 0.000 0.008 0.004 0.000
#> GSM74400      1  0.0566     0.8984 0.984 0.000 0.004 0.012 0.000
#> GSM74401      1  0.0451     0.8984 0.988 0.000 0.004 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      4  0.3860     0.2878 0.000 0.000 0.472 0.528 0.000 0.000
#> GSM74357      4  0.3860     0.2878 0.000 0.000 0.472 0.528 0.000 0.000
#> GSM74358      4  0.3860     0.2878 0.000 0.000 0.472 0.528 0.000 0.000
#> GSM74359      6  0.3997     0.5475 0.000 0.000 0.004 0.488 0.000 0.508
#> GSM74360      6  0.3854     0.5681 0.000 0.000 0.000 0.464 0.000 0.536
#> GSM74361      4  0.3857     0.2955 0.000 0.000 0.468 0.532 0.000 0.000
#> GSM74362      4  0.3126     0.5285 0.000 0.000 0.248 0.752 0.000 0.000
#> GSM74363      4  0.3860     0.2878 0.000 0.000 0.472 0.528 0.000 0.000
#> GSM74402      4  0.1176     0.5994 0.000 0.000 0.020 0.956 0.000 0.024
#> GSM74403      4  0.1334     0.5659 0.020 0.000 0.000 0.948 0.000 0.032
#> GSM74404      4  0.1498     0.5599 0.028 0.000 0.000 0.940 0.000 0.032
#> GSM74406      4  0.1398     0.6128 0.000 0.000 0.052 0.940 0.000 0.008
#> GSM74407      4  0.2341     0.6016 0.012 0.000 0.056 0.900 0.000 0.032
#> GSM74408      4  0.0632     0.5889 0.000 0.000 0.000 0.976 0.000 0.024
#> GSM74409      4  0.1082     0.5835 0.000 0.000 0.004 0.956 0.000 0.040
#> GSM74410      4  0.1267     0.6146 0.000 0.000 0.060 0.940 0.000 0.000
#> GSM119936     4  0.0146     0.5970 0.000 0.000 0.004 0.996 0.000 0.000
#> GSM119937     4  0.1429     0.6119 0.004 0.000 0.052 0.940 0.000 0.004
#> GSM74411      3  0.0547     0.8292 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM74412      3  0.3183     0.6653 0.000 0.200 0.788 0.000 0.004 0.008
#> GSM74413      3  0.0146     0.8369 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM74414      3  0.5865     0.1379 0.004 0.392 0.436 0.000 0.000 0.168
#> GSM74415      3  0.0632     0.8260 0.000 0.000 0.976 0.000 0.024 0.000
#> GSM121379     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121388     2  0.3862     0.0252 0.000 0.524 0.476 0.000 0.000 0.000
#> GSM121389     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0260     0.8832 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM121393     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121394     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121396     2  0.2416     0.7415 0.000 0.844 0.156 0.000 0.000 0.000
#> GSM121397     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.8883 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74241      5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74242      5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74243      5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74244      5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74245      5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74246      5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74247      5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74248      5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74416      6  0.4535     0.5387 0.032 0.000 0.000 0.484 0.000 0.484
#> GSM74417      6  0.4393     0.5684 0.024 0.000 0.000 0.452 0.000 0.524
#> GSM74418      6  0.4469     0.5583 0.028 0.000 0.000 0.468 0.000 0.504
#> GSM74419      4  0.0865     0.6136 0.000 0.000 0.036 0.964 0.000 0.000
#> GSM121358     3  0.0260     0.8338 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM121359     3  0.0000     0.8378 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121360     6  0.4043     0.4958 0.024 0.000 0.004 0.256 0.004 0.712
#> GSM121362     6  0.2811     0.3902 0.036 0.000 0.012 0.084 0.000 0.868
#> GSM121364     6  0.3993     0.5619 0.000 0.000 0.004 0.476 0.000 0.520
#> GSM121365     3  0.0000     0.8378 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121366     3  0.0146     0.8369 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121367     3  0.0146     0.8369 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121370     3  0.0146     0.8369 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121371     3  0.0146     0.8369 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121372     3  0.0000     0.8378 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121373     6  0.4091     0.5622 0.000 0.000 0.008 0.472 0.000 0.520
#> GSM121374     6  0.4177     0.5615 0.000 0.000 0.012 0.468 0.000 0.520
#> GSM121407     3  0.0000     0.8378 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74387      3  0.4172     0.4750 0.004 0.000 0.564 0.000 0.008 0.424
#> GSM74388      2  0.4389     0.4642 0.024 0.528 0.000 0.000 0.000 0.448
#> GSM74389      4  0.3424     0.4474 0.000 0.000 0.020 0.780 0.196 0.004
#> GSM74390      6  0.5857    -0.4193 0.056 0.000 0.444 0.004 0.048 0.448
#> GSM74391      4  0.2401     0.5896 0.004 0.000 0.016 0.900 0.060 0.020
#> GSM74392      4  0.1464     0.5870 0.000 0.000 0.004 0.944 0.016 0.036
#> GSM74393      4  0.4374     0.0646 0.000 0.000 0.016 0.532 0.448 0.004
#> GSM74394      6  0.6169    -0.2847 0.008 0.000 0.304 0.000 0.244 0.444
#> GSM74239      1  0.2260     0.7625 0.860 0.000 0.000 0.140 0.000 0.000
#> GSM74364      1  0.2164     0.8147 0.900 0.000 0.000 0.032 0.000 0.068
#> GSM74365      1  0.0291     0.8600 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM74366      1  0.4543     0.5898 0.576 0.040 0.000 0.000 0.000 0.384
#> GSM74367      1  0.0146     0.8585 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM74377      1  0.2631     0.8143 0.820 0.000 0.000 0.000 0.000 0.180
#> GSM74378      1  0.3823     0.5740 0.564 0.000 0.000 0.000 0.000 0.436
#> GSM74379      1  0.1714     0.8529 0.908 0.000 0.000 0.000 0.000 0.092
#> GSM74380      1  0.0937     0.8618 0.960 0.000 0.000 0.000 0.000 0.040
#> GSM74381      1  0.2416     0.8289 0.844 0.000 0.000 0.000 0.000 0.156
#> GSM121357     3  0.4093     0.4617 0.004 0.004 0.552 0.000 0.000 0.440
#> GSM121361     2  0.4389     0.4642 0.024 0.528 0.000 0.000 0.000 0.448
#> GSM121363     2  0.4374     0.4688 0.016 0.532 0.004 0.000 0.000 0.448
#> GSM121368     2  0.4482     0.4624 0.012 0.528 0.012 0.000 0.000 0.448
#> GSM121369     3  0.4712     0.4268 0.004 0.000 0.512 0.000 0.036 0.448
#> GSM74368      1  0.5918     0.5529 0.580 0.000 0.052 0.108 0.000 0.260
#> GSM74369      1  0.0935     0.8536 0.964 0.000 0.032 0.000 0.000 0.004
#> GSM74370      1  0.2219     0.8386 0.864 0.000 0.000 0.000 0.000 0.136
#> GSM74371      6  0.5543     0.5113 0.140 0.000 0.000 0.372 0.000 0.488
#> GSM74372      1  0.1757     0.8251 0.916 0.000 0.000 0.076 0.000 0.008
#> GSM74373      1  0.1814     0.8498 0.900 0.000 0.000 0.000 0.000 0.100
#> GSM74374      1  0.0000     0.8593 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74375      1  0.1411     0.8469 0.936 0.000 0.000 0.060 0.004 0.000
#> GSM74376      1  0.1765     0.8504 0.904 0.000 0.000 0.000 0.000 0.096
#> GSM74405      1  0.1957     0.8462 0.888 0.000 0.000 0.000 0.000 0.112
#> GSM74351      4  0.5966    -0.2723 0.352 0.000 0.000 0.420 0.000 0.228
#> GSM74352      1  0.3672     0.6525 0.632 0.000 0.000 0.000 0.000 0.368
#> GSM74353      1  0.0363     0.8586 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM74354      1  0.0820     0.8604 0.972 0.000 0.000 0.012 0.000 0.016
#> GSM74355      1  0.3672     0.6500 0.632 0.000 0.000 0.000 0.000 0.368
#> GSM74382      4  0.6016    -0.2952 0.340 0.000 0.000 0.412 0.000 0.248
#> GSM74383      1  0.0713     0.8548 0.972 0.000 0.000 0.028 0.000 0.000
#> GSM74384      1  0.2941     0.7872 0.780 0.000 0.000 0.000 0.000 0.220
#> GSM74385      6  0.6011     0.3930 0.272 0.000 0.000 0.296 0.000 0.432
#> GSM74386      1  0.2747     0.7828 0.860 0.000 0.000 0.044 0.000 0.096
#> GSM74395      1  0.0146     0.8585 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM74396      1  0.0146     0.8582 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM74397      1  0.5769     0.0200 0.504 0.000 0.016 0.360 0.000 0.120
#> GSM74398      1  0.0363     0.8617 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM74399      1  0.1387     0.8581 0.932 0.000 0.000 0.000 0.000 0.068
#> GSM74400      1  0.0603     0.8633 0.980 0.000 0.000 0.004 0.000 0.016
#> GSM74401      1  0.0603     0.8632 0.980 0.000 0.000 0.004 0.000 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> SD:pam 100         1.70e-07 2
#> SD:pam 107         3.79e-30 3
#> SD:pam  96         2.55e-35 4
#> SD:pam 106         3.02e-45 5
#> SD:pam  97         1.16e-51 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.948           0.931       0.974         0.4986 0.500   0.500
#> 3 3 0.599           0.652       0.823         0.2769 0.780   0.593
#> 4 4 0.630           0.774       0.851         0.1043 0.840   0.593
#> 5 5 0.831           0.810       0.891         0.1028 0.916   0.703
#> 6 6 0.795           0.610       0.783         0.0511 0.936   0.717

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.0376     0.9666 0.004 0.996
#> GSM74357      2  0.0376     0.9666 0.004 0.996
#> GSM74358      2  0.0376     0.9666 0.004 0.996
#> GSM74359      1  0.0000     0.9756 1.000 0.000
#> GSM74360      1  0.0000     0.9756 1.000 0.000
#> GSM74361      2  0.0938     0.9599 0.012 0.988
#> GSM74362      2  0.5408     0.8427 0.124 0.876
#> GSM74363      2  0.0376     0.9666 0.004 0.996
#> GSM74402      1  0.0000     0.9756 1.000 0.000
#> GSM74403      1  0.0000     0.9756 1.000 0.000
#> GSM74404      1  0.0000     0.9756 1.000 0.000
#> GSM74406      1  0.0000     0.9756 1.000 0.000
#> GSM74407      1  0.0000     0.9756 1.000 0.000
#> GSM74408      1  0.0000     0.9756 1.000 0.000
#> GSM74409      1  0.0000     0.9756 1.000 0.000
#> GSM74410      1  0.0000     0.9756 1.000 0.000
#> GSM119936     1  0.0000     0.9756 1.000 0.000
#> GSM119937     1  0.0000     0.9756 1.000 0.000
#> GSM74411      2  0.0000     0.9681 0.000 1.000
#> GSM74412      2  0.0000     0.9681 0.000 1.000
#> GSM74413      2  0.0000     0.9681 0.000 1.000
#> GSM74414      2  0.0376     0.9666 0.004 0.996
#> GSM74415      2  0.0376     0.9666 0.004 0.996
#> GSM121379     2  0.0000     0.9681 0.000 1.000
#> GSM121380     2  0.0000     0.9681 0.000 1.000
#> GSM121381     2  0.0000     0.9681 0.000 1.000
#> GSM121382     2  0.0000     0.9681 0.000 1.000
#> GSM121383     2  0.0000     0.9681 0.000 1.000
#> GSM121384     2  0.0000     0.9681 0.000 1.000
#> GSM121385     2  0.0000     0.9681 0.000 1.000
#> GSM121386     2  0.0000     0.9681 0.000 1.000
#> GSM121387     2  0.0000     0.9681 0.000 1.000
#> GSM121388     2  0.0000     0.9681 0.000 1.000
#> GSM121389     2  0.0000     0.9681 0.000 1.000
#> GSM121390     2  0.0000     0.9681 0.000 1.000
#> GSM121391     2  0.0000     0.9681 0.000 1.000
#> GSM121392     2  0.0000     0.9681 0.000 1.000
#> GSM121393     2  0.0000     0.9681 0.000 1.000
#> GSM121394     2  0.0000     0.9681 0.000 1.000
#> GSM121395     2  0.0000     0.9681 0.000 1.000
#> GSM121396     2  0.0000     0.9681 0.000 1.000
#> GSM121397     2  0.0000     0.9681 0.000 1.000
#> GSM121398     2  0.0000     0.9681 0.000 1.000
#> GSM121399     2  0.0000     0.9681 0.000 1.000
#> GSM74240      2  0.0000     0.9681 0.000 1.000
#> GSM74241      2  0.0000     0.9681 0.000 1.000
#> GSM74242      2  0.0000     0.9681 0.000 1.000
#> GSM74243      2  0.0000     0.9681 0.000 1.000
#> GSM74244      2  0.0000     0.9681 0.000 1.000
#> GSM74245      2  0.0000     0.9681 0.000 1.000
#> GSM74246      2  0.0000     0.9681 0.000 1.000
#> GSM74247      2  0.0000     0.9681 0.000 1.000
#> GSM74248      2  0.0000     0.9681 0.000 1.000
#> GSM74416      1  0.0000     0.9756 1.000 0.000
#> GSM74417      1  0.0000     0.9756 1.000 0.000
#> GSM74418      1  0.0000     0.9756 1.000 0.000
#> GSM74419      1  0.0000     0.9756 1.000 0.000
#> GSM121358     2  0.0376     0.9666 0.004 0.996
#> GSM121359     2  0.0000     0.9681 0.000 1.000
#> GSM121360     1  0.0000     0.9756 1.000 0.000
#> GSM121362     1  0.0000     0.9756 1.000 0.000
#> GSM121364     1  0.0000     0.9756 1.000 0.000
#> GSM121365     2  0.0376     0.9666 0.004 0.996
#> GSM121366     2  0.0376     0.9666 0.004 0.996
#> GSM121367     2  0.0376     0.9666 0.004 0.996
#> GSM121370     2  0.0376     0.9666 0.004 0.996
#> GSM121371     2  0.0376     0.9666 0.004 0.996
#> GSM121372     2  0.0000     0.9681 0.000 1.000
#> GSM121373     1  0.0000     0.9756 1.000 0.000
#> GSM121374     1  0.0000     0.9756 1.000 0.000
#> GSM121407     2  0.0000     0.9681 0.000 1.000
#> GSM74387      2  0.5946     0.8177 0.144 0.856
#> GSM74388      1  0.9248     0.4708 0.660 0.340
#> GSM74389      1  0.7299     0.7291 0.796 0.204
#> GSM74390      1  0.0000     0.9756 1.000 0.000
#> GSM74391      1  0.0000     0.9756 1.000 0.000
#> GSM74392      1  0.0000     0.9756 1.000 0.000
#> GSM74393      1  0.3733     0.9025 0.928 0.072
#> GSM74394      2  1.0000     0.0134 0.496 0.504
#> GSM74239      1  0.0000     0.9756 1.000 0.000
#> GSM74364      1  0.0000     0.9756 1.000 0.000
#> GSM74365      1  0.0000     0.9756 1.000 0.000
#> GSM74366      1  0.0000     0.9756 1.000 0.000
#> GSM74367      1  0.0000     0.9756 1.000 0.000
#> GSM74377      1  0.0000     0.9756 1.000 0.000
#> GSM74378      1  0.0000     0.9756 1.000 0.000
#> GSM74379      1  0.0000     0.9756 1.000 0.000
#> GSM74380      1  0.0000     0.9756 1.000 0.000
#> GSM74381      1  0.0000     0.9756 1.000 0.000
#> GSM121357     2  0.0376     0.9666 0.004 0.996
#> GSM121361     1  0.9686     0.3280 0.604 0.396
#> GSM121363     2  0.9933     0.1745 0.452 0.548
#> GSM121368     2  0.9491     0.4154 0.368 0.632
#> GSM121369     1  0.9996     0.0188 0.512 0.488
#> GSM74368      1  0.0000     0.9756 1.000 0.000
#> GSM74369      1  0.0000     0.9756 1.000 0.000
#> GSM74370      1  0.0000     0.9756 1.000 0.000
#> GSM74371      1  0.0000     0.9756 1.000 0.000
#> GSM74372      1  0.0000     0.9756 1.000 0.000
#> GSM74373      1  0.0000     0.9756 1.000 0.000
#> GSM74374      1  0.0000     0.9756 1.000 0.000
#> GSM74375      1  0.0000     0.9756 1.000 0.000
#> GSM74376      1  0.0000     0.9756 1.000 0.000
#> GSM74405      1  0.0000     0.9756 1.000 0.000
#> GSM74351      1  0.0000     0.9756 1.000 0.000
#> GSM74352      1  0.0000     0.9756 1.000 0.000
#> GSM74353      1  0.0000     0.9756 1.000 0.000
#> GSM74354      1  0.0000     0.9756 1.000 0.000
#> GSM74355      1  0.0000     0.9756 1.000 0.000
#> GSM74382      1  0.0000     0.9756 1.000 0.000
#> GSM74383      1  0.0000     0.9756 1.000 0.000
#> GSM74384      1  0.0000     0.9756 1.000 0.000
#> GSM74385      1  0.0000     0.9756 1.000 0.000
#> GSM74386      1  0.0000     0.9756 1.000 0.000
#> GSM74395      1  0.0000     0.9756 1.000 0.000
#> GSM74396      1  0.0000     0.9756 1.000 0.000
#> GSM74397      1  0.0000     0.9756 1.000 0.000
#> GSM74398      1  0.0000     0.9756 1.000 0.000
#> GSM74399      1  0.0000     0.9756 1.000 0.000
#> GSM74400      1  0.0000     0.9756 1.000 0.000
#> GSM74401      1  0.0000     0.9756 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      2  0.6180     0.7370 0.000 0.584 0.416
#> GSM74357      2  0.6180     0.7370 0.000 0.584 0.416
#> GSM74358      2  0.6180     0.7370 0.000 0.584 0.416
#> GSM74359      3  0.6111     0.5498 0.396 0.000 0.604
#> GSM74360      3  0.6168     0.5288 0.412 0.000 0.588
#> GSM74361      2  0.7207     0.7206 0.032 0.584 0.384
#> GSM74362      2  0.7806     0.6958 0.064 0.584 0.352
#> GSM74363      2  0.6180     0.7370 0.000 0.584 0.416
#> GSM74402      1  0.6307    -0.3391 0.512 0.000 0.488
#> GSM74403      1  0.1411     0.8000 0.964 0.000 0.036
#> GSM74404      1  0.1411     0.8000 0.964 0.000 0.036
#> GSM74406      1  0.6308    -0.3474 0.508 0.000 0.492
#> GSM74407      1  0.6308    -0.3494 0.508 0.000 0.492
#> GSM74408      3  0.6140     0.4780 0.404 0.000 0.596
#> GSM74409      3  0.6140     0.4780 0.404 0.000 0.596
#> GSM74410      3  0.6140     0.4780 0.404 0.000 0.596
#> GSM119936     1  0.6307    -0.3391 0.512 0.000 0.488
#> GSM119937     3  0.6140     0.4780 0.404 0.000 0.596
#> GSM74411      2  0.5397     0.7760 0.000 0.720 0.280
#> GSM74412      2  0.5178     0.7853 0.000 0.744 0.256
#> GSM74413      2  0.5327     0.7795 0.000 0.728 0.272
#> GSM74414      2  0.5085     0.7603 0.092 0.836 0.072
#> GSM74415      2  0.5497     0.7747 0.000 0.708 0.292
#> GSM121379     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121380     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121381     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121382     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121383     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121384     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121385     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121386     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121387     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121388     2  0.0747     0.8212 0.000 0.984 0.016
#> GSM121389     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121390     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121391     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121392     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121393     2  0.0747     0.8212 0.000 0.984 0.016
#> GSM121394     2  0.0747     0.8212 0.000 0.984 0.016
#> GSM121395     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121396     2  0.4654     0.7968 0.000 0.792 0.208
#> GSM121397     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121398     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM121399     2  0.0000     0.8207 0.000 1.000 0.000
#> GSM74240      3  0.3686     0.5214 0.000 0.140 0.860
#> GSM74241      3  0.3686     0.5214 0.000 0.140 0.860
#> GSM74242      3  0.3686     0.5214 0.000 0.140 0.860
#> GSM74243      3  0.3686     0.5214 0.000 0.140 0.860
#> GSM74244      3  0.3686     0.5214 0.000 0.140 0.860
#> GSM74245      3  0.3686     0.5214 0.000 0.140 0.860
#> GSM74246      3  0.3686     0.5214 0.000 0.140 0.860
#> GSM74247      3  0.3686     0.5214 0.000 0.140 0.860
#> GSM74248      3  0.3686     0.5214 0.000 0.140 0.860
#> GSM74416      1  0.6309    -0.2573 0.504 0.000 0.496
#> GSM74417      1  0.6309    -0.2573 0.504 0.000 0.496
#> GSM74418      1  0.6309    -0.2573 0.504 0.000 0.496
#> GSM74419      3  0.6140     0.4780 0.404 0.000 0.596
#> GSM121358     2  0.6180     0.7370 0.000 0.584 0.416
#> GSM121359     2  0.5363     0.7809 0.000 0.724 0.276
#> GSM121360     3  0.6252     0.4609 0.444 0.000 0.556
#> GSM121362     1  0.6062     0.1282 0.616 0.000 0.384
#> GSM121364     3  0.6126     0.5462 0.400 0.000 0.600
#> GSM121365     2  0.6180     0.7370 0.000 0.584 0.416
#> GSM121366     2  0.6180     0.7370 0.000 0.584 0.416
#> GSM121367     2  0.6180     0.7370 0.000 0.584 0.416
#> GSM121370     2  0.6180     0.7370 0.000 0.584 0.416
#> GSM121371     2  0.6180     0.7370 0.000 0.584 0.416
#> GSM121372     2  0.5291     0.7808 0.000 0.732 0.268
#> GSM121373     3  0.6140     0.5403 0.404 0.000 0.596
#> GSM121374     3  0.6126     0.5462 0.400 0.000 0.600
#> GSM121407     2  0.5098     0.7878 0.000 0.752 0.248
#> GSM74387      2  0.9766    -0.0768 0.236 0.416 0.348
#> GSM74388      1  0.7545     0.3937 0.652 0.076 0.272
#> GSM74389      3  0.5733     0.5856 0.324 0.000 0.676
#> GSM74390      1  0.3816     0.6672 0.852 0.000 0.148
#> GSM74391      3  0.6126     0.5462 0.400 0.000 0.600
#> GSM74392      3  0.6126     0.5462 0.400 0.000 0.600
#> GSM74393      3  0.5760     0.5848 0.328 0.000 0.672
#> GSM74394      1  0.7622     0.3868 0.648 0.080 0.272
#> GSM74239      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74364      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74365      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74366      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74367      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74377      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74378      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74379      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74380      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74381      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM121357     2  0.5093     0.7643 0.088 0.836 0.076
#> GSM121361     1  0.7622     0.3868 0.648 0.080 0.272
#> GSM121363     1  0.7622     0.3868 0.648 0.080 0.272
#> GSM121368     1  0.7770     0.3708 0.640 0.088 0.272
#> GSM121369     1  0.7622     0.3868 0.648 0.080 0.272
#> GSM74368      1  0.0592     0.8246 0.988 0.000 0.012
#> GSM74369      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74370      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74371      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74372      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74373      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74374      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74375      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74376      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74405      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74351      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74352      1  0.0237     0.8316 0.996 0.000 0.004
#> GSM74353      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74354      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74355      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74382      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74383      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74384      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74385      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74386      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74395      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74396      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74397      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74398      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74399      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74400      1  0.0000     0.8350 1.000 0.000 0.000
#> GSM74401      1  0.0000     0.8350 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.1059      0.854 0.000 0.016 0.972 0.012
#> GSM74357      3  0.1182      0.849 0.000 0.016 0.968 0.016
#> GSM74358      3  0.1182      0.849 0.000 0.016 0.968 0.016
#> GSM74359      4  0.7551      0.720 0.272 0.000 0.240 0.488
#> GSM74360      4  0.7564      0.684 0.328 0.000 0.208 0.464
#> GSM74361      3  0.1297      0.847 0.000 0.016 0.964 0.020
#> GSM74362      3  0.1297      0.847 0.000 0.016 0.964 0.020
#> GSM74363      3  0.1182      0.855 0.000 0.016 0.968 0.016
#> GSM74402      4  0.7582      0.674 0.336 0.000 0.208 0.456
#> GSM74403      1  0.3494      0.665 0.824 0.000 0.172 0.004
#> GSM74404      1  0.3751      0.620 0.800 0.000 0.196 0.004
#> GSM74406      4  0.7596      0.680 0.332 0.000 0.212 0.456
#> GSM74407      4  0.7576      0.689 0.324 0.000 0.212 0.464
#> GSM74408      4  0.7587      0.704 0.244 0.000 0.276 0.480
#> GSM74409      4  0.7587      0.704 0.244 0.000 0.276 0.480
#> GSM74410      4  0.7578      0.701 0.236 0.000 0.284 0.480
#> GSM119936     4  0.7609      0.695 0.312 0.000 0.224 0.464
#> GSM119937     4  0.7587      0.704 0.244 0.000 0.276 0.480
#> GSM74411      3  0.3166      0.842 0.000 0.016 0.868 0.116
#> GSM74412      3  0.3108      0.843 0.000 0.016 0.872 0.112
#> GSM74413      3  0.3108      0.843 0.000 0.016 0.872 0.112
#> GSM74414      3  0.3736      0.839 0.004 0.024 0.844 0.128
#> GSM74415      3  0.3166      0.842 0.000 0.016 0.868 0.116
#> GSM121379     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0188      0.984 0.000 0.996 0.004 0.000
#> GSM121381     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121388     2  0.1256      0.961 0.000 0.964 0.008 0.028
#> GSM121389     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0188      0.984 0.000 0.996 0.004 0.000
#> GSM121391     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121392     2  0.3048      0.875 0.000 0.876 0.016 0.108
#> GSM121393     2  0.1807      0.941 0.000 0.940 0.008 0.052
#> GSM121394     2  0.1004      0.967 0.000 0.972 0.004 0.024
#> GSM121395     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121396     3  0.6027      0.659 0.000 0.244 0.664 0.092
#> GSM121397     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000      0.986 0.000 1.000 0.000 0.000
#> GSM74240      4  0.0921      0.523 0.000 0.000 0.028 0.972
#> GSM74241      4  0.1022      0.519 0.000 0.000 0.032 0.968
#> GSM74242      4  0.1022      0.522 0.000 0.000 0.032 0.968
#> GSM74243      4  0.1022      0.522 0.000 0.000 0.032 0.968
#> GSM74244      4  0.0921      0.523 0.000 0.000 0.028 0.972
#> GSM74245      4  0.0921      0.523 0.000 0.000 0.028 0.972
#> GSM74246      4  0.0921      0.523 0.000 0.000 0.028 0.972
#> GSM74247      4  0.0921      0.523 0.000 0.000 0.028 0.972
#> GSM74248      4  0.0921      0.523 0.000 0.000 0.028 0.972
#> GSM74416      1  0.7767     -0.363 0.432 0.000 0.268 0.300
#> GSM74417      1  0.7732     -0.328 0.444 0.000 0.268 0.288
#> GSM74418      1  0.7706     -0.305 0.452 0.000 0.268 0.280
#> GSM74419      4  0.7587      0.704 0.244 0.000 0.276 0.480
#> GSM121358     3  0.0779      0.855 0.000 0.016 0.980 0.004
#> GSM121359     3  0.3056      0.840 0.000 0.072 0.888 0.040
#> GSM121360     4  0.7325      0.604 0.368 0.000 0.160 0.472
#> GSM121362     1  0.6334     -0.382 0.484 0.000 0.060 0.456
#> GSM121364     4  0.7640      0.712 0.296 0.000 0.240 0.464
#> GSM121365     3  0.0927      0.854 0.000 0.016 0.976 0.008
#> GSM121366     3  0.1398      0.848 0.000 0.040 0.956 0.004
#> GSM121367     3  0.0927      0.854 0.000 0.016 0.976 0.008
#> GSM121370     3  0.0592      0.854 0.000 0.016 0.984 0.000
#> GSM121371     3  0.0927      0.855 0.000 0.016 0.976 0.008
#> GSM121372     3  0.2586      0.851 0.000 0.048 0.912 0.040
#> GSM121373     4  0.7640      0.712 0.296 0.000 0.240 0.464
#> GSM121374     4  0.7640      0.712 0.296 0.000 0.240 0.464
#> GSM121407     3  0.3149      0.848 0.000 0.032 0.880 0.088
#> GSM74387      3  0.4661      0.800 0.052 0.008 0.800 0.140
#> GSM74388      3  0.6404      0.647 0.220 0.000 0.644 0.136
#> GSM74389      4  0.7512      0.721 0.268 0.000 0.236 0.496
#> GSM74390      1  0.4500      0.319 0.684 0.000 0.000 0.316
#> GSM74391      4  0.7640      0.712 0.296 0.000 0.240 0.464
#> GSM74392      4  0.7613      0.716 0.288 0.000 0.240 0.472
#> GSM74393      4  0.7512      0.721 0.268 0.000 0.236 0.496
#> GSM74394      3  0.6205      0.680 0.196 0.000 0.668 0.136
#> GSM74239      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74364      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74365      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74366      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74367      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74377      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74378      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74379      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74380      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74381      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM121357     3  0.3932      0.837 0.004 0.032 0.836 0.128
#> GSM121361     3  0.6308      0.665 0.208 0.000 0.656 0.136
#> GSM121363     3  0.6205      0.680 0.196 0.000 0.668 0.136
#> GSM121368     3  0.5855      0.718 0.160 0.000 0.704 0.136
#> GSM121369     3  0.6112      0.683 0.196 0.000 0.676 0.128
#> GSM74368      1  0.3367      0.741 0.864 0.000 0.028 0.108
#> GSM74369      1  0.0188      0.892 0.996 0.000 0.000 0.004
#> GSM74370      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74371      1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM74372      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74373      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74374      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74375      1  0.0188      0.892 0.996 0.000 0.000 0.004
#> GSM74376      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74405      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74351      1  0.2662      0.800 0.900 0.000 0.084 0.016
#> GSM74352      1  0.1059      0.876 0.972 0.000 0.016 0.012
#> GSM74353      1  0.0188      0.892 0.996 0.000 0.000 0.004
#> GSM74354      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74355      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74382      1  0.0657      0.883 0.984 0.000 0.012 0.004
#> GSM74383      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74384      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74385      1  0.0336      0.888 0.992 0.000 0.008 0.000
#> GSM74386      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74395      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74396      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74397      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74398      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74399      1  0.0000      0.894 1.000 0.000 0.000 0.000
#> GSM74400      1  0.3278      0.761 0.864 0.000 0.116 0.020
#> GSM74401      1  0.2563      0.816 0.908 0.000 0.072 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM74357      3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM74358      3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM74359      4  0.3907     0.7450 0.016 0.000 0.008 0.772 0.204
#> GSM74360      4  0.2959     0.8040 0.036 0.000 0.000 0.864 0.100
#> GSM74361      3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM74362      3  0.0290     0.9340 0.000 0.000 0.992 0.008 0.000
#> GSM74363      3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM74402      4  0.0609     0.8154 0.020 0.000 0.000 0.980 0.000
#> GSM74403      1  0.3910     0.6420 0.720 0.000 0.000 0.272 0.008
#> GSM74404      1  0.3910     0.6418 0.720 0.000 0.000 0.272 0.008
#> GSM74406      4  0.0898     0.8165 0.020 0.000 0.000 0.972 0.008
#> GSM74407      4  0.2850     0.8060 0.036 0.000 0.000 0.872 0.092
#> GSM74408      4  0.0290     0.8122 0.008 0.000 0.000 0.992 0.000
#> GSM74409      4  0.0290     0.8122 0.008 0.000 0.000 0.992 0.000
#> GSM74410      4  0.0290     0.8122 0.008 0.000 0.000 0.992 0.000
#> GSM119936     4  0.0609     0.8154 0.020 0.000 0.000 0.980 0.000
#> GSM119937     4  0.0290     0.8122 0.008 0.000 0.000 0.992 0.000
#> GSM74411      3  0.3012     0.8417 0.000 0.000 0.852 0.024 0.124
#> GSM74412      3  0.2020     0.8893 0.000 0.000 0.900 0.000 0.100
#> GSM74413      3  0.2020     0.8893 0.000 0.000 0.900 0.000 0.100
#> GSM74414      5  0.7673     0.0788 0.012 0.208 0.364 0.036 0.380
#> GSM74415      3  0.2597     0.8631 0.000 0.000 0.884 0.024 0.092
#> GSM121379     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.0290     0.9874 0.000 0.992 0.000 0.000 0.008
#> GSM121389     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.1410     0.9328 0.000 0.940 0.000 0.000 0.060
#> GSM121393     2  0.0794     0.9695 0.000 0.972 0.000 0.000 0.028
#> GSM121394     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121396     3  0.5678     0.3004 0.000 0.392 0.524 0.000 0.084
#> GSM121397     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9945 0.000 1.000 0.000 0.000 0.000
#> GSM74240      5  0.2595     0.6498 0.000 0.000 0.032 0.080 0.888
#> GSM74241      5  0.2754     0.6501 0.000 0.000 0.040 0.080 0.880
#> GSM74242      5  0.5052    -0.0464 0.000 0.000 0.036 0.412 0.552
#> GSM74243      5  0.4982    -0.0465 0.000 0.000 0.032 0.412 0.556
#> GSM74244      5  0.2595     0.6498 0.000 0.000 0.032 0.080 0.888
#> GSM74245      5  0.2932     0.6322 0.000 0.000 0.032 0.104 0.864
#> GSM74246      5  0.2595     0.6498 0.000 0.000 0.032 0.080 0.888
#> GSM74247      5  0.2595     0.6498 0.000 0.000 0.032 0.080 0.888
#> GSM74248      5  0.3182     0.6116 0.000 0.000 0.032 0.124 0.844
#> GSM74416      4  0.2110     0.7614 0.072 0.000 0.000 0.912 0.016
#> GSM74417      4  0.2110     0.7614 0.072 0.000 0.000 0.912 0.016
#> GSM74418      4  0.2233     0.7524 0.080 0.000 0.000 0.904 0.016
#> GSM74419      4  0.0290     0.8122 0.008 0.000 0.000 0.992 0.000
#> GSM121358     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM121359     3  0.0794     0.9276 0.000 0.000 0.972 0.000 0.028
#> GSM121360     4  0.6568     0.2037 0.252 0.000 0.000 0.472 0.276
#> GSM121362     1  0.6599    -0.0475 0.464 0.000 0.000 0.264 0.272
#> GSM121364     4  0.3463     0.7784 0.016 0.000 0.008 0.820 0.156
#> GSM121365     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM121366     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM121367     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM121370     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM121371     3  0.0000     0.9392 0.000 0.000 1.000 0.000 0.000
#> GSM121372     3  0.1043     0.9250 0.000 0.000 0.960 0.000 0.040
#> GSM121373     4  0.4219     0.6914 0.024 0.000 0.000 0.716 0.260
#> GSM121374     4  0.3516     0.7753 0.020 0.000 0.004 0.812 0.164
#> GSM121407     3  0.1544     0.9114 0.000 0.000 0.932 0.000 0.068
#> GSM74387      5  0.6205     0.5880 0.096 0.000 0.208 0.056 0.640
#> GSM74388      5  0.5656     0.6390 0.200 0.000 0.068 0.048 0.684
#> GSM74389      4  0.4464     0.6334 0.012 0.000 0.008 0.676 0.304
#> GSM74390      1  0.5740     0.3324 0.600 0.000 0.000 0.128 0.272
#> GSM74391      4  0.4286     0.6894 0.020 0.000 0.004 0.716 0.260
#> GSM74392      4  0.4153     0.7144 0.016 0.000 0.008 0.740 0.236
#> GSM74393      4  0.4464     0.6334 0.012 0.000 0.008 0.676 0.304
#> GSM74394      5  0.5656     0.6390 0.200 0.000 0.068 0.048 0.684
#> GSM74239      1  0.1117     0.9197 0.964 0.000 0.000 0.016 0.020
#> GSM74364      1  0.1211     0.9185 0.960 0.000 0.000 0.016 0.024
#> GSM74365      1  0.0324     0.9237 0.992 0.000 0.000 0.004 0.004
#> GSM74366      1  0.1106     0.9164 0.964 0.000 0.000 0.012 0.024
#> GSM74367      1  0.0451     0.9234 0.988 0.000 0.000 0.008 0.004
#> GSM74377      1  0.0693     0.9194 0.980 0.000 0.000 0.008 0.012
#> GSM74378      1  0.0798     0.9182 0.976 0.000 0.000 0.008 0.016
#> GSM74379      1  0.0566     0.9230 0.984 0.000 0.000 0.004 0.012
#> GSM74380      1  0.0566     0.9230 0.984 0.000 0.000 0.004 0.012
#> GSM74381      1  0.0693     0.9194 0.980 0.000 0.000 0.008 0.012
#> GSM121357     5  0.7568     0.0692 0.008 0.204 0.368 0.036 0.384
#> GSM121361     5  0.5656     0.6390 0.200 0.000 0.068 0.048 0.684
#> GSM121363     5  0.5656     0.6390 0.200 0.000 0.068 0.048 0.684
#> GSM121368     5  0.5656     0.6390 0.200 0.000 0.068 0.048 0.684
#> GSM121369     5  0.5656     0.6390 0.200 0.000 0.068 0.048 0.684
#> GSM74368      1  0.4159     0.7386 0.776 0.000 0.000 0.156 0.068
#> GSM74369      1  0.1012     0.9216 0.968 0.000 0.000 0.012 0.020
#> GSM74370      1  0.0451     0.9234 0.988 0.000 0.000 0.008 0.004
#> GSM74371      1  0.1661     0.9116 0.940 0.000 0.000 0.024 0.036
#> GSM74372      1  0.0566     0.9239 0.984 0.000 0.000 0.004 0.012
#> GSM74373      1  0.0510     0.9220 0.984 0.000 0.000 0.000 0.016
#> GSM74374      1  0.0671     0.9228 0.980 0.000 0.000 0.004 0.016
#> GSM74375      1  0.1216     0.9190 0.960 0.000 0.000 0.020 0.020
#> GSM74376      1  0.0798     0.9187 0.976 0.000 0.000 0.008 0.016
#> GSM74405      1  0.0771     0.9238 0.976 0.000 0.000 0.004 0.020
#> GSM74351      1  0.3574     0.7817 0.804 0.000 0.000 0.168 0.028
#> GSM74352      1  0.1549     0.9090 0.944 0.000 0.000 0.040 0.016
#> GSM74353      1  0.1018     0.9203 0.968 0.000 0.000 0.016 0.016
#> GSM74354      1  0.0290     0.9237 0.992 0.000 0.000 0.008 0.000
#> GSM74355      1  0.0693     0.9194 0.980 0.000 0.000 0.008 0.012
#> GSM74382      1  0.3141     0.7914 0.832 0.000 0.000 0.152 0.016
#> GSM74383      1  0.0807     0.9230 0.976 0.000 0.000 0.012 0.012
#> GSM74384      1  0.1310     0.9156 0.956 0.000 0.000 0.020 0.024
#> GSM74385      1  0.1568     0.9133 0.944 0.000 0.000 0.020 0.036
#> GSM74386      1  0.0324     0.9235 0.992 0.000 0.000 0.004 0.004
#> GSM74395      1  0.0451     0.9239 0.988 0.000 0.000 0.004 0.008
#> GSM74396      1  0.0324     0.9235 0.992 0.000 0.000 0.004 0.004
#> GSM74397      1  0.1818     0.9050 0.932 0.000 0.000 0.044 0.024
#> GSM74398      1  0.0671     0.9240 0.980 0.000 0.000 0.004 0.016
#> GSM74399      1  0.0671     0.9228 0.980 0.000 0.000 0.004 0.016
#> GSM74400      1  0.1701     0.9019 0.936 0.000 0.000 0.048 0.016
#> GSM74401      1  0.1701     0.9019 0.936 0.000 0.000 0.048 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74357      3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74358      3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74359      4  0.3776     0.6967 0.000 0.000 0.000 0.756 0.196 0.048
#> GSM74360      4  0.3109     0.7504 0.008 0.000 0.000 0.848 0.076 0.068
#> GSM74361      3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74362      3  0.0146     0.9287 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM74363      3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74402      4  0.0146     0.7599 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM74403      1  0.4201     0.3109 0.664 0.000 0.000 0.300 0.000 0.036
#> GSM74404      1  0.4183     0.3132 0.668 0.000 0.000 0.296 0.000 0.036
#> GSM74406      4  0.0000     0.7598 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74407      4  0.2793     0.7557 0.020 0.000 0.000 0.876 0.060 0.044
#> GSM74408      4  0.0146     0.7599 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM74409      4  0.0146     0.7599 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM74410      4  0.0000     0.7598 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM119936     4  0.0260     0.7584 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM119937     4  0.0146     0.7599 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM74411      3  0.1908     0.8771 0.000 0.000 0.900 0.000 0.096 0.004
#> GSM74412      3  0.1531     0.8985 0.000 0.000 0.928 0.000 0.068 0.004
#> GSM74413      3  0.1531     0.8985 0.000 0.000 0.928 0.000 0.068 0.004
#> GSM74414      6  0.7532    -0.5050 0.000 0.176 0.224 0.000 0.236 0.364
#> GSM74415      3  0.1753     0.8879 0.000 0.000 0.912 0.000 0.084 0.004
#> GSM121379     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121388     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121389     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0632     0.9741 0.000 0.976 0.000 0.000 0.024 0.000
#> GSM121393     2  0.0146     0.9949 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM121394     2  0.0146     0.9947 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121395     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121396     3  0.4535     0.5440 0.000 0.296 0.644 0.000 0.060 0.000
#> GSM121397     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9982 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      5  0.1267     0.7029 0.000 0.000 0.000 0.060 0.940 0.000
#> GSM74241      5  0.1219     0.7068 0.000 0.000 0.004 0.048 0.948 0.000
#> GSM74242      5  0.3490     0.4061 0.000 0.000 0.008 0.268 0.724 0.000
#> GSM74243      5  0.3244     0.4067 0.000 0.000 0.000 0.268 0.732 0.000
#> GSM74244      5  0.1075     0.7076 0.000 0.000 0.000 0.048 0.952 0.000
#> GSM74245      5  0.1610     0.6850 0.000 0.000 0.000 0.084 0.916 0.000
#> GSM74246      5  0.1141     0.7070 0.000 0.000 0.000 0.052 0.948 0.000
#> GSM74247      5  0.1141     0.7070 0.000 0.000 0.000 0.052 0.948 0.000
#> GSM74248      5  0.2378     0.6087 0.000 0.000 0.000 0.152 0.848 0.000
#> GSM74416      4  0.3266     0.5396 0.272 0.000 0.000 0.728 0.000 0.000
#> GSM74417      4  0.3426     0.5336 0.276 0.000 0.000 0.720 0.000 0.004
#> GSM74418      4  0.3426     0.5336 0.276 0.000 0.000 0.720 0.000 0.004
#> GSM74419      4  0.0146     0.7599 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM121358     3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121359     3  0.0260     0.9285 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM121360     4  0.5675     0.6096 0.084 0.000 0.000 0.644 0.184 0.088
#> GSM121362     4  0.7227     0.2250 0.276 0.000 0.000 0.408 0.196 0.120
#> GSM121364     4  0.3370     0.7263 0.000 0.000 0.000 0.804 0.148 0.048
#> GSM121365     3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121366     3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121367     3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121370     3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121371     3  0.0000     0.9309 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121372     3  0.0363     0.9270 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM121373     4  0.4114     0.6866 0.008 0.000 0.000 0.740 0.200 0.052
#> GSM121374     4  0.3516     0.7183 0.000 0.000 0.000 0.788 0.164 0.048
#> GSM121407     3  0.0935     0.9168 0.000 0.000 0.964 0.000 0.032 0.004
#> GSM74387      5  0.4964     0.6480 0.000 0.000 0.056 0.004 0.512 0.428
#> GSM74388      5  0.4136     0.6772 0.012 0.000 0.000 0.000 0.560 0.428
#> GSM74389      4  0.4660     0.5478 0.008 0.000 0.000 0.636 0.308 0.048
#> GSM74390      1  0.7474     0.1222 0.388 0.000 0.000 0.200 0.192 0.220
#> GSM74391      4  0.4114     0.6866 0.008 0.000 0.000 0.740 0.200 0.052
#> GSM74392      4  0.3864     0.6851 0.000 0.000 0.000 0.744 0.208 0.048
#> GSM74393      4  0.4660     0.5478 0.008 0.000 0.000 0.636 0.308 0.048
#> GSM74394      5  0.3828     0.6800 0.000 0.000 0.000 0.000 0.560 0.440
#> GSM74239      1  0.2697     0.3283 0.812 0.000 0.000 0.000 0.000 0.188
#> GSM74364      1  0.0508     0.4705 0.984 0.000 0.000 0.004 0.000 0.012
#> GSM74365      1  0.3756    -0.3483 0.600 0.000 0.000 0.000 0.000 0.400
#> GSM74366      6  0.3851     0.6651 0.460 0.000 0.000 0.000 0.000 0.540
#> GSM74367      1  0.3851    -0.5420 0.540 0.000 0.000 0.000 0.000 0.460
#> GSM74377      6  0.3864     0.7061 0.480 0.000 0.000 0.000 0.000 0.520
#> GSM74378      6  0.3857     0.7067 0.468 0.000 0.000 0.000 0.000 0.532
#> GSM74379      6  0.3866     0.7044 0.484 0.000 0.000 0.000 0.000 0.516
#> GSM74380      6  0.3866     0.7044 0.484 0.000 0.000 0.000 0.000 0.516
#> GSM74381      6  0.3862     0.7106 0.476 0.000 0.000 0.000 0.000 0.524
#> GSM121357     3  0.7613    -0.1102 0.000 0.176 0.320 0.000 0.236 0.268
#> GSM121361     5  0.3961     0.6787 0.004 0.000 0.000 0.000 0.556 0.440
#> GSM121363     5  0.3828     0.6800 0.000 0.000 0.000 0.000 0.560 0.440
#> GSM121368     5  0.3828     0.6800 0.000 0.000 0.000 0.000 0.560 0.440
#> GSM121369     5  0.4098     0.6779 0.004 0.000 0.000 0.004 0.548 0.444
#> GSM74368      1  0.4779     0.1529 0.572 0.000 0.000 0.368 0.000 0.060
#> GSM74369      1  0.2605     0.4520 0.864 0.000 0.000 0.028 0.000 0.108
#> GSM74370      1  0.3717    -0.2795 0.616 0.000 0.000 0.000 0.000 0.384
#> GSM74371      1  0.1219     0.4663 0.948 0.000 0.000 0.004 0.000 0.048
#> GSM74372      1  0.3833    -0.4642 0.556 0.000 0.000 0.000 0.000 0.444
#> GSM74373      6  0.3862     0.7106 0.476 0.000 0.000 0.000 0.000 0.524
#> GSM74374      1  0.3854    -0.5955 0.536 0.000 0.000 0.000 0.000 0.464
#> GSM74375      1  0.3742    -0.0393 0.648 0.000 0.000 0.004 0.000 0.348
#> GSM74376      6  0.3864     0.6954 0.480 0.000 0.000 0.000 0.000 0.520
#> GSM74405      6  0.3864     0.7013 0.480 0.000 0.000 0.000 0.000 0.520
#> GSM74351      1  0.2039     0.4479 0.904 0.000 0.000 0.076 0.000 0.020
#> GSM74352      1  0.3198     0.2778 0.740 0.000 0.000 0.000 0.000 0.260
#> GSM74353      1  0.1524     0.4714 0.932 0.000 0.000 0.008 0.000 0.060
#> GSM74354      1  0.3175     0.1947 0.744 0.000 0.000 0.000 0.000 0.256
#> GSM74355      6  0.3857     0.7067 0.468 0.000 0.000 0.000 0.000 0.532
#> GSM74382      1  0.1700     0.4625 0.928 0.000 0.000 0.048 0.000 0.024
#> GSM74383      1  0.2912     0.2869 0.784 0.000 0.000 0.000 0.000 0.216
#> GSM74384      6  0.3857     0.6801 0.468 0.000 0.000 0.000 0.000 0.532
#> GSM74385      1  0.1082     0.4701 0.956 0.000 0.000 0.004 0.000 0.040
#> GSM74386      1  0.3937    -0.4264 0.572 0.000 0.000 0.004 0.000 0.424
#> GSM74395      1  0.3797    -0.3981 0.580 0.000 0.000 0.000 0.000 0.420
#> GSM74396      1  0.3817    -0.4531 0.568 0.000 0.000 0.000 0.000 0.432
#> GSM74397      1  0.3971     0.3899 0.748 0.000 0.000 0.068 0.000 0.184
#> GSM74398      1  0.3868    -0.6547 0.508 0.000 0.000 0.000 0.000 0.492
#> GSM74399      6  0.3866     0.7044 0.484 0.000 0.000 0.000 0.000 0.516
#> GSM74400      1  0.1075     0.4643 0.952 0.000 0.000 0.000 0.000 0.048
#> GSM74401      1  0.1141     0.4653 0.948 0.000 0.000 0.000 0.000 0.052

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:mclust 115         2.16e-12 2
#> SD:mclust 100         1.65e-22 3
#> SD:mclust 116         3.19e-34 4
#> SD:mclust 113         9.45e-45 5
#> SD:mclust  88         5.61e-29 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.866           0.929       0.968         0.5010 0.498   0.498
#> 3 3 0.539           0.634       0.834         0.3248 0.727   0.507
#> 4 4 0.546           0.627       0.769         0.1170 0.821   0.537
#> 5 5 0.620           0.564       0.731         0.0679 0.898   0.639
#> 6 6 0.727           0.712       0.819         0.0387 0.946   0.752

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.7299     0.7704 0.204 0.796
#> GSM74357      1  0.9933     0.1003 0.548 0.452
#> GSM74358      1  0.4161     0.8965 0.916 0.084
#> GSM74359      1  0.0000     0.9748 1.000 0.000
#> GSM74360      1  0.0000     0.9748 1.000 0.000
#> GSM74361      2  0.7528     0.7548 0.216 0.784
#> GSM74362      1  0.5519     0.8430 0.872 0.128
#> GSM74363      2  0.6973     0.7905 0.188 0.812
#> GSM74402      1  0.0000     0.9748 1.000 0.000
#> GSM74403      1  0.0000     0.9748 1.000 0.000
#> GSM74404      1  0.0000     0.9748 1.000 0.000
#> GSM74406      1  0.0000     0.9748 1.000 0.000
#> GSM74407      1  0.0000     0.9748 1.000 0.000
#> GSM74408      1  0.0000     0.9748 1.000 0.000
#> GSM74409      1  0.0000     0.9748 1.000 0.000
#> GSM74410      1  0.0000     0.9748 1.000 0.000
#> GSM119936     1  0.0000     0.9748 1.000 0.000
#> GSM119937     1  0.0000     0.9748 1.000 0.000
#> GSM74411      2  0.0000     0.9568 0.000 1.000
#> GSM74412      2  0.0000     0.9568 0.000 1.000
#> GSM74413      2  0.0000     0.9568 0.000 1.000
#> GSM74414      2  0.0000     0.9568 0.000 1.000
#> GSM74415      2  0.1184     0.9480 0.016 0.984
#> GSM121379     2  0.0000     0.9568 0.000 1.000
#> GSM121380     2  0.0000     0.9568 0.000 1.000
#> GSM121381     2  0.0000     0.9568 0.000 1.000
#> GSM121382     2  0.0000     0.9568 0.000 1.000
#> GSM121383     2  0.0000     0.9568 0.000 1.000
#> GSM121384     2  0.0000     0.9568 0.000 1.000
#> GSM121385     2  0.0000     0.9568 0.000 1.000
#> GSM121386     2  0.0000     0.9568 0.000 1.000
#> GSM121387     2  0.0000     0.9568 0.000 1.000
#> GSM121388     2  0.0000     0.9568 0.000 1.000
#> GSM121389     2  0.0000     0.9568 0.000 1.000
#> GSM121390     2  0.0000     0.9568 0.000 1.000
#> GSM121391     2  0.0000     0.9568 0.000 1.000
#> GSM121392     2  0.0000     0.9568 0.000 1.000
#> GSM121393     2  0.0000     0.9568 0.000 1.000
#> GSM121394     2  0.0000     0.9568 0.000 1.000
#> GSM121395     2  0.0000     0.9568 0.000 1.000
#> GSM121396     2  0.0000     0.9568 0.000 1.000
#> GSM121397     2  0.0000     0.9568 0.000 1.000
#> GSM121398     2  0.0000     0.9568 0.000 1.000
#> GSM121399     2  0.0000     0.9568 0.000 1.000
#> GSM74240      2  0.7219     0.7765 0.200 0.800
#> GSM74241      2  0.0938     0.9505 0.012 0.988
#> GSM74242      1  0.0000     0.9748 1.000 0.000
#> GSM74243      1  0.0000     0.9748 1.000 0.000
#> GSM74244      2  0.0938     0.9505 0.012 0.988
#> GSM74245      2  0.8555     0.6558 0.280 0.720
#> GSM74246      2  0.0000     0.9568 0.000 1.000
#> GSM74247      2  0.0000     0.9568 0.000 1.000
#> GSM74248      2  0.8267     0.6897 0.260 0.740
#> GSM74416      1  0.0000     0.9748 1.000 0.000
#> GSM74417      1  0.0000     0.9748 1.000 0.000
#> GSM74418      1  0.0000     0.9748 1.000 0.000
#> GSM74419      1  0.0000     0.9748 1.000 0.000
#> GSM121358     2  0.4562     0.8860 0.096 0.904
#> GSM121359     2  0.0000     0.9568 0.000 1.000
#> GSM121360     1  0.0000     0.9748 1.000 0.000
#> GSM121362     1  0.1633     0.9572 0.976 0.024
#> GSM121364     1  0.0000     0.9748 1.000 0.000
#> GSM121365     2  0.1184     0.9480 0.016 0.984
#> GSM121366     2  0.0000     0.9568 0.000 1.000
#> GSM121367     2  0.6438     0.8180 0.164 0.836
#> GSM121370     2  0.0938     0.9505 0.012 0.988
#> GSM121371     2  0.4815     0.8789 0.104 0.896
#> GSM121372     2  0.0000     0.9568 0.000 1.000
#> GSM121373     1  0.0000     0.9748 1.000 0.000
#> GSM121374     1  0.0000     0.9748 1.000 0.000
#> GSM121407     2  0.0000     0.9568 0.000 1.000
#> GSM74387      2  0.0000     0.9568 0.000 1.000
#> GSM74388      2  0.0000     0.9568 0.000 1.000
#> GSM74389      1  0.0000     0.9748 1.000 0.000
#> GSM74390      1  0.0000     0.9748 1.000 0.000
#> GSM74391      1  0.0000     0.9748 1.000 0.000
#> GSM74392      1  0.0000     0.9748 1.000 0.000
#> GSM74393      1  0.0000     0.9748 1.000 0.000
#> GSM74394      2  0.0000     0.9568 0.000 1.000
#> GSM74239      1  0.0000     0.9748 1.000 0.000
#> GSM74364      1  0.0000     0.9748 1.000 0.000
#> GSM74365      1  0.0000     0.9748 1.000 0.000
#> GSM74366      2  0.0938     0.9499 0.012 0.988
#> GSM74367      1  0.0000     0.9748 1.000 0.000
#> GSM74377      1  0.4431     0.8936 0.908 0.092
#> GSM74378      2  0.9970     0.0868 0.468 0.532
#> GSM74379      1  0.0000     0.9748 1.000 0.000
#> GSM74380      1  0.0938     0.9665 0.988 0.012
#> GSM74381      1  0.6623     0.7954 0.828 0.172
#> GSM121357     2  0.0000     0.9568 0.000 1.000
#> GSM121361     2  0.0000     0.9568 0.000 1.000
#> GSM121363     2  0.0000     0.9568 0.000 1.000
#> GSM121368     2  0.0000     0.9568 0.000 1.000
#> GSM121369     2  0.0000     0.9568 0.000 1.000
#> GSM74368      1  0.0000     0.9748 1.000 0.000
#> GSM74369      1  0.0000     0.9748 1.000 0.000
#> GSM74370      1  0.0000     0.9748 1.000 0.000
#> GSM74371      1  0.0000     0.9748 1.000 0.000
#> GSM74372      1  0.0000     0.9748 1.000 0.000
#> GSM74373      1  0.3879     0.9099 0.924 0.076
#> GSM74374      1  0.0000     0.9748 1.000 0.000
#> GSM74375      1  0.1633     0.9575 0.976 0.024
#> GSM74376      1  0.5178     0.8696 0.884 0.116
#> GSM74405      1  0.2043     0.9506 0.968 0.032
#> GSM74351      1  0.0000     0.9748 1.000 0.000
#> GSM74352      2  0.4298     0.8861 0.088 0.912
#> GSM74353      1  0.0000     0.9748 1.000 0.000
#> GSM74354      1  0.0000     0.9748 1.000 0.000
#> GSM74355      1  0.8443     0.6432 0.728 0.272
#> GSM74382      1  0.0000     0.9748 1.000 0.000
#> GSM74383      1  0.0000     0.9748 1.000 0.000
#> GSM74384      2  0.0000     0.9568 0.000 1.000
#> GSM74385      1  0.0000     0.9748 1.000 0.000
#> GSM74386      1  0.0000     0.9748 1.000 0.000
#> GSM74395      1  0.0000     0.9748 1.000 0.000
#> GSM74396      1  0.0000     0.9748 1.000 0.000
#> GSM74397      1  0.0000     0.9748 1.000 0.000
#> GSM74398      1  0.0000     0.9748 1.000 0.000
#> GSM74399      1  0.0000     0.9748 1.000 0.000
#> GSM74400      1  0.0376     0.9720 0.996 0.004
#> GSM74401      1  0.1414     0.9607 0.980 0.020

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0000     0.7759 0.000 0.000 1.000
#> GSM74357      3  0.0424     0.7731 0.008 0.000 0.992
#> GSM74358      3  0.0747     0.7697 0.016 0.000 0.984
#> GSM74359      3  0.5431     0.4071 0.284 0.000 0.716
#> GSM74360      1  0.5254     0.6650 0.736 0.000 0.264
#> GSM74361      3  0.0747     0.7797 0.000 0.016 0.984
#> GSM74362      3  0.0592     0.7716 0.012 0.000 0.988
#> GSM74363      3  0.0592     0.7792 0.000 0.012 0.988
#> GSM74402      1  0.5291     0.6607 0.732 0.000 0.268
#> GSM74403      1  0.4062     0.7514 0.836 0.000 0.164
#> GSM74404      1  0.4235     0.7435 0.824 0.000 0.176
#> GSM74406      1  0.6111     0.4717 0.604 0.000 0.396
#> GSM74407      1  0.5529     0.6268 0.704 0.000 0.296
#> GSM74408      1  0.6267     0.3459 0.548 0.000 0.452
#> GSM74409      1  0.6215     0.4037 0.572 0.000 0.428
#> GSM74410      3  0.6235    -0.0319 0.436 0.000 0.564
#> GSM119936     1  0.6126     0.4644 0.600 0.000 0.400
#> GSM119937     1  0.6079     0.4876 0.612 0.000 0.388
#> GSM74411      3  0.4750     0.6437 0.000 0.216 0.784
#> GSM74412      3  0.6026     0.3584 0.000 0.376 0.624
#> GSM74413      3  0.5098     0.6006 0.000 0.248 0.752
#> GSM74414      2  0.1031     0.7818 0.000 0.976 0.024
#> GSM74415      3  0.2261     0.7661 0.000 0.068 0.932
#> GSM121379     2  0.2165     0.7782 0.000 0.936 0.064
#> GSM121380     2  0.1529     0.7825 0.000 0.960 0.040
#> GSM121381     2  0.5431     0.5513 0.000 0.716 0.284
#> GSM121382     2  0.5254     0.5844 0.000 0.736 0.264
#> GSM121383     2  0.5678     0.4930 0.000 0.684 0.316
#> GSM121384     2  0.1753     0.7820 0.000 0.952 0.048
#> GSM121385     2  0.2959     0.7614 0.000 0.900 0.100
#> GSM121386     2  0.2878     0.7642 0.000 0.904 0.096
#> GSM121387     2  0.4504     0.6762 0.000 0.804 0.196
#> GSM121388     3  0.6302     0.0526 0.000 0.480 0.520
#> GSM121389     2  0.2796     0.7665 0.000 0.908 0.092
#> GSM121390     2  0.0424     0.7797 0.000 0.992 0.008
#> GSM121391     2  0.6244     0.1807 0.000 0.560 0.440
#> GSM121392     2  0.0424     0.7773 0.008 0.992 0.000
#> GSM121393     2  0.2066     0.7804 0.000 0.940 0.060
#> GSM121394     3  0.6260     0.1604 0.000 0.448 0.552
#> GSM121395     2  0.2711     0.7688 0.000 0.912 0.088
#> GSM121396     3  0.5465     0.5377 0.000 0.288 0.712
#> GSM121397     2  0.1860     0.7816 0.000 0.948 0.052
#> GSM121398     2  0.2066     0.7794 0.000 0.940 0.060
#> GSM121399     2  0.4504     0.6764 0.000 0.804 0.196
#> GSM74240      3  0.1129     0.7801 0.004 0.020 0.976
#> GSM74241      3  0.2625     0.7567 0.000 0.084 0.916
#> GSM74242      3  0.1411     0.7583 0.036 0.000 0.964
#> GSM74243      3  0.1031     0.7654 0.024 0.000 0.976
#> GSM74244      3  0.1860     0.7740 0.000 0.052 0.948
#> GSM74245      3  0.0592     0.7792 0.000 0.012 0.988
#> GSM74246      3  0.4062     0.6939 0.000 0.164 0.836
#> GSM74247      3  0.4842     0.6337 0.000 0.224 0.776
#> GSM74248      3  0.0592     0.7794 0.000 0.012 0.988
#> GSM74416      1  0.4750     0.7123 0.784 0.000 0.216
#> GSM74417      1  0.4452     0.7317 0.808 0.000 0.192
#> GSM74418      1  0.4178     0.7465 0.828 0.000 0.172
#> GSM74419      1  0.6308     0.2418 0.508 0.000 0.492
#> GSM121358     3  0.1289     0.7790 0.000 0.032 0.968
#> GSM121359     3  0.4654     0.6526 0.000 0.208 0.792
#> GSM121360     1  0.4228     0.7631 0.844 0.008 0.148
#> GSM121362     1  0.5791     0.7484 0.792 0.060 0.148
#> GSM121364     3  0.6305    -0.1933 0.484 0.000 0.516
#> GSM121365     3  0.1643     0.7765 0.000 0.044 0.956
#> GSM121366     3  0.1964     0.7722 0.000 0.056 0.944
#> GSM121367     3  0.1031     0.7796 0.000 0.024 0.976
#> GSM121370     3  0.1529     0.7776 0.000 0.040 0.960
#> GSM121371     3  0.1529     0.7777 0.000 0.040 0.960
#> GSM121372     3  0.4654     0.6524 0.000 0.208 0.792
#> GSM121373     1  0.5988     0.5195 0.632 0.000 0.368
#> GSM121374     3  0.6274    -0.1014 0.456 0.000 0.544
#> GSM121407     3  0.5859     0.4298 0.000 0.344 0.656
#> GSM74387      2  0.6260     0.1478 0.000 0.552 0.448
#> GSM74388      2  0.2537     0.7486 0.080 0.920 0.000
#> GSM74389      3  0.4235     0.6145 0.176 0.000 0.824
#> GSM74390      1  0.1860     0.7859 0.948 0.052 0.000
#> GSM74391      1  0.6062     0.4940 0.616 0.000 0.384
#> GSM74392      3  0.6291    -0.1405 0.468 0.000 0.532
#> GSM74393      3  0.3551     0.6714 0.132 0.000 0.868
#> GSM74394      2  0.1647     0.7722 0.036 0.960 0.004
#> GSM74239      1  0.0592     0.8093 0.988 0.000 0.012
#> GSM74364      1  0.0592     0.8092 0.988 0.000 0.012
#> GSM74365      1  0.0747     0.8033 0.984 0.016 0.000
#> GSM74366      2  0.5397     0.5557 0.280 0.720 0.000
#> GSM74367      1  0.0592     0.8049 0.988 0.012 0.000
#> GSM74377      1  0.6267     0.0674 0.548 0.452 0.000
#> GSM74378      2  0.5988     0.4087 0.368 0.632 0.000
#> GSM74379      1  0.2959     0.7517 0.900 0.100 0.000
#> GSM74380      1  0.5254     0.5410 0.736 0.264 0.000
#> GSM74381      2  0.6280     0.1918 0.460 0.540 0.000
#> GSM121357     2  0.4121     0.7053 0.000 0.832 0.168
#> GSM121361     2  0.1964     0.7610 0.056 0.944 0.000
#> GSM121363     2  0.0892     0.7750 0.020 0.980 0.000
#> GSM121368     2  0.0237     0.7784 0.004 0.996 0.000
#> GSM121369     2  0.3583     0.7788 0.044 0.900 0.056
#> GSM74368      1  0.0892     0.8089 0.980 0.000 0.020
#> GSM74369      1  0.0424     0.8090 0.992 0.000 0.008
#> GSM74370      1  0.0424     0.8058 0.992 0.008 0.000
#> GSM74371      1  0.0747     0.8090 0.984 0.000 0.016
#> GSM74372      1  0.0661     0.8071 0.988 0.008 0.004
#> GSM74373      1  0.5859     0.3798 0.656 0.344 0.000
#> GSM74374      1  0.1031     0.7998 0.976 0.024 0.000
#> GSM74375      1  0.4750     0.6179 0.784 0.216 0.000
#> GSM74376      2  0.6299     0.1440 0.476 0.524 0.000
#> GSM74405      1  0.5926     0.3520 0.644 0.356 0.000
#> GSM74351      1  0.2261     0.7974 0.932 0.000 0.068
#> GSM74352      2  0.5363     0.5627 0.276 0.724 0.000
#> GSM74353      1  0.0000     0.8076 1.000 0.000 0.000
#> GSM74354      1  0.0592     0.8049 0.988 0.012 0.000
#> GSM74355      2  0.6225     0.2662 0.432 0.568 0.000
#> GSM74382      1  0.2066     0.8002 0.940 0.000 0.060
#> GSM74383      1  0.0237     0.8069 0.996 0.004 0.000
#> GSM74384      2  0.4842     0.6257 0.224 0.776 0.000
#> GSM74385      1  0.0592     0.8091 0.988 0.000 0.012
#> GSM74386      1  0.0592     0.8049 0.988 0.012 0.000
#> GSM74395      1  0.0424     0.8088 0.992 0.000 0.008
#> GSM74396      1  0.0592     0.8049 0.988 0.012 0.000
#> GSM74397      1  0.1031     0.8086 0.976 0.000 0.024
#> GSM74398      1  0.1964     0.7830 0.944 0.056 0.000
#> GSM74399      1  0.4062     0.6882 0.836 0.164 0.000
#> GSM74400      1  0.2878     0.7540 0.904 0.096 0.000
#> GSM74401      1  0.3482     0.7253 0.872 0.128 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.5812     0.6470 0.004 0.184 0.712 0.100
#> GSM74357      3  0.5719     0.6511 0.000 0.152 0.716 0.132
#> GSM74358      3  0.6037     0.6451 0.004 0.156 0.700 0.140
#> GSM74359      3  0.5943     0.3294 0.028 0.008 0.576 0.388
#> GSM74360      4  0.3821     0.6689 0.040 0.000 0.120 0.840
#> GSM74361      3  0.5137     0.6719 0.004 0.108 0.772 0.116
#> GSM74362      3  0.5298     0.6652 0.016 0.068 0.768 0.148
#> GSM74363      3  0.6133     0.6241 0.004 0.220 0.676 0.100
#> GSM74402      4  0.0927     0.7298 0.008 0.000 0.016 0.976
#> GSM74403      4  0.1305     0.7339 0.036 0.000 0.004 0.960
#> GSM74404      4  0.1356     0.7336 0.032 0.000 0.008 0.960
#> GSM74406      4  0.2281     0.6955 0.000 0.000 0.096 0.904
#> GSM74407      4  0.2660     0.7220 0.036 0.000 0.056 0.908
#> GSM74408      4  0.3196     0.6648 0.008 0.000 0.136 0.856
#> GSM74409      4  0.3257     0.6600 0.004 0.000 0.152 0.844
#> GSM74410      4  0.5114     0.4929 0.008 0.020 0.260 0.712
#> GSM119936     4  0.2654     0.6847 0.004 0.000 0.108 0.888
#> GSM119937     4  0.2976     0.6770 0.008 0.000 0.120 0.872
#> GSM74411      3  0.4586     0.6892 0.136 0.068 0.796 0.000
#> GSM74412      3  0.6133     0.6341 0.124 0.204 0.672 0.000
#> GSM74413      3  0.4710     0.6826 0.088 0.120 0.792 0.000
#> GSM74414      2  0.4220     0.6995 0.248 0.748 0.004 0.000
#> GSM74415      3  0.3497     0.6920 0.124 0.024 0.852 0.000
#> GSM121379     2  0.2216     0.8536 0.092 0.908 0.000 0.000
#> GSM121380     2  0.3172     0.8081 0.160 0.840 0.000 0.000
#> GSM121381     2  0.1302     0.8311 0.000 0.956 0.044 0.000
#> GSM121382     2  0.1305     0.8381 0.004 0.960 0.036 0.000
#> GSM121383     2  0.1389     0.8274 0.000 0.952 0.048 0.000
#> GSM121384     2  0.2973     0.8233 0.144 0.856 0.000 0.000
#> GSM121385     2  0.2271     0.8614 0.076 0.916 0.008 0.000
#> GSM121386     2  0.1978     0.8621 0.068 0.928 0.004 0.000
#> GSM121387     2  0.1406     0.8493 0.016 0.960 0.024 0.000
#> GSM121388     2  0.3074     0.7247 0.000 0.848 0.152 0.000
#> GSM121389     2  0.1743     0.8633 0.056 0.940 0.004 0.000
#> GSM121390     2  0.3400     0.7875 0.180 0.820 0.000 0.000
#> GSM121391     2  0.2469     0.7734 0.000 0.892 0.108 0.000
#> GSM121392     2  0.3764     0.7420 0.216 0.784 0.000 0.000
#> GSM121393     2  0.2089     0.8590 0.048 0.932 0.020 0.000
#> GSM121394     2  0.3791     0.6551 0.004 0.796 0.200 0.000
#> GSM121395     2  0.1474     0.8632 0.052 0.948 0.000 0.000
#> GSM121396     2  0.4872     0.3340 0.004 0.640 0.356 0.000
#> GSM121397     2  0.2973     0.8231 0.144 0.856 0.000 0.000
#> GSM121398     2  0.2345     0.8500 0.100 0.900 0.000 0.000
#> GSM121399     2  0.1109     0.8419 0.004 0.968 0.028 0.000
#> GSM74240      3  0.4605     0.5397 0.336 0.000 0.664 0.000
#> GSM74241      3  0.4990     0.5189 0.352 0.008 0.640 0.000
#> GSM74242      3  0.3668     0.6637 0.188 0.000 0.808 0.004
#> GSM74243      3  0.3791     0.6579 0.200 0.000 0.796 0.004
#> GSM74244      3  0.4252     0.6224 0.252 0.004 0.744 0.000
#> GSM74245      3  0.3610     0.6567 0.200 0.000 0.800 0.000
#> GSM74246      3  0.4730     0.5016 0.364 0.000 0.636 0.000
#> GSM74247      3  0.4920     0.4925 0.368 0.004 0.628 0.000
#> GSM74248      3  0.4406     0.5790 0.300 0.000 0.700 0.000
#> GSM74416      4  0.0188     0.7300 0.000 0.000 0.004 0.996
#> GSM74417      4  0.0376     0.7308 0.004 0.000 0.004 0.992
#> GSM74418      4  0.0376     0.7308 0.004 0.000 0.004 0.992
#> GSM74419      4  0.3829     0.6410 0.004 0.016 0.152 0.828
#> GSM121358     3  0.5471     0.6457 0.004 0.208 0.724 0.064
#> GSM121359     3  0.4761     0.5146 0.004 0.332 0.664 0.000
#> GSM121360     1  0.5820     0.4776 0.680 0.000 0.240 0.080
#> GSM121362     1  0.8393     0.1943 0.436 0.044 0.164 0.356
#> GSM121364     4  0.5237     0.3379 0.016 0.000 0.356 0.628
#> GSM121365     3  0.5609     0.6336 0.004 0.224 0.708 0.064
#> GSM121366     3  0.5252     0.6283 0.004 0.236 0.720 0.040
#> GSM121367     3  0.5176     0.6578 0.004 0.192 0.748 0.056
#> GSM121370     3  0.4776     0.6656 0.004 0.184 0.772 0.040
#> GSM121371     3  0.5576     0.6369 0.004 0.220 0.712 0.064
#> GSM121372     3  0.5038     0.5718 0.020 0.296 0.684 0.000
#> GSM121373     4  0.5599     0.4901 0.052 0.000 0.276 0.672
#> GSM121374     4  0.5743     0.1950 0.024 0.004 0.396 0.576
#> GSM121407     3  0.5535     0.3597 0.020 0.420 0.560 0.000
#> GSM74387      3  0.5119     0.3464 0.440 0.004 0.556 0.000
#> GSM74388      1  0.4289     0.6307 0.796 0.172 0.032 0.000
#> GSM74389      3  0.5495     0.6479 0.176 0.000 0.728 0.096
#> GSM74390      1  0.5033     0.6534 0.776 0.008 0.064 0.152
#> GSM74391      4  0.6852     0.2906 0.124 0.000 0.320 0.556
#> GSM74392      3  0.6575     0.2746 0.080 0.000 0.508 0.412
#> GSM74393      3  0.4996     0.6554 0.192 0.000 0.752 0.056
#> GSM74394      1  0.4175     0.4860 0.776 0.012 0.212 0.000
#> GSM74239      4  0.3172     0.7029 0.160 0.000 0.000 0.840
#> GSM74364      4  0.2814     0.7172 0.132 0.000 0.000 0.868
#> GSM74365      4  0.4916     0.2582 0.424 0.000 0.000 0.576
#> GSM74366      1  0.3554     0.7019 0.844 0.136 0.000 0.020
#> GSM74367      4  0.4776     0.3936 0.376 0.000 0.000 0.624
#> GSM74377      1  0.5669     0.6629 0.708 0.092 0.000 0.200
#> GSM74378      1  0.4379     0.6840 0.792 0.172 0.000 0.036
#> GSM74379      1  0.4800     0.4798 0.656 0.004 0.000 0.340
#> GSM74380      1  0.4744     0.6368 0.736 0.024 0.000 0.240
#> GSM74381      1  0.4411     0.7207 0.812 0.108 0.000 0.080
#> GSM121357     2  0.5096     0.8065 0.156 0.760 0.084 0.000
#> GSM121361     1  0.4514     0.6415 0.796 0.148 0.056 0.000
#> GSM121363     1  0.4599     0.5711 0.760 0.212 0.028 0.000
#> GSM121368     1  0.4931     0.6037 0.776 0.132 0.092 0.000
#> GSM121369     1  0.5219     0.4723 0.712 0.044 0.244 0.000
#> GSM74368      4  0.3486     0.6829 0.188 0.000 0.000 0.812
#> GSM74369      4  0.2973     0.7114 0.144 0.000 0.000 0.856
#> GSM74370      4  0.4283     0.6221 0.256 0.000 0.004 0.740
#> GSM74371      4  0.2814     0.7170 0.132 0.000 0.000 0.868
#> GSM74372      1  0.5768     0.0707 0.516 0.000 0.028 0.456
#> GSM74373      1  0.5203     0.6393 0.720 0.048 0.000 0.232
#> GSM74374      4  0.4855     0.3336 0.400 0.000 0.000 0.600
#> GSM74375      1  0.5543     0.4378 0.612 0.028 0.000 0.360
#> GSM74376      1  0.3421     0.7239 0.868 0.044 0.000 0.088
#> GSM74405      1  0.3813     0.7024 0.828 0.024 0.000 0.148
#> GSM74351      4  0.1557     0.7329 0.056 0.000 0.000 0.944
#> GSM74352      1  0.5807     0.4934 0.636 0.312 0.000 0.052
#> GSM74353      4  0.3123     0.7053 0.156 0.000 0.000 0.844
#> GSM74354      4  0.4277     0.5794 0.280 0.000 0.000 0.720
#> GSM74355      1  0.4215     0.7237 0.824 0.104 0.000 0.072
#> GSM74382      4  0.1792     0.7315 0.068 0.000 0.000 0.932
#> GSM74383      4  0.3801     0.6521 0.220 0.000 0.000 0.780
#> GSM74384      1  0.4049     0.6381 0.780 0.212 0.000 0.008
#> GSM74385      4  0.2647     0.7202 0.120 0.000 0.000 0.880
#> GSM74386      4  0.4661     0.4750 0.348 0.000 0.000 0.652
#> GSM74395      4  0.4382     0.5578 0.296 0.000 0.000 0.704
#> GSM74396      4  0.4817     0.3600 0.388 0.000 0.000 0.612
#> GSM74397      4  0.2973     0.7138 0.144 0.000 0.000 0.856
#> GSM74398      1  0.4560     0.5482 0.700 0.000 0.004 0.296
#> GSM74399      1  0.4690     0.6015 0.720 0.008 0.004 0.268
#> GSM74400      4  0.5267     0.5843 0.240 0.048 0.000 0.712
#> GSM74401      4  0.5574     0.5069 0.284 0.048 0.000 0.668

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.2892     0.5277 0.004 0.016 0.884 0.016 0.080
#> GSM74357      3  0.2635     0.5320 0.004 0.012 0.900 0.020 0.064
#> GSM74358      3  0.2661     0.5320 0.004 0.012 0.900 0.024 0.060
#> GSM74359      3  0.7332     0.2952 0.040 0.000 0.444 0.212 0.304
#> GSM74360      4  0.7775    -0.2051 0.056 0.000 0.304 0.340 0.300
#> GSM74361      3  0.5421     0.3929 0.020 0.004 0.668 0.052 0.256
#> GSM74362      3  0.6066     0.3376 0.036 0.000 0.568 0.060 0.336
#> GSM74363      3  0.2879     0.5423 0.000 0.080 0.880 0.008 0.032
#> GSM74402      4  0.1682     0.7213 0.012 0.000 0.032 0.944 0.012
#> GSM74403      4  0.1399     0.7142 0.000 0.000 0.028 0.952 0.020
#> GSM74404      4  0.3205     0.6677 0.008 0.000 0.056 0.864 0.072
#> GSM74406      4  0.5532     0.3999 0.008 0.000 0.256 0.644 0.092
#> GSM74407      4  0.2491     0.6931 0.000 0.000 0.068 0.896 0.036
#> GSM74408      4  0.6044     0.2896 0.012 0.000 0.284 0.588 0.116
#> GSM74409      4  0.6694     0.0557 0.016 0.000 0.340 0.484 0.160
#> GSM74410      3  0.6659     0.1657 0.012 0.004 0.456 0.392 0.136
#> GSM119936     4  0.4949     0.4978 0.008 0.000 0.208 0.712 0.072
#> GSM119937     4  0.5932     0.1765 0.008 0.000 0.368 0.536 0.088
#> GSM74411      5  0.5128     0.5010 0.028 0.008 0.392 0.000 0.572
#> GSM74412      5  0.5482     0.4166 0.028 0.020 0.440 0.000 0.512
#> GSM74413      5  0.4936     0.4572 0.008 0.016 0.416 0.000 0.560
#> GSM74414      1  0.6910     0.1493 0.452 0.392 0.048 0.000 0.108
#> GSM74415      5  0.4710     0.5370 0.012 0.008 0.364 0.000 0.616
#> GSM121379     2  0.0703     0.9291 0.024 0.976 0.000 0.000 0.000
#> GSM121380     2  0.1544     0.9033 0.068 0.932 0.000 0.000 0.000
#> GSM121381     2  0.1717     0.9168 0.008 0.936 0.052 0.000 0.004
#> GSM121382     2  0.1626     0.9141 0.000 0.940 0.044 0.000 0.016
#> GSM121383     2  0.1205     0.9198 0.000 0.956 0.040 0.000 0.004
#> GSM121384     2  0.1478     0.9070 0.064 0.936 0.000 0.000 0.000
#> GSM121385     2  0.0727     0.9316 0.012 0.980 0.004 0.000 0.004
#> GSM121386     2  0.0703     0.9291 0.024 0.976 0.000 0.000 0.000
#> GSM121387     2  0.0727     0.9293 0.004 0.980 0.012 0.000 0.004
#> GSM121388     2  0.2873     0.8527 0.000 0.860 0.120 0.000 0.020
#> GSM121389     2  0.1116     0.9298 0.028 0.964 0.004 0.000 0.004
#> GSM121390     2  0.1908     0.8840 0.092 0.908 0.000 0.000 0.000
#> GSM121391     2  0.1831     0.8992 0.000 0.920 0.076 0.000 0.004
#> GSM121392     2  0.2439     0.8521 0.120 0.876 0.000 0.000 0.004
#> GSM121393     2  0.0955     0.9292 0.028 0.968 0.004 0.000 0.000
#> GSM121394     2  0.3016     0.8409 0.000 0.848 0.132 0.000 0.020
#> GSM121395     2  0.0579     0.9314 0.008 0.984 0.000 0.000 0.008
#> GSM121396     2  0.4180     0.7041 0.000 0.744 0.220 0.000 0.036
#> GSM121397     2  0.1270     0.9148 0.052 0.948 0.000 0.000 0.000
#> GSM121398     2  0.0727     0.9316 0.012 0.980 0.004 0.000 0.004
#> GSM121399     2  0.1082     0.9236 0.000 0.964 0.028 0.000 0.008
#> GSM74240      5  0.4877     0.6073 0.136 0.000 0.128 0.004 0.732
#> GSM74241      5  0.5513     0.6143 0.144 0.000 0.188 0.004 0.664
#> GSM74242      5  0.4743     0.5933 0.024 0.000 0.268 0.016 0.692
#> GSM74243      5  0.4558     0.6002 0.020 0.000 0.252 0.016 0.712
#> GSM74244      5  0.4923     0.6128 0.068 0.000 0.252 0.000 0.680
#> GSM74245      5  0.4575     0.6158 0.052 0.000 0.236 0.000 0.712
#> GSM74246      5  0.5067     0.6009 0.172 0.000 0.128 0.000 0.700
#> GSM74247      5  0.5379     0.6106 0.164 0.000 0.168 0.000 0.668
#> GSM74248      5  0.4588     0.6031 0.116 0.000 0.136 0.000 0.748
#> GSM74416      4  0.1195     0.7166 0.000 0.000 0.028 0.960 0.012
#> GSM74417      4  0.1901     0.7058 0.004 0.000 0.040 0.932 0.024
#> GSM74418      4  0.1173     0.7198 0.004 0.000 0.020 0.964 0.012
#> GSM74419      4  0.4025     0.6067 0.004 0.000 0.140 0.796 0.060
#> GSM121358     3  0.2473     0.5413 0.000 0.072 0.896 0.000 0.032
#> GSM121359     3  0.4720     0.4025 0.000 0.124 0.736 0.000 0.140
#> GSM121360     1  0.7105     0.2458 0.420 0.004 0.156 0.028 0.392
#> GSM121362     1  0.7870     0.2378 0.400 0.012 0.164 0.068 0.356
#> GSM121364     3  0.7462     0.2859 0.040 0.000 0.416 0.256 0.288
#> GSM121365     3  0.3102     0.5300 0.000 0.084 0.860 0.000 0.056
#> GSM121366     3  0.4022     0.4754 0.000 0.100 0.796 0.000 0.104
#> GSM121367     3  0.3119     0.5231 0.000 0.072 0.860 0.000 0.068
#> GSM121370     3  0.3493     0.4911 0.000 0.060 0.832 0.000 0.108
#> GSM121371     3  0.2889     0.5344 0.000 0.084 0.872 0.000 0.044
#> GSM121372     3  0.4827     0.3823 0.000 0.116 0.724 0.000 0.160
#> GSM121373     3  0.7840     0.2605 0.100 0.000 0.404 0.168 0.328
#> GSM121374     3  0.7290     0.3188 0.040 0.000 0.460 0.212 0.288
#> GSM121407     3  0.5320     0.3655 0.008 0.144 0.696 0.000 0.152
#> GSM74387      5  0.5663     0.2397 0.364 0.000 0.088 0.000 0.548
#> GSM74388      1  0.4723     0.6070 0.736 0.128 0.000 0.000 0.136
#> GSM74389      5  0.6497     0.0280 0.052 0.000 0.288 0.088 0.572
#> GSM74390      1  0.3477     0.6508 0.824 0.000 0.000 0.040 0.136
#> GSM74391      5  0.7259    -0.0860 0.040 0.000 0.176 0.380 0.404
#> GSM74392      5  0.7650    -0.2597 0.052 0.000 0.344 0.240 0.364
#> GSM74393      5  0.5905    -0.1042 0.072 0.000 0.400 0.012 0.516
#> GSM74394      1  0.4236     0.4426 0.664 0.004 0.004 0.000 0.328
#> GSM74239      4  0.2389     0.7155 0.116 0.000 0.000 0.880 0.004
#> GSM74364      4  0.2233     0.7188 0.104 0.000 0.000 0.892 0.004
#> GSM74365      4  0.4283     0.2273 0.456 0.000 0.000 0.544 0.000
#> GSM74366      1  0.1949     0.6895 0.932 0.040 0.000 0.016 0.012
#> GSM74367      4  0.3884     0.5880 0.288 0.000 0.000 0.708 0.004
#> GSM74377      1  0.3878     0.5557 0.748 0.016 0.000 0.236 0.000
#> GSM74378      1  0.2618     0.6953 0.900 0.052 0.000 0.036 0.012
#> GSM74379      1  0.3662     0.5339 0.744 0.000 0.000 0.252 0.004
#> GSM74380      1  0.3522     0.5842 0.780 0.004 0.000 0.212 0.004
#> GSM74381      1  0.2228     0.6961 0.912 0.048 0.000 0.040 0.000
#> GSM121357     1  0.7838     0.1470 0.352 0.308 0.276 0.000 0.064
#> GSM121361     1  0.5177     0.5641 0.676 0.104 0.000 0.000 0.220
#> GSM121363     1  0.4593     0.6085 0.748 0.124 0.000 0.000 0.128
#> GSM121368     1  0.4109     0.5886 0.768 0.036 0.004 0.000 0.192
#> GSM121369     1  0.5088     0.4799 0.644 0.012 0.036 0.000 0.308
#> GSM74368      4  0.3814     0.5937 0.276 0.000 0.004 0.720 0.000
#> GSM74369      4  0.4280     0.5430 0.312 0.000 0.004 0.676 0.008
#> GSM74370      1  0.7549     0.1979 0.440 0.000 0.072 0.320 0.168
#> GSM74371      4  0.1892     0.7232 0.080 0.000 0.000 0.916 0.004
#> GSM74372      1  0.7618     0.3484 0.452 0.000 0.068 0.228 0.252
#> GSM74373      1  0.3463     0.6639 0.836 0.032 0.000 0.124 0.008
#> GSM74374      4  0.3913     0.5558 0.324 0.000 0.000 0.676 0.000
#> GSM74375      4  0.5140     0.4683 0.328 0.008 0.000 0.624 0.040
#> GSM74376      1  0.2949     0.6923 0.880 0.012 0.000 0.072 0.036
#> GSM74405      1  0.2615     0.6924 0.892 0.008 0.000 0.080 0.020
#> GSM74351      4  0.1455     0.7258 0.032 0.000 0.008 0.952 0.008
#> GSM74352      1  0.4671     0.6175 0.740 0.116 0.000 0.144 0.000
#> GSM74353      4  0.2629     0.7124 0.136 0.000 0.000 0.860 0.004
#> GSM74354      4  0.3160     0.6817 0.188 0.000 0.000 0.808 0.004
#> GSM74355      1  0.3067     0.6931 0.876 0.040 0.000 0.068 0.016
#> GSM74382      4  0.1281     0.7261 0.032 0.000 0.000 0.956 0.012
#> GSM74383      4  0.3074     0.6792 0.196 0.000 0.000 0.804 0.000
#> GSM74384      1  0.2490     0.6827 0.896 0.080 0.000 0.004 0.020
#> GSM74385      4  0.1717     0.7275 0.052 0.000 0.004 0.936 0.008
#> GSM74386      4  0.4101     0.4630 0.372 0.000 0.000 0.628 0.000
#> GSM74395      4  0.3366     0.6672 0.212 0.000 0.000 0.784 0.004
#> GSM74396      4  0.4151     0.4978 0.344 0.000 0.000 0.652 0.004
#> GSM74397      4  0.2358     0.7211 0.104 0.000 0.000 0.888 0.008
#> GSM74398      1  0.3838     0.4869 0.716 0.000 0.000 0.280 0.004
#> GSM74399      1  0.4147     0.4184 0.676 0.000 0.000 0.316 0.008
#> GSM74400      4  0.4018     0.6809 0.104 0.088 0.000 0.804 0.004
#> GSM74401      4  0.4489     0.6559 0.156 0.080 0.000 0.760 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.3190     0.7181 0.000 0.000 0.772 0.220 0.008 0.000
#> GSM74357      3  0.3109     0.7094 0.000 0.000 0.772 0.224 0.004 0.000
#> GSM74358      3  0.2964     0.7353 0.000 0.000 0.792 0.204 0.004 0.000
#> GSM74359      4  0.4514     0.6664 0.096 0.000 0.116 0.752 0.036 0.000
#> GSM74360      4  0.2736     0.6822 0.076 0.000 0.028 0.876 0.020 0.000
#> GSM74361      4  0.5221     0.2575 0.000 0.004 0.384 0.536 0.072 0.004
#> GSM74362      4  0.3970     0.5841 0.012 0.000 0.224 0.740 0.020 0.004
#> GSM74363      3  0.2121     0.8497 0.000 0.000 0.892 0.096 0.012 0.000
#> GSM74402      1  0.1588     0.7777 0.924 0.000 0.004 0.072 0.000 0.000
#> GSM74403      1  0.2355     0.7442 0.876 0.000 0.000 0.112 0.008 0.004
#> GSM74404      1  0.3991     0.5896 0.724 0.000 0.000 0.240 0.028 0.008
#> GSM74406      1  0.5140     0.0915 0.520 0.000 0.088 0.392 0.000 0.000
#> GSM74407      1  0.3527     0.6813 0.792 0.000 0.004 0.164 0.040 0.000
#> GSM74408      1  0.5677    -0.1719 0.440 0.000 0.156 0.404 0.000 0.000
#> GSM74409      4  0.5085     0.5406 0.272 0.000 0.120 0.608 0.000 0.000
#> GSM74410      4  0.5877     0.3511 0.212 0.000 0.332 0.456 0.000 0.000
#> GSM119936     1  0.4887     0.3772 0.624 0.000 0.096 0.280 0.000 0.000
#> GSM119937     4  0.6067     0.3399 0.332 0.000 0.272 0.396 0.000 0.000
#> GSM74411      5  0.4005     0.6975 0.000 0.004 0.232 0.024 0.732 0.008
#> GSM74412      5  0.5359     0.6128 0.000 0.004 0.276 0.060 0.624 0.036
#> GSM74413      5  0.4302     0.6237 0.000 0.004 0.292 0.036 0.668 0.000
#> GSM74414      6  0.7154     0.3102 0.000 0.156 0.084 0.032 0.216 0.512
#> GSM74415      5  0.3549     0.7435 0.000 0.004 0.184 0.024 0.784 0.004
#> GSM121379     2  0.0146     0.9821 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121380     2  0.0146     0.9816 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121381     2  0.0972     0.9698 0.000 0.964 0.028 0.008 0.000 0.000
#> GSM121382     2  0.0767     0.9795 0.000 0.976 0.012 0.008 0.004 0.000
#> GSM121383     2  0.0551     0.9816 0.000 0.984 0.008 0.004 0.004 0.000
#> GSM121384     2  0.0146     0.9816 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121385     2  0.0146     0.9823 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9820 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0405     0.9823 0.000 0.988 0.008 0.000 0.004 0.000
#> GSM121388     2  0.1409     0.9652 0.000 0.948 0.032 0.008 0.012 0.000
#> GSM121389     2  0.0436     0.9820 0.000 0.988 0.004 0.000 0.004 0.004
#> GSM121390     2  0.0146     0.9816 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121391     2  0.0653     0.9802 0.000 0.980 0.012 0.004 0.004 0.000
#> GSM121392     2  0.0291     0.9799 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM121393     2  0.0779     0.9792 0.000 0.976 0.008 0.000 0.008 0.008
#> GSM121394     2  0.1657     0.9554 0.000 0.936 0.040 0.012 0.012 0.000
#> GSM121395     2  0.0405     0.9822 0.000 0.988 0.008 0.000 0.004 0.000
#> GSM121396     2  0.2502     0.9052 0.000 0.884 0.084 0.012 0.020 0.000
#> GSM121397     2  0.0146     0.9816 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121398     2  0.0146     0.9823 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM121399     2  0.0551     0.9817 0.000 0.984 0.008 0.004 0.004 0.000
#> GSM74240      5  0.2056     0.7823 0.000 0.000 0.004 0.080 0.904 0.012
#> GSM74241      5  0.1534     0.8096 0.004 0.000 0.032 0.004 0.944 0.016
#> GSM74242      5  0.2222     0.8068 0.012 0.000 0.032 0.040 0.912 0.004
#> GSM74243      5  0.2180     0.8059 0.008 0.000 0.028 0.048 0.912 0.004
#> GSM74244      5  0.2022     0.8119 0.000 0.000 0.052 0.024 0.916 0.008
#> GSM74245      5  0.1794     0.8115 0.000 0.000 0.036 0.040 0.924 0.000
#> GSM74246      5  0.1464     0.8016 0.000 0.000 0.004 0.036 0.944 0.016
#> GSM74247      5  0.1511     0.8053 0.000 0.000 0.012 0.012 0.944 0.032
#> GSM74248      5  0.2306     0.7727 0.000 0.000 0.004 0.092 0.888 0.016
#> GSM74416      1  0.1555     0.7708 0.932 0.000 0.004 0.060 0.004 0.000
#> GSM74417      1  0.2488     0.7348 0.864 0.000 0.000 0.124 0.004 0.008
#> GSM74418      1  0.1493     0.7754 0.936 0.000 0.004 0.056 0.004 0.000
#> GSM74419      1  0.4352     0.5521 0.696 0.000 0.008 0.260 0.028 0.008
#> GSM121358     3  0.2060     0.8530 0.000 0.000 0.900 0.084 0.016 0.000
#> GSM121359     3  0.2301     0.7861 0.000 0.000 0.884 0.020 0.096 0.000
#> GSM121360     4  0.4765     0.5293 0.004 0.004 0.040 0.716 0.036 0.200
#> GSM121362     4  0.4640     0.6204 0.024 0.008 0.044 0.760 0.020 0.144
#> GSM121364     4  0.3668     0.6782 0.084 0.000 0.088 0.812 0.016 0.000
#> GSM121365     3  0.1462     0.8609 0.000 0.000 0.936 0.056 0.008 0.000
#> GSM121366     3  0.1498     0.8469 0.000 0.000 0.940 0.028 0.032 0.000
#> GSM121367     3  0.1829     0.8623 0.000 0.000 0.920 0.056 0.024 0.000
#> GSM121370     3  0.2595     0.8377 0.000 0.000 0.872 0.044 0.084 0.000
#> GSM121371     3  0.1719     0.8616 0.000 0.000 0.924 0.060 0.016 0.000
#> GSM121372     3  0.2540     0.7922 0.000 0.000 0.872 0.020 0.104 0.004
#> GSM121373     4  0.3532     0.6594 0.032 0.000 0.116 0.820 0.000 0.032
#> GSM121374     4  0.3865     0.6655 0.076 0.000 0.132 0.784 0.008 0.000
#> GSM121407     3  0.3230     0.7872 0.000 0.000 0.844 0.016 0.084 0.056
#> GSM74387      5  0.5885     0.3897 0.000 0.000 0.032 0.128 0.560 0.280
#> GSM74388      6  0.5297     0.6318 0.000 0.056 0.000 0.148 0.112 0.684
#> GSM74389      4  0.4980     0.1007 0.028 0.000 0.016 0.512 0.440 0.004
#> GSM74390      6  0.4598     0.7154 0.048 0.000 0.000 0.080 0.124 0.748
#> GSM74391      5  0.5807    -0.0206 0.140 0.000 0.008 0.412 0.440 0.000
#> GSM74392      4  0.4400     0.6238 0.092 0.000 0.016 0.744 0.148 0.000
#> GSM74393      4  0.4764     0.4403 0.004 0.000 0.052 0.664 0.268 0.012
#> GSM74394      6  0.5451     0.3018 0.000 0.000 0.004 0.116 0.352 0.528
#> GSM74239      1  0.2002     0.7939 0.908 0.000 0.000 0.012 0.004 0.076
#> GSM74364      1  0.1605     0.7955 0.936 0.000 0.000 0.016 0.004 0.044
#> GSM74365      1  0.3699     0.5312 0.660 0.000 0.000 0.000 0.004 0.336
#> GSM74366      6  0.1167     0.7742 0.020 0.012 0.000 0.000 0.008 0.960
#> GSM74367      1  0.2845     0.7501 0.820 0.000 0.000 0.004 0.004 0.172
#> GSM74377      6  0.2320     0.7585 0.132 0.000 0.000 0.000 0.004 0.864
#> GSM74378      6  0.1245     0.7758 0.032 0.016 0.000 0.000 0.000 0.952
#> GSM74379      6  0.2825     0.7574 0.136 0.000 0.000 0.008 0.012 0.844
#> GSM74380      6  0.2805     0.7124 0.184 0.000 0.000 0.000 0.004 0.812
#> GSM74381      6  0.2325     0.7785 0.068 0.008 0.000 0.004 0.020 0.900
#> GSM121357     6  0.5351     0.3881 0.000 0.024 0.340 0.020 0.032 0.584
#> GSM121361     6  0.4813     0.6334 0.000 0.024 0.004 0.192 0.072 0.708
#> GSM121363     6  0.3412     0.7218 0.000 0.028 0.004 0.088 0.040 0.840
#> GSM121368     6  0.3253     0.7234 0.000 0.008 0.012 0.088 0.044 0.848
#> GSM121369     6  0.4976     0.5066 0.000 0.004 0.024 0.300 0.040 0.632
#> GSM74368      1  0.4271     0.5746 0.664 0.000 0.020 0.012 0.000 0.304
#> GSM74369      1  0.4138     0.6244 0.692 0.000 0.020 0.012 0.000 0.276
#> GSM74370      6  0.6126     0.2025 0.164 0.000 0.004 0.364 0.012 0.456
#> GSM74371      1  0.1003     0.7939 0.964 0.000 0.000 0.020 0.000 0.016
#> GSM74372      4  0.6785     0.3339 0.120 0.000 0.000 0.504 0.140 0.236
#> GSM74373      6  0.3175     0.7707 0.108 0.004 0.000 0.032 0.012 0.844
#> GSM74374      1  0.3883     0.7148 0.752 0.000 0.000 0.044 0.004 0.200
#> GSM74375      1  0.4432     0.7211 0.756 0.004 0.000 0.024 0.076 0.140
#> GSM74376      6  0.2917     0.7752 0.040 0.000 0.000 0.040 0.048 0.872
#> GSM74405      6  0.1594     0.7790 0.052 0.000 0.000 0.016 0.000 0.932
#> GSM74351      1  0.1387     0.7827 0.932 0.000 0.000 0.068 0.000 0.000
#> GSM74352      6  0.2848     0.7589 0.124 0.024 0.000 0.004 0.000 0.848
#> GSM74353      1  0.2218     0.7951 0.884 0.000 0.000 0.012 0.000 0.104
#> GSM74354      1  0.2243     0.7861 0.880 0.000 0.000 0.004 0.004 0.112
#> GSM74355      6  0.1555     0.7772 0.060 0.004 0.000 0.000 0.004 0.932
#> GSM74382      1  0.0790     0.7851 0.968 0.000 0.000 0.032 0.000 0.000
#> GSM74383      1  0.2558     0.7634 0.840 0.000 0.000 0.000 0.004 0.156
#> GSM74384      6  0.1542     0.7722 0.016 0.024 0.000 0.016 0.000 0.944
#> GSM74385      1  0.1010     0.7865 0.960 0.000 0.000 0.036 0.000 0.004
#> GSM74386      1  0.3828     0.6757 0.724 0.000 0.000 0.008 0.016 0.252
#> GSM74395      1  0.2466     0.7915 0.872 0.000 0.000 0.008 0.008 0.112
#> GSM74396      1  0.2920     0.7529 0.820 0.000 0.000 0.008 0.004 0.168
#> GSM74397      1  0.1563     0.7973 0.932 0.000 0.000 0.012 0.000 0.056
#> GSM74398      6  0.4450     0.4069 0.352 0.000 0.000 0.012 0.020 0.616
#> GSM74399      6  0.3691     0.6068 0.260 0.000 0.000 0.008 0.008 0.724
#> GSM74400      1  0.2935     0.7494 0.852 0.112 0.000 0.004 0.004 0.028
#> GSM74401      1  0.3084     0.7761 0.856 0.068 0.000 0.008 0.004 0.064

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> SD:NMF 119         1.77e-09 2
#> SD:NMF  95         4.31e-15 3
#> SD:NMF  97         7.14e-25 4
#> SD:NMF  82         2.70e-33 5
#> SD:NMF 105         1.88e-43 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.305           0.759       0.868         0.4368 0.543   0.543
#> 3 3 0.354           0.678       0.777         0.4163 0.825   0.682
#> 4 4 0.505           0.395       0.709         0.1072 0.945   0.860
#> 5 5 0.522           0.509       0.670         0.0586 0.842   0.573
#> 6 6 0.547           0.601       0.734         0.0596 0.920   0.702

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.6973     0.8014 0.188 0.812
#> GSM74357      2  0.6973     0.8014 0.188 0.812
#> GSM74358      2  0.6973     0.8014 0.188 0.812
#> GSM74359      1  0.5519     0.8059 0.872 0.128
#> GSM74360      1  0.5519     0.8059 0.872 0.128
#> GSM74361      2  0.9044     0.6158 0.320 0.680
#> GSM74362      2  0.9044     0.6158 0.320 0.680
#> GSM74363      2  0.6973     0.8014 0.188 0.812
#> GSM74402      1  0.3114     0.8297 0.944 0.056
#> GSM74403      1  0.0000     0.8212 1.000 0.000
#> GSM74404      1  0.0000     0.8212 1.000 0.000
#> GSM74406      1  0.2236     0.8293 0.964 0.036
#> GSM74407      1  0.2236     0.8293 0.964 0.036
#> GSM74408      1  0.0938     0.8262 0.988 0.012
#> GSM74409      1  0.0938     0.8262 0.988 0.012
#> GSM74410      1  0.0938     0.8262 0.988 0.012
#> GSM119936     1  0.0938     0.8262 0.988 0.012
#> GSM119937     1  0.1184     0.8270 0.984 0.016
#> GSM74411      2  0.4022     0.8543 0.080 0.920
#> GSM74412      2  0.4022     0.8543 0.080 0.920
#> GSM74413      2  0.4022     0.8543 0.080 0.920
#> GSM74414      2  0.4022     0.8543 0.080 0.920
#> GSM74415      2  0.4022     0.8543 0.080 0.920
#> GSM121379     2  0.0000     0.8464 0.000 1.000
#> GSM121380     2  0.0000     0.8464 0.000 1.000
#> GSM121381     2  0.0000     0.8464 0.000 1.000
#> GSM121382     2  0.0000     0.8464 0.000 1.000
#> GSM121383     2  0.0000     0.8464 0.000 1.000
#> GSM121384     2  0.0000     0.8464 0.000 1.000
#> GSM121385     2  0.0000     0.8464 0.000 1.000
#> GSM121386     2  0.0000     0.8464 0.000 1.000
#> GSM121387     2  0.0000     0.8464 0.000 1.000
#> GSM121388     2  0.0000     0.8464 0.000 1.000
#> GSM121389     2  0.0000     0.8464 0.000 1.000
#> GSM121390     2  0.0000     0.8464 0.000 1.000
#> GSM121391     2  0.0000     0.8464 0.000 1.000
#> GSM121392     2  0.0000     0.8464 0.000 1.000
#> GSM121393     2  0.0000     0.8464 0.000 1.000
#> GSM121394     2  0.0000     0.8464 0.000 1.000
#> GSM121395     2  0.0000     0.8464 0.000 1.000
#> GSM121396     2  0.0000     0.8464 0.000 1.000
#> GSM121397     2  0.0000     0.8464 0.000 1.000
#> GSM121398     2  0.0000     0.8464 0.000 1.000
#> GSM121399     2  0.0000     0.8464 0.000 1.000
#> GSM74240      2  0.7528     0.7740 0.216 0.784
#> GSM74241      2  0.7528     0.7740 0.216 0.784
#> GSM74242      2  0.7528     0.7740 0.216 0.784
#> GSM74243      2  0.7528     0.7740 0.216 0.784
#> GSM74244      2  0.7528     0.7740 0.216 0.784
#> GSM74245      2  0.7528     0.7740 0.216 0.784
#> GSM74246      2  0.7528     0.7740 0.216 0.784
#> GSM74247      2  0.7528     0.7740 0.216 0.784
#> GSM74248      2  0.7528     0.7740 0.216 0.784
#> GSM74416      1  0.0000     0.8212 1.000 0.000
#> GSM74417      1  0.0000     0.8212 1.000 0.000
#> GSM74418      1  0.0000     0.8212 1.000 0.000
#> GSM74419      1  0.4298     0.8213 0.912 0.088
#> GSM121358     2  0.4298     0.8535 0.088 0.912
#> GSM121359     2  0.4298     0.8535 0.088 0.912
#> GSM121360     1  0.5519     0.8059 0.872 0.128
#> GSM121362     1  0.5519     0.8059 0.872 0.128
#> GSM121364     1  0.5519     0.8059 0.872 0.128
#> GSM121365     2  0.4298     0.8535 0.088 0.912
#> GSM121366     2  0.4298     0.8535 0.088 0.912
#> GSM121367     2  0.4298     0.8535 0.088 0.912
#> GSM121370     2  0.4298     0.8535 0.088 0.912
#> GSM121371     2  0.4298     0.8535 0.088 0.912
#> GSM121372     2  0.4298     0.8535 0.088 0.912
#> GSM121373     1  0.5519     0.8059 0.872 0.128
#> GSM121374     1  0.5408     0.8078 0.876 0.124
#> GSM121407     2  0.4161     0.8537 0.084 0.916
#> GSM74387      2  0.3274     0.8555 0.060 0.940
#> GSM74388      2  0.2236     0.8524 0.036 0.964
#> GSM74389      1  0.9732     0.3034 0.596 0.404
#> GSM74390      2  0.6623     0.8242 0.172 0.828
#> GSM74391      1  0.9129     0.5203 0.672 0.328
#> GSM74392      2  0.9323     0.5558 0.348 0.652
#> GSM74393      2  0.9323     0.5558 0.348 0.652
#> GSM74394      2  0.2778     0.8544 0.048 0.952
#> GSM74239      1  0.3274     0.8250 0.940 0.060
#> GSM74364      1  0.3114     0.8254 0.944 0.056
#> GSM74365      2  0.9833     0.3122 0.424 0.576
#> GSM74366      2  0.5946     0.8110 0.144 0.856
#> GSM74367      1  0.9909     0.1936 0.556 0.444
#> GSM74377      2  0.6343     0.8003 0.160 0.840
#> GSM74378      2  0.6148     0.8057 0.152 0.848
#> GSM74379      2  0.8763     0.6253 0.296 0.704
#> GSM74380      2  0.8909     0.6103 0.308 0.692
#> GSM74381      2  0.6887     0.7781 0.184 0.816
#> GSM121357     2  0.3733     0.8568 0.072 0.928
#> GSM121361     2  0.2423     0.8521 0.040 0.960
#> GSM121363     2  0.2423     0.8521 0.040 0.960
#> GSM121368     2  0.2423     0.8521 0.040 0.960
#> GSM121369     2  0.2423     0.8521 0.040 0.960
#> GSM74368      1  0.7299     0.7325 0.796 0.204
#> GSM74369      1  0.7299     0.7325 0.796 0.204
#> GSM74370      1  0.4431     0.8152 0.908 0.092
#> GSM74371      1  0.0000     0.8212 1.000 0.000
#> GSM74372      1  0.5629     0.7906 0.868 0.132
#> GSM74373      2  0.9977     0.0933 0.472 0.528
#> GSM74374      1  0.7528     0.7217 0.784 0.216
#> GSM74375      2  0.7745     0.7456 0.228 0.772
#> GSM74376      2  0.8386     0.6824 0.268 0.732
#> GSM74405      2  0.8499     0.6695 0.276 0.724
#> GSM74351      1  0.0376     0.8230 0.996 0.004
#> GSM74352      2  0.6801     0.7855 0.180 0.820
#> GSM74353      1  0.9996     0.0252 0.512 0.488
#> GSM74354      1  0.9286     0.5118 0.656 0.344
#> GSM74355      2  0.6048     0.8077 0.148 0.852
#> GSM74382      1  0.0938     0.8254 0.988 0.012
#> GSM74383      1  0.7056     0.7442 0.808 0.192
#> GSM74384      2  0.6148     0.8057 0.152 0.848
#> GSM74385      1  0.0000     0.8212 1.000 0.000
#> GSM74386      1  0.9580     0.4009 0.620 0.380
#> GSM74395      1  0.9775     0.3069 0.588 0.412
#> GSM74396      1  0.9922     0.1959 0.552 0.448
#> GSM74397      1  0.9209     0.4974 0.664 0.336
#> GSM74398      2  0.9087     0.5936 0.324 0.676
#> GSM74399      2  0.6531     0.7961 0.168 0.832
#> GSM74400      2  0.6531     0.8010 0.168 0.832
#> GSM74401      2  0.6531     0.8010 0.168 0.832

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      2  0.4092     0.7304 0.088 0.876 0.036
#> GSM74357      2  0.4092     0.7304 0.088 0.876 0.036
#> GSM74358      2  0.4092     0.7304 0.088 0.876 0.036
#> GSM74359      1  0.5905     0.6911 0.772 0.184 0.044
#> GSM74360      1  0.5905     0.6911 0.772 0.184 0.044
#> GSM74361      2  0.6292     0.5806 0.216 0.740 0.044
#> GSM74362      2  0.6232     0.5786 0.220 0.740 0.040
#> GSM74363      2  0.4092     0.7304 0.088 0.876 0.036
#> GSM74402      1  0.4399     0.7483 0.864 0.092 0.044
#> GSM74403      1  0.2680     0.7380 0.924 0.008 0.068
#> GSM74404      1  0.2774     0.7366 0.920 0.008 0.072
#> GSM74406      1  0.3670     0.7502 0.888 0.092 0.020
#> GSM74407      1  0.3722     0.7519 0.888 0.088 0.024
#> GSM74408      1  0.2496     0.7515 0.928 0.068 0.004
#> GSM74409      1  0.2496     0.7515 0.928 0.068 0.004
#> GSM74410      1  0.2496     0.7515 0.928 0.068 0.004
#> GSM119936     1  0.2496     0.7515 0.928 0.068 0.004
#> GSM119937     1  0.2682     0.7511 0.920 0.076 0.004
#> GSM74411      2  0.0661     0.7809 0.004 0.988 0.008
#> GSM74412      2  0.0661     0.7809 0.004 0.988 0.008
#> GSM74413      2  0.0661     0.7809 0.004 0.988 0.008
#> GSM74414      2  0.1878     0.7771 0.004 0.952 0.044
#> GSM74415      2  0.0661     0.7809 0.004 0.988 0.008
#> GSM121379     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121380     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121381     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121382     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121383     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121384     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121385     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121386     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121387     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121388     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121389     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121390     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121391     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121392     2  0.4796     0.7520 0.000 0.780 0.220
#> GSM121393     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121394     2  0.4702     0.7551 0.000 0.788 0.212
#> GSM121395     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121396     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121397     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121398     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM121399     2  0.4750     0.7549 0.000 0.784 0.216
#> GSM74240      2  0.4676     0.7090 0.112 0.848 0.040
#> GSM74241      2  0.4676     0.7090 0.112 0.848 0.040
#> GSM74242      2  0.4676     0.7090 0.112 0.848 0.040
#> GSM74243      2  0.4676     0.7090 0.112 0.848 0.040
#> GSM74244      2  0.4676     0.7090 0.112 0.848 0.040
#> GSM74245      2  0.4676     0.7090 0.112 0.848 0.040
#> GSM74246      2  0.4676     0.7090 0.112 0.848 0.040
#> GSM74247      2  0.4676     0.7090 0.112 0.848 0.040
#> GSM74248      2  0.4676     0.7090 0.112 0.848 0.040
#> GSM74416      1  0.3116     0.7226 0.892 0.000 0.108
#> GSM74417      1  0.3116     0.7226 0.892 0.000 0.108
#> GSM74418      1  0.3116     0.7226 0.892 0.000 0.108
#> GSM74419      1  0.4475     0.7291 0.840 0.144 0.016
#> GSM121358     2  0.0661     0.7799 0.004 0.988 0.008
#> GSM121359     2  0.0661     0.7799 0.004 0.988 0.008
#> GSM121360     1  0.5905     0.6911 0.772 0.184 0.044
#> GSM121362     1  0.5905     0.6911 0.772 0.184 0.044
#> GSM121364     1  0.5905     0.6911 0.772 0.184 0.044
#> GSM121365     2  0.0661     0.7799 0.004 0.988 0.008
#> GSM121366     2  0.0661     0.7799 0.004 0.988 0.008
#> GSM121367     2  0.0661     0.7799 0.004 0.988 0.008
#> GSM121370     2  0.0661     0.7799 0.004 0.988 0.008
#> GSM121371     2  0.0661     0.7799 0.004 0.988 0.008
#> GSM121372     2  0.0661     0.7799 0.004 0.988 0.008
#> GSM121373     1  0.5905     0.6911 0.772 0.184 0.044
#> GSM121374     1  0.5746     0.6957 0.780 0.180 0.040
#> GSM121407     2  0.0475     0.7804 0.004 0.992 0.004
#> GSM74387      2  0.5363     0.6084 0.000 0.724 0.276
#> GSM74388      2  0.5785     0.5633 0.000 0.668 0.332
#> GSM74389      1  0.7890     0.1817 0.512 0.432 0.056
#> GSM74390      2  0.6295     0.6885 0.072 0.764 0.164
#> GSM74391      1  0.7499     0.3710 0.592 0.360 0.048
#> GSM74392      2  0.6521     0.5414 0.248 0.712 0.040
#> GSM74393      2  0.6521     0.5414 0.248 0.712 0.040
#> GSM74394      2  0.5650     0.5673 0.000 0.688 0.312
#> GSM74239      1  0.4682     0.6806 0.804 0.004 0.192
#> GSM74364      1  0.4504     0.6801 0.804 0.000 0.196
#> GSM74365      3  0.8079     0.6151 0.260 0.112 0.628
#> GSM74366      3  0.5158     0.7864 0.004 0.232 0.764
#> GSM74367      3  0.8316     0.2464 0.424 0.080 0.496
#> GSM74377      3  0.5122     0.8169 0.012 0.200 0.788
#> GSM74378      3  0.4931     0.8084 0.004 0.212 0.784
#> GSM74379      3  0.7281     0.7783 0.140 0.148 0.712
#> GSM74380      3  0.7564     0.7688 0.152 0.156 0.692
#> GSM74381      3  0.5574     0.8211 0.032 0.184 0.784
#> GSM121357     2  0.5244     0.6547 0.004 0.756 0.240
#> GSM121361     2  0.5733     0.5781 0.000 0.676 0.324
#> GSM121363     2  0.5733     0.5781 0.000 0.676 0.324
#> GSM121368     2  0.5733     0.5781 0.000 0.676 0.324
#> GSM121369     2  0.5733     0.5781 0.000 0.676 0.324
#> GSM74368      1  0.7400     0.5282 0.664 0.072 0.264
#> GSM74369      1  0.7400     0.5282 0.664 0.072 0.264
#> GSM74370      1  0.5911     0.6839 0.784 0.060 0.156
#> GSM74371      1  0.2878     0.7274 0.904 0.000 0.096
#> GSM74372      1  0.5774     0.6375 0.748 0.020 0.232
#> GSM74373      3  0.8454     0.5109 0.316 0.112 0.572
#> GSM74374      1  0.6819     0.4802 0.644 0.028 0.328
#> GSM74375      3  0.6527     0.8162 0.068 0.188 0.744
#> GSM74376      3  0.7391     0.7998 0.108 0.196 0.696
#> GSM74405      3  0.7004     0.7951 0.112 0.160 0.728
#> GSM74351      1  0.3425     0.7301 0.884 0.004 0.112
#> GSM74352      3  0.5921     0.8181 0.032 0.212 0.756
#> GSM74353      3  0.8754     0.4108 0.376 0.116 0.508
#> GSM74354      1  0.7807     0.0842 0.516 0.052 0.432
#> GSM74355      3  0.4931     0.8081 0.004 0.212 0.784
#> GSM74382      1  0.3619     0.7143 0.864 0.000 0.136
#> GSM74383      1  0.7013     0.4859 0.640 0.036 0.324
#> GSM74384      3  0.4978     0.8052 0.004 0.216 0.780
#> GSM74385      1  0.2959     0.7264 0.900 0.000 0.100
#> GSM74386      1  0.8395    -0.0304 0.480 0.084 0.436
#> GSM74395      1  0.8341    -0.1131 0.468 0.080 0.452
#> GSM74396      3  0.8322     0.1960 0.428 0.080 0.492
#> GSM74397      1  0.8375     0.2597 0.540 0.092 0.368
#> GSM74398      3  0.7670     0.7575 0.152 0.164 0.684
#> GSM74399      3  0.5503     0.8202 0.020 0.208 0.772
#> GSM74400      3  0.5506     0.8112 0.016 0.220 0.764
#> GSM74401      3  0.5506     0.8112 0.016 0.220 0.764

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      2  0.6252    -0.3819 0.016 0.528 0.428 0.028
#> GSM74357      2  0.6252    -0.3819 0.016 0.528 0.428 0.028
#> GSM74358      2  0.6252    -0.3819 0.016 0.528 0.428 0.028
#> GSM74359      4  0.4936     0.5877 0.004 0.000 0.372 0.624
#> GSM74360      4  0.4936     0.5877 0.004 0.000 0.372 0.624
#> GSM74361      3  0.7404     0.9307 0.008 0.416 0.448 0.128
#> GSM74362      3  0.7439     0.9378 0.008 0.416 0.444 0.132
#> GSM74363      2  0.6252    -0.3819 0.016 0.528 0.428 0.028
#> GSM74402      4  0.4010     0.6717 0.028 0.000 0.156 0.816
#> GSM74403      4  0.3278     0.6261 0.020 0.000 0.116 0.864
#> GSM74404      4  0.3219     0.6241 0.020 0.000 0.112 0.868
#> GSM74406      4  0.3355     0.6774 0.004 0.000 0.160 0.836
#> GSM74407      4  0.3401     0.6774 0.008 0.000 0.152 0.840
#> GSM74408      4  0.3219     0.6793 0.000 0.000 0.164 0.836
#> GSM74409      4  0.3219     0.6793 0.000 0.000 0.164 0.836
#> GSM74410      4  0.3219     0.6793 0.000 0.000 0.164 0.836
#> GSM119936     4  0.3219     0.6793 0.000 0.000 0.164 0.836
#> GSM119937     4  0.3311     0.6786 0.000 0.000 0.172 0.828
#> GSM74411      2  0.5038     0.1886 0.012 0.652 0.336 0.000
#> GSM74412      2  0.5038     0.1886 0.012 0.652 0.336 0.000
#> GSM74413      2  0.5038     0.1886 0.012 0.652 0.336 0.000
#> GSM74414      2  0.5592     0.2038 0.044 0.656 0.300 0.000
#> GSM74415      2  0.5038     0.1886 0.012 0.652 0.336 0.000
#> GSM121379     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121388     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121389     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0376     0.5265 0.004 0.992 0.004 0.000
#> GSM121393     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121394     2  0.0188     0.5288 0.000 0.996 0.004 0.000
#> GSM121395     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121396     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121397     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000     0.5303 0.000 1.000 0.000 0.000
#> GSM74240      2  0.6399    -0.4984 0.012 0.508 0.440 0.040
#> GSM74241      2  0.6399    -0.4984 0.012 0.508 0.440 0.040
#> GSM74242      2  0.6399    -0.4984 0.012 0.508 0.440 0.040
#> GSM74243      2  0.6399    -0.4984 0.012 0.508 0.440 0.040
#> GSM74244      2  0.6399    -0.4984 0.012 0.508 0.440 0.040
#> GSM74245      2  0.6399    -0.4984 0.012 0.508 0.440 0.040
#> GSM74246      2  0.6399    -0.4984 0.012 0.508 0.440 0.040
#> GSM74247      2  0.6399    -0.4984 0.012 0.508 0.440 0.040
#> GSM74248      2  0.6399    -0.4984 0.012 0.508 0.440 0.040
#> GSM74416      4  0.4624     0.5197 0.000 0.000 0.340 0.660
#> GSM74417      4  0.4624     0.5197 0.000 0.000 0.340 0.660
#> GSM74418      4  0.4624     0.5197 0.000 0.000 0.340 0.660
#> GSM74419      4  0.4049     0.6648 0.000 0.008 0.212 0.780
#> GSM121358     2  0.5093     0.1619 0.012 0.640 0.348 0.000
#> GSM121359     2  0.5093     0.1619 0.012 0.640 0.348 0.000
#> GSM121360     4  0.4936     0.5877 0.004 0.000 0.372 0.624
#> GSM121362     4  0.4936     0.5877 0.004 0.000 0.372 0.624
#> GSM121364     4  0.4936     0.5877 0.004 0.000 0.372 0.624
#> GSM121365     2  0.5093     0.1619 0.012 0.640 0.348 0.000
#> GSM121366     2  0.5093     0.1619 0.012 0.640 0.348 0.000
#> GSM121367     2  0.5093     0.1619 0.012 0.640 0.348 0.000
#> GSM121370     2  0.5093     0.1619 0.012 0.640 0.348 0.000
#> GSM121371     2  0.5093     0.1619 0.012 0.640 0.348 0.000
#> GSM121372     2  0.5093     0.1619 0.012 0.640 0.348 0.000
#> GSM121373     4  0.4936     0.5877 0.004 0.000 0.372 0.624
#> GSM121374     4  0.4746     0.5948 0.000 0.000 0.368 0.632
#> GSM121407     2  0.5057     0.1778 0.012 0.648 0.340 0.000
#> GSM74387      2  0.5835     0.3231 0.280 0.656 0.064 0.000
#> GSM74388      2  0.4820     0.3432 0.296 0.692 0.012 0.000
#> GSM74389      4  0.8061    -0.2675 0.028 0.336 0.164 0.472
#> GSM74390      2  0.7816    -0.0298 0.176 0.564 0.224 0.036
#> GSM74391      4  0.7740     0.0752 0.028 0.276 0.152 0.544
#> GSM74392      3  0.7533     0.9409 0.004 0.408 0.428 0.160
#> GSM74393      3  0.7533     0.9409 0.004 0.408 0.428 0.160
#> GSM74394      2  0.5668     0.3181 0.300 0.652 0.048 0.000
#> GSM74239      4  0.6233     0.4809 0.124 0.000 0.216 0.660
#> GSM74364      4  0.6308     0.4743 0.120 0.000 0.232 0.648
#> GSM74365      1  0.5391     0.6724 0.716 0.008 0.040 0.236
#> GSM74366      1  0.2124     0.7576 0.924 0.068 0.008 0.000
#> GSM74367      1  0.6223     0.4270 0.556 0.000 0.060 0.384
#> GSM74377      1  0.1786     0.7781 0.948 0.036 0.008 0.008
#> GSM74378      1  0.1489     0.7735 0.952 0.044 0.004 0.000
#> GSM74379      1  0.4426     0.7667 0.824 0.024 0.032 0.120
#> GSM74380      1  0.4832     0.7576 0.796 0.024 0.036 0.144
#> GSM74381      1  0.2418     0.7835 0.928 0.032 0.016 0.024
#> GSM121357     2  0.6134     0.3289 0.236 0.660 0.104 0.000
#> GSM121361     2  0.4770     0.3533 0.288 0.700 0.012 0.000
#> GSM121363     2  0.4770     0.3533 0.288 0.700 0.012 0.000
#> GSM121368     2  0.4770     0.3533 0.288 0.700 0.012 0.000
#> GSM121369     2  0.4770     0.3533 0.288 0.700 0.012 0.000
#> GSM74368      4  0.6548     0.3847 0.276 0.000 0.116 0.608
#> GSM74369      4  0.6548     0.3847 0.276 0.000 0.116 0.608
#> GSM74370      4  0.5771     0.5670 0.144 0.000 0.144 0.712
#> GSM74371      4  0.5125     0.5049 0.008 0.000 0.388 0.604
#> GSM74372      4  0.5572     0.4768 0.196 0.000 0.088 0.716
#> GSM74373      1  0.6603     0.5846 0.632 0.028 0.060 0.280
#> GSM74374      4  0.6116     0.2568 0.320 0.000 0.068 0.612
#> GSM74375      1  0.3353     0.7825 0.888 0.020 0.036 0.056
#> GSM74376      1  0.4958     0.7644 0.804 0.056 0.032 0.108
#> GSM74405      1  0.4117     0.7727 0.840 0.024 0.024 0.112
#> GSM74351      4  0.3900     0.6198 0.020 0.000 0.164 0.816
#> GSM74352      1  0.2465     0.7806 0.924 0.044 0.012 0.020
#> GSM74353      1  0.6461     0.5163 0.584 0.008 0.064 0.344
#> GSM74354      1  0.6660     0.1780 0.464 0.000 0.084 0.452
#> GSM74355      1  0.1545     0.7730 0.952 0.040 0.008 0.000
#> GSM74382      4  0.5429     0.5503 0.072 0.000 0.208 0.720
#> GSM74383      4  0.6985     0.1762 0.312 0.000 0.140 0.548
#> GSM74384      1  0.1807     0.7700 0.940 0.052 0.008 0.000
#> GSM74385      4  0.5112     0.4981 0.008 0.000 0.384 0.608
#> GSM74386      1  0.7162     0.2320 0.472 0.000 0.136 0.392
#> GSM74395      1  0.6642     0.2769 0.492 0.000 0.084 0.424
#> GSM74396      1  0.6873     0.3722 0.524 0.008 0.084 0.384
#> GSM74397      4  0.7009     0.0455 0.392 0.000 0.120 0.488
#> GSM74398      1  0.4463     0.7544 0.808 0.008 0.040 0.144
#> GSM74399      1  0.1953     0.7806 0.944 0.032 0.012 0.012
#> GSM74400      1  0.2075     0.7637 0.936 0.016 0.044 0.004
#> GSM74401      1  0.2075     0.7637 0.936 0.016 0.044 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.1732    0.67154 0.000 0.000 0.920 0.080 0.000
#> GSM74357      3  0.1732    0.67154 0.000 0.000 0.920 0.080 0.000
#> GSM74358      3  0.1732    0.67154 0.000 0.000 0.920 0.080 0.000
#> GSM74359      4  0.4964    0.50551 0.000 0.052 0.200 0.724 0.024
#> GSM74360      4  0.4964    0.50551 0.000 0.052 0.200 0.724 0.024
#> GSM74361      3  0.4015    0.58893 0.000 0.012 0.768 0.204 0.016
#> GSM74362      3  0.4048    0.58649 0.000 0.012 0.764 0.208 0.016
#> GSM74363      3  0.1732    0.67154 0.000 0.000 0.920 0.080 0.000
#> GSM74402      4  0.5249    0.41674 0.024 0.024 0.088 0.756 0.108
#> GSM74403      4  0.5140   -0.16056 0.004 0.048 0.000 0.624 0.324
#> GSM74404      4  0.5203   -0.16954 0.004 0.052 0.000 0.620 0.324
#> GSM74406      4  0.4274    0.46602 0.004 0.020 0.092 0.808 0.076
#> GSM74407      4  0.4478    0.44828 0.004 0.024 0.084 0.796 0.092
#> GSM74408      4  0.2012    0.49357 0.000 0.000 0.060 0.920 0.020
#> GSM74409      4  0.2012    0.49357 0.000 0.000 0.060 0.920 0.020
#> GSM74410      4  0.2012    0.49357 0.000 0.000 0.060 0.920 0.020
#> GSM119936     4  0.2012    0.49357 0.000 0.000 0.060 0.920 0.020
#> GSM119937     4  0.2144    0.49769 0.000 0.000 0.068 0.912 0.020
#> GSM74411      3  0.1121    0.62295 0.000 0.044 0.956 0.000 0.000
#> GSM74412      3  0.1121    0.62295 0.000 0.044 0.956 0.000 0.000
#> GSM74413      3  0.1121    0.62295 0.000 0.044 0.956 0.000 0.000
#> GSM74414      3  0.2291    0.58862 0.036 0.056 0.908 0.000 0.000
#> GSM74415      3  0.1121    0.62295 0.000 0.044 0.956 0.000 0.000
#> GSM121379     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121380     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121381     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121382     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121383     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121384     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121385     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121386     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121387     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121388     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121389     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121390     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121391     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121392     2  0.4680    0.98646 0.008 0.540 0.448 0.000 0.004
#> GSM121393     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121394     2  0.4425    0.99149 0.004 0.544 0.452 0.000 0.000
#> GSM121395     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121396     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121397     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121398     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM121399     2  0.4420    0.99891 0.004 0.548 0.448 0.000 0.000
#> GSM74240      3  0.2645    0.67010 0.000 0.008 0.884 0.096 0.012
#> GSM74241      3  0.2645    0.67010 0.000 0.008 0.884 0.096 0.012
#> GSM74242      3  0.2645    0.67010 0.000 0.008 0.884 0.096 0.012
#> GSM74243      3  0.2645    0.67010 0.000 0.008 0.884 0.096 0.012
#> GSM74244      3  0.2645    0.67010 0.000 0.008 0.884 0.096 0.012
#> GSM74245      3  0.2645    0.67010 0.000 0.008 0.884 0.096 0.012
#> GSM74246      3  0.2645    0.67010 0.000 0.008 0.884 0.096 0.012
#> GSM74247      3  0.2645    0.67010 0.000 0.008 0.884 0.096 0.012
#> GSM74248      3  0.2645    0.67010 0.000 0.008 0.884 0.096 0.012
#> GSM74416      4  0.6338   -0.39283 0.000 0.160 0.000 0.448 0.392
#> GSM74417      4  0.6360   -0.39337 0.000 0.164 0.000 0.448 0.388
#> GSM74418      4  0.6360   -0.39337 0.000 0.164 0.000 0.448 0.388
#> GSM74419      4  0.4512    0.48751 0.000 0.020 0.140 0.776 0.064
#> GSM121358     3  0.0880    0.63532 0.000 0.032 0.968 0.000 0.000
#> GSM121359     3  0.0880    0.63532 0.000 0.032 0.968 0.000 0.000
#> GSM121360     4  0.4964    0.50551 0.000 0.052 0.200 0.724 0.024
#> GSM121362     4  0.4964    0.50551 0.000 0.052 0.200 0.724 0.024
#> GSM121364     4  0.4964    0.50551 0.000 0.052 0.200 0.724 0.024
#> GSM121365     3  0.0880    0.63532 0.000 0.032 0.968 0.000 0.000
#> GSM121366     3  0.0880    0.63532 0.000 0.032 0.968 0.000 0.000
#> GSM121367     3  0.0880    0.63532 0.000 0.032 0.968 0.000 0.000
#> GSM121370     3  0.0880    0.63532 0.000 0.032 0.968 0.000 0.000
#> GSM121371     3  0.0880    0.63532 0.000 0.032 0.968 0.000 0.000
#> GSM121372     3  0.0880    0.63532 0.000 0.032 0.968 0.000 0.000
#> GSM121373     4  0.4964    0.50551 0.000 0.052 0.200 0.724 0.024
#> GSM121374     4  0.4899    0.50649 0.000 0.052 0.192 0.732 0.024
#> GSM121407     3  0.1043    0.62795 0.000 0.040 0.960 0.000 0.000
#> GSM74387      3  0.6803   -0.22022 0.284 0.220 0.484 0.000 0.012
#> GSM74388      3  0.7075   -0.33895 0.308 0.280 0.400 0.000 0.012
#> GSM74389      3  0.6427   -0.08068 0.012 0.012 0.448 0.444 0.084
#> GSM74390      3  0.6127    0.44846 0.188 0.052 0.680 0.032 0.048
#> GSM74391      4  0.6725    0.16406 0.012 0.020 0.368 0.496 0.104
#> GSM74392      3  0.4260    0.56226 0.000 0.012 0.736 0.236 0.016
#> GSM74393      3  0.4260    0.56226 0.000 0.012 0.736 0.236 0.016
#> GSM74394      3  0.6921   -0.24818 0.300 0.236 0.452 0.000 0.012
#> GSM74239      5  0.6021    0.67135 0.088 0.012 0.000 0.364 0.536
#> GSM74364      5  0.6035    0.68155 0.084 0.016 0.000 0.352 0.548
#> GSM74365      1  0.5268    0.61470 0.692 0.000 0.004 0.136 0.168
#> GSM74366      1  0.1498    0.71425 0.952 0.016 0.024 0.000 0.008
#> GSM74367      1  0.6345    0.31047 0.524 0.000 0.000 0.252 0.224
#> GSM74377      1  0.0486    0.73251 0.988 0.000 0.004 0.004 0.004
#> GSM74378      1  0.0727    0.72770 0.980 0.004 0.012 0.000 0.004
#> GSM74379      1  0.3715    0.71551 0.824 0.000 0.004 0.064 0.108
#> GSM74380      1  0.3956    0.71066 0.808 0.000 0.004 0.080 0.108
#> GSM74381      1  0.1461    0.73813 0.952 0.000 0.004 0.016 0.028
#> GSM121357     3  0.6433   -0.12372 0.236 0.192 0.560 0.000 0.012
#> GSM121361     3  0.7052   -0.34427 0.300 0.276 0.412 0.000 0.012
#> GSM121363     3  0.7052   -0.34427 0.300 0.276 0.412 0.000 0.012
#> GSM121368     3  0.7052   -0.34427 0.300 0.276 0.412 0.000 0.012
#> GSM121369     3  0.7052   -0.34427 0.300 0.276 0.412 0.000 0.012
#> GSM74368      4  0.7290    0.05969 0.244 0.036 0.032 0.552 0.136
#> GSM74369      4  0.7290    0.05969 0.244 0.036 0.032 0.552 0.136
#> GSM74370      4  0.6551    0.23439 0.116 0.064 0.028 0.668 0.124
#> GSM74371      5  0.5878    0.56697 0.000 0.120 0.000 0.324 0.556
#> GSM74372      4  0.6972   -0.35913 0.172 0.024 0.004 0.500 0.300
#> GSM74373      1  0.6321    0.52758 0.640 0.024 0.012 0.152 0.172
#> GSM74374      4  0.7378   -0.34578 0.292 0.024 0.004 0.416 0.264
#> GSM74375      1  0.2963    0.73502 0.884 0.004 0.008 0.048 0.056
#> GSM74376      1  0.4231    0.71897 0.820 0.008 0.032 0.056 0.084
#> GSM74405      1  0.3334    0.72455 0.852 0.000 0.004 0.064 0.080
#> GSM74351      4  0.5719   -0.14858 0.004 0.104 0.000 0.604 0.288
#> GSM74352      1  0.1794    0.73351 0.944 0.008 0.012 0.012 0.024
#> GSM74353      1  0.6278    0.44968 0.576 0.004 0.008 0.268 0.144
#> GSM74354      1  0.7335   -0.00167 0.420 0.016 0.008 0.288 0.268
#> GSM74355      1  0.0740    0.72719 0.980 0.008 0.004 0.000 0.008
#> GSM74382      5  0.5703    0.58524 0.036 0.024 0.000 0.448 0.492
#> GSM74383      5  0.7086    0.36845 0.268 0.008 0.004 0.304 0.416
#> GSM74384      1  0.1087    0.72438 0.968 0.008 0.016 0.000 0.008
#> GSM74385      5  0.6288    0.56338 0.000 0.180 0.000 0.304 0.516
#> GSM74386      1  0.7704    0.05503 0.432 0.024 0.024 0.284 0.236
#> GSM74395      1  0.7068    0.12635 0.460 0.000 0.024 0.304 0.212
#> GSM74396      1  0.6899    0.23172 0.500 0.000 0.024 0.284 0.192
#> GSM74397      4  0.7695   -0.27871 0.364 0.004 0.056 0.380 0.196
#> GSM74398      1  0.4231    0.70257 0.796 0.004 0.004 0.100 0.096
#> GSM74399      1  0.1220    0.73421 0.964 0.004 0.004 0.008 0.020
#> GSM74400      1  0.4868    0.57620 0.720 0.084 0.000 0.004 0.192
#> GSM74401      1  0.4868    0.57620 0.720 0.084 0.000 0.004 0.192

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4 p5    p6
#> GSM74356      3  0.1003    0.84496 0.000 0.020 0.964 0.016 NA 0.000
#> GSM74357      3  0.1003    0.84496 0.000 0.020 0.964 0.016 NA 0.000
#> GSM74358      3  0.1003    0.84496 0.000 0.020 0.964 0.016 NA 0.000
#> GSM74359      4  0.4607    0.56694 0.000 0.012 0.264 0.672 NA 0.000
#> GSM74360      4  0.4607    0.56694 0.000 0.012 0.264 0.672 NA 0.000
#> GSM74361      3  0.2593    0.71758 0.000 0.000 0.844 0.148 NA 0.000
#> GSM74362      3  0.2631    0.71338 0.000 0.000 0.840 0.152 NA 0.000
#> GSM74363      3  0.1003    0.84496 0.000 0.020 0.964 0.016 NA 0.000
#> GSM74402      4  0.5986    0.46934 0.180 0.012 0.132 0.636 NA 0.024
#> GSM74403      4  0.5888   -0.11088 0.420 0.016 0.016 0.476 NA 0.004
#> GSM74404      4  0.5809   -0.11914 0.420 0.016 0.012 0.480 NA 0.004
#> GSM74406      4  0.4959    0.53209 0.124 0.012 0.144 0.708 NA 0.000
#> GSM74407      4  0.5159    0.51541 0.144 0.012 0.136 0.692 NA 0.000
#> GSM74408      4  0.2678    0.56539 0.020 0.000 0.116 0.860 NA 0.000
#> GSM74409      4  0.2678    0.56539 0.020 0.000 0.116 0.860 NA 0.000
#> GSM74410      4  0.2678    0.56539 0.020 0.000 0.116 0.860 NA 0.000
#> GSM119936     4  0.2678    0.56539 0.020 0.000 0.116 0.860 NA 0.000
#> GSM119937     4  0.2766    0.56856 0.020 0.000 0.124 0.852 NA 0.000
#> GSM74411      3  0.2178    0.82460 0.000 0.132 0.868 0.000 NA 0.000
#> GSM74412      3  0.2178    0.82460 0.000 0.132 0.868 0.000 NA 0.000
#> GSM74413      3  0.2178    0.82460 0.000 0.132 0.868 0.000 NA 0.000
#> GSM74414      3  0.3134    0.78924 0.000 0.144 0.820 0.000 NA 0.036
#> GSM74415      3  0.2178    0.82460 0.000 0.132 0.868 0.000 NA 0.000
#> GSM121379     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121380     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121381     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121382     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121383     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121384     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121385     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121386     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121387     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121388     2  0.2219    0.88182 0.000 0.864 0.136 0.000 NA 0.000
#> GSM121389     2  0.2219    0.88182 0.000 0.864 0.136 0.000 NA 0.000
#> GSM121390     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121391     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121392     2  0.2431    0.88091 0.000 0.860 0.132 0.000 NA 0.000
#> GSM121393     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121394     2  0.2219    0.88196 0.000 0.864 0.136 0.000 NA 0.000
#> GSM121395     2  0.2219    0.88182 0.000 0.864 0.136 0.000 NA 0.000
#> GSM121396     2  0.2219    0.88182 0.000 0.864 0.136 0.000 NA 0.000
#> GSM121397     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121398     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM121399     2  0.2178    0.88419 0.000 0.868 0.132 0.000 NA 0.000
#> GSM74240      3  0.0972    0.83805 0.000 0.000 0.964 0.028 NA 0.000
#> GSM74241      3  0.0972    0.83805 0.000 0.000 0.964 0.028 NA 0.000
#> GSM74242      3  0.0972    0.83805 0.000 0.000 0.964 0.028 NA 0.000
#> GSM74243      3  0.0972    0.83805 0.000 0.000 0.964 0.028 NA 0.000
#> GSM74244      3  0.0972    0.83805 0.000 0.000 0.964 0.028 NA 0.000
#> GSM74245      3  0.0972    0.83805 0.000 0.000 0.964 0.028 NA 0.000
#> GSM74246      3  0.0972    0.83805 0.000 0.000 0.964 0.028 NA 0.000
#> GSM74247      3  0.0972    0.83805 0.000 0.000 0.964 0.028 NA 0.000
#> GSM74248      3  0.0972    0.83805 0.000 0.000 0.964 0.028 NA 0.000
#> GSM74416      4  0.6383   -0.18824 0.324 0.020 0.000 0.428 NA 0.000
#> GSM74417      4  0.6391   -0.18921 0.320 0.020 0.000 0.428 NA 0.000
#> GSM74418      4  0.6391   -0.18921 0.320 0.020 0.000 0.428 NA 0.000
#> GSM74419      4  0.5008    0.55040 0.092 0.012 0.192 0.692 NA 0.000
#> GSM121358     3  0.2048    0.83428 0.000 0.120 0.880 0.000 NA 0.000
#> GSM121359     3  0.2048    0.83428 0.000 0.120 0.880 0.000 NA 0.000
#> GSM121360     4  0.4607    0.56694 0.000 0.012 0.264 0.672 NA 0.000
#> GSM121362     4  0.4607    0.56694 0.000 0.012 0.264 0.672 NA 0.000
#> GSM121364     4  0.4607    0.56694 0.000 0.012 0.264 0.672 NA 0.000
#> GSM121365     3  0.2048    0.83428 0.000 0.120 0.880 0.000 NA 0.000
#> GSM121366     3  0.2048    0.83428 0.000 0.120 0.880 0.000 NA 0.000
#> GSM121367     3  0.2048    0.83428 0.000 0.120 0.880 0.000 NA 0.000
#> GSM121370     3  0.2048    0.83428 0.000 0.120 0.880 0.000 NA 0.000
#> GSM121371     3  0.2048    0.83428 0.000 0.120 0.880 0.000 NA 0.000
#> GSM121372     3  0.2048    0.83428 0.000 0.120 0.880 0.000 NA 0.000
#> GSM121373     4  0.4607    0.56694 0.000 0.012 0.264 0.672 NA 0.000
#> GSM121374     4  0.4528    0.56787 0.000 0.012 0.260 0.680 NA 0.000
#> GSM121407     3  0.2135    0.82855 0.000 0.128 0.872 0.000 NA 0.000
#> GSM74387      2  0.6364    0.57381 0.008 0.472 0.232 0.000 NA 0.276
#> GSM74388      2  0.5921    0.61987 0.008 0.540 0.140 0.000 NA 0.300
#> GSM74389      3  0.6111   -0.06760 0.116 0.004 0.492 0.364 NA 0.012
#> GSM74390      3  0.6685    0.51415 0.056 0.040 0.608 0.012 NA 0.160
#> GSM74391      4  0.6503    0.21996 0.140 0.012 0.412 0.412 NA 0.012
#> GSM74392      3  0.2882    0.67179 0.000 0.000 0.812 0.180 NA 0.000
#> GSM74393      3  0.2882    0.67179 0.000 0.000 0.812 0.180 NA 0.000
#> GSM74394      2  0.6227    0.58713 0.008 0.496 0.192 0.000 NA 0.292
#> GSM74239      1  0.4693    0.58337 0.732 0.004 0.008 0.172 NA 0.068
#> GSM74364      1  0.4592    0.57997 0.744 0.004 0.004 0.160 NA 0.064
#> GSM74365      6  0.4670    0.55081 0.264 0.000 0.008 0.040 NA 0.676
#> GSM74366      6  0.1488    0.66594 0.008 0.028 0.008 0.000 NA 0.948
#> GSM74367      6  0.6025    0.27561 0.356 0.000 0.016 0.104 NA 0.508
#> GSM74377      6  0.0653    0.68629 0.012 0.000 0.000 0.004 NA 0.980
#> GSM74378      6  0.0622    0.67990 0.008 0.012 0.000 0.000 NA 0.980
#> GSM74379      6  0.3441    0.65724 0.148 0.000 0.004 0.024 NA 0.812
#> GSM74380      6  0.3680    0.65907 0.136 0.000 0.004 0.044 NA 0.804
#> GSM74381      6  0.1477    0.69061 0.048 0.000 0.000 0.008 NA 0.940
#> GSM121357     2  0.6411    0.36957 0.004 0.396 0.356 0.000 NA 0.232
#> GSM121361     2  0.5894    0.63141 0.008 0.548 0.140 0.000 NA 0.292
#> GSM121363     2  0.5894    0.63141 0.008 0.548 0.140 0.000 NA 0.292
#> GSM121368     2  0.5894    0.63141 0.008 0.548 0.140 0.000 NA 0.292
#> GSM121369     2  0.5894    0.63141 0.008 0.548 0.140 0.000 NA 0.292
#> GSM74368      4  0.7550   -0.05093 0.196 0.008 0.048 0.464 NA 0.232
#> GSM74369      4  0.7550   -0.05093 0.196 0.008 0.048 0.464 NA 0.232
#> GSM74370      4  0.7018    0.17396 0.204 0.012 0.048 0.568 NA 0.100
#> GSM74371      1  0.5936    0.40641 0.544 0.016 0.000 0.220 NA 0.000
#> GSM74372      1  0.6926    0.38466 0.432 0.012 0.020 0.356 NA 0.156
#> GSM74373      6  0.6128    0.41936 0.200 0.024 0.012 0.124 NA 0.620
#> GSM74374      1  0.7214    0.37711 0.404 0.012 0.016 0.272 NA 0.268
#> GSM74375      6  0.2784    0.68373 0.064 0.000 0.004 0.020 NA 0.880
#> GSM74376      6  0.3942    0.67007 0.108 0.020 0.016 0.024 NA 0.816
#> GSM74405      6  0.3068    0.67393 0.112 0.000 0.004 0.024 NA 0.848
#> GSM74351      4  0.5778   -0.03455 0.344 0.020 0.000 0.520 NA 0.000
#> GSM74352      6  0.1761    0.68439 0.032 0.016 0.000 0.008 NA 0.936
#> GSM74353      6  0.6249    0.39762 0.208 0.000 0.024 0.176 NA 0.572
#> GSM74354      1  0.6704    0.07827 0.420 0.008 0.020 0.152 NA 0.384
#> GSM74355      6  0.0665    0.68168 0.008 0.008 0.000 0.000 NA 0.980
#> GSM74382      1  0.4879    0.48720 0.680 0.004 0.016 0.252 NA 0.016
#> GSM74383      1  0.5833    0.40422 0.608 0.004 0.024 0.116 NA 0.240
#> GSM74384      6  0.1065    0.67529 0.008 0.020 0.000 0.000 NA 0.964
#> GSM74385      1  0.6718    0.41766 0.472 0.064 0.000 0.200 NA 0.000
#> GSM74386      6  0.6842   -0.00989 0.384 0.000 0.048 0.124 NA 0.420
#> GSM74395      6  0.6489    0.10145 0.368 0.000 0.048 0.132 NA 0.448
#> GSM74396      6  0.6411    0.19664 0.336 0.000 0.048 0.128 NA 0.484
#> GSM74397      6  0.7325   -0.19110 0.324 0.000 0.080 0.232 NA 0.356
#> GSM74398      6  0.3767    0.65261 0.156 0.000 0.004 0.028 NA 0.792
#> GSM74399      6  0.1096    0.68763 0.020 0.004 0.000 0.004 NA 0.964
#> GSM74400      6  0.4689    0.28320 0.020 0.008 0.000 0.004 NA 0.508
#> GSM74401      6  0.4689    0.28320 0.020 0.008 0.000 0.004 NA 0.508

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:hclust 112         1.59e-07 2
#> CV:hclust 110         9.28e-15 3
#> CV:hclust  69         4.80e-20 4
#> CV:hclust  82         1.06e-22 5
#> CV:hclust  92         5.23e-26 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.956           0.957       0.976         0.4969 0.497   0.497
#> 3 3 0.663           0.823       0.903         0.3250 0.725   0.501
#> 4 4 0.710           0.719       0.864         0.1302 0.802   0.487
#> 5 5 0.694           0.598       0.750         0.0616 0.913   0.677
#> 6 6 0.726           0.597       0.698         0.0366 0.896   0.572

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.2948      0.940 0.052 0.948
#> GSM74357      2  0.4815      0.906 0.104 0.896
#> GSM74358      2  0.4562      0.912 0.096 0.904
#> GSM74359      1  0.0000      0.997 1.000 0.000
#> GSM74360      1  0.0000      0.997 1.000 0.000
#> GSM74361      2  0.4562      0.912 0.096 0.904
#> GSM74362      2  0.5737      0.876 0.136 0.864
#> GSM74363      2  0.2948      0.940 0.052 0.948
#> GSM74402      1  0.0000      0.997 1.000 0.000
#> GSM74403      1  0.0000      0.997 1.000 0.000
#> GSM74404      1  0.0000      0.997 1.000 0.000
#> GSM74406      1  0.0000      0.997 1.000 0.000
#> GSM74407      1  0.0000      0.997 1.000 0.000
#> GSM74408      1  0.0000      0.997 1.000 0.000
#> GSM74409      1  0.0000      0.997 1.000 0.000
#> GSM74410      1  0.0000      0.997 1.000 0.000
#> GSM119936     1  0.0000      0.997 1.000 0.000
#> GSM119937     1  0.0000      0.997 1.000 0.000
#> GSM74411      2  0.0000      0.952 0.000 1.000
#> GSM74412      2  0.0000      0.952 0.000 1.000
#> GSM74413      2  0.0000      0.952 0.000 1.000
#> GSM74414      2  0.0000      0.952 0.000 1.000
#> GSM74415      2  0.2948      0.940 0.052 0.948
#> GSM121379     2  0.0000      0.952 0.000 1.000
#> GSM121380     2  0.0000      0.952 0.000 1.000
#> GSM121381     2  0.0000      0.952 0.000 1.000
#> GSM121382     2  0.0000      0.952 0.000 1.000
#> GSM121383     2  0.0000      0.952 0.000 1.000
#> GSM121384     2  0.0000      0.952 0.000 1.000
#> GSM121385     2  0.0000      0.952 0.000 1.000
#> GSM121386     2  0.0000      0.952 0.000 1.000
#> GSM121387     2  0.0000      0.952 0.000 1.000
#> GSM121388     2  0.0000      0.952 0.000 1.000
#> GSM121389     2  0.0000      0.952 0.000 1.000
#> GSM121390     2  0.0000      0.952 0.000 1.000
#> GSM121391     2  0.0000      0.952 0.000 1.000
#> GSM121392     2  0.0000      0.952 0.000 1.000
#> GSM121393     2  0.0000      0.952 0.000 1.000
#> GSM121394     2  0.0000      0.952 0.000 1.000
#> GSM121395     2  0.0000      0.952 0.000 1.000
#> GSM121396     2  0.0000      0.952 0.000 1.000
#> GSM121397     2  0.0000      0.952 0.000 1.000
#> GSM121398     2  0.0000      0.952 0.000 1.000
#> GSM121399     2  0.0000      0.952 0.000 1.000
#> GSM74240      2  0.6048      0.863 0.148 0.852
#> GSM74241      2  0.5178      0.895 0.116 0.884
#> GSM74242      2  0.9909      0.304 0.444 0.556
#> GSM74243      2  0.9909      0.304 0.444 0.556
#> GSM74244      2  0.4431      0.915 0.092 0.908
#> GSM74245      2  0.5946      0.868 0.144 0.856
#> GSM74246      2  0.4690      0.909 0.100 0.900
#> GSM74247      2  0.4562      0.912 0.096 0.904
#> GSM74248      2  0.6048      0.863 0.148 0.852
#> GSM74416      1  0.0000      0.997 1.000 0.000
#> GSM74417      1  0.0000      0.997 1.000 0.000
#> GSM74418      1  0.0000      0.997 1.000 0.000
#> GSM74419      1  0.0000      0.997 1.000 0.000
#> GSM121358     2  0.2948      0.940 0.052 0.948
#> GSM121359     2  0.0000      0.952 0.000 1.000
#> GSM121360     1  0.0000      0.997 1.000 0.000
#> GSM121362     1  0.0000      0.997 1.000 0.000
#> GSM121364     1  0.0000      0.997 1.000 0.000
#> GSM121365     2  0.2948      0.940 0.052 0.948
#> GSM121366     2  0.0000      0.952 0.000 1.000
#> GSM121367     2  0.2948      0.940 0.052 0.948
#> GSM121370     2  0.2948      0.940 0.052 0.948
#> GSM121371     2  0.2948      0.940 0.052 0.948
#> GSM121372     2  0.0000      0.952 0.000 1.000
#> GSM121373     1  0.0000      0.997 1.000 0.000
#> GSM121374     1  0.0000      0.997 1.000 0.000
#> GSM121407     2  0.0000      0.952 0.000 1.000
#> GSM74387      2  0.2778      0.941 0.048 0.952
#> GSM74388      2  0.0000      0.952 0.000 1.000
#> GSM74389      1  0.0672      0.990 0.992 0.008
#> GSM74390      1  0.0000      0.997 1.000 0.000
#> GSM74391      1  0.0000      0.997 1.000 0.000
#> GSM74392      1  0.0000      0.997 1.000 0.000
#> GSM74393      1  0.2236      0.960 0.964 0.036
#> GSM74394      2  0.2948      0.940 0.052 0.948
#> GSM74239      1  0.0000      0.997 1.000 0.000
#> GSM74364      1  0.0000      0.997 1.000 0.000
#> GSM74365      1  0.0000      0.997 1.000 0.000
#> GSM74366      1  0.0376      0.994 0.996 0.004
#> GSM74367      1  0.0000      0.997 1.000 0.000
#> GSM74377      1  0.0000      0.997 1.000 0.000
#> GSM74378      1  0.0376      0.994 0.996 0.004
#> GSM74379      1  0.0000      0.997 1.000 0.000
#> GSM74380      1  0.0000      0.997 1.000 0.000
#> GSM74381      1  0.0000      0.997 1.000 0.000
#> GSM121357     2  0.0000      0.952 0.000 1.000
#> GSM121361     2  0.1414      0.948 0.020 0.980
#> GSM121363     2  0.0000      0.952 0.000 1.000
#> GSM121368     2  0.0000      0.952 0.000 1.000
#> GSM121369     2  0.2778      0.941 0.048 0.952
#> GSM74368      1  0.0000      0.997 1.000 0.000
#> GSM74369      1  0.0000      0.997 1.000 0.000
#> GSM74370      1  0.0000      0.997 1.000 0.000
#> GSM74371      1  0.0000      0.997 1.000 0.000
#> GSM74372      1  0.0000      0.997 1.000 0.000
#> GSM74373      1  0.0000      0.997 1.000 0.000
#> GSM74374      1  0.0000      0.997 1.000 0.000
#> GSM74375      1  0.0000      0.997 1.000 0.000
#> GSM74376      1  0.0000      0.997 1.000 0.000
#> GSM74405      1  0.0000      0.997 1.000 0.000
#> GSM74351      1  0.0000      0.997 1.000 0.000
#> GSM74352      1  0.1414      0.979 0.980 0.020
#> GSM74353      1  0.0000      0.997 1.000 0.000
#> GSM74354      1  0.0000      0.997 1.000 0.000
#> GSM74355      1  0.0000      0.997 1.000 0.000
#> GSM74382      1  0.0000      0.997 1.000 0.000
#> GSM74383      1  0.0000      0.997 1.000 0.000
#> GSM74384      1  0.4022      0.914 0.920 0.080
#> GSM74385      1  0.0000      0.997 1.000 0.000
#> GSM74386      1  0.0000      0.997 1.000 0.000
#> GSM74395      1  0.0000      0.997 1.000 0.000
#> GSM74396      1  0.0000      0.997 1.000 0.000
#> GSM74397      1  0.0000      0.997 1.000 0.000
#> GSM74398      1  0.0000      0.997 1.000 0.000
#> GSM74399      1  0.0000      0.997 1.000 0.000
#> GSM74400      1  0.0000      0.997 1.000 0.000
#> GSM74401      1  0.0000      0.997 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.1031      0.783 0.000 0.024 0.976
#> GSM74357      3  0.1031      0.783 0.000 0.024 0.976
#> GSM74358      3  0.1031      0.783 0.000 0.024 0.976
#> GSM74359      3  0.4399      0.749 0.188 0.000 0.812
#> GSM74360      3  0.4654      0.731 0.208 0.000 0.792
#> GSM74361      3  0.0892      0.784 0.000 0.020 0.980
#> GSM74362      3  0.0892      0.784 0.000 0.020 0.980
#> GSM74363      3  0.1529      0.776 0.000 0.040 0.960
#> GSM74402      1  0.5560      0.563 0.700 0.000 0.300
#> GSM74403      1  0.4605      0.745 0.796 0.000 0.204
#> GSM74404      1  0.4605      0.745 0.796 0.000 0.204
#> GSM74406      3  0.5733      0.578 0.324 0.000 0.676
#> GSM74407      1  0.5431      0.598 0.716 0.000 0.284
#> GSM74408      3  0.5706      0.584 0.320 0.000 0.680
#> GSM74409      3  0.4887      0.710 0.228 0.000 0.772
#> GSM74410      3  0.4555      0.739 0.200 0.000 0.800
#> GSM119936     3  0.6079      0.443 0.388 0.000 0.612
#> GSM119937     3  0.6079      0.443 0.388 0.000 0.612
#> GSM74411      2  0.5591      0.679 0.000 0.696 0.304
#> GSM74412      2  0.4605      0.809 0.000 0.796 0.204
#> GSM74413      2  0.4750      0.797 0.000 0.784 0.216
#> GSM74414      2  0.1964      0.891 0.000 0.944 0.056
#> GSM74415      3  0.4887      0.611 0.000 0.228 0.772
#> GSM121379     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121380     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121381     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121382     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121383     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121384     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121385     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121386     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121387     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121388     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121389     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121390     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121391     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121392     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121393     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121394     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121395     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121396     2  0.1529      0.896 0.000 0.960 0.040
#> GSM121397     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121398     2  0.0000      0.906 0.000 1.000 0.000
#> GSM121399     2  0.0000      0.906 0.000 1.000 0.000
#> GSM74240      3  0.0237      0.786 0.000 0.004 0.996
#> GSM74241      3  0.3619      0.706 0.000 0.136 0.864
#> GSM74242      3  0.0000      0.786 0.000 0.000 1.000
#> GSM74243      3  0.0000      0.786 0.000 0.000 1.000
#> GSM74244      3  0.3619      0.706 0.000 0.136 0.864
#> GSM74245      3  0.0424      0.785 0.000 0.008 0.992
#> GSM74246      3  0.3752      0.699 0.000 0.144 0.856
#> GSM74247      3  0.4062      0.677 0.000 0.164 0.836
#> GSM74248      3  0.0237      0.786 0.000 0.004 0.996
#> GSM74416      1  0.4605      0.745 0.796 0.000 0.204
#> GSM74417      1  0.4605      0.745 0.796 0.000 0.204
#> GSM74418      1  0.3340      0.846 0.880 0.000 0.120
#> GSM74419      3  0.5760      0.570 0.328 0.000 0.672
#> GSM121358     3  0.4931      0.606 0.000 0.232 0.768
#> GSM121359     2  0.4605      0.809 0.000 0.796 0.204
#> GSM121360     3  0.4291      0.750 0.180 0.000 0.820
#> GSM121362     3  0.5621      0.603 0.308 0.000 0.692
#> GSM121364     3  0.4452      0.746 0.192 0.000 0.808
#> GSM121365     3  0.4931      0.606 0.000 0.232 0.768
#> GSM121366     3  0.4931      0.606 0.000 0.232 0.768
#> GSM121367     3  0.4931      0.606 0.000 0.232 0.768
#> GSM121370     3  0.4931      0.606 0.000 0.232 0.768
#> GSM121371     3  0.4931      0.606 0.000 0.232 0.768
#> GSM121372     2  0.5016      0.771 0.000 0.760 0.240
#> GSM121373     3  0.4452      0.746 0.192 0.000 0.808
#> GSM121374     3  0.4452      0.746 0.192 0.000 0.808
#> GSM121407     2  0.4555      0.812 0.000 0.800 0.200
#> GSM74387      2  0.5968      0.588 0.000 0.636 0.364
#> GSM74388      2  0.3669      0.872 0.040 0.896 0.064
#> GSM74389      3  0.2261      0.787 0.068 0.000 0.932
#> GSM74390      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74391      3  0.4796      0.719 0.220 0.000 0.780
#> GSM74392      3  0.4291      0.753 0.180 0.000 0.820
#> GSM74393      3  0.0000      0.786 0.000 0.000 1.000
#> GSM74394      2  0.7304      0.724 0.084 0.688 0.228
#> GSM74239      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74364      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74365      1  0.0000      0.950 1.000 0.000 0.000
#> GSM74366      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74367      1  0.0237      0.950 0.996 0.000 0.004
#> GSM74377      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74378      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74379      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74380      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74381      1  0.0747      0.948 0.984 0.000 0.016
#> GSM121357     2  0.3482      0.859 0.000 0.872 0.128
#> GSM121361     2  0.5435      0.832 0.048 0.808 0.144
#> GSM121363     2  0.4615      0.849 0.020 0.836 0.144
#> GSM121368     2  0.4475      0.851 0.016 0.840 0.144
#> GSM121369     2  0.7597      0.491 0.048 0.568 0.384
#> GSM74368      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74369      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74370      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74371      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74372      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74373      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74374      1  0.0000      0.950 1.000 0.000 0.000
#> GSM74375      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74376      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74405      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74351      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74352      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74353      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74354      1  0.0000      0.950 1.000 0.000 0.000
#> GSM74355      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74382      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74383      1  0.0237      0.950 0.996 0.000 0.004
#> GSM74384      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74385      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74386      1  0.0237      0.950 0.996 0.000 0.004
#> GSM74395      1  0.0424      0.950 0.992 0.000 0.008
#> GSM74396      1  0.0000      0.950 1.000 0.000 0.000
#> GSM74397      1  0.0592      0.948 0.988 0.000 0.012
#> GSM74398      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74399      1  0.0747      0.948 0.984 0.000 0.016
#> GSM74400      1  0.0237      0.950 0.996 0.000 0.004
#> GSM74401      1  0.0237      0.950 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.1022     0.8606 0.000 0.000 0.968 0.032
#> GSM74357      3  0.1118     0.8582 0.000 0.000 0.964 0.036
#> GSM74358      3  0.1118     0.8582 0.000 0.000 0.964 0.036
#> GSM74359      4  0.4800     0.5497 0.004 0.000 0.340 0.656
#> GSM74360      4  0.2714     0.7275 0.004 0.000 0.112 0.884
#> GSM74361      3  0.1022     0.8622 0.000 0.000 0.968 0.032
#> GSM74362      3  0.1211     0.8576 0.000 0.000 0.960 0.040
#> GSM74363      3  0.0921     0.8624 0.000 0.000 0.972 0.028
#> GSM74402      4  0.1743     0.7456 0.056 0.000 0.004 0.940
#> GSM74403      4  0.1637     0.7429 0.060 0.000 0.000 0.940
#> GSM74404      4  0.1637     0.7429 0.060 0.000 0.000 0.940
#> GSM74406      4  0.0927     0.7584 0.016 0.000 0.008 0.976
#> GSM74407      4  0.1557     0.7454 0.056 0.000 0.000 0.944
#> GSM74408      4  0.0927     0.7584 0.016 0.000 0.008 0.976
#> GSM74409      4  0.0937     0.7581 0.012 0.000 0.012 0.976
#> GSM74410      4  0.0927     0.7572 0.008 0.000 0.016 0.976
#> GSM119936     4  0.1042     0.7580 0.020 0.000 0.008 0.972
#> GSM119937     4  0.1042     0.7580 0.020 0.000 0.008 0.972
#> GSM74411      3  0.5106     0.5192 0.008 0.312 0.672 0.008
#> GSM74412      3  0.5149     0.5038 0.008 0.320 0.664 0.008
#> GSM74413      3  0.5127     0.5119 0.008 0.316 0.668 0.008
#> GSM74414      2  0.4630     0.6820 0.024 0.776 0.192 0.008
#> GSM74415      3  0.0804     0.8640 0.008 0.000 0.980 0.012
#> GSM121379     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121388     2  0.0188     0.8865 0.000 0.996 0.000 0.004
#> GSM121389     2  0.0188     0.8865 0.000 0.996 0.000 0.004
#> GSM121390     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121393     2  0.0188     0.8865 0.000 0.996 0.000 0.004
#> GSM121394     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121395     2  0.0188     0.8865 0.000 0.996 0.000 0.004
#> GSM121396     2  0.2714     0.7923 0.000 0.884 0.112 0.004
#> GSM121397     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000     0.8883 0.000 1.000 0.000 0.000
#> GSM74240      3  0.0804     0.8651 0.008 0.000 0.980 0.012
#> GSM74241      3  0.0672     0.8644 0.008 0.000 0.984 0.008
#> GSM74242      3  0.1356     0.8615 0.008 0.000 0.960 0.032
#> GSM74243      3  0.1452     0.8593 0.008 0.000 0.956 0.036
#> GSM74244      3  0.0804     0.8651 0.008 0.000 0.980 0.012
#> GSM74245      3  0.0804     0.8651 0.008 0.000 0.980 0.012
#> GSM74246      3  0.0672     0.8644 0.008 0.000 0.984 0.008
#> GSM74247      3  0.0672     0.8644 0.008 0.000 0.984 0.008
#> GSM74248      3  0.0804     0.8651 0.008 0.000 0.980 0.012
#> GSM74416      4  0.1637     0.7429 0.060 0.000 0.000 0.940
#> GSM74417      4  0.1557     0.7454 0.056 0.000 0.000 0.944
#> GSM74418      4  0.1637     0.7429 0.060 0.000 0.000 0.940
#> GSM74419      4  0.1042     0.7580 0.020 0.000 0.008 0.972
#> GSM121358     3  0.0895     0.8650 0.000 0.004 0.976 0.020
#> GSM121359     3  0.4761     0.4909 0.000 0.332 0.664 0.004
#> GSM121360     4  0.4800     0.5497 0.004 0.000 0.340 0.656
#> GSM121362     4  0.5695     0.5350 0.040 0.000 0.336 0.624
#> GSM121364     4  0.4761     0.5583 0.004 0.000 0.332 0.664
#> GSM121365     3  0.0895     0.8650 0.000 0.004 0.976 0.020
#> GSM121366     3  0.0657     0.8657 0.000 0.004 0.984 0.012
#> GSM121367     3  0.0895     0.8650 0.000 0.004 0.976 0.020
#> GSM121370     3  0.0592     0.8655 0.000 0.000 0.984 0.016
#> GSM121371     3  0.0895     0.8650 0.000 0.004 0.976 0.020
#> GSM121372     3  0.4720     0.5074 0.000 0.324 0.672 0.004
#> GSM121373     4  0.4800     0.5497 0.004 0.000 0.340 0.656
#> GSM121374     4  0.4800     0.5497 0.004 0.000 0.340 0.656
#> GSM121407     3  0.4781     0.4824 0.000 0.336 0.660 0.004
#> GSM74387      3  0.3822     0.7526 0.016 0.140 0.836 0.008
#> GSM74388      2  0.7224     0.4712 0.340 0.528 0.124 0.008
#> GSM74389      4  0.5000     0.1712 0.000 0.000 0.500 0.500
#> GSM74390      1  0.0336     0.8450 0.992 0.000 0.000 0.008
#> GSM74391      4  0.1284     0.7566 0.012 0.000 0.024 0.964
#> GSM74392      4  0.4800     0.5497 0.004 0.000 0.340 0.656
#> GSM74393      3  0.2918     0.7787 0.008 0.000 0.876 0.116
#> GSM74394      3  0.7932     0.2047 0.252 0.280 0.460 0.008
#> GSM74239      1  0.4713     0.5645 0.640 0.000 0.000 0.360
#> GSM74364      1  0.4730     0.5568 0.636 0.000 0.000 0.364
#> GSM74365      1  0.1637     0.8364 0.940 0.000 0.000 0.060
#> GSM74366      1  0.0376     0.8341 0.992 0.000 0.004 0.004
#> GSM74367      1  0.3907     0.7451 0.768 0.000 0.000 0.232
#> GSM74377      1  0.0336     0.8450 0.992 0.000 0.000 0.008
#> GSM74378      1  0.0000     0.8401 1.000 0.000 0.000 0.000
#> GSM74379      1  0.0336     0.8450 0.992 0.000 0.000 0.008
#> GSM74380      1  0.0336     0.8450 0.992 0.000 0.000 0.008
#> GSM74381      1  0.0336     0.8450 0.992 0.000 0.000 0.008
#> GSM121357     2  0.5833     0.1299 0.024 0.532 0.440 0.004
#> GSM121361     2  0.7867     0.3552 0.268 0.476 0.248 0.008
#> GSM121363     2  0.7870     0.3451 0.256 0.476 0.260 0.008
#> GSM121368     2  0.7870     0.3451 0.256 0.476 0.260 0.008
#> GSM121369     3  0.5391     0.6595 0.208 0.052 0.732 0.008
#> GSM74368      1  0.4250     0.7074 0.724 0.000 0.000 0.276
#> GSM74369      1  0.4382     0.6833 0.704 0.000 0.000 0.296
#> GSM74370      1  0.4585     0.6322 0.668 0.000 0.000 0.332
#> GSM74371      4  0.4948    -0.0752 0.440 0.000 0.000 0.560
#> GSM74372      4  0.4955    -0.0611 0.444 0.000 0.000 0.556
#> GSM74373      1  0.0336     0.8450 0.992 0.000 0.000 0.008
#> GSM74374      1  0.3356     0.7873 0.824 0.000 0.000 0.176
#> GSM74375      1  0.0469     0.8449 0.988 0.000 0.000 0.012
#> GSM74376      1  0.0000     0.8401 1.000 0.000 0.000 0.000
#> GSM74405      1  0.0336     0.8450 0.992 0.000 0.000 0.008
#> GSM74351      4  0.4431     0.3726 0.304 0.000 0.000 0.696
#> GSM74352      1  0.0000     0.8401 1.000 0.000 0.000 0.000
#> GSM74353      1  0.4817     0.5206 0.612 0.000 0.000 0.388
#> GSM74354      1  0.3311     0.7909 0.828 0.000 0.000 0.172
#> GSM74355      1  0.0000     0.8401 1.000 0.000 0.000 0.000
#> GSM74382      4  0.4134     0.4702 0.260 0.000 0.000 0.740
#> GSM74383      1  0.3764     0.7620 0.784 0.000 0.000 0.216
#> GSM74384      1  0.0376     0.8341 0.992 0.000 0.004 0.004
#> GSM74385      4  0.4994    -0.2109 0.480 0.000 0.000 0.520
#> GSM74386      1  0.3726     0.7659 0.788 0.000 0.000 0.212
#> GSM74395      1  0.4454     0.6486 0.692 0.000 0.000 0.308
#> GSM74396      1  0.3688     0.7668 0.792 0.000 0.000 0.208
#> GSM74397      1  0.4981     0.3060 0.536 0.000 0.000 0.464
#> GSM74398      1  0.0336     0.8450 0.992 0.000 0.000 0.008
#> GSM74399      1  0.0336     0.8450 0.992 0.000 0.000 0.008
#> GSM74400      1  0.1389     0.8407 0.952 0.000 0.000 0.048
#> GSM74401      1  0.1389     0.8407 0.952 0.000 0.000 0.048

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0727     0.8535 0.004 0.000 0.980 0.012 0.004
#> GSM74357      3  0.1059     0.8502 0.004 0.000 0.968 0.020 0.008
#> GSM74358      3  0.1059     0.8502 0.004 0.000 0.968 0.020 0.008
#> GSM74359      4  0.5524     0.6237 0.004 0.000 0.180 0.664 0.152
#> GSM74360      4  0.5029     0.6707 0.012 0.000 0.104 0.728 0.156
#> GSM74361      3  0.1915     0.8473 0.000 0.000 0.928 0.032 0.040
#> GSM74362      3  0.4960     0.6151 0.000 0.000 0.708 0.180 0.112
#> GSM74363      3  0.0566     0.8542 0.004 0.000 0.984 0.012 0.000
#> GSM74402      4  0.3491     0.6515 0.228 0.000 0.000 0.768 0.004
#> GSM74403      4  0.4086     0.5980 0.284 0.000 0.000 0.704 0.012
#> GSM74404      4  0.4086     0.5980 0.284 0.000 0.000 0.704 0.012
#> GSM74406      4  0.2020     0.7176 0.100 0.000 0.000 0.900 0.000
#> GSM74407      4  0.3671     0.6450 0.236 0.000 0.000 0.756 0.008
#> GSM74408      4  0.2077     0.7194 0.084 0.000 0.000 0.908 0.008
#> GSM74409      4  0.1981     0.7198 0.048 0.000 0.000 0.924 0.028
#> GSM74410      4  0.2227     0.7195 0.048 0.000 0.004 0.916 0.032
#> GSM119936     4  0.2536     0.7107 0.128 0.000 0.000 0.868 0.004
#> GSM119937     4  0.2707     0.7107 0.132 0.000 0.000 0.860 0.008
#> GSM74411      3  0.4503     0.7294 0.000 0.120 0.756 0.000 0.124
#> GSM74412      3  0.4548     0.7264 0.000 0.120 0.752 0.000 0.128
#> GSM74413      3  0.4503     0.7294 0.000 0.120 0.756 0.000 0.124
#> GSM74414      2  0.5793     0.3745 0.000 0.584 0.124 0.000 0.292
#> GSM74415      3  0.2536     0.8237 0.000 0.000 0.868 0.004 0.128
#> GSM121379     2  0.0324     0.9347 0.000 0.992 0.000 0.004 0.004
#> GSM121380     2  0.0162     0.9353 0.000 0.996 0.000 0.000 0.004
#> GSM121381     2  0.0162     0.9353 0.000 0.996 0.000 0.000 0.004
#> GSM121382     2  0.0290     0.9342 0.000 0.992 0.000 0.000 0.008
#> GSM121383     2  0.0290     0.9342 0.000 0.992 0.000 0.000 0.008
#> GSM121384     2  0.0162     0.9353 0.000 0.996 0.000 0.000 0.004
#> GSM121385     2  0.0162     0.9353 0.000 0.996 0.000 0.000 0.004
#> GSM121386     2  0.0162     0.9353 0.000 0.996 0.000 0.000 0.004
#> GSM121387     2  0.0290     0.9342 0.000 0.992 0.000 0.000 0.008
#> GSM121388     2  0.0932     0.9264 0.004 0.972 0.000 0.004 0.020
#> GSM121389     2  0.0566     0.9319 0.000 0.984 0.000 0.004 0.012
#> GSM121390     2  0.0324     0.9347 0.000 0.992 0.000 0.004 0.004
#> GSM121391     2  0.0162     0.9349 0.000 0.996 0.000 0.000 0.004
#> GSM121392     2  0.0324     0.9347 0.000 0.992 0.000 0.004 0.004
#> GSM121393     2  0.0932     0.9264 0.004 0.972 0.000 0.004 0.020
#> GSM121394     2  0.0162     0.9349 0.000 0.996 0.000 0.000 0.004
#> GSM121395     2  0.0833     0.9284 0.004 0.976 0.000 0.004 0.016
#> GSM121396     2  0.3425     0.7814 0.004 0.840 0.112 0.000 0.044
#> GSM121397     2  0.0162     0.9353 0.000 0.996 0.000 0.000 0.004
#> GSM121398     2  0.0162     0.9353 0.000 0.996 0.000 0.000 0.004
#> GSM121399     2  0.0000     0.9353 0.000 1.000 0.000 0.000 0.000
#> GSM74240      3  0.3209     0.8394 0.004 0.000 0.848 0.028 0.120
#> GSM74241      3  0.3304     0.8390 0.004 0.000 0.840 0.028 0.128
#> GSM74242      3  0.3273     0.8342 0.004 0.000 0.848 0.036 0.112
#> GSM74243      3  0.3273     0.8342 0.004 0.000 0.848 0.036 0.112
#> GSM74244      3  0.3160     0.8402 0.004 0.000 0.852 0.028 0.116
#> GSM74245      3  0.3209     0.8394 0.004 0.000 0.848 0.028 0.120
#> GSM74246      3  0.3441     0.8361 0.004 0.000 0.828 0.028 0.140
#> GSM74247      3  0.3441     0.8361 0.004 0.000 0.828 0.028 0.140
#> GSM74248      3  0.3059     0.8385 0.004 0.000 0.860 0.028 0.108
#> GSM74416      4  0.3928     0.5849 0.296 0.000 0.000 0.700 0.004
#> GSM74417      4  0.3861     0.6001 0.284 0.000 0.000 0.712 0.004
#> GSM74418      4  0.3928     0.5849 0.296 0.000 0.000 0.700 0.004
#> GSM74419      4  0.2605     0.7032 0.148 0.000 0.000 0.852 0.000
#> GSM121358     3  0.0727     0.8544 0.004 0.000 0.980 0.012 0.004
#> GSM121359     3  0.4416     0.7360 0.004 0.124 0.780 0.004 0.088
#> GSM121360     4  0.5630     0.6145 0.004 0.000 0.180 0.652 0.164
#> GSM121362     4  0.6199     0.6034 0.028 0.000 0.176 0.628 0.168
#> GSM121364     4  0.5524     0.6237 0.004 0.000 0.180 0.664 0.152
#> GSM121365     3  0.0727     0.8544 0.004 0.000 0.980 0.012 0.004
#> GSM121366     3  0.0727     0.8544 0.004 0.000 0.980 0.012 0.004
#> GSM121367     3  0.0727     0.8544 0.004 0.000 0.980 0.012 0.004
#> GSM121370     3  0.0727     0.8544 0.004 0.000 0.980 0.012 0.004
#> GSM121371     3  0.0727     0.8544 0.004 0.000 0.980 0.012 0.004
#> GSM121372     3  0.4416     0.7360 0.004 0.124 0.780 0.004 0.088
#> GSM121373     4  0.5524     0.6237 0.004 0.000 0.180 0.664 0.152
#> GSM121374     4  0.5524     0.6237 0.004 0.000 0.180 0.664 0.152
#> GSM121407     3  0.4522     0.7312 0.004 0.124 0.772 0.004 0.096
#> GSM74387      3  0.5053     0.6483 0.000 0.048 0.644 0.004 0.304
#> GSM74388      5  0.5649     0.1734 0.040 0.372 0.024 0.000 0.564
#> GSM74389      4  0.6111     0.3356 0.004 0.000 0.340 0.532 0.124
#> GSM74390      1  0.4182     0.2242 0.600 0.000 0.000 0.000 0.400
#> GSM74391      4  0.3689     0.7215 0.084 0.000 0.012 0.836 0.068
#> GSM74392      4  0.5487     0.6253 0.004 0.000 0.180 0.668 0.148
#> GSM74393      3  0.6331     0.2464 0.004 0.000 0.508 0.336 0.152
#> GSM74394      5  0.6390    -0.0508 0.020 0.096 0.348 0.004 0.532
#> GSM74239      1  0.2583     0.6033 0.864 0.000 0.000 0.132 0.004
#> GSM74364      1  0.2583     0.6046 0.864 0.000 0.000 0.132 0.004
#> GSM74365      1  0.2929     0.5030 0.820 0.000 0.000 0.000 0.180
#> GSM74366      5  0.4235     0.1882 0.424 0.000 0.000 0.000 0.576
#> GSM74367      1  0.2153     0.6190 0.916 0.000 0.000 0.040 0.044
#> GSM74377      1  0.4283     0.0823 0.544 0.000 0.000 0.000 0.456
#> GSM74378      5  0.4256     0.1685 0.436 0.000 0.000 0.000 0.564
#> GSM74379      1  0.4210     0.1828 0.588 0.000 0.000 0.000 0.412
#> GSM74380      1  0.4219     0.1775 0.584 0.000 0.000 0.000 0.416
#> GSM74381      1  0.4300     0.0162 0.524 0.000 0.000 0.000 0.476
#> GSM121357     2  0.6754     0.0654 0.000 0.400 0.324 0.000 0.276
#> GSM121361     5  0.6394     0.1496 0.020 0.368 0.092 0.004 0.516
#> GSM121363     5  0.6394     0.1496 0.020 0.368 0.092 0.004 0.516
#> GSM121368     5  0.6394     0.1496 0.020 0.368 0.092 0.004 0.516
#> GSM121369     5  0.5824    -0.2412 0.020 0.028 0.428 0.012 0.512
#> GSM74368      1  0.4025     0.5901 0.792 0.000 0.000 0.076 0.132
#> GSM74369      1  0.3702     0.6104 0.820 0.000 0.000 0.084 0.096
#> GSM74370      1  0.2900     0.6132 0.864 0.000 0.000 0.108 0.028
#> GSM74371      1  0.4130     0.3923 0.696 0.000 0.000 0.292 0.012
#> GSM74372      1  0.3863     0.4738 0.740 0.000 0.000 0.248 0.012
#> GSM74373      1  0.4305    -0.0282 0.512 0.000 0.000 0.000 0.488
#> GSM74374      1  0.1661     0.6201 0.940 0.000 0.000 0.024 0.036
#> GSM74375      1  0.4256     0.1382 0.564 0.000 0.000 0.000 0.436
#> GSM74376      5  0.4249     0.1773 0.432 0.000 0.000 0.000 0.568
#> GSM74405      5  0.4305     0.0132 0.488 0.000 0.000 0.000 0.512
#> GSM74351      1  0.4517     0.1669 0.600 0.000 0.000 0.388 0.012
#> GSM74352      5  0.4268     0.1516 0.444 0.000 0.000 0.000 0.556
#> GSM74353      1  0.2612     0.6111 0.868 0.000 0.000 0.124 0.008
#> GSM74354      1  0.0898     0.6219 0.972 0.000 0.000 0.020 0.008
#> GSM74355      5  0.4294     0.0815 0.468 0.000 0.000 0.000 0.532
#> GSM74382      1  0.4457     0.1853 0.620 0.000 0.000 0.368 0.012
#> GSM74383      1  0.1282     0.6249 0.952 0.000 0.000 0.044 0.004
#> GSM74384      5  0.4235     0.1882 0.424 0.000 0.000 0.000 0.576
#> GSM74385      1  0.4181     0.4298 0.712 0.000 0.000 0.268 0.020
#> GSM74386      1  0.1997     0.6203 0.924 0.000 0.000 0.036 0.040
#> GSM74395      1  0.1571     0.6240 0.936 0.000 0.000 0.060 0.004
#> GSM74396      1  0.1168     0.6249 0.960 0.000 0.000 0.032 0.008
#> GSM74397      1  0.3491     0.4988 0.768 0.000 0.000 0.228 0.004
#> GSM74398      1  0.4192     0.2077 0.596 0.000 0.000 0.000 0.404
#> GSM74399      1  0.4283     0.0823 0.544 0.000 0.000 0.000 0.456
#> GSM74400      1  0.4138     0.2672 0.616 0.000 0.000 0.000 0.384
#> GSM74401      1  0.4138     0.2672 0.616 0.000 0.000 0.000 0.384

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.1075      0.721 0.000 0.000 0.952 0.048 0.000 0.000
#> GSM74357      3  0.1204      0.717 0.000 0.000 0.944 0.056 0.000 0.000
#> GSM74358      3  0.1204      0.717 0.000 0.000 0.944 0.056 0.000 0.000
#> GSM74359      4  0.1644      0.677 0.004 0.000 0.076 0.920 0.000 0.000
#> GSM74360      4  0.1584      0.678 0.008 0.000 0.064 0.928 0.000 0.000
#> GSM74361      3  0.2365      0.712 0.000 0.000 0.888 0.072 0.040 0.000
#> GSM74362      4  0.4594     -0.166 0.000 0.000 0.476 0.488 0.036 0.000
#> GSM74363      3  0.0790      0.724 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM74402      1  0.5693     -0.270 0.448 0.000 0.000 0.392 0.160 0.000
#> GSM74403      1  0.5798     -0.137 0.484 0.000 0.000 0.312 0.204 0.000
#> GSM74404      1  0.5798     -0.137 0.484 0.000 0.000 0.312 0.204 0.000
#> GSM74406      4  0.5480      0.478 0.308 0.000 0.000 0.540 0.152 0.000
#> GSM74407      1  0.5862     -0.262 0.428 0.000 0.000 0.376 0.196 0.000
#> GSM74408      4  0.5440      0.488 0.296 0.000 0.000 0.552 0.152 0.000
#> GSM74409      4  0.5277      0.525 0.256 0.000 0.000 0.592 0.152 0.000
#> GSM74410      4  0.5177      0.540 0.236 0.000 0.000 0.612 0.152 0.000
#> GSM119936     4  0.5624      0.403 0.356 0.000 0.000 0.488 0.156 0.000
#> GSM119937     4  0.5642      0.407 0.352 0.000 0.000 0.488 0.160 0.000
#> GSM74411      3  0.4044      0.557 0.000 0.040 0.704 0.000 0.256 0.000
#> GSM74412      3  0.4332      0.444 0.000 0.040 0.644 0.000 0.316 0.000
#> GSM74413      3  0.4044      0.557 0.000 0.040 0.704 0.000 0.256 0.000
#> GSM74414      2  0.6907     -0.587 0.000 0.384 0.148 0.000 0.376 0.092
#> GSM74415      3  0.3314      0.612 0.000 0.000 0.740 0.004 0.256 0.000
#> GSM121379     2  0.0291      0.934 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121380     2  0.0291      0.934 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121381     2  0.0291      0.934 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121382     2  0.0363      0.930 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM121383     2  0.0363      0.930 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM121384     2  0.0291      0.934 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121385     2  0.0291      0.934 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121386     2  0.0291      0.934 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121387     2  0.0363      0.930 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM121388     2  0.1633      0.899 0.024 0.932 0.000 0.000 0.044 0.000
#> GSM121389     2  0.1297      0.909 0.012 0.948 0.000 0.000 0.040 0.000
#> GSM121390     2  0.0291      0.934 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121391     2  0.0146      0.932 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121392     2  0.0291      0.934 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121393     2  0.1633      0.899 0.024 0.932 0.000 0.000 0.044 0.000
#> GSM121394     2  0.0260      0.932 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121395     2  0.1391      0.907 0.016 0.944 0.000 0.000 0.040 0.000
#> GSM121396     2  0.4038      0.644 0.016 0.768 0.160 0.000 0.056 0.000
#> GSM121397     2  0.0291      0.934 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121398     2  0.0291      0.934 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121399     2  0.0000      0.933 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      3  0.5504      0.599 0.024 0.000 0.588 0.096 0.292 0.000
#> GSM74241      3  0.5365      0.599 0.024 0.000 0.596 0.080 0.300 0.000
#> GSM74242      3  0.5632      0.598 0.024 0.000 0.588 0.120 0.268 0.000
#> GSM74243      3  0.5667      0.595 0.024 0.000 0.584 0.124 0.268 0.000
#> GSM74244      3  0.5349      0.601 0.024 0.000 0.600 0.080 0.296 0.000
#> GSM74245      3  0.5421      0.601 0.024 0.000 0.596 0.088 0.292 0.000
#> GSM74246      3  0.5394      0.593 0.024 0.000 0.588 0.080 0.308 0.000
#> GSM74247      3  0.5394      0.593 0.024 0.000 0.588 0.080 0.308 0.000
#> GSM74248      3  0.5556      0.603 0.024 0.000 0.592 0.108 0.276 0.000
#> GSM74416      1  0.5600     -0.130 0.508 0.000 0.000 0.332 0.160 0.000
#> GSM74417      1  0.5618     -0.147 0.500 0.000 0.000 0.340 0.160 0.000
#> GSM74418      1  0.5600     -0.130 0.508 0.000 0.000 0.332 0.160 0.000
#> GSM74419      4  0.5651      0.340 0.400 0.000 0.000 0.448 0.152 0.000
#> GSM121358     3  0.0922      0.725 0.000 0.004 0.968 0.024 0.004 0.000
#> GSM121359     3  0.2744      0.627 0.000 0.072 0.864 0.000 0.064 0.000
#> GSM121360     4  0.2002      0.670 0.004 0.000 0.076 0.908 0.012 0.000
#> GSM121362     4  0.2507      0.659 0.016 0.000 0.072 0.892 0.012 0.008
#> GSM121364     4  0.1644      0.677 0.004 0.000 0.076 0.920 0.000 0.000
#> GSM121365     3  0.0922      0.725 0.000 0.004 0.968 0.024 0.004 0.000
#> GSM121366     3  0.0837      0.724 0.000 0.004 0.972 0.020 0.004 0.000
#> GSM121367     3  0.0922      0.725 0.000 0.004 0.968 0.024 0.004 0.000
#> GSM121370     3  0.0837      0.724 0.000 0.004 0.972 0.020 0.004 0.000
#> GSM121371     3  0.0922      0.725 0.000 0.004 0.968 0.024 0.004 0.000
#> GSM121372     3  0.2830      0.632 0.000 0.068 0.864 0.004 0.064 0.000
#> GSM121373     4  0.1644      0.677 0.004 0.000 0.076 0.920 0.000 0.000
#> GSM121374     4  0.1644      0.677 0.004 0.000 0.076 0.920 0.000 0.000
#> GSM121407     3  0.3118      0.599 0.000 0.072 0.836 0.000 0.092 0.000
#> GSM74387      5  0.5715      0.240 0.000 0.024 0.400 0.008 0.500 0.068
#> GSM74388      5  0.6718      0.661 0.000 0.272 0.028 0.008 0.436 0.256
#> GSM74389      4  0.3909      0.571 0.008 0.000 0.160 0.772 0.060 0.000
#> GSM74390      6  0.5408      0.373 0.304 0.000 0.000 0.000 0.144 0.552
#> GSM74391      4  0.5522      0.509 0.268 0.000 0.004 0.568 0.160 0.000
#> GSM74392      4  0.2262      0.679 0.008 0.000 0.080 0.896 0.016 0.000
#> GSM74393      4  0.4407      0.415 0.000 0.000 0.232 0.692 0.076 0.000
#> GSM74394      5  0.6779      0.574 0.000 0.056 0.260 0.008 0.488 0.188
#> GSM74239      1  0.3314      0.525 0.740 0.000 0.000 0.000 0.004 0.256
#> GSM74364      1  0.3488      0.529 0.744 0.000 0.000 0.004 0.008 0.244
#> GSM74365      6  0.3971      0.102 0.448 0.000 0.000 0.000 0.004 0.548
#> GSM74366      6  0.1714      0.749 0.000 0.000 0.000 0.000 0.092 0.908
#> GSM74367      1  0.3727      0.348 0.612 0.000 0.000 0.000 0.000 0.388
#> GSM74377      6  0.1556      0.818 0.080 0.000 0.000 0.000 0.000 0.920
#> GSM74378      6  0.1387      0.775 0.000 0.000 0.000 0.000 0.068 0.932
#> GSM74379      6  0.2340      0.774 0.148 0.000 0.000 0.000 0.000 0.852
#> GSM74380      6  0.2135      0.791 0.128 0.000 0.000 0.000 0.000 0.872
#> GSM74381      6  0.1444      0.820 0.072 0.000 0.000 0.000 0.000 0.928
#> GSM121357     5  0.7174      0.614 0.000 0.276 0.272 0.000 0.368 0.084
#> GSM121361     5  0.7183      0.740 0.000 0.264 0.092 0.008 0.444 0.192
#> GSM121363     5  0.7205      0.736 0.000 0.272 0.092 0.008 0.436 0.192
#> GSM121368     5  0.7205      0.736 0.000 0.272 0.092 0.008 0.436 0.192
#> GSM121369     5  0.6798      0.508 0.000 0.024 0.284 0.032 0.480 0.180
#> GSM74368      1  0.4947      0.274 0.528 0.000 0.000 0.008 0.048 0.416
#> GSM74369      1  0.4923      0.317 0.544 0.000 0.000 0.008 0.048 0.400
#> GSM74370      1  0.4694      0.510 0.656 0.000 0.000 0.020 0.040 0.284
#> GSM74371      1  0.2636      0.558 0.860 0.000 0.000 0.004 0.016 0.120
#> GSM74372      1  0.5285      0.532 0.660 0.000 0.000 0.048 0.076 0.216
#> GSM74373      6  0.1398      0.821 0.052 0.000 0.000 0.000 0.008 0.940
#> GSM74374      1  0.4646      0.453 0.616 0.000 0.000 0.000 0.060 0.324
#> GSM74375      6  0.1806      0.814 0.088 0.000 0.000 0.000 0.004 0.908
#> GSM74376      6  0.1556      0.765 0.000 0.000 0.000 0.000 0.080 0.920
#> GSM74405      6  0.1498      0.811 0.028 0.000 0.000 0.000 0.032 0.940
#> GSM74351      1  0.3282      0.516 0.848 0.000 0.000 0.036 0.068 0.048
#> GSM74352      6  0.1757      0.778 0.008 0.000 0.000 0.000 0.076 0.916
#> GSM74353      1  0.4476      0.519 0.668 0.000 0.000 0.008 0.044 0.280
#> GSM74354      1  0.3714      0.449 0.656 0.000 0.000 0.000 0.004 0.340
#> GSM74355      6  0.1528      0.800 0.016 0.000 0.000 0.000 0.048 0.936
#> GSM74382      1  0.2164      0.549 0.908 0.000 0.000 0.012 0.020 0.060
#> GSM74383      1  0.3725      0.479 0.676 0.000 0.000 0.000 0.008 0.316
#> GSM74384      6  0.1765      0.744 0.000 0.000 0.000 0.000 0.096 0.904
#> GSM74385      1  0.3236      0.556 0.820 0.000 0.000 0.004 0.036 0.140
#> GSM74386      1  0.3659      0.411 0.636 0.000 0.000 0.000 0.000 0.364
#> GSM74395      1  0.3499      0.475 0.680 0.000 0.000 0.000 0.000 0.320
#> GSM74396      1  0.3547      0.461 0.668 0.000 0.000 0.000 0.000 0.332
#> GSM74397      1  0.4147      0.547 0.744 0.000 0.000 0.044 0.016 0.196
#> GSM74398      6  0.2048      0.795 0.120 0.000 0.000 0.000 0.000 0.880
#> GSM74399      6  0.1610      0.817 0.084 0.000 0.000 0.000 0.000 0.916
#> GSM74400      6  0.4166      0.714 0.160 0.000 0.000 0.004 0.088 0.748
#> GSM74401      6  0.4200      0.708 0.164 0.000 0.000 0.004 0.088 0.744

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:kmeans 119         4.11e-11 2
#> CV:kmeans 118         4.50e-24 3
#> CV:kmeans 106         1.87e-32 4
#> CV:kmeans  87         1.90e-28 5
#> CV:kmeans  93         5.65e-30 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.983       0.993         0.5033 0.497   0.497
#> 3 3 0.917           0.895       0.953         0.3157 0.770   0.569
#> 4 4 0.858           0.846       0.931         0.1335 0.817   0.524
#> 5 5 0.762           0.721       0.853         0.0463 0.951   0.806
#> 6 6 0.753           0.594       0.764         0.0407 0.884   0.543

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.0000      0.988 0.000 1.000
#> GSM74357      2  0.0000      0.988 0.000 1.000
#> GSM74358      2  0.0000      0.988 0.000 1.000
#> GSM74359      1  0.0000      0.997 1.000 0.000
#> GSM74360      1  0.0000      0.997 1.000 0.000
#> GSM74361      2  0.0000      0.988 0.000 1.000
#> GSM74362      2  0.0000      0.988 0.000 1.000
#> GSM74363      2  0.0000      0.988 0.000 1.000
#> GSM74402      1  0.0000      0.997 1.000 0.000
#> GSM74403      1  0.0000      0.997 1.000 0.000
#> GSM74404      1  0.0000      0.997 1.000 0.000
#> GSM74406      1  0.0000      0.997 1.000 0.000
#> GSM74407      1  0.0000      0.997 1.000 0.000
#> GSM74408      1  0.0000      0.997 1.000 0.000
#> GSM74409      1  0.0000      0.997 1.000 0.000
#> GSM74410      1  0.0000      0.997 1.000 0.000
#> GSM119936     1  0.0000      0.997 1.000 0.000
#> GSM119937     1  0.0000      0.997 1.000 0.000
#> GSM74411      2  0.0000      0.988 0.000 1.000
#> GSM74412      2  0.0000      0.988 0.000 1.000
#> GSM74413      2  0.0000      0.988 0.000 1.000
#> GSM74414      2  0.0000      0.988 0.000 1.000
#> GSM74415      2  0.0000      0.988 0.000 1.000
#> GSM121379     2  0.0000      0.988 0.000 1.000
#> GSM121380     2  0.0000      0.988 0.000 1.000
#> GSM121381     2  0.0000      0.988 0.000 1.000
#> GSM121382     2  0.0000      0.988 0.000 1.000
#> GSM121383     2  0.0000      0.988 0.000 1.000
#> GSM121384     2  0.0000      0.988 0.000 1.000
#> GSM121385     2  0.0000      0.988 0.000 1.000
#> GSM121386     2  0.0000      0.988 0.000 1.000
#> GSM121387     2  0.0000      0.988 0.000 1.000
#> GSM121388     2  0.0000      0.988 0.000 1.000
#> GSM121389     2  0.0000      0.988 0.000 1.000
#> GSM121390     2  0.0000      0.988 0.000 1.000
#> GSM121391     2  0.0000      0.988 0.000 1.000
#> GSM121392     2  0.0000      0.988 0.000 1.000
#> GSM121393     2  0.0000      0.988 0.000 1.000
#> GSM121394     2  0.0000      0.988 0.000 1.000
#> GSM121395     2  0.0000      0.988 0.000 1.000
#> GSM121396     2  0.0000      0.988 0.000 1.000
#> GSM121397     2  0.0000      0.988 0.000 1.000
#> GSM121398     2  0.0000      0.988 0.000 1.000
#> GSM121399     2  0.0000      0.988 0.000 1.000
#> GSM74240      2  0.0000      0.988 0.000 1.000
#> GSM74241      2  0.0000      0.988 0.000 1.000
#> GSM74242      2  0.9209      0.500 0.336 0.664
#> GSM74243      2  0.9286      0.482 0.344 0.656
#> GSM74244      2  0.0000      0.988 0.000 1.000
#> GSM74245      2  0.0000      0.988 0.000 1.000
#> GSM74246      2  0.0000      0.988 0.000 1.000
#> GSM74247      2  0.0000      0.988 0.000 1.000
#> GSM74248      2  0.0376      0.984 0.004 0.996
#> GSM74416      1  0.0000      0.997 1.000 0.000
#> GSM74417      1  0.0000      0.997 1.000 0.000
#> GSM74418      1  0.0000      0.997 1.000 0.000
#> GSM74419      1  0.0000      0.997 1.000 0.000
#> GSM121358     2  0.0000      0.988 0.000 1.000
#> GSM121359     2  0.0000      0.988 0.000 1.000
#> GSM121360     1  0.0000      0.997 1.000 0.000
#> GSM121362     1  0.0000      0.997 1.000 0.000
#> GSM121364     1  0.0000      0.997 1.000 0.000
#> GSM121365     2  0.0000      0.988 0.000 1.000
#> GSM121366     2  0.0000      0.988 0.000 1.000
#> GSM121367     2  0.0000      0.988 0.000 1.000
#> GSM121370     2  0.0000      0.988 0.000 1.000
#> GSM121371     2  0.0000      0.988 0.000 1.000
#> GSM121372     2  0.0000      0.988 0.000 1.000
#> GSM121373     1  0.0000      0.997 1.000 0.000
#> GSM121374     1  0.0000      0.997 1.000 0.000
#> GSM121407     2  0.0000      0.988 0.000 1.000
#> GSM74387      2  0.0000      0.988 0.000 1.000
#> GSM74388      2  0.0000      0.988 0.000 1.000
#> GSM74389      1  0.2043      0.966 0.968 0.032
#> GSM74390      1  0.0000      0.997 1.000 0.000
#> GSM74391      1  0.0000      0.997 1.000 0.000
#> GSM74392      1  0.0000      0.997 1.000 0.000
#> GSM74393      1  0.5294      0.862 0.880 0.120
#> GSM74394      2  0.0000      0.988 0.000 1.000
#> GSM74239      1  0.0000      0.997 1.000 0.000
#> GSM74364      1  0.0000      0.997 1.000 0.000
#> GSM74365      1  0.0000      0.997 1.000 0.000
#> GSM74366      1  0.0000      0.997 1.000 0.000
#> GSM74367      1  0.0000      0.997 1.000 0.000
#> GSM74377      1  0.0000      0.997 1.000 0.000
#> GSM74378      1  0.0000      0.997 1.000 0.000
#> GSM74379      1  0.0000      0.997 1.000 0.000
#> GSM74380      1  0.0000      0.997 1.000 0.000
#> GSM74381      1  0.0000      0.997 1.000 0.000
#> GSM121357     2  0.0000      0.988 0.000 1.000
#> GSM121361     2  0.0000      0.988 0.000 1.000
#> GSM121363     2  0.0000      0.988 0.000 1.000
#> GSM121368     2  0.0000      0.988 0.000 1.000
#> GSM121369     2  0.0000      0.988 0.000 1.000
#> GSM74368      1  0.0000      0.997 1.000 0.000
#> GSM74369      1  0.0000      0.997 1.000 0.000
#> GSM74370      1  0.0000      0.997 1.000 0.000
#> GSM74371      1  0.0000      0.997 1.000 0.000
#> GSM74372      1  0.0000      0.997 1.000 0.000
#> GSM74373      1  0.0000      0.997 1.000 0.000
#> GSM74374      1  0.0000      0.997 1.000 0.000
#> GSM74375      1  0.0000      0.997 1.000 0.000
#> GSM74376      1  0.0000      0.997 1.000 0.000
#> GSM74405      1  0.0000      0.997 1.000 0.000
#> GSM74351      1  0.0000      0.997 1.000 0.000
#> GSM74352      1  0.0000      0.997 1.000 0.000
#> GSM74353      1  0.0000      0.997 1.000 0.000
#> GSM74354      1  0.0000      0.997 1.000 0.000
#> GSM74355      1  0.0000      0.997 1.000 0.000
#> GSM74382      1  0.0000      0.997 1.000 0.000
#> GSM74383      1  0.0000      0.997 1.000 0.000
#> GSM74384      1  0.2603      0.953 0.956 0.044
#> GSM74385      1  0.0000      0.997 1.000 0.000
#> GSM74386      1  0.0000      0.997 1.000 0.000
#> GSM74395      1  0.0000      0.997 1.000 0.000
#> GSM74396      1  0.0000      0.997 1.000 0.000
#> GSM74397      1  0.0000      0.997 1.000 0.000
#> GSM74398      1  0.0000      0.997 1.000 0.000
#> GSM74399      1  0.0000      0.997 1.000 0.000
#> GSM74400      1  0.0000      0.997 1.000 0.000
#> GSM74401      1  0.0000      0.997 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74357      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74358      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74359      3  0.2066     0.9050 0.060 0.000 0.940
#> GSM74360      3  0.2537     0.8912 0.080 0.000 0.920
#> GSM74361      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74362      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74363      3  0.0237     0.9264 0.000 0.004 0.996
#> GSM74402      1  0.3482     0.8164 0.872 0.000 0.128
#> GSM74403      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74404      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74406      1  0.6026     0.4254 0.624 0.000 0.376
#> GSM74407      1  0.2878     0.8518 0.904 0.000 0.096
#> GSM74408      1  0.6308     0.0734 0.508 0.000 0.492
#> GSM74409      3  0.5678     0.5196 0.316 0.000 0.684
#> GSM74410      3  0.2711     0.8839 0.088 0.000 0.912
#> GSM119936     1  0.5835     0.5004 0.660 0.000 0.340
#> GSM119937     1  0.5835     0.5000 0.660 0.000 0.340
#> GSM74411      2  0.2356     0.9349 0.000 0.928 0.072
#> GSM74412      2  0.1031     0.9725 0.000 0.976 0.024
#> GSM74413      2  0.2356     0.9349 0.000 0.928 0.072
#> GSM74414      2  0.0000     0.9883 0.000 1.000 0.000
#> GSM74415      3  0.6280     0.1485 0.000 0.460 0.540
#> GSM121379     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121380     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121381     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121382     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121383     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121384     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121385     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121386     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121387     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121388     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121389     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121390     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121391     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121392     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121393     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121394     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121395     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121396     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121397     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121398     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121399     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM74240      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74241      3  0.0424     0.9253 0.000 0.008 0.992
#> GSM74242      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74243      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74244      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74245      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74246      3  0.0592     0.9241 0.000 0.012 0.988
#> GSM74247      3  0.1163     0.9172 0.000 0.028 0.972
#> GSM74248      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74416      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74417      1  0.0424     0.9292 0.992 0.000 0.008
#> GSM74418      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74419      1  0.5988     0.4403 0.632 0.000 0.368
#> GSM121358     3  0.2711     0.8805 0.000 0.088 0.912
#> GSM121359     2  0.2165     0.9422 0.000 0.936 0.064
#> GSM121360     3  0.2356     0.8975 0.072 0.000 0.928
#> GSM121362     3  0.5016     0.6941 0.240 0.000 0.760
#> GSM121364     3  0.2356     0.8975 0.072 0.000 0.928
#> GSM121365     3  0.2711     0.8805 0.000 0.088 0.912
#> GSM121366     3  0.3038     0.8656 0.000 0.104 0.896
#> GSM121367     3  0.2625     0.8835 0.000 0.084 0.916
#> GSM121370     3  0.2796     0.8769 0.000 0.092 0.908
#> GSM121371     3  0.2711     0.8805 0.000 0.088 0.912
#> GSM121372     2  0.2261     0.9387 0.000 0.932 0.068
#> GSM121373     3  0.2356     0.8975 0.072 0.000 0.928
#> GSM121374     3  0.2356     0.8975 0.072 0.000 0.928
#> GSM121407     2  0.1860     0.9518 0.000 0.948 0.052
#> GSM74387      2  0.2066     0.9456 0.000 0.940 0.060
#> GSM74388      2  0.0000     0.9883 0.000 1.000 0.000
#> GSM74389      3  0.1289     0.9181 0.032 0.000 0.968
#> GSM74390      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74391      1  0.6307     0.0883 0.512 0.000 0.488
#> GSM74392      3  0.2066     0.9050 0.060 0.000 0.940
#> GSM74393      3  0.0000     0.9272 0.000 0.000 1.000
#> GSM74394      2  0.0000     0.9883 0.000 1.000 0.000
#> GSM74239      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74364      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74365      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74366      1  0.2356     0.8714 0.928 0.072 0.000
#> GSM74367      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74377      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74378      1  0.0747     0.9218 0.984 0.016 0.000
#> GSM74379      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74380      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74381      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM121357     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121361     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121363     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121368     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM121369     2  0.0000     0.9883 0.000 1.000 0.000
#> GSM74368      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74369      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74370      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74371      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74372      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74373      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74374      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74375      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74376      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74405      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74351      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74352      1  0.1753     0.8936 0.952 0.048 0.000
#> GSM74353      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74354      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74355      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74382      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74383      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74384      1  0.5138     0.6503 0.748 0.252 0.000
#> GSM74385      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74386      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74395      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74396      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74397      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74398      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74399      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74400      1  0.0000     0.9346 1.000 0.000 0.000
#> GSM74401      1  0.0000     0.9346 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.0524     0.9018 0.000 0.004 0.988 0.008
#> GSM74357      3  0.0469     0.9004 0.000 0.000 0.988 0.012
#> GSM74358      3  0.0469     0.9004 0.000 0.000 0.988 0.012
#> GSM74359      4  0.0469     0.8943 0.000 0.000 0.012 0.988
#> GSM74360      4  0.0336     0.8952 0.000 0.000 0.008 0.992
#> GSM74361      3  0.0336     0.9014 0.000 0.000 0.992 0.008
#> GSM74362      3  0.3801     0.6742 0.000 0.000 0.780 0.220
#> GSM74363      3  0.0524     0.9018 0.000 0.004 0.988 0.008
#> GSM74402      4  0.1022     0.8843 0.032 0.000 0.000 0.968
#> GSM74403      4  0.0921     0.8869 0.028 0.000 0.000 0.972
#> GSM74404      4  0.0592     0.8945 0.016 0.000 0.000 0.984
#> GSM74406      4  0.0336     0.8973 0.008 0.000 0.000 0.992
#> GSM74407      4  0.0469     0.8962 0.012 0.000 0.000 0.988
#> GSM74408      4  0.0336     0.8973 0.008 0.000 0.000 0.992
#> GSM74409      4  0.0188     0.8972 0.004 0.000 0.000 0.996
#> GSM74410      4  0.0000     0.8965 0.000 0.000 0.000 1.000
#> GSM119936     4  0.0336     0.8973 0.008 0.000 0.000 0.992
#> GSM119937     4  0.0336     0.8973 0.008 0.000 0.000 0.992
#> GSM74411      3  0.4222     0.6541 0.000 0.272 0.728 0.000
#> GSM74412      2  0.4382     0.5279 0.000 0.704 0.296 0.000
#> GSM74413      3  0.4382     0.6166 0.000 0.296 0.704 0.000
#> GSM74414      2  0.0188     0.9774 0.000 0.996 0.004 0.000
#> GSM74415      3  0.0817     0.8957 0.000 0.024 0.976 0.000
#> GSM121379     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121388     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121389     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121393     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121394     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121395     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121396     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121397     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM74240      3  0.0336     0.9019 0.000 0.000 0.992 0.008
#> GSM74241      3  0.0336     0.9019 0.000 0.000 0.992 0.008
#> GSM74242      3  0.0469     0.9010 0.000 0.000 0.988 0.012
#> GSM74243      3  0.0921     0.8919 0.000 0.000 0.972 0.028
#> GSM74244      3  0.0336     0.9019 0.000 0.000 0.992 0.008
#> GSM74245      3  0.0336     0.9019 0.000 0.000 0.992 0.008
#> GSM74246      3  0.0336     0.9019 0.000 0.000 0.992 0.008
#> GSM74247      3  0.0336     0.9019 0.000 0.000 0.992 0.008
#> GSM74248      3  0.0336     0.9019 0.000 0.000 0.992 0.008
#> GSM74416      4  0.0707     0.8923 0.020 0.000 0.000 0.980
#> GSM74417      4  0.0469     0.8962 0.012 0.000 0.000 0.988
#> GSM74418      4  0.1022     0.8840 0.032 0.000 0.000 0.968
#> GSM74419      4  0.0336     0.8973 0.008 0.000 0.000 0.992
#> GSM121358     3  0.0592     0.9018 0.000 0.016 0.984 0.000
#> GSM121359     3  0.3801     0.7300 0.000 0.220 0.780 0.000
#> GSM121360     4  0.0469     0.8943 0.000 0.000 0.012 0.988
#> GSM121362     4  0.0937     0.8919 0.012 0.000 0.012 0.976
#> GSM121364     4  0.0469     0.8943 0.000 0.000 0.012 0.988
#> GSM121365     3  0.0469     0.9021 0.000 0.012 0.988 0.000
#> GSM121366     3  0.0707     0.9005 0.000 0.020 0.980 0.000
#> GSM121367     3  0.0592     0.9018 0.000 0.016 0.984 0.000
#> GSM121370     3  0.0707     0.9005 0.000 0.020 0.980 0.000
#> GSM121371     3  0.0592     0.9018 0.000 0.016 0.984 0.000
#> GSM121372     3  0.3649     0.7488 0.000 0.204 0.796 0.000
#> GSM121373     4  0.0469     0.8943 0.000 0.000 0.012 0.988
#> GSM121374     4  0.0469     0.8943 0.000 0.000 0.012 0.988
#> GSM121407     3  0.4998     0.1572 0.000 0.488 0.512 0.000
#> GSM74387      3  0.5000     0.0879 0.000 0.500 0.500 0.000
#> GSM74388      2  0.1452     0.9534 0.036 0.956 0.008 0.000
#> GSM74389      4  0.4103     0.6139 0.000 0.000 0.256 0.744
#> GSM74390      1  0.1211     0.9034 0.960 0.000 0.000 0.040
#> GSM74391      4  0.0000     0.8965 0.000 0.000 0.000 1.000
#> GSM74392      4  0.0592     0.8920 0.000 0.000 0.016 0.984
#> GSM74393      4  0.4933     0.2212 0.000 0.000 0.432 0.568
#> GSM74394      2  0.1767     0.9441 0.044 0.944 0.012 0.000
#> GSM74239      1  0.3123     0.8457 0.844 0.000 0.000 0.156
#> GSM74364      1  0.3024     0.8520 0.852 0.000 0.000 0.148
#> GSM74365      1  0.0469     0.9102 0.988 0.000 0.000 0.012
#> GSM74366      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74367      1  0.1716     0.8988 0.936 0.000 0.000 0.064
#> GSM74377      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74378      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74379      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74380      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74381      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM121357     2  0.0000     0.9801 0.000 1.000 0.000 0.000
#> GSM121361     2  0.1356     0.9565 0.032 0.960 0.008 0.000
#> GSM121363     2  0.1256     0.9592 0.028 0.964 0.008 0.000
#> GSM121368     2  0.1256     0.9592 0.028 0.964 0.008 0.000
#> GSM121369     2  0.1510     0.9551 0.028 0.956 0.016 0.000
#> GSM74368      1  0.3764     0.7783 0.784 0.000 0.000 0.216
#> GSM74369      1  0.3123     0.8455 0.844 0.000 0.000 0.156
#> GSM74370      1  0.4643     0.5671 0.656 0.000 0.000 0.344
#> GSM74371      1  0.3942     0.7611 0.764 0.000 0.000 0.236
#> GSM74372      4  0.5000    -0.1271 0.500 0.000 0.000 0.500
#> GSM74373      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74374      1  0.1637     0.9007 0.940 0.000 0.000 0.060
#> GSM74375      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74376      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74405      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74351      4  0.4999    -0.1401 0.492 0.000 0.000 0.508
#> GSM74352      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74353      1  0.4164     0.7241 0.736 0.000 0.000 0.264
#> GSM74354      1  0.1867     0.8967 0.928 0.000 0.000 0.072
#> GSM74355      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74382      4  0.5000    -0.1654 0.500 0.000 0.000 0.500
#> GSM74383      1  0.2011     0.8929 0.920 0.000 0.000 0.080
#> GSM74384      1  0.0469     0.9039 0.988 0.012 0.000 0.000
#> GSM74385      1  0.3942     0.7624 0.764 0.000 0.000 0.236
#> GSM74386      1  0.2589     0.8747 0.884 0.000 0.000 0.116
#> GSM74395      1  0.3528     0.8133 0.808 0.000 0.000 0.192
#> GSM74396      1  0.1867     0.8964 0.928 0.000 0.000 0.072
#> GSM74397      1  0.4830     0.4405 0.608 0.000 0.000 0.392
#> GSM74398      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74399      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74400      1  0.0000     0.9116 1.000 0.000 0.000 0.000
#> GSM74401      1  0.0000     0.9116 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0671     0.7907 0.000 0.000 0.980 0.004 0.016
#> GSM74357      3  0.0671     0.7901 0.000 0.000 0.980 0.004 0.016
#> GSM74358      3  0.0671     0.7901 0.000 0.000 0.980 0.004 0.016
#> GSM74359      4  0.3488     0.7320 0.000 0.000 0.024 0.808 0.168
#> GSM74360      4  0.3013     0.7510 0.000 0.000 0.008 0.832 0.160
#> GSM74361      3  0.2583     0.6795 0.000 0.000 0.864 0.004 0.132
#> GSM74362      3  0.6088     0.1844 0.000 0.000 0.548 0.156 0.296
#> GSM74363      3  0.0000     0.7962 0.000 0.000 1.000 0.000 0.000
#> GSM74402      4  0.1764     0.7967 0.064 0.000 0.000 0.928 0.008
#> GSM74403      4  0.1430     0.8028 0.052 0.000 0.000 0.944 0.004
#> GSM74404      4  0.1282     0.8057 0.044 0.000 0.000 0.952 0.004
#> GSM74406      4  0.0955     0.8144 0.004 0.000 0.000 0.968 0.028
#> GSM74407      4  0.1331     0.8116 0.040 0.000 0.000 0.952 0.008
#> GSM74408      4  0.0609     0.8138 0.000 0.000 0.000 0.980 0.020
#> GSM74409      4  0.0963     0.8113 0.000 0.000 0.000 0.964 0.036
#> GSM74410      4  0.1270     0.8063 0.000 0.000 0.000 0.948 0.052
#> GSM119936     4  0.0162     0.8149 0.004 0.000 0.000 0.996 0.000
#> GSM119937     4  0.0162     0.8151 0.004 0.000 0.000 0.996 0.000
#> GSM74411      3  0.5839     0.2977 0.000 0.116 0.560 0.000 0.324
#> GSM74412      3  0.6729     0.1207 0.000 0.348 0.396 0.000 0.256
#> GSM74413      3  0.6006     0.3173 0.000 0.144 0.556 0.000 0.300
#> GSM74414      2  0.1043     0.9102 0.000 0.960 0.000 0.000 0.040
#> GSM74415      3  0.4383     0.1562 0.000 0.004 0.572 0.000 0.424
#> GSM121379     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121389     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121393     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121394     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121396     2  0.1197     0.8955 0.000 0.952 0.048 0.000 0.000
#> GSM121397     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9307 0.000 1.000 0.000 0.000 0.000
#> GSM74240      5  0.3395     0.7761 0.000 0.000 0.236 0.000 0.764
#> GSM74241      5  0.3424     0.7733 0.000 0.000 0.240 0.000 0.760
#> GSM74242      5  0.3642     0.7732 0.000 0.000 0.232 0.008 0.760
#> GSM74243      5  0.3720     0.7701 0.000 0.000 0.228 0.012 0.760
#> GSM74244      5  0.3424     0.7733 0.000 0.000 0.240 0.000 0.760
#> GSM74245      5  0.3395     0.7761 0.000 0.000 0.236 0.000 0.764
#> GSM74246      5  0.3177     0.7656 0.000 0.000 0.208 0.000 0.792
#> GSM74247      5  0.3242     0.7629 0.000 0.000 0.216 0.000 0.784
#> GSM74248      5  0.3336     0.7760 0.000 0.000 0.228 0.000 0.772
#> GSM74416      4  0.1557     0.8012 0.052 0.000 0.000 0.940 0.008
#> GSM74417      4  0.0794     0.8121 0.028 0.000 0.000 0.972 0.000
#> GSM74418      4  0.1892     0.7814 0.080 0.000 0.000 0.916 0.004
#> GSM74419      4  0.0324     0.8150 0.004 0.000 0.000 0.992 0.004
#> GSM121358     3  0.0162     0.7986 0.000 0.004 0.996 0.000 0.000
#> GSM121359     3  0.1597     0.7704 0.000 0.048 0.940 0.000 0.012
#> GSM121360     4  0.3513     0.7261 0.000 0.000 0.020 0.800 0.180
#> GSM121362     4  0.3898     0.7345 0.016 0.000 0.024 0.800 0.160
#> GSM121364     4  0.3488     0.7320 0.000 0.000 0.024 0.808 0.168
#> GSM121365     3  0.0162     0.7986 0.000 0.004 0.996 0.000 0.000
#> GSM121366     3  0.0162     0.7986 0.000 0.004 0.996 0.000 0.000
#> GSM121367     3  0.0162     0.7986 0.000 0.004 0.996 0.000 0.000
#> GSM121370     3  0.0162     0.7986 0.000 0.004 0.996 0.000 0.000
#> GSM121371     3  0.0162     0.7986 0.000 0.004 0.996 0.000 0.000
#> GSM121372     3  0.1522     0.7733 0.000 0.044 0.944 0.000 0.012
#> GSM121373     4  0.3304     0.7388 0.000 0.000 0.016 0.816 0.168
#> GSM121374     4  0.3399     0.7361 0.000 0.000 0.020 0.812 0.168
#> GSM121407     3  0.2873     0.6936 0.000 0.120 0.860 0.000 0.020
#> GSM74387      5  0.6215     0.2921 0.008 0.252 0.164 0.000 0.576
#> GSM74388      2  0.4373     0.7608 0.080 0.760 0.000 0.000 0.160
#> GSM74389      5  0.5111    -0.0658 0.000 0.000 0.036 0.464 0.500
#> GSM74390      1  0.3464     0.7729 0.836 0.000 0.000 0.068 0.096
#> GSM74391      4  0.1357     0.8116 0.004 0.000 0.000 0.948 0.048
#> GSM74392      4  0.3427     0.7176 0.000 0.000 0.012 0.796 0.192
#> GSM74393      5  0.5382     0.3184 0.000 0.000 0.072 0.336 0.592
#> GSM74394      2  0.5542     0.3171 0.068 0.500 0.000 0.000 0.432
#> GSM74239      1  0.4088     0.6642 0.688 0.000 0.000 0.304 0.008
#> GSM74364      1  0.4183     0.6382 0.668 0.000 0.000 0.324 0.008
#> GSM74365      1  0.1484     0.8152 0.944 0.000 0.000 0.048 0.008
#> GSM74366      1  0.1732     0.7935 0.920 0.000 0.000 0.000 0.080
#> GSM74367      1  0.3171     0.7684 0.816 0.000 0.000 0.176 0.008
#> GSM74377      1  0.0703     0.8131 0.976 0.000 0.000 0.000 0.024
#> GSM74378      1  0.1732     0.7935 0.920 0.000 0.000 0.000 0.080
#> GSM74379      1  0.0671     0.8153 0.980 0.000 0.000 0.004 0.016
#> GSM74380      1  0.0451     0.8156 0.988 0.000 0.000 0.004 0.008
#> GSM74381      1  0.0794     0.8115 0.972 0.000 0.000 0.000 0.028
#> GSM121357     2  0.1893     0.8887 0.000 0.928 0.048 0.000 0.024
#> GSM121361     2  0.4577     0.7409 0.084 0.740 0.000 0.000 0.176
#> GSM121363     2  0.4355     0.7610 0.076 0.760 0.000 0.000 0.164
#> GSM121368     2  0.4335     0.7613 0.072 0.760 0.000 0.000 0.168
#> GSM121369     2  0.5950     0.5790 0.072 0.612 0.032 0.000 0.284
#> GSM74368      1  0.4639     0.5590 0.612 0.000 0.000 0.368 0.020
#> GSM74369      1  0.4288     0.6407 0.664 0.000 0.000 0.324 0.012
#> GSM74370      1  0.4510     0.4230 0.560 0.000 0.000 0.432 0.008
#> GSM74371      1  0.4489     0.4695 0.572 0.000 0.000 0.420 0.008
#> GSM74372      4  0.4774     0.0355 0.424 0.000 0.000 0.556 0.020
#> GSM74373      1  0.0963     0.8098 0.964 0.000 0.000 0.000 0.036
#> GSM74374      1  0.2930     0.7756 0.832 0.000 0.000 0.164 0.004
#> GSM74375      1  0.1216     0.8172 0.960 0.000 0.000 0.020 0.020
#> GSM74376      1  0.1671     0.7967 0.924 0.000 0.000 0.000 0.076
#> GSM74405      1  0.1341     0.8036 0.944 0.000 0.000 0.000 0.056
#> GSM74351      4  0.4497    -0.0249 0.424 0.000 0.000 0.568 0.008
#> GSM74352      1  0.1608     0.7976 0.928 0.000 0.000 0.000 0.072
#> GSM74353      1  0.4397     0.4362 0.564 0.000 0.000 0.432 0.004
#> GSM74354      1  0.3280     0.7708 0.812 0.000 0.000 0.176 0.012
#> GSM74355      1  0.1671     0.7958 0.924 0.000 0.000 0.000 0.076
#> GSM74382      4  0.4504    -0.0436 0.428 0.000 0.000 0.564 0.008
#> GSM74383      1  0.3700     0.7259 0.752 0.000 0.000 0.240 0.008
#> GSM74384      1  0.1732     0.7935 0.920 0.000 0.000 0.000 0.080
#> GSM74385      1  0.4455     0.5055 0.588 0.000 0.000 0.404 0.008
#> GSM74386      1  0.3779     0.7261 0.752 0.000 0.000 0.236 0.012
#> GSM74395      1  0.4127     0.6512 0.680 0.000 0.000 0.312 0.008
#> GSM74396      1  0.3333     0.7525 0.788 0.000 0.000 0.208 0.004
#> GSM74397      4  0.4549    -0.1523 0.464 0.000 0.000 0.528 0.008
#> GSM74398      1  0.0671     0.8167 0.980 0.000 0.000 0.016 0.004
#> GSM74399      1  0.0510     0.8139 0.984 0.000 0.000 0.000 0.016
#> GSM74400      1  0.1282     0.8152 0.952 0.000 0.000 0.044 0.004
#> GSM74401      1  0.0898     0.8164 0.972 0.000 0.000 0.020 0.008

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.1434    0.81603 0.000 0.000 0.948 0.012 0.028 0.012
#> GSM74357      3  0.1405    0.81363 0.000 0.000 0.948 0.024 0.024 0.004
#> GSM74358      3  0.1232    0.81804 0.000 0.000 0.956 0.016 0.024 0.004
#> GSM74359      4  0.1644    0.72840 0.028 0.000 0.000 0.932 0.040 0.000
#> GSM74360      4  0.1418    0.73024 0.032 0.000 0.000 0.944 0.024 0.000
#> GSM74361      3  0.4683    0.55123 0.000 0.000 0.700 0.060 0.216 0.024
#> GSM74362      4  0.6390    0.07500 0.000 0.000 0.328 0.448 0.196 0.028
#> GSM74363      3  0.0951    0.82303 0.000 0.000 0.968 0.004 0.020 0.008
#> GSM74402      1  0.4165    0.01748 0.568 0.000 0.000 0.420 0.008 0.004
#> GSM74403      1  0.4138    0.17203 0.620 0.000 0.000 0.364 0.008 0.008
#> GSM74404      1  0.4183    0.13177 0.604 0.000 0.000 0.380 0.008 0.008
#> GSM74406      4  0.3636    0.56728 0.320 0.000 0.000 0.676 0.000 0.004
#> GSM74407      1  0.4285   -0.03365 0.552 0.000 0.000 0.432 0.008 0.008
#> GSM74408      4  0.3756    0.56721 0.316 0.000 0.000 0.676 0.004 0.004
#> GSM74409      4  0.3240    0.63931 0.244 0.000 0.000 0.752 0.000 0.004
#> GSM74410      4  0.3081    0.65460 0.220 0.000 0.000 0.776 0.000 0.004
#> GSM119936     4  0.4056    0.40013 0.416 0.000 0.000 0.576 0.004 0.004
#> GSM119937     4  0.4174    0.40590 0.408 0.000 0.004 0.580 0.004 0.004
#> GSM74411      3  0.6349    0.23555 0.000 0.088 0.484 0.004 0.356 0.068
#> GSM74412      3  0.7250    0.14504 0.000 0.272 0.388 0.004 0.252 0.084
#> GSM74413      3  0.6454    0.29606 0.000 0.108 0.500 0.004 0.320 0.068
#> GSM74414      2  0.3166    0.80391 0.000 0.852 0.016 0.004 0.040 0.088
#> GSM74415      3  0.5251    0.13913 0.000 0.008 0.488 0.004 0.440 0.060
#> GSM121379     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121384     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121388     2  0.0260    0.89971 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM121389     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121390     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0146    0.90317 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM121393     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121394     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121395     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121396     2  0.0937    0.87488 0.000 0.960 0.040 0.000 0.000 0.000
#> GSM121397     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000    0.90572 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      5  0.2058    0.90993 0.000 0.000 0.056 0.036 0.908 0.000
#> GSM74241      5  0.1908    0.91003 0.000 0.000 0.056 0.028 0.916 0.000
#> GSM74242      5  0.2328    0.90071 0.000 0.000 0.052 0.056 0.892 0.000
#> GSM74243      5  0.2499    0.88770 0.000 0.000 0.048 0.072 0.880 0.000
#> GSM74244      5  0.1950    0.90610 0.000 0.000 0.064 0.024 0.912 0.000
#> GSM74245      5  0.2046    0.90916 0.000 0.000 0.060 0.032 0.908 0.000
#> GSM74246      5  0.1644    0.90681 0.000 0.000 0.040 0.028 0.932 0.000
#> GSM74247      5  0.1649    0.90221 0.000 0.000 0.036 0.032 0.932 0.000
#> GSM74248      5  0.1930    0.90409 0.000 0.000 0.036 0.048 0.916 0.000
#> GSM74416      1  0.4126    0.17352 0.624 0.000 0.000 0.360 0.008 0.008
#> GSM74417      1  0.4165    0.00227 0.568 0.000 0.000 0.420 0.008 0.004
#> GSM74418      1  0.4088    0.20304 0.636 0.000 0.000 0.348 0.008 0.008
#> GSM74419      4  0.4172    0.38778 0.424 0.000 0.000 0.564 0.008 0.004
#> GSM121358     3  0.0603    0.82731 0.000 0.000 0.980 0.004 0.016 0.000
#> GSM121359     3  0.0820    0.81912 0.000 0.016 0.972 0.000 0.012 0.000
#> GSM121360     4  0.1788    0.69100 0.004 0.000 0.000 0.928 0.040 0.028
#> GSM121362     4  0.2231    0.70196 0.016 0.000 0.000 0.908 0.048 0.028
#> GSM121364     4  0.1498    0.73198 0.028 0.000 0.000 0.940 0.032 0.000
#> GSM121365     3  0.0603    0.82864 0.000 0.004 0.980 0.000 0.016 0.000
#> GSM121366     3  0.0603    0.82864 0.000 0.004 0.980 0.000 0.016 0.000
#> GSM121367     3  0.0603    0.82864 0.000 0.004 0.980 0.000 0.016 0.000
#> GSM121370     3  0.0603    0.82864 0.000 0.004 0.980 0.000 0.016 0.000
#> GSM121371     3  0.0603    0.82864 0.000 0.004 0.980 0.000 0.016 0.000
#> GSM121372     3  0.0820    0.81912 0.000 0.016 0.972 0.000 0.012 0.000
#> GSM121373     4  0.1572    0.73044 0.028 0.000 0.000 0.936 0.036 0.000
#> GSM121374     4  0.1498    0.73172 0.028 0.000 0.000 0.940 0.032 0.000
#> GSM121407     3  0.1332    0.80717 0.000 0.028 0.952 0.000 0.012 0.008
#> GSM74387      5  0.7613    0.24214 0.000 0.116 0.160 0.032 0.436 0.256
#> GSM74388      2  0.6051    0.36889 0.000 0.448 0.012 0.028 0.084 0.428
#> GSM74389      4  0.4074    0.38185 0.000 0.000 0.016 0.656 0.324 0.004
#> GSM74390      6  0.5632    0.31558 0.428 0.000 0.004 0.032 0.056 0.480
#> GSM74391      4  0.4476    0.59719 0.280 0.000 0.000 0.668 0.044 0.008
#> GSM74392      4  0.2653    0.70336 0.028 0.000 0.004 0.880 0.080 0.008
#> GSM74393      4  0.4319    0.32805 0.000 0.000 0.008 0.648 0.320 0.024
#> GSM74394      6  0.6905   -0.23426 0.000 0.256 0.012 0.032 0.292 0.408
#> GSM74239      1  0.2563    0.59844 0.876 0.000 0.000 0.052 0.000 0.072
#> GSM74364      1  0.2088    0.58339 0.904 0.000 0.000 0.028 0.000 0.068
#> GSM74365      1  0.3695   -0.05441 0.624 0.000 0.000 0.000 0.000 0.376
#> GSM74366      6  0.2738    0.66066 0.176 0.000 0.000 0.000 0.004 0.820
#> GSM74367      1  0.3323    0.35480 0.752 0.000 0.000 0.008 0.000 0.240
#> GSM74377      6  0.3634    0.66655 0.356 0.000 0.000 0.000 0.000 0.644
#> GSM74378      6  0.3290    0.70237 0.252 0.000 0.000 0.000 0.004 0.744
#> GSM74379      6  0.3804    0.58396 0.424 0.000 0.000 0.000 0.000 0.576
#> GSM74380      6  0.3810    0.58187 0.428 0.000 0.000 0.000 0.000 0.572
#> GSM74381      6  0.3684    0.68886 0.332 0.000 0.000 0.000 0.004 0.664
#> GSM121357     2  0.3453    0.78963 0.000 0.828 0.044 0.000 0.024 0.104
#> GSM121361     2  0.6153    0.37066 0.000 0.452 0.012 0.028 0.096 0.412
#> GSM121363     2  0.6101    0.40342 0.000 0.476 0.012 0.028 0.092 0.392
#> GSM121368     2  0.6176    0.38796 0.000 0.464 0.012 0.028 0.100 0.396
#> GSM121369     6  0.7494   -0.27352 0.000 0.328 0.068 0.048 0.148 0.408
#> GSM74368      1  0.3748    0.54514 0.784 0.000 0.000 0.064 0.004 0.148
#> GSM74369      1  0.3727    0.49771 0.768 0.000 0.000 0.040 0.004 0.188
#> GSM74370      1  0.3514    0.56647 0.804 0.000 0.000 0.088 0.000 0.108
#> GSM74371      1  0.2822    0.60924 0.864 0.000 0.000 0.076 0.004 0.056
#> GSM74372      1  0.4554    0.57270 0.716 0.000 0.000 0.172 0.008 0.104
#> GSM74373      6  0.3601    0.69587 0.312 0.000 0.000 0.000 0.004 0.684
#> GSM74374      1  0.3650    0.28003 0.716 0.000 0.000 0.008 0.004 0.272
#> GSM74375      6  0.3950    0.54237 0.432 0.000 0.000 0.004 0.000 0.564
#> GSM74376      6  0.3342    0.69310 0.228 0.000 0.000 0.000 0.012 0.760
#> GSM74405      6  0.3672    0.70136 0.304 0.000 0.000 0.000 0.008 0.688
#> GSM74351      1  0.3053    0.53918 0.812 0.000 0.000 0.172 0.012 0.004
#> GSM74352      6  0.3373    0.69994 0.248 0.000 0.000 0.000 0.008 0.744
#> GSM74353      1  0.2866    0.60825 0.860 0.000 0.000 0.084 0.004 0.052
#> GSM74354      1  0.2933    0.42785 0.796 0.000 0.000 0.000 0.004 0.200
#> GSM74355      6  0.3426    0.70475 0.276 0.000 0.000 0.000 0.004 0.720
#> GSM74382      1  0.3111    0.55927 0.820 0.000 0.000 0.156 0.008 0.016
#> GSM74383      1  0.3012    0.43720 0.796 0.000 0.000 0.000 0.008 0.196
#> GSM74384      6  0.2946    0.63785 0.160 0.000 0.000 0.004 0.012 0.824
#> GSM74385      1  0.2563    0.61039 0.876 0.000 0.000 0.072 0.000 0.052
#> GSM74386      1  0.3682    0.44722 0.764 0.000 0.000 0.032 0.004 0.200
#> GSM74395      1  0.3211    0.56821 0.824 0.000 0.000 0.056 0.000 0.120
#> GSM74396      1  0.3253    0.45922 0.788 0.000 0.000 0.020 0.000 0.192
#> GSM74397      1  0.4360    0.57380 0.724 0.000 0.000 0.184 0.004 0.088
#> GSM74398      1  0.3998   -0.46540 0.504 0.000 0.000 0.000 0.004 0.492
#> GSM74399      6  0.3684    0.64015 0.372 0.000 0.000 0.000 0.000 0.628
#> GSM74400      1  0.3862   -0.13205 0.608 0.000 0.000 0.000 0.004 0.388
#> GSM74401      1  0.3937   -0.27329 0.572 0.000 0.000 0.000 0.004 0.424

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> CV:skmeans 119         4.11e-11 2
#> CV:skmeans 115         3.53e-24 3
#> CV:skmeans 114         2.92e-32 4
#> CV:skmeans 105         7.43e-42 5
#> CV:skmeans  85         6.27e-33 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.408           0.732       0.872         0.4804 0.506   0.506
#> 3 3 0.566           0.604       0.817         0.3606 0.801   0.618
#> 4 4 0.547           0.536       0.730         0.1357 0.689   0.310
#> 5 5 0.744           0.762       0.884         0.0740 0.888   0.603
#> 6 6 0.734           0.623       0.806         0.0384 0.924   0.663

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.9044     0.6465 0.320 0.680
#> GSM74357      2  0.9087     0.6425 0.324 0.676
#> GSM74358      2  0.9775     0.4950 0.412 0.588
#> GSM74359      1  0.0000     0.8725 1.000 0.000
#> GSM74360      1  0.0000     0.8725 1.000 0.000
#> GSM74361      2  0.9795     0.4865 0.416 0.584
#> GSM74362      2  0.9922     0.4139 0.448 0.552
#> GSM74363      2  0.8955     0.6567 0.312 0.688
#> GSM74402      1  0.0000     0.8725 1.000 0.000
#> GSM74403      1  0.0000     0.8725 1.000 0.000
#> GSM74404      1  0.0000     0.8725 1.000 0.000
#> GSM74406      1  0.0000     0.8725 1.000 0.000
#> GSM74407      1  0.1414     0.8673 0.980 0.020
#> GSM74408      1  0.0000     0.8725 1.000 0.000
#> GSM74409      1  0.0000     0.8725 1.000 0.000
#> GSM74410      1  0.0000     0.8725 1.000 0.000
#> GSM119936     1  0.0000     0.8725 1.000 0.000
#> GSM119937     1  0.0000     0.8725 1.000 0.000
#> GSM74411      2  0.6048     0.7872 0.148 0.852
#> GSM74412      2  0.0672     0.8259 0.008 0.992
#> GSM74413      2  0.4022     0.8111 0.080 0.920
#> GSM74414      2  0.0000     0.8262 0.000 1.000
#> GSM74415      2  0.9000     0.6556 0.316 0.684
#> GSM121379     2  0.0000     0.8262 0.000 1.000
#> GSM121380     2  0.0000     0.8262 0.000 1.000
#> GSM121381     2  0.0000     0.8262 0.000 1.000
#> GSM121382     2  0.0000     0.8262 0.000 1.000
#> GSM121383     2  0.0376     0.8257 0.004 0.996
#> GSM121384     2  0.0000     0.8262 0.000 1.000
#> GSM121385     2  0.0000     0.8262 0.000 1.000
#> GSM121386     2  0.0000     0.8262 0.000 1.000
#> GSM121387     2  0.0000     0.8262 0.000 1.000
#> GSM121388     2  0.0376     0.8257 0.004 0.996
#> GSM121389     2  0.0376     0.8257 0.004 0.996
#> GSM121390     2  0.0000     0.8262 0.000 1.000
#> GSM121391     2  0.0000     0.8262 0.000 1.000
#> GSM121392     2  0.0000     0.8262 0.000 1.000
#> GSM121393     2  0.0000     0.8262 0.000 1.000
#> GSM121394     2  0.0000     0.8262 0.000 1.000
#> GSM121395     2  0.0000     0.8262 0.000 1.000
#> GSM121396     2  0.0672     0.8247 0.008 0.992
#> GSM121397     2  0.0000     0.8262 0.000 1.000
#> GSM121398     2  0.0000     0.8262 0.000 1.000
#> GSM121399     2  0.0000     0.8262 0.000 1.000
#> GSM74240      2  0.9909     0.4241 0.444 0.556
#> GSM74241      2  0.8081     0.7079 0.248 0.752
#> GSM74242      2  0.9977     0.3510 0.472 0.528
#> GSM74243      1  0.9977    -0.1887 0.528 0.472
#> GSM74244      2  0.9087     0.6372 0.324 0.676
#> GSM74245      2  0.9552     0.5628 0.376 0.624
#> GSM74246      2  0.7602     0.7368 0.220 0.780
#> GSM74247      2  0.7056     0.7577 0.192 0.808
#> GSM74248      2  0.9983     0.3402 0.476 0.524
#> GSM74416      1  0.0000     0.8725 1.000 0.000
#> GSM74417      1  0.0000     0.8725 1.000 0.000
#> GSM74418      1  0.0000     0.8725 1.000 0.000
#> GSM74419      1  0.2236     0.8591 0.964 0.036
#> GSM121358     2  0.8955     0.6567 0.312 0.688
#> GSM121359     2  0.4815     0.8048 0.104 0.896
#> GSM121360     1  0.1184     0.8714 0.984 0.016
#> GSM121362     1  0.5629     0.7962 0.868 0.132
#> GSM121364     1  0.0000     0.8725 1.000 0.000
#> GSM121365     2  0.8608     0.6876 0.284 0.716
#> GSM121366     2  0.8144     0.7157 0.252 0.748
#> GSM121367     2  0.8955     0.6567 0.312 0.688
#> GSM121370     2  0.8016     0.7249 0.244 0.756
#> GSM121371     2  0.8955     0.6567 0.312 0.688
#> GSM121372     2  0.6973     0.7603 0.188 0.812
#> GSM121373     1  0.0000     0.8725 1.000 0.000
#> GSM121374     1  0.0000     0.8725 1.000 0.000
#> GSM121407     2  0.4939     0.8009 0.108 0.892
#> GSM74387      2  0.4431     0.8070 0.092 0.908
#> GSM74388      2  0.0000     0.8262 0.000 1.000
#> GSM74389      1  0.0672     0.8713 0.992 0.008
#> GSM74390      2  0.8713     0.6609 0.292 0.708
#> GSM74391      1  0.6048     0.7435 0.852 0.148
#> GSM74392      1  0.0000     0.8725 1.000 0.000
#> GSM74393      1  0.9286     0.3242 0.656 0.344
#> GSM74394      2  0.1184     0.8242 0.016 0.984
#> GSM74239      1  0.0938     0.8721 0.988 0.012
#> GSM74364      1  0.2423     0.8646 0.960 0.040
#> GSM74365      1  0.9866     0.1791 0.568 0.432
#> GSM74366      2  0.0376     0.8251 0.004 0.996
#> GSM74367      1  0.2603     0.8637 0.956 0.044
#> GSM74377      2  0.8443     0.5969 0.272 0.728
#> GSM74378      2  0.0000     0.8262 0.000 1.000
#> GSM74379      1  0.9833     0.2329 0.576 0.424
#> GSM74380      1  0.5519     0.8056 0.872 0.128
#> GSM74381      2  0.9866     0.0855 0.432 0.568
#> GSM121357     2  0.2043     0.8217 0.032 0.968
#> GSM121361     2  0.0376     0.8263 0.004 0.996
#> GSM121363     2  0.0000     0.8262 0.000 1.000
#> GSM121368     2  0.0000     0.8262 0.000 1.000
#> GSM121369     2  0.4815     0.8026 0.104 0.896
#> GSM74368      1  0.9866     0.1773 0.568 0.432
#> GSM74369      1  0.9170     0.4849 0.668 0.332
#> GSM74370      1  0.6148     0.7782 0.848 0.152
#> GSM74371      1  0.2043     0.8668 0.968 0.032
#> GSM74372      1  0.2236     0.8652 0.964 0.036
#> GSM74373      2  0.9000     0.5083 0.316 0.684
#> GSM74374      1  0.3879     0.8424 0.924 0.076
#> GSM74375      2  0.8499     0.6796 0.276 0.724
#> GSM74376      2  0.5178     0.7966 0.116 0.884
#> GSM74405      1  0.9977     0.2207 0.528 0.472
#> GSM74351      1  0.0672     0.8722 0.992 0.008
#> GSM74352      2  0.0000     0.8262 0.000 1.000
#> GSM74353      1  0.2423     0.8652 0.960 0.040
#> GSM74354      1  0.6623     0.7574 0.828 0.172
#> GSM74355      2  0.0376     0.8251 0.004 0.996
#> GSM74382      1  0.0000     0.8725 1.000 0.000
#> GSM74383      1  0.3274     0.8578 0.940 0.060
#> GSM74384      2  0.0000     0.8262 0.000 1.000
#> GSM74385      1  0.0938     0.8721 0.988 0.012
#> GSM74386      1  0.3733     0.8505 0.928 0.072
#> GSM74395      1  0.5519     0.8020 0.872 0.128
#> GSM74396      1  0.2948     0.8586 0.948 0.052
#> GSM74397      1  0.2423     0.8659 0.960 0.040
#> GSM74398      1  0.8016     0.6495 0.756 0.244
#> GSM74399      2  0.9933     0.1842 0.452 0.548
#> GSM74400      1  0.8499     0.6242 0.724 0.276
#> GSM74401      1  0.9954     0.1878 0.540 0.460

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.5650     0.7356 0.312 0.000 0.688
#> GSM74357      3  0.5650     0.7356 0.312 0.000 0.688
#> GSM74358      3  0.5785     0.7258 0.332 0.000 0.668
#> GSM74359      1  0.0592     0.6344 0.988 0.000 0.012
#> GSM74360      1  0.0424     0.6377 0.992 0.000 0.008
#> GSM74361      3  0.5926     0.7153 0.356 0.000 0.644
#> GSM74362      3  0.6267     0.6191 0.452 0.000 0.548
#> GSM74363      3  0.5650     0.7356 0.312 0.000 0.688
#> GSM74402      1  0.2537     0.6025 0.920 0.000 0.080
#> GSM74403      1  0.5291     0.7091 0.732 0.000 0.268
#> GSM74404      1  0.5431     0.7104 0.716 0.000 0.284
#> GSM74406      1  0.1411     0.6075 0.964 0.000 0.036
#> GSM74407      1  0.4605     0.3221 0.796 0.000 0.204
#> GSM74408      1  0.0424     0.6377 0.992 0.000 0.008
#> GSM74409      1  0.0592     0.6344 0.988 0.000 0.012
#> GSM74410      1  0.3267     0.4906 0.884 0.000 0.116
#> GSM119936     1  0.0424     0.6377 0.992 0.000 0.008
#> GSM119937     1  0.3686     0.4447 0.860 0.000 0.140
#> GSM74411      3  0.5928     0.7337 0.296 0.008 0.696
#> GSM74412      3  0.6813    -0.0526 0.012 0.468 0.520
#> GSM74413      3  0.7015     0.7049 0.240 0.064 0.696
#> GSM74414      2  0.5835     0.5015 0.000 0.660 0.340
#> GSM74415      3  0.5760     0.7262 0.328 0.000 0.672
#> GSM121379     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121380     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121381     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121382     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121383     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121384     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121385     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121386     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121387     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121388     2  0.5058     0.6288 0.000 0.756 0.244
#> GSM121389     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121390     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121391     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121392     2  0.0237     0.8775 0.000 0.996 0.004
#> GSM121393     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121394     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121395     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121396     2  0.0747     0.8705 0.000 0.984 0.016
#> GSM121397     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121398     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM121399     2  0.0000     0.8790 0.000 1.000 0.000
#> GSM74240      3  0.6154     0.6704 0.408 0.000 0.592
#> GSM74241      3  0.5621     0.7337 0.308 0.000 0.692
#> GSM74242      3  0.6154     0.6696 0.408 0.000 0.592
#> GSM74243      1  0.6302    -0.5244 0.520 0.000 0.480
#> GSM74244      3  0.5810     0.7266 0.336 0.000 0.664
#> GSM74245      3  0.5835     0.7258 0.340 0.000 0.660
#> GSM74246      3  0.5988     0.6929 0.368 0.000 0.632
#> GSM74247      3  0.5529     0.7322 0.296 0.000 0.704
#> GSM74248      3  0.6274     0.6092 0.456 0.000 0.544
#> GSM74416      1  0.1163     0.6554 0.972 0.000 0.028
#> GSM74417      1  0.0424     0.6427 0.992 0.000 0.008
#> GSM74418      1  0.3192     0.6814 0.888 0.000 0.112
#> GSM74419      1  0.3879     0.4243 0.848 0.000 0.152
#> GSM121358     3  0.5650     0.7356 0.312 0.000 0.688
#> GSM121359     3  0.7002     0.7203 0.280 0.048 0.672
#> GSM121360     1  0.0592     0.6434 0.988 0.000 0.012
#> GSM121362     1  0.1964     0.6413 0.944 0.000 0.056
#> GSM121364     1  0.0592     0.6344 0.988 0.000 0.012
#> GSM121365     3  0.5650     0.7356 0.312 0.000 0.688
#> GSM121366     3  0.5650     0.7356 0.312 0.000 0.688
#> GSM121367     3  0.5650     0.7356 0.312 0.000 0.688
#> GSM121370     3  0.5650     0.7356 0.312 0.000 0.688
#> GSM121371     3  0.5650     0.7356 0.312 0.000 0.688
#> GSM121372     3  0.5650     0.7356 0.312 0.000 0.688
#> GSM121373     1  0.0592     0.6344 0.988 0.000 0.012
#> GSM121374     1  0.0424     0.6377 0.992 0.000 0.008
#> GSM121407     3  0.6224     0.7327 0.296 0.016 0.688
#> GSM74387      3  0.7666     0.6413 0.192 0.128 0.680
#> GSM74388      2  0.2496     0.8442 0.004 0.928 0.068
#> GSM74389      1  0.2261     0.5687 0.932 0.000 0.068
#> GSM74390      3  0.7442     0.4157 0.368 0.044 0.588
#> GSM74391      1  0.4842     0.4832 0.776 0.000 0.224
#> GSM74392      1  0.0424     0.6377 0.992 0.000 0.008
#> GSM74393      1  0.5016     0.2298 0.760 0.000 0.240
#> GSM74394      2  0.7652     0.2477 0.044 0.512 0.444
#> GSM74239      1  0.5560     0.7093 0.700 0.000 0.300
#> GSM74364      1  0.5591     0.7086 0.696 0.000 0.304
#> GSM74365      3  0.6168    -0.4207 0.412 0.000 0.588
#> GSM74366      2  0.6359     0.5592 0.004 0.592 0.404
#> GSM74367      1  0.5706     0.7031 0.680 0.000 0.320
#> GSM74377      3  0.6950    -0.4039 0.408 0.020 0.572
#> GSM74378      2  0.6033     0.6215 0.004 0.660 0.336
#> GSM74379      1  0.6252     0.6045 0.556 0.000 0.444
#> GSM74380      1  0.5785     0.6979 0.668 0.000 0.332
#> GSM74381      2  0.9106     0.3293 0.156 0.508 0.336
#> GSM121357     3  0.7860     0.4417 0.088 0.284 0.628
#> GSM121361     2  0.2096     0.8547 0.004 0.944 0.052
#> GSM121363     2  0.1411     0.8637 0.000 0.964 0.036
#> GSM121368     2  0.1860     0.8568 0.000 0.948 0.052
#> GSM121369     3  0.8803     0.6129 0.240 0.180 0.580
#> GSM74368      1  0.6309    -0.2055 0.504 0.000 0.496
#> GSM74369      3  0.6180    -0.3943 0.416 0.000 0.584
#> GSM74370      1  0.5810     0.6946 0.664 0.000 0.336
#> GSM74371      1  0.5650     0.7055 0.688 0.000 0.312
#> GSM74372      1  0.5650     0.7055 0.688 0.000 0.312
#> GSM74373      3  0.9752    -0.1958 0.236 0.340 0.424
#> GSM74374      1  0.5650     0.7055 0.688 0.000 0.312
#> GSM74375      3  0.5138    -0.0211 0.252 0.000 0.748
#> GSM74376      3  0.4629     0.1400 0.188 0.004 0.808
#> GSM74405      1  0.7129     0.6368 0.580 0.028 0.392
#> GSM74351      1  0.5560     0.7096 0.700 0.000 0.300
#> GSM74352      2  0.6398     0.5907 0.008 0.620 0.372
#> GSM74353      1  0.5621     0.7085 0.692 0.000 0.308
#> GSM74354      1  0.5810     0.6946 0.664 0.000 0.336
#> GSM74355      2  0.6359     0.5976 0.008 0.628 0.364
#> GSM74382      1  0.5560     0.7082 0.700 0.000 0.300
#> GSM74383      1  0.5678     0.7050 0.684 0.000 0.316
#> GSM74384      2  0.6228     0.5955 0.004 0.624 0.372
#> GSM74385      1  0.5650     0.7055 0.688 0.000 0.312
#> GSM74386      1  0.5678     0.7050 0.684 0.000 0.316
#> GSM74395      1  0.5733     0.7017 0.676 0.000 0.324
#> GSM74396      1  0.5650     0.7055 0.688 0.000 0.312
#> GSM74397      1  0.5529     0.7065 0.704 0.000 0.296
#> GSM74398      1  0.6154     0.6412 0.592 0.000 0.408
#> GSM74399      3  0.6521    -0.5364 0.492 0.004 0.504
#> GSM74400      1  0.6978     0.6725 0.632 0.032 0.336
#> GSM74401      3  0.8614    -0.4593 0.416 0.100 0.484

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM74357      4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM74358      4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM74359      4  0.3975     0.4478 0.240 0.000 0.000 0.760
#> GSM74360      4  0.5850     0.3868 0.244 0.000 0.080 0.676
#> GSM74361      4  0.5132     0.1336 0.004 0.000 0.448 0.548
#> GSM74362      4  0.4697     0.1564 0.000 0.000 0.356 0.644
#> GSM74363      4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM74402      4  0.6221     0.4694 0.256 0.000 0.100 0.644
#> GSM74403      4  0.4999    -0.1421 0.492 0.000 0.000 0.508
#> GSM74404      1  0.5388     0.2398 0.532 0.000 0.012 0.456
#> GSM74406      4  0.5056     0.4754 0.224 0.000 0.044 0.732
#> GSM74407      3  0.5576     0.2401 0.020 0.000 0.536 0.444
#> GSM74408      4  0.4155     0.4500 0.240 0.000 0.004 0.756
#> GSM74409      4  0.4008     0.4433 0.244 0.000 0.000 0.756
#> GSM74410      4  0.5963     0.4722 0.196 0.000 0.116 0.688
#> GSM119936     4  0.4328     0.4489 0.244 0.000 0.008 0.748
#> GSM119937     4  0.6075     0.4402 0.168 0.000 0.148 0.684
#> GSM74411      3  0.2921     0.5428 0.000 0.000 0.860 0.140
#> GSM74412      2  0.7058     0.4151 0.024 0.604 0.272 0.100
#> GSM74413      3  0.5984     0.1537 0.000 0.048 0.580 0.372
#> GSM74414      2  0.4778     0.7685 0.040 0.820 0.080 0.060
#> GSM74415      3  0.3853     0.5692 0.020 0.000 0.820 0.160
#> GSM121379     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121388     2  0.3471     0.8033 0.000 0.868 0.072 0.060
#> GSM121389     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0376     0.9133 0.004 0.992 0.004 0.000
#> GSM121393     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121394     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121395     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121396     2  0.0707     0.9053 0.000 0.980 0.020 0.000
#> GSM121397     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000     0.9182 0.000 1.000 0.000 0.000
#> GSM74240      3  0.3243     0.6550 0.036 0.000 0.876 0.088
#> GSM74241      3  0.0672     0.6424 0.008 0.000 0.984 0.008
#> GSM74242      3  0.1637     0.6469 0.000 0.000 0.940 0.060
#> GSM74243      3  0.3356     0.6011 0.000 0.000 0.824 0.176
#> GSM74244      3  0.0817     0.6413 0.000 0.000 0.976 0.024
#> GSM74245      3  0.1022     0.6447 0.000 0.000 0.968 0.032
#> GSM74246      3  0.4274     0.6368 0.148 0.000 0.808 0.044
#> GSM74247      3  0.2048     0.6545 0.064 0.000 0.928 0.008
#> GSM74248      3  0.3900     0.6126 0.020 0.000 0.816 0.164
#> GSM74416      4  0.4164     0.4160 0.264 0.000 0.000 0.736
#> GSM74417      4  0.4661     0.4209 0.256 0.000 0.016 0.728
#> GSM74418      4  0.4431     0.3398 0.304 0.000 0.000 0.696
#> GSM74419      4  0.6110     0.4514 0.176 0.000 0.144 0.680
#> GSM121358     4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM121359     3  0.7281    -0.0056 0.000 0.148 0.440 0.412
#> GSM121360     4  0.7676     0.1443 0.240 0.000 0.308 0.452
#> GSM121362     4  0.7205     0.2628 0.304 0.000 0.168 0.528
#> GSM121364     4  0.3975     0.4478 0.240 0.000 0.000 0.760
#> GSM121365     4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM121366     4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM121367     4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM121370     4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM121371     4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM121372     4  0.4948     0.1913 0.000 0.000 0.440 0.560
#> GSM121373     4  0.3975     0.4478 0.240 0.000 0.000 0.760
#> GSM121374     4  0.3975     0.4478 0.240 0.000 0.000 0.760
#> GSM121407     4  0.7009    -0.0110 0.000 0.116 0.440 0.444
#> GSM74387      3  0.5696     0.5999 0.184 0.004 0.720 0.092
#> GSM74388      2  0.4248     0.7054 0.220 0.768 0.012 0.000
#> GSM74389      3  0.4761     0.3956 0.000 0.000 0.628 0.372
#> GSM74390      3  0.6570     0.5617 0.204 0.000 0.632 0.164
#> GSM74391      3  0.7252     0.1013 0.144 0.000 0.436 0.420
#> GSM74392      4  0.6653     0.3360 0.196 0.000 0.180 0.624
#> GSM74393      3  0.5436     0.4211 0.024 0.000 0.620 0.356
#> GSM74394      3  0.6759     0.5163 0.220 0.140 0.632 0.008
#> GSM74239      1  0.3873     0.6410 0.772 0.000 0.000 0.228
#> GSM74364      1  0.4356     0.5927 0.708 0.000 0.000 0.292
#> GSM74365      1  0.3606     0.6587 0.844 0.000 0.024 0.132
#> GSM74366      1  0.5725     0.3261 0.624 0.344 0.016 0.016
#> GSM74367      1  0.3907     0.6437 0.768 0.000 0.000 0.232
#> GSM74377      1  0.1798     0.6924 0.944 0.000 0.016 0.040
#> GSM74378      1  0.4328     0.5350 0.748 0.244 0.008 0.000
#> GSM74379      1  0.3108     0.6494 0.872 0.000 0.112 0.016
#> GSM74380      1  0.1211     0.7077 0.960 0.000 0.000 0.040
#> GSM74381      1  0.4617     0.5629 0.764 0.204 0.032 0.000
#> GSM121357     2  0.9615    -0.0391 0.156 0.380 0.256 0.208
#> GSM121361     3  0.7577     0.1140 0.196 0.376 0.428 0.000
#> GSM121363     2  0.3725     0.7542 0.180 0.812 0.008 0.000
#> GSM121368     2  0.3768     0.7500 0.184 0.808 0.008 0.000
#> GSM121369     3  0.6841     0.5898 0.184 0.072 0.676 0.068
#> GSM74368      4  0.7476     0.0324 0.356 0.000 0.184 0.460
#> GSM74369      1  0.5944     0.5600 0.684 0.000 0.104 0.212
#> GSM74370      1  0.2611     0.6944 0.896 0.000 0.008 0.096
#> GSM74371      1  0.4643     0.5208 0.656 0.000 0.000 0.344
#> GSM74372      1  0.5708     0.6568 0.716 0.000 0.124 0.160
#> GSM74373      1  0.5343     0.5756 0.776 0.100 0.104 0.020
#> GSM74374      1  0.3219     0.6832 0.836 0.000 0.000 0.164
#> GSM74375      1  0.6448     0.5280 0.628 0.000 0.252 0.120
#> GSM74376      1  0.5062     0.5056 0.752 0.000 0.184 0.064
#> GSM74405      1  0.0524     0.7020 0.988 0.000 0.008 0.004
#> GSM74351      1  0.4088     0.6419 0.764 0.000 0.004 0.232
#> GSM74352      1  0.4475     0.5381 0.748 0.240 0.008 0.004
#> GSM74353      1  0.3975     0.6393 0.760 0.000 0.000 0.240
#> GSM74354      1  0.2483     0.7083 0.916 0.000 0.032 0.052
#> GSM74355      1  0.4502     0.5419 0.748 0.236 0.016 0.000
#> GSM74382      1  0.4730     0.4968 0.636 0.000 0.000 0.364
#> GSM74383      1  0.3219     0.6830 0.836 0.000 0.000 0.164
#> GSM74384      1  0.4673     0.5433 0.748 0.232 0.008 0.012
#> GSM74385      1  0.5193     0.4155 0.580 0.000 0.008 0.412
#> GSM74386      1  0.7252     0.5250 0.544 0.000 0.224 0.232
#> GSM74395      1  0.3982     0.6561 0.776 0.000 0.004 0.220
#> GSM74396      1  0.3569     0.6654 0.804 0.000 0.000 0.196
#> GSM74397      1  0.5746     0.3850 0.572 0.000 0.032 0.396
#> GSM74398      1  0.2831     0.7053 0.876 0.000 0.004 0.120
#> GSM74399      1  0.1118     0.7060 0.964 0.000 0.000 0.036
#> GSM74400      1  0.2589     0.6989 0.884 0.000 0.000 0.116
#> GSM74401      1  0.3630     0.6254 0.848 0.004 0.128 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM74357      3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM74358      3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM74359      4  0.0290    0.81753 0.000 0.000 0.008 0.992 0.000
#> GSM74360      4  0.0290    0.81753 0.000 0.000 0.008 0.992 0.000
#> GSM74361      3  0.2818    0.76682 0.000 0.000 0.856 0.012 0.132
#> GSM74362      3  0.4640    0.53554 0.000 0.000 0.696 0.048 0.256
#> GSM74363      3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM74402      4  0.4832    0.64342 0.068 0.000 0.216 0.712 0.004
#> GSM74403      4  0.4218    0.51418 0.332 0.000 0.008 0.660 0.000
#> GSM74404      4  0.4436    0.34838 0.396 0.000 0.000 0.596 0.008
#> GSM74406      4  0.3003    0.69483 0.000 0.000 0.188 0.812 0.000
#> GSM74407      5  0.5343    0.53561 0.004 0.000 0.280 0.076 0.640
#> GSM74408      4  0.0510    0.81616 0.000 0.000 0.016 0.984 0.000
#> GSM74409      4  0.0290    0.81753 0.000 0.000 0.008 0.992 0.000
#> GSM74410      4  0.4201    0.33269 0.000 0.000 0.408 0.592 0.000
#> GSM119936     4  0.0880    0.81150 0.000 0.000 0.032 0.968 0.000
#> GSM119937     4  0.4192    0.33607 0.000 0.000 0.404 0.596 0.000
#> GSM74411      5  0.3774    0.56536 0.000 0.000 0.296 0.000 0.704
#> GSM74412      2  0.5434    0.44386 0.004 0.604 0.324 0.000 0.068
#> GSM74413      3  0.1792    0.82278 0.000 0.000 0.916 0.000 0.084
#> GSM74414      2  0.2141    0.89345 0.016 0.916 0.064 0.000 0.004
#> GSM74415      5  0.3039    0.70763 0.000 0.000 0.192 0.000 0.808
#> GSM121379     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.2561    0.82092 0.000 0.856 0.144 0.000 0.000
#> GSM121389     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0162    0.94821 0.004 0.996 0.000 0.000 0.000
#> GSM121393     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121394     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121396     2  0.0880    0.93070 0.000 0.968 0.032 0.000 0.000
#> GSM121397     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000    0.95070 0.000 1.000 0.000 0.000 0.000
#> GSM74240      5  0.0000    0.82767 0.000 0.000 0.000 0.000 1.000
#> GSM74241      5  0.0000    0.82767 0.000 0.000 0.000 0.000 1.000
#> GSM74242      5  0.0290    0.82598 0.000 0.000 0.008 0.000 0.992
#> GSM74243      5  0.0000    0.82767 0.000 0.000 0.000 0.000 1.000
#> GSM74244      5  0.0000    0.82767 0.000 0.000 0.000 0.000 1.000
#> GSM74245      5  0.0000    0.82767 0.000 0.000 0.000 0.000 1.000
#> GSM74246      5  0.0000    0.82767 0.000 0.000 0.000 0.000 1.000
#> GSM74247      5  0.0000    0.82767 0.000 0.000 0.000 0.000 1.000
#> GSM74248      5  0.0000    0.82767 0.000 0.000 0.000 0.000 1.000
#> GSM74416      4  0.0000    0.81662 0.000 0.000 0.000 1.000 0.000
#> GSM74417      4  0.0000    0.81662 0.000 0.000 0.000 1.000 0.000
#> GSM74418      4  0.0000    0.81662 0.000 0.000 0.000 1.000 0.000
#> GSM74419      3  0.5626    0.06001 0.000 0.000 0.504 0.420 0.076
#> GSM121358     3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM121359     3  0.0162    0.88212 0.000 0.004 0.996 0.000 0.000
#> GSM121360     4  0.0290    0.81627 0.008 0.000 0.000 0.992 0.000
#> GSM121362     4  0.1082    0.80771 0.028 0.000 0.008 0.964 0.000
#> GSM121364     4  0.0290    0.81753 0.000 0.000 0.008 0.992 0.000
#> GSM121365     3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM121366     3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM121367     3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM121370     3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM121371     3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM121372     3  0.0000    0.88479 0.000 0.000 1.000 0.000 0.000
#> GSM121373     4  0.0290    0.81753 0.000 0.000 0.008 0.992 0.000
#> GSM121374     4  0.0290    0.81753 0.000 0.000 0.008 0.992 0.000
#> GSM121407     3  0.0162    0.88212 0.000 0.004 0.996 0.000 0.000
#> GSM74387      5  0.5549    0.57424 0.124 0.000 0.244 0.000 0.632
#> GSM74388      2  0.3596    0.75444 0.200 0.784 0.000 0.000 0.016
#> GSM74389      5  0.2573    0.78187 0.000 0.000 0.016 0.104 0.880
#> GSM74390      5  0.5070    0.70043 0.152 0.000 0.120 0.008 0.720
#> GSM74391      5  0.3990    0.51190 0.004 0.000 0.000 0.308 0.688
#> GSM74392      4  0.3582    0.62718 0.000 0.000 0.008 0.768 0.224
#> GSM74393      5  0.2304    0.78575 0.000 0.000 0.008 0.100 0.892
#> GSM74394      5  0.2573    0.79074 0.104 0.000 0.016 0.000 0.880
#> GSM74239      1  0.3774    0.61877 0.704 0.000 0.000 0.296 0.000
#> GSM74364      4  0.4294   -0.02647 0.468 0.000 0.000 0.532 0.000
#> GSM74365      1  0.0404    0.86073 0.988 0.000 0.000 0.012 0.000
#> GSM74366      1  0.3318    0.67463 0.800 0.192 0.008 0.000 0.000
#> GSM74367      4  0.4403    0.24808 0.436 0.000 0.000 0.560 0.004
#> GSM74377      1  0.0000    0.85978 1.000 0.000 0.000 0.000 0.000
#> GSM74378      1  0.0000    0.85978 1.000 0.000 0.000 0.000 0.000
#> GSM74379      1  0.0290    0.85853 0.992 0.000 0.000 0.000 0.008
#> GSM74380      1  0.0963    0.85732 0.964 0.000 0.000 0.036 0.000
#> GSM74381      1  0.0000    0.85978 1.000 0.000 0.000 0.000 0.000
#> GSM121357     3  0.5972    0.36328 0.140 0.300 0.560 0.000 0.000
#> GSM121361     5  0.5392    0.62709 0.144 0.192 0.000 0.000 0.664
#> GSM121363     2  0.2605    0.82359 0.148 0.852 0.000 0.000 0.000
#> GSM121368     2  0.3327    0.80648 0.144 0.828 0.000 0.000 0.028
#> GSM121369     5  0.4268    0.74060 0.144 0.000 0.084 0.000 0.772
#> GSM74368      3  0.6323    0.48684 0.268 0.000 0.600 0.060 0.072
#> GSM74369      1  0.5740    0.52597 0.612 0.000 0.244 0.144 0.000
#> GSM74370      1  0.3612    0.63181 0.732 0.000 0.000 0.268 0.000
#> GSM74371      4  0.3039    0.69768 0.192 0.000 0.000 0.808 0.000
#> GSM74372      1  0.2707    0.80917 0.860 0.000 0.000 0.132 0.008
#> GSM74373      1  0.0000    0.85978 1.000 0.000 0.000 0.000 0.000
#> GSM74374      1  0.2179    0.82002 0.888 0.000 0.000 0.112 0.000
#> GSM74375      1  0.3048    0.76265 0.820 0.000 0.004 0.000 0.176
#> GSM74376      1  0.0290    0.85976 0.992 0.000 0.000 0.000 0.008
#> GSM74405      1  0.0000    0.85978 1.000 0.000 0.000 0.000 0.000
#> GSM74351      1  0.4980    0.34638 0.584 0.000 0.000 0.380 0.036
#> GSM74352      1  0.0162    0.85926 0.996 0.004 0.000 0.000 0.000
#> GSM74353      1  0.3913    0.57821 0.676 0.000 0.000 0.324 0.000
#> GSM74354      1  0.0671    0.86117 0.980 0.000 0.000 0.016 0.004
#> GSM74355      1  0.0000    0.85978 1.000 0.000 0.000 0.000 0.000
#> GSM74382      4  0.3816    0.51046 0.304 0.000 0.000 0.696 0.000
#> GSM74383      1  0.2660    0.81511 0.864 0.000 0.000 0.128 0.008
#> GSM74384      1  0.0162    0.85926 0.996 0.004 0.000 0.000 0.000
#> GSM74385      4  0.1121    0.80351 0.044 0.000 0.000 0.956 0.000
#> GSM74386      5  0.6527   -0.00568 0.376 0.000 0.000 0.196 0.428
#> GSM74395      1  0.3949    0.63353 0.696 0.000 0.000 0.300 0.004
#> GSM74396      1  0.3890    0.69024 0.736 0.000 0.000 0.252 0.012
#> GSM74397      4  0.4953    0.63492 0.228 0.000 0.020 0.708 0.044
#> GSM74398      1  0.2074    0.82442 0.896 0.000 0.000 0.104 0.000
#> GSM74399      1  0.0963    0.85744 0.964 0.000 0.000 0.036 0.000
#> GSM74400      1  0.2813    0.79005 0.832 0.000 0.000 0.168 0.000
#> GSM74401      1  0.1082    0.85539 0.964 0.000 0.000 0.008 0.028

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.3867    -0.0254 0.000 0.000 0.512 0.488 0.000 0.000
#> GSM74357      3  0.3867    -0.0254 0.000 0.000 0.512 0.488 0.000 0.000
#> GSM74358      3  0.3867    -0.0254 0.000 0.000 0.512 0.488 0.000 0.000
#> GSM74359      1  0.0000     0.7278 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74360      1  0.0000     0.7278 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74361      4  0.5623     0.1806 0.008 0.000 0.372 0.500 0.120 0.000
#> GSM74362      4  0.6242     0.3985 0.044 0.000 0.240 0.540 0.176 0.000
#> GSM74363      3  0.3867    -0.0254 0.000 0.000 0.512 0.488 0.000 0.000
#> GSM74402      4  0.4752     0.5337 0.252 0.000 0.028 0.680 0.004 0.036
#> GSM74403      4  0.4156     0.4984 0.188 0.000 0.000 0.732 0.000 0.080
#> GSM74404      4  0.5308     0.3188 0.244 0.000 0.000 0.592 0.000 0.164
#> GSM74406      1  0.4671    -0.3049 0.532 0.000 0.044 0.424 0.000 0.000
#> GSM74407      4  0.5750     0.2837 0.044 0.000 0.052 0.540 0.356 0.008
#> GSM74408      4  0.3843     0.4093 0.452 0.000 0.000 0.548 0.000 0.000
#> GSM74409      1  0.3833    -0.2986 0.556 0.000 0.000 0.444 0.000 0.000
#> GSM74410      4  0.4962     0.4589 0.416 0.000 0.068 0.516 0.000 0.000
#> GSM119936     4  0.3881     0.4514 0.396 0.000 0.004 0.600 0.000 0.000
#> GSM119937     4  0.4738     0.5271 0.336 0.000 0.064 0.600 0.000 0.000
#> GSM74411      3  0.4057     0.1838 0.000 0.000 0.556 0.008 0.436 0.000
#> GSM74412      3  0.4443     0.5069 0.000 0.228 0.708 0.008 0.052 0.004
#> GSM74413      3  0.1524     0.6805 0.000 0.000 0.932 0.008 0.060 0.000
#> GSM74414      2  0.3961     0.5664 0.000 0.700 0.276 0.016 0.000 0.008
#> GSM74415      3  0.4091     0.0865 0.000 0.000 0.520 0.008 0.472 0.000
#> GSM121379     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121388     2  0.3695     0.3951 0.000 0.624 0.376 0.000 0.000 0.000
#> GSM121389     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0260     0.9203 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM121393     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121394     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121396     2  0.0713     0.9041 0.000 0.972 0.028 0.000 0.000 0.000
#> GSM121397     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9249 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      5  0.0000     0.8549 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74241      5  0.0000     0.8549 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74242      5  0.0146     0.8522 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM74243      5  0.0000     0.8549 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74244      5  0.0000     0.8549 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74245      5  0.0000     0.8549 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74246      5  0.0000     0.8549 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74247      5  0.0000     0.8549 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74248      5  0.0000     0.8549 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74416      1  0.1714     0.6931 0.908 0.000 0.000 0.092 0.000 0.000
#> GSM74417      1  0.1219     0.7167 0.948 0.000 0.000 0.048 0.000 0.004
#> GSM74418      1  0.1700     0.7014 0.916 0.000 0.000 0.080 0.000 0.004
#> GSM74419      4  0.5849     0.5549 0.268 0.000 0.092 0.584 0.056 0.000
#> GSM121358     3  0.0000     0.7089 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121359     3  0.0000     0.7089 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121360     1  0.0000     0.7278 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM121362     1  0.0820     0.7143 0.972 0.000 0.000 0.016 0.000 0.012
#> GSM121364     1  0.0000     0.7278 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM121365     3  0.0146     0.7066 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM121366     3  0.0000     0.7089 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121367     3  0.0000     0.7089 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121370     3  0.0000     0.7089 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121371     3  0.0000     0.7089 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121372     3  0.0000     0.7089 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121373     1  0.0000     0.7278 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM121374     1  0.0000     0.7278 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM121407     3  0.0000     0.7089 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74387      3  0.6463     0.2935 0.000 0.000 0.540 0.184 0.204 0.072
#> GSM74388      2  0.4909     0.6073 0.000 0.664 0.000 0.236 0.012 0.088
#> GSM74389      5  0.3618     0.6772 0.076 0.000 0.012 0.100 0.812 0.000
#> GSM74390      4  0.6063    -0.2894 0.000 0.000 0.052 0.448 0.416 0.084
#> GSM74391      4  0.6554     0.3789 0.236 0.000 0.004 0.400 0.340 0.020
#> GSM74392      4  0.4152     0.4270 0.440 0.000 0.000 0.548 0.012 0.000
#> GSM74393      5  0.2474     0.7467 0.080 0.000 0.000 0.040 0.880 0.000
#> GSM74394      5  0.4703     0.6492 0.000 0.000 0.036 0.156 0.728 0.080
#> GSM74239      6  0.4624     0.6360 0.208 0.000 0.004 0.096 0.000 0.692
#> GSM74364      6  0.4702     0.1793 0.460 0.000 0.000 0.044 0.000 0.496
#> GSM74365      6  0.1765     0.7995 0.000 0.000 0.000 0.096 0.000 0.904
#> GSM74366      6  0.6277     0.4908 0.000 0.156 0.076 0.196 0.000 0.572
#> GSM74367      1  0.3857     0.0566 0.532 0.000 0.000 0.000 0.000 0.468
#> GSM74377      6  0.1663     0.7961 0.000 0.000 0.000 0.088 0.000 0.912
#> GSM74378      6  0.3023     0.7218 0.000 0.000 0.000 0.232 0.000 0.768
#> GSM74379      6  0.1714     0.7958 0.000 0.000 0.000 0.092 0.000 0.908
#> GSM74380      6  0.0632     0.8024 0.024 0.000 0.000 0.000 0.000 0.976
#> GSM74381      6  0.2003     0.7877 0.000 0.000 0.000 0.116 0.000 0.884
#> GSM121357     3  0.5649     0.4494 0.000 0.068 0.628 0.224 0.000 0.080
#> GSM121361     5  0.6782     0.3983 0.000 0.184 0.000 0.236 0.492 0.088
#> GSM121363     2  0.4573     0.6230 0.000 0.676 0.000 0.236 0.000 0.088
#> GSM121368     2  0.4573     0.6230 0.000 0.676 0.000 0.236 0.000 0.088
#> GSM121369     5  0.7132     0.1891 0.000 0.000 0.280 0.236 0.396 0.088
#> GSM74368      4  0.5931     0.3294 0.024 0.000 0.164 0.640 0.036 0.136
#> GSM74369      6  0.3726     0.7393 0.144 0.000 0.040 0.020 0.000 0.796
#> GSM74370      6  0.5093     0.6009 0.192 0.000 0.000 0.176 0.000 0.632
#> GSM74371      1  0.5237     0.4382 0.608 0.000 0.000 0.220 0.000 0.172
#> GSM74372      6  0.4127     0.6360 0.028 0.000 0.000 0.284 0.004 0.684
#> GSM74373      6  0.0458     0.8027 0.000 0.000 0.000 0.016 0.000 0.984
#> GSM74374      6  0.2070     0.7807 0.008 0.000 0.000 0.100 0.000 0.892
#> GSM74375      6  0.2300     0.7602 0.000 0.000 0.000 0.000 0.144 0.856
#> GSM74376      6  0.0520     0.8033 0.000 0.000 0.000 0.008 0.008 0.984
#> GSM74405      6  0.1075     0.8035 0.000 0.000 0.000 0.048 0.000 0.952
#> GSM74351      6  0.6226     0.1258 0.292 0.000 0.000 0.244 0.012 0.452
#> GSM74352      6  0.1387     0.7989 0.000 0.000 0.000 0.068 0.000 0.932
#> GSM74353      6  0.4954     0.5493 0.260 0.000 0.000 0.112 0.000 0.628
#> GSM74354      6  0.2632     0.7627 0.004 0.000 0.000 0.164 0.000 0.832
#> GSM74355      6  0.2048     0.7814 0.000 0.000 0.000 0.120 0.000 0.880
#> GSM74382      1  0.5948     0.2731 0.456 0.000 0.000 0.260 0.000 0.284
#> GSM74383      6  0.3590     0.7597 0.116 0.000 0.000 0.076 0.004 0.804
#> GSM74384      6  0.1663     0.7936 0.000 0.000 0.000 0.088 0.000 0.912
#> GSM74385      1  0.2451     0.6890 0.884 0.000 0.000 0.056 0.000 0.060
#> GSM74386      6  0.6455     0.1837 0.144 0.000 0.000 0.048 0.388 0.420
#> GSM74395      6  0.3558     0.7047 0.212 0.000 0.000 0.028 0.000 0.760
#> GSM74396      6  0.2915     0.7380 0.184 0.000 0.000 0.008 0.000 0.808
#> GSM74397      1  0.5418     0.4614 0.656 0.000 0.020 0.072 0.024 0.228
#> GSM74398      6  0.1572     0.7939 0.036 0.000 0.000 0.028 0.000 0.936
#> GSM74399      6  0.0632     0.8023 0.024 0.000 0.000 0.000 0.000 0.976
#> GSM74400      6  0.2872     0.7714 0.140 0.000 0.000 0.024 0.000 0.836
#> GSM74401      6  0.0914     0.8030 0.000 0.000 0.000 0.016 0.016 0.968

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> CV:pam 105         2.16e-07 2
#> CV:pam 100         3.72e-15 3
#> CV:pam  72         4.64e-18 4
#> CV:pam 110         1.01e-33 5
#> CV:pam  88         3.06e-33 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.590           0.903       0.928         0.4641 0.497   0.497
#> 3 3 0.702           0.766       0.863         0.3710 0.804   0.625
#> 4 4 0.657           0.745       0.832         0.1315 0.847   0.603
#> 5 5 0.841           0.860       0.929         0.0797 0.913   0.698
#> 6 6 0.815           0.741       0.859         0.0593 0.913   0.638

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2   0.644      0.890 0.164 0.836
#> GSM74357      2   0.644      0.890 0.164 0.836
#> GSM74358      2   0.644      0.890 0.164 0.836
#> GSM74359      1   0.000      0.983 1.000 0.000
#> GSM74360      1   0.000      0.983 1.000 0.000
#> GSM74361      2   0.653      0.888 0.168 0.832
#> GSM74362      2   0.697      0.878 0.188 0.812
#> GSM74363      2   0.644      0.890 0.164 0.836
#> GSM74402      1   0.000      0.983 1.000 0.000
#> GSM74403      1   0.000      0.983 1.000 0.000
#> GSM74404      1   0.000      0.983 1.000 0.000
#> GSM74406      1   0.000      0.983 1.000 0.000
#> GSM74407      1   0.000      0.983 1.000 0.000
#> GSM74408      1   0.000      0.983 1.000 0.000
#> GSM74409      1   0.000      0.983 1.000 0.000
#> GSM74410      1   0.000      0.983 1.000 0.000
#> GSM119936     1   0.000      0.983 1.000 0.000
#> GSM119937     1   0.000      0.983 1.000 0.000
#> GSM74411      2   0.644      0.890 0.164 0.836
#> GSM74412      2   0.644      0.890 0.164 0.836
#> GSM74413      2   0.644      0.890 0.164 0.836
#> GSM74414      2   0.644      0.890 0.164 0.836
#> GSM74415      2   0.680      0.882 0.180 0.820
#> GSM121379     2   0.000      0.852 0.000 1.000
#> GSM121380     2   0.000      0.852 0.000 1.000
#> GSM121381     2   0.000      0.852 0.000 1.000
#> GSM121382     2   0.000      0.852 0.000 1.000
#> GSM121383     2   0.000      0.852 0.000 1.000
#> GSM121384     2   0.000      0.852 0.000 1.000
#> GSM121385     2   0.000      0.852 0.000 1.000
#> GSM121386     2   0.000      0.852 0.000 1.000
#> GSM121387     2   0.000      0.852 0.000 1.000
#> GSM121388     2   0.000      0.852 0.000 1.000
#> GSM121389     2   0.000      0.852 0.000 1.000
#> GSM121390     2   0.000      0.852 0.000 1.000
#> GSM121391     2   0.000      0.852 0.000 1.000
#> GSM121392     2   0.000      0.852 0.000 1.000
#> GSM121393     2   0.000      0.852 0.000 1.000
#> GSM121394     2   0.000      0.852 0.000 1.000
#> GSM121395     2   0.000      0.852 0.000 1.000
#> GSM121396     2   0.388      0.871 0.076 0.924
#> GSM121397     2   0.000      0.852 0.000 1.000
#> GSM121398     2   0.000      0.852 0.000 1.000
#> GSM121399     2   0.000      0.852 0.000 1.000
#> GSM74240      2   0.795      0.844 0.240 0.760
#> GSM74241      2   0.795      0.844 0.240 0.760
#> GSM74242      2   0.921      0.711 0.336 0.664
#> GSM74243      2   0.921      0.711 0.336 0.664
#> GSM74244      2   0.795      0.844 0.240 0.760
#> GSM74245      2   0.795      0.844 0.240 0.760
#> GSM74246      2   0.795      0.844 0.240 0.760
#> GSM74247      2   0.795      0.844 0.240 0.760
#> GSM74248      2   0.795      0.844 0.240 0.760
#> GSM74416      1   0.000      0.983 1.000 0.000
#> GSM74417      1   0.000      0.983 1.000 0.000
#> GSM74418      1   0.000      0.983 1.000 0.000
#> GSM74419      1   0.000      0.983 1.000 0.000
#> GSM121358     2   0.644      0.890 0.164 0.836
#> GSM121359     2   0.644      0.890 0.164 0.836
#> GSM121360     1   0.000      0.983 1.000 0.000
#> GSM121362     1   0.000      0.983 1.000 0.000
#> GSM121364     1   0.000      0.983 1.000 0.000
#> GSM121365     2   0.644      0.890 0.164 0.836
#> GSM121366     2   0.644      0.890 0.164 0.836
#> GSM121367     2   0.644      0.890 0.164 0.836
#> GSM121370     2   0.644      0.890 0.164 0.836
#> GSM121371     2   0.644      0.890 0.164 0.836
#> GSM121372     2   0.644      0.890 0.164 0.836
#> GSM121373     1   0.000      0.983 1.000 0.000
#> GSM121374     1   0.000      0.983 1.000 0.000
#> GSM121407     2   0.644      0.890 0.164 0.836
#> GSM74387      2   0.795      0.844 0.240 0.760
#> GSM74388      2   0.981      0.537 0.420 0.580
#> GSM74389      1   0.966      0.105 0.608 0.392
#> GSM74390      1   0.000      0.983 1.000 0.000
#> GSM74391      1   0.000      0.983 1.000 0.000
#> GSM74392      1   0.000      0.983 1.000 0.000
#> GSM74393      1   0.997     -0.217 0.532 0.468
#> GSM74394      2   0.808      0.836 0.248 0.752
#> GSM74239      1   0.000      0.983 1.000 0.000
#> GSM74364      1   0.000      0.983 1.000 0.000
#> GSM74365      1   0.000      0.983 1.000 0.000
#> GSM74366      1   0.000      0.983 1.000 0.000
#> GSM74367      1   0.000      0.983 1.000 0.000
#> GSM74377      1   0.000      0.983 1.000 0.000
#> GSM74378      1   0.000      0.983 1.000 0.000
#> GSM74379      1   0.000      0.983 1.000 0.000
#> GSM74380      1   0.000      0.983 1.000 0.000
#> GSM74381      1   0.000      0.983 1.000 0.000
#> GSM121357     2   0.644      0.890 0.164 0.836
#> GSM121361     2   0.839      0.812 0.268 0.732
#> GSM121363     2   0.802      0.840 0.244 0.756
#> GSM121368     2   0.795      0.844 0.240 0.760
#> GSM121369     2   0.802      0.840 0.244 0.756
#> GSM74368      1   0.000      0.983 1.000 0.000
#> GSM74369      1   0.000      0.983 1.000 0.000
#> GSM74370      1   0.000      0.983 1.000 0.000
#> GSM74371      1   0.000      0.983 1.000 0.000
#> GSM74372      1   0.000      0.983 1.000 0.000
#> GSM74373      1   0.000      0.983 1.000 0.000
#> GSM74374      1   0.000      0.983 1.000 0.000
#> GSM74375      1   0.000      0.983 1.000 0.000
#> GSM74376      1   0.000      0.983 1.000 0.000
#> GSM74405      1   0.000      0.983 1.000 0.000
#> GSM74351      1   0.000      0.983 1.000 0.000
#> GSM74352      1   0.000      0.983 1.000 0.000
#> GSM74353      1   0.000      0.983 1.000 0.000
#> GSM74354      1   0.000      0.983 1.000 0.000
#> GSM74355      1   0.000      0.983 1.000 0.000
#> GSM74382      1   0.000      0.983 1.000 0.000
#> GSM74383      1   0.000      0.983 1.000 0.000
#> GSM74384      1   0.000      0.983 1.000 0.000
#> GSM74385      1   0.000      0.983 1.000 0.000
#> GSM74386      1   0.000      0.983 1.000 0.000
#> GSM74395      1   0.000      0.983 1.000 0.000
#> GSM74396      1   0.000      0.983 1.000 0.000
#> GSM74397      1   0.000      0.983 1.000 0.000
#> GSM74398      1   0.000      0.983 1.000 0.000
#> GSM74399      1   0.000      0.983 1.000 0.000
#> GSM74400      1   0.000      0.983 1.000 0.000
#> GSM74401      1   0.000      0.983 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      2  0.0000      0.692 0.000 1.000 0.000
#> GSM74357      2  0.0000      0.692 0.000 1.000 0.000
#> GSM74358      2  0.0000      0.692 0.000 1.000 0.000
#> GSM74359      3  0.7112      0.416 0.424 0.024 0.552
#> GSM74360      3  0.7112      0.416 0.424 0.024 0.552
#> GSM74361      2  0.0424      0.687 0.008 0.992 0.000
#> GSM74362      2  0.1525      0.649 0.004 0.964 0.032
#> GSM74363      2  0.0000      0.692 0.000 1.000 0.000
#> GSM74402      1  0.2116      0.909 0.948 0.012 0.040
#> GSM74403      1  0.0424      0.944 0.992 0.008 0.000
#> GSM74404      1  0.0424      0.944 0.992 0.008 0.000
#> GSM74406      1  0.5122      0.716 0.788 0.012 0.200
#> GSM74407      1  0.5122      0.716 0.788 0.012 0.200
#> GSM74408      1  0.5122      0.716 0.788 0.012 0.200
#> GSM74409      1  0.5122      0.716 0.788 0.012 0.200
#> GSM74410      1  0.5536      0.694 0.776 0.024 0.200
#> GSM119936     1  0.5122      0.716 0.788 0.012 0.200
#> GSM119937     1  0.5122      0.716 0.788 0.012 0.200
#> GSM74411      2  0.0237      0.688 0.000 0.996 0.004
#> GSM74412      2  0.0237      0.688 0.000 0.996 0.004
#> GSM74413      2  0.0000      0.692 0.000 1.000 0.000
#> GSM74414      2  0.0592      0.684 0.012 0.988 0.000
#> GSM74415      2  0.2711      0.557 0.000 0.912 0.088
#> GSM121379     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121380     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121381     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121382     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121383     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121384     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121385     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121386     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121387     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121388     2  0.6215      0.734 0.000 0.572 0.428
#> GSM121389     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121390     2  0.6252      0.733 0.000 0.556 0.444
#> GSM121391     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121392     2  0.6225      0.734 0.000 0.568 0.432
#> GSM121393     2  0.6215      0.734 0.000 0.572 0.428
#> GSM121394     2  0.6225      0.734 0.000 0.568 0.432
#> GSM121395     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121396     2  0.4062      0.708 0.000 0.836 0.164
#> GSM121397     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121398     2  0.6260      0.733 0.000 0.552 0.448
#> GSM121399     2  0.6260      0.733 0.000 0.552 0.448
#> GSM74240      3  0.6260      0.683 0.000 0.448 0.552
#> GSM74241      3  0.6260      0.683 0.000 0.448 0.552
#> GSM74242      3  0.6260      0.683 0.000 0.448 0.552
#> GSM74243      3  0.6260      0.683 0.000 0.448 0.552
#> GSM74244      3  0.6260      0.683 0.000 0.448 0.552
#> GSM74245      3  0.6260      0.683 0.000 0.448 0.552
#> GSM74246      3  0.6260      0.683 0.000 0.448 0.552
#> GSM74247      3  0.6260      0.683 0.000 0.448 0.552
#> GSM74248      3  0.6260      0.683 0.000 0.448 0.552
#> GSM74416      1  0.0848      0.940 0.984 0.008 0.008
#> GSM74417      1  0.0848      0.940 0.984 0.008 0.008
#> GSM74418      1  0.0661      0.942 0.988 0.008 0.004
#> GSM74419      1  0.5122      0.716 0.788 0.012 0.200
#> GSM121358     2  0.0000      0.692 0.000 1.000 0.000
#> GSM121359     2  0.0000      0.692 0.000 1.000 0.000
#> GSM121360     3  0.8058      0.497 0.376 0.072 0.552
#> GSM121362     3  0.7004      0.406 0.428 0.020 0.552
#> GSM121364     3  0.7112      0.416 0.424 0.024 0.552
#> GSM121365     2  0.0000      0.692 0.000 1.000 0.000
#> GSM121366     2  0.0000      0.692 0.000 1.000 0.000
#> GSM121367     2  0.0000      0.692 0.000 1.000 0.000
#> GSM121370     2  0.0000      0.692 0.000 1.000 0.000
#> GSM121371     2  0.0000      0.692 0.000 1.000 0.000
#> GSM121372     2  0.0000      0.692 0.000 1.000 0.000
#> GSM121373     3  0.7112      0.416 0.424 0.024 0.552
#> GSM121374     3  0.7112      0.416 0.424 0.024 0.552
#> GSM121407     2  0.0000      0.692 0.000 1.000 0.000
#> GSM74387      3  0.6625      0.688 0.008 0.440 0.552
#> GSM74388      3  0.8941      0.681 0.160 0.292 0.548
#> GSM74389      3  0.8228      0.514 0.364 0.084 0.552
#> GSM74390      1  0.4654      0.715 0.792 0.000 0.208
#> GSM74391      3  0.7112      0.416 0.424 0.024 0.552
#> GSM74392      3  0.7112      0.416 0.424 0.024 0.552
#> GSM74393      3  0.8665      0.687 0.124 0.324 0.552
#> GSM74394      3  0.7223      0.694 0.028 0.424 0.548
#> GSM74239      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74364      1  0.0237      0.946 0.996 0.004 0.000
#> GSM74365      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74366      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74367      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74377      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74378      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74379      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74380      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74381      1  0.0000      0.946 1.000 0.000 0.000
#> GSM121357     2  0.0592      0.684 0.012 0.988 0.000
#> GSM121361     3  0.7223      0.694 0.028 0.424 0.548
#> GSM121363     3  0.7013      0.692 0.020 0.432 0.548
#> GSM121368     3  0.7013      0.692 0.020 0.432 0.548
#> GSM121369     3  0.7319      0.694 0.032 0.420 0.548
#> GSM74368      1  0.1399      0.926 0.968 0.004 0.028
#> GSM74369      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74370      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74371      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74372      1  0.0237      0.945 0.996 0.000 0.004
#> GSM74373      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74374      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74375      1  0.0237      0.946 0.996 0.004 0.000
#> GSM74376      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74405      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74351      1  0.0424      0.944 0.992 0.008 0.000
#> GSM74352      1  0.0424      0.944 0.992 0.008 0.000
#> GSM74353      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74354      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74355      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74382      1  0.0237      0.946 0.996 0.004 0.000
#> GSM74383      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74384      1  0.0424      0.944 0.992 0.008 0.000
#> GSM74385      1  0.0424      0.944 0.992 0.008 0.000
#> GSM74386      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74395      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74396      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74397      1  0.0424      0.944 0.992 0.008 0.000
#> GSM74398      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74399      1  0.0000      0.946 1.000 0.000 0.000
#> GSM74400      1  0.0661      0.943 0.988 0.008 0.004
#> GSM74401      1  0.0661      0.943 0.988 0.008 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.3324     0.8163 0.000 0.136 0.852 0.012
#> GSM74357      3  0.3047     0.8038 0.000 0.116 0.872 0.012
#> GSM74358      3  0.3047     0.8038 0.000 0.116 0.872 0.012
#> GSM74359      4  0.3711     0.6777 0.140 0.000 0.024 0.836
#> GSM74360      4  0.3862     0.6771 0.152 0.000 0.024 0.824
#> GSM74361      3  0.4459     0.8289 0.000 0.188 0.780 0.032
#> GSM74362      3  0.6616     0.6127 0.000 0.156 0.624 0.220
#> GSM74363      3  0.3479     0.8196 0.000 0.148 0.840 0.012
#> GSM74402      4  0.7197     0.3415 0.392 0.000 0.140 0.468
#> GSM74403      1  0.0592     0.9342 0.984 0.000 0.000 0.016
#> GSM74404      1  0.0592     0.9342 0.984 0.000 0.000 0.016
#> GSM74406      4  0.7231     0.3411 0.392 0.000 0.144 0.464
#> GSM74407      4  0.6407     0.3419 0.412 0.000 0.068 0.520
#> GSM74408      4  0.7231     0.3411 0.392 0.000 0.144 0.464
#> GSM74409      4  0.7231     0.3411 0.392 0.000 0.144 0.464
#> GSM74410      4  0.7231     0.3411 0.392 0.000 0.144 0.464
#> GSM119936     4  0.7231     0.3411 0.392 0.000 0.144 0.464
#> GSM119937     4  0.7243     0.3290 0.404 0.000 0.144 0.452
#> GSM74411      3  0.4276     0.8306 0.004 0.192 0.788 0.016
#> GSM74412      3  0.3486     0.8327 0.000 0.188 0.812 0.000
#> GSM74413      3  0.3610     0.8339 0.000 0.200 0.800 0.000
#> GSM74414      3  0.4391     0.8236 0.000 0.252 0.740 0.008
#> GSM74415      3  0.7256     0.4833 0.004 0.160 0.544 0.292
#> GSM121379     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121388     2  0.1211     0.9278 0.000 0.960 0.040 0.000
#> GSM121389     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121392     2  0.1716     0.8995 0.000 0.936 0.064 0.000
#> GSM121393     2  0.1867     0.8909 0.000 0.928 0.072 0.000
#> GSM121394     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121395     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121396     2  0.4661     0.2239 0.000 0.652 0.348 0.000
#> GSM121397     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000     0.9653 0.000 1.000 0.000 0.000
#> GSM74240      4  0.3123     0.6004 0.000 0.000 0.156 0.844
#> GSM74241      4  0.3649     0.5654 0.000 0.000 0.204 0.796
#> GSM74242      4  0.3052     0.6120 0.004 0.000 0.136 0.860
#> GSM74243      4  0.3271     0.6166 0.012 0.000 0.132 0.856
#> GSM74244      4  0.3172     0.5992 0.000 0.000 0.160 0.840
#> GSM74245      4  0.3172     0.5992 0.000 0.000 0.160 0.840
#> GSM74246      4  0.3172     0.5992 0.000 0.000 0.160 0.840
#> GSM74247      4  0.3172     0.5992 0.000 0.000 0.160 0.840
#> GSM74248      4  0.3172     0.5992 0.000 0.000 0.160 0.840
#> GSM74416      1  0.5648     0.5046 0.684 0.000 0.064 0.252
#> GSM74417      1  0.5386     0.5541 0.708 0.000 0.056 0.236
#> GSM74418      1  0.4290     0.7272 0.800 0.000 0.036 0.164
#> GSM74419      4  0.7246     0.3215 0.408 0.000 0.144 0.448
#> GSM121358     3  0.4516     0.8242 0.000 0.252 0.736 0.012
#> GSM121359     3  0.4776     0.6819 0.000 0.376 0.624 0.000
#> GSM121360     4  0.3552     0.6738 0.128 0.000 0.024 0.848
#> GSM121362     4  0.4609     0.6612 0.224 0.000 0.024 0.752
#> GSM121364     4  0.3813     0.6777 0.148 0.000 0.024 0.828
#> GSM121365     3  0.4387     0.8288 0.000 0.236 0.752 0.012
#> GSM121366     3  0.5018     0.7500 0.000 0.332 0.656 0.012
#> GSM121367     3  0.4576     0.8197 0.000 0.260 0.728 0.012
#> GSM121370     3  0.4019     0.8342 0.000 0.196 0.792 0.012
#> GSM121371     3  0.4516     0.8232 0.000 0.252 0.736 0.012
#> GSM121372     3  0.4679     0.7238 0.000 0.352 0.648 0.000
#> GSM121373     4  0.3813     0.6777 0.148 0.000 0.024 0.828
#> GSM121374     4  0.3862     0.6771 0.152 0.000 0.024 0.824
#> GSM121407     3  0.4730     0.7042 0.000 0.364 0.636 0.000
#> GSM74387      3  0.5126     0.0125 0.004 0.000 0.552 0.444
#> GSM74388      4  0.6371     0.1041 0.064 0.000 0.428 0.508
#> GSM74389      4  0.3803     0.6734 0.132 0.000 0.032 0.836
#> GSM74390      1  0.4799     0.6089 0.744 0.000 0.032 0.224
#> GSM74391      4  0.3708     0.6782 0.148 0.000 0.020 0.832
#> GSM74392      4  0.3659     0.6772 0.136 0.000 0.024 0.840
#> GSM74393      4  0.3464     0.6540 0.076 0.000 0.056 0.868
#> GSM74394      4  0.5281     0.0481 0.008 0.000 0.464 0.528
#> GSM74239      1  0.0469     0.9349 0.988 0.000 0.000 0.012
#> GSM74364      1  0.0592     0.9344 0.984 0.000 0.000 0.016
#> GSM74365      1  0.0000     0.9358 1.000 0.000 0.000 0.000
#> GSM74366      1  0.2197     0.8877 0.916 0.000 0.004 0.080
#> GSM74367      1  0.0188     0.9361 0.996 0.000 0.000 0.004
#> GSM74377      1  0.0921     0.9255 0.972 0.000 0.000 0.028
#> GSM74378      1  0.1902     0.8980 0.932 0.000 0.004 0.064
#> GSM74379      1  0.0000     0.9358 1.000 0.000 0.000 0.000
#> GSM74380      1  0.0000     0.9358 1.000 0.000 0.000 0.000
#> GSM74381      1  0.1211     0.9182 0.960 0.000 0.000 0.040
#> GSM121357     3  0.4483     0.8034 0.000 0.284 0.712 0.004
#> GSM121361     4  0.5277     0.0523 0.008 0.000 0.460 0.532
#> GSM121363     4  0.5277     0.0523 0.008 0.000 0.460 0.532
#> GSM121368     4  0.5277     0.0523 0.008 0.000 0.460 0.532
#> GSM121369     4  0.5500     0.0555 0.016 0.000 0.464 0.520
#> GSM74368      1  0.3421     0.8253 0.868 0.000 0.044 0.088
#> GSM74369      1  0.0937     0.9305 0.976 0.000 0.012 0.012
#> GSM74370      1  0.0188     0.9361 0.996 0.000 0.000 0.004
#> GSM74371      1  0.1059     0.9306 0.972 0.000 0.012 0.016
#> GSM74372      1  0.0188     0.9362 0.996 0.000 0.000 0.004
#> GSM74373      1  0.1792     0.8978 0.932 0.000 0.000 0.068
#> GSM74374      1  0.0469     0.9349 0.988 0.000 0.000 0.012
#> GSM74375      1  0.1305     0.9277 0.960 0.000 0.004 0.036
#> GSM74376      1  0.0707     0.9335 0.980 0.000 0.000 0.020
#> GSM74405      1  0.0336     0.9342 0.992 0.000 0.000 0.008
#> GSM74351      1  0.0817     0.9302 0.976 0.000 0.000 0.024
#> GSM74352      1  0.2593     0.8752 0.892 0.000 0.004 0.104
#> GSM74353      1  0.0672     0.9349 0.984 0.000 0.008 0.008
#> GSM74354      1  0.0336     0.9358 0.992 0.000 0.000 0.008
#> GSM74355      1  0.1557     0.9071 0.944 0.000 0.000 0.056
#> GSM74382      1  0.0592     0.9342 0.984 0.000 0.000 0.016
#> GSM74383      1  0.0188     0.9362 0.996 0.000 0.000 0.004
#> GSM74384      1  0.2593     0.8752 0.892 0.000 0.004 0.104
#> GSM74385      1  0.1042     0.9311 0.972 0.000 0.008 0.020
#> GSM74386      1  0.0000     0.9358 1.000 0.000 0.000 0.000
#> GSM74395      1  0.0469     0.9349 0.988 0.000 0.000 0.012
#> GSM74396      1  0.0336     0.9358 0.992 0.000 0.000 0.008
#> GSM74397      1  0.1488     0.9184 0.956 0.000 0.012 0.032
#> GSM74398      1  0.0000     0.9358 1.000 0.000 0.000 0.000
#> GSM74399      1  0.0000     0.9358 1.000 0.000 0.000 0.000
#> GSM74400      1  0.2593     0.8771 0.892 0.004 0.000 0.104
#> GSM74401      1  0.2593     0.8771 0.892 0.004 0.000 0.104

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM74357      3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM74358      3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM74359      5  0.4473     0.8080 0.148 0.000 0.008 0.076 0.768
#> GSM74360      5  0.4680     0.7967 0.152 0.000 0.008 0.088 0.752
#> GSM74361      3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM74362      3  0.0609     0.9320 0.000 0.000 0.980 0.000 0.020
#> GSM74363      3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM74402      4  0.3487     0.7318 0.212 0.000 0.008 0.780 0.000
#> GSM74403      1  0.0671     0.9143 0.980 0.000 0.004 0.016 0.000
#> GSM74404      1  0.1571     0.8910 0.936 0.000 0.004 0.060 0.000
#> GSM74406      4  0.2660     0.8105 0.128 0.000 0.008 0.864 0.000
#> GSM74407      1  0.5969     0.3755 0.620 0.000 0.008 0.184 0.188
#> GSM74408      4  0.0579     0.8896 0.008 0.000 0.008 0.984 0.000
#> GSM74409      4  0.0579     0.8896 0.008 0.000 0.008 0.984 0.000
#> GSM74410      4  0.0898     0.8873 0.020 0.000 0.008 0.972 0.000
#> GSM119936     4  0.0579     0.8896 0.008 0.000 0.008 0.984 0.000
#> GSM119937     4  0.0579     0.8896 0.008 0.000 0.008 0.984 0.000
#> GSM74411      3  0.2966     0.7842 0.000 0.000 0.816 0.000 0.184
#> GSM74412      3  0.0794     0.9331 0.000 0.000 0.972 0.000 0.028
#> GSM74413      3  0.0510     0.9392 0.000 0.000 0.984 0.000 0.016
#> GSM74414      2  0.5077     0.3233 0.000 0.568 0.392 0.000 0.040
#> GSM74415      3  0.4182     0.4100 0.000 0.000 0.600 0.000 0.400
#> GSM121379     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121389     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121393     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121394     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121396     3  0.3521     0.6792 0.000 0.232 0.764 0.000 0.004
#> GSM121397     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9554 0.000 1.000 0.000 0.000 0.000
#> GSM74240      5  0.1300     0.8807 0.000 0.000 0.028 0.016 0.956
#> GSM74241      5  0.0865     0.8792 0.000 0.000 0.024 0.004 0.972
#> GSM74242      5  0.1469     0.8791 0.000 0.000 0.036 0.016 0.948
#> GSM74243      5  0.1310     0.8806 0.000 0.000 0.024 0.020 0.956
#> GSM74244      5  0.0771     0.8805 0.000 0.000 0.020 0.004 0.976
#> GSM74245      5  0.0955     0.8810 0.000 0.000 0.028 0.004 0.968
#> GSM74246      5  0.0771     0.8805 0.000 0.000 0.020 0.004 0.976
#> GSM74247      5  0.0771     0.8805 0.000 0.000 0.020 0.004 0.976
#> GSM74248      5  0.1082     0.8813 0.000 0.000 0.028 0.008 0.964
#> GSM74416      4  0.1341     0.8774 0.056 0.000 0.000 0.944 0.000
#> GSM74417      4  0.1430     0.8789 0.052 0.000 0.004 0.944 0.000
#> GSM74418      4  0.1341     0.8774 0.056 0.000 0.000 0.944 0.000
#> GSM74419      4  0.0579     0.8896 0.008 0.000 0.008 0.984 0.000
#> GSM121358     3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM121359     3  0.0912     0.9348 0.000 0.012 0.972 0.000 0.016
#> GSM121360     5  0.3981     0.8243 0.136 0.000 0.004 0.060 0.800
#> GSM121362     5  0.4840     0.7691 0.152 0.000 0.000 0.124 0.724
#> GSM121364     5  0.4820     0.7944 0.132 0.000 0.008 0.116 0.744
#> GSM121365     3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM121366     3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM121367     3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM121370     3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM121371     3  0.0000     0.9451 0.000 0.000 1.000 0.000 0.000
#> GSM121372     3  0.0510     0.9392 0.000 0.000 0.984 0.000 0.016
#> GSM121373     5  0.4571     0.8017 0.152 0.000 0.008 0.080 0.760
#> GSM121374     5  0.5078     0.7684 0.128 0.000 0.008 0.144 0.720
#> GSM121407     3  0.0510     0.9392 0.000 0.000 0.984 0.000 0.016
#> GSM74387      5  0.2389     0.7937 0.000 0.000 0.116 0.004 0.880
#> GSM74388      5  0.1638     0.8662 0.064 0.000 0.004 0.000 0.932
#> GSM74389      5  0.4231     0.8147 0.148 0.000 0.008 0.060 0.784
#> GSM74390      1  0.4443    -0.0891 0.524 0.000 0.000 0.004 0.472
#> GSM74391      5  0.4571     0.8017 0.152 0.000 0.008 0.080 0.760
#> GSM74392      5  0.4355     0.8115 0.148 0.000 0.008 0.068 0.776
#> GSM74393      5  0.1461     0.8796 0.004 0.000 0.016 0.028 0.952
#> GSM74394      5  0.0324     0.8775 0.000 0.000 0.004 0.004 0.992
#> GSM74239      1  0.0162     0.9184 0.996 0.000 0.000 0.004 0.000
#> GSM74364      1  0.2929     0.7807 0.820 0.000 0.000 0.180 0.000
#> GSM74365      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74366      1  0.0162     0.9189 0.996 0.000 0.000 0.000 0.004
#> GSM74367      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74377      1  0.0162     0.9190 0.996 0.000 0.000 0.004 0.000
#> GSM74378      1  0.0324     0.9180 0.992 0.000 0.000 0.004 0.004
#> GSM74379      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74380      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74381      1  0.0162     0.9190 0.996 0.000 0.000 0.004 0.000
#> GSM121357     2  0.5086     0.3126 0.000 0.564 0.396 0.000 0.040
#> GSM121361     5  0.0324     0.8775 0.000 0.000 0.004 0.004 0.992
#> GSM121363     5  0.0324     0.8775 0.000 0.000 0.004 0.004 0.992
#> GSM121368     5  0.0324     0.8775 0.000 0.000 0.004 0.004 0.992
#> GSM121369     5  0.0324     0.8775 0.000 0.000 0.004 0.004 0.992
#> GSM74368      4  0.4300     0.1555 0.476 0.000 0.000 0.524 0.000
#> GSM74369      1  0.3480     0.6447 0.752 0.000 0.000 0.248 0.000
#> GSM74370      1  0.0162     0.9184 0.996 0.000 0.000 0.004 0.000
#> GSM74371      1  0.1544     0.8819 0.932 0.000 0.000 0.068 0.000
#> GSM74372      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74373      1  0.0162     0.9190 0.996 0.000 0.000 0.004 0.000
#> GSM74374      1  0.0703     0.9099 0.976 0.000 0.000 0.024 0.000
#> GSM74375      1  0.0290     0.9183 0.992 0.000 0.000 0.008 0.000
#> GSM74376      1  0.0162     0.9189 0.996 0.000 0.000 0.000 0.004
#> GSM74405      1  0.0162     0.9189 0.996 0.000 0.000 0.000 0.004
#> GSM74351      1  0.3109     0.7607 0.800 0.000 0.000 0.200 0.000
#> GSM74352      1  0.1502     0.8939 0.940 0.000 0.000 0.056 0.004
#> GSM74353      1  0.1270     0.8963 0.948 0.000 0.000 0.052 0.000
#> GSM74354      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74355      1  0.0324     0.9180 0.992 0.000 0.000 0.004 0.004
#> GSM74382      1  0.2516     0.8166 0.860 0.000 0.000 0.140 0.000
#> GSM74383      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74384      1  0.0451     0.9167 0.988 0.000 0.000 0.008 0.004
#> GSM74385      1  0.3074     0.7617 0.804 0.000 0.000 0.196 0.000
#> GSM74386      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74395      1  0.0162     0.9184 0.996 0.000 0.000 0.004 0.000
#> GSM74396      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74397      1  0.1965     0.8705 0.904 0.000 0.000 0.096 0.000
#> GSM74398      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74399      1  0.0000     0.9194 1.000 0.000 0.000 0.000 0.000
#> GSM74400      1  0.3210     0.7495 0.788 0.000 0.000 0.212 0.000
#> GSM74401      1  0.3177     0.7520 0.792 0.000 0.000 0.208 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.0000     0.9074 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74357      3  0.0000     0.9074 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74358      3  0.0000     0.9074 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74359      5  0.4127     0.7170 0.036 0.000 0.000 0.284 0.680 0.000
#> GSM74360      5  0.4328     0.7111 0.040 0.000 0.000 0.284 0.672 0.004
#> GSM74361      3  0.1007     0.8840 0.000 0.000 0.956 0.000 0.044 0.000
#> GSM74362      3  0.2631     0.7385 0.000 0.000 0.820 0.000 0.180 0.000
#> GSM74363      3  0.0000     0.9074 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74402      4  0.3810     0.6046 0.208 0.000 0.000 0.752 0.004 0.036
#> GSM74403      1  0.4074     0.4942 0.656 0.000 0.000 0.016 0.004 0.324
#> GSM74404      1  0.4459     0.1419 0.516 0.000 0.000 0.020 0.004 0.460
#> GSM74406      4  0.0865     0.8260 0.036 0.000 0.000 0.964 0.000 0.000
#> GSM74407      4  0.7099    -0.1197 0.264 0.000 0.000 0.352 0.072 0.312
#> GSM74408      4  0.1007     0.8432 0.044 0.000 0.000 0.956 0.000 0.000
#> GSM74409      4  0.1075     0.8420 0.048 0.000 0.000 0.952 0.000 0.000
#> GSM74410      4  0.0632     0.8371 0.024 0.000 0.000 0.976 0.000 0.000
#> GSM119936     4  0.1075     0.8428 0.048 0.000 0.000 0.952 0.000 0.000
#> GSM119937     4  0.1444     0.8303 0.072 0.000 0.000 0.928 0.000 0.000
#> GSM74411      3  0.2912     0.7277 0.000 0.000 0.784 0.000 0.216 0.000
#> GSM74412      3  0.1387     0.8714 0.000 0.000 0.932 0.000 0.068 0.000
#> GSM74413      3  0.0865     0.8886 0.000 0.000 0.964 0.000 0.036 0.000
#> GSM74414      3  0.5326     0.4421 0.012 0.332 0.568 0.000 0.088 0.000
#> GSM74415      5  0.3563     0.3843 0.000 0.000 0.336 0.000 0.664 0.000
#> GSM121379     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0146     0.9950 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121388     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121389     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121390     2  0.0260     0.9927 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0891     0.9627 0.008 0.968 0.000 0.000 0.024 0.000
#> GSM121393     2  0.0260     0.9927 0.008 0.992 0.000 0.000 0.000 0.000
#> GSM121394     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121396     3  0.2996     0.6944 0.000 0.228 0.772 0.000 0.000 0.000
#> GSM121397     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0146     0.9950 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9970 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      5  0.0790     0.8446 0.000 0.000 0.000 0.032 0.968 0.000
#> GSM74241      5  0.0146     0.8428 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM74242      5  0.1333     0.8426 0.000 0.000 0.008 0.048 0.944 0.000
#> GSM74243      5  0.1075     0.8427 0.000 0.000 0.000 0.048 0.952 0.000
#> GSM74244      5  0.0000     0.8419 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74245      5  0.0632     0.8446 0.000 0.000 0.000 0.024 0.976 0.000
#> GSM74246      5  0.0000     0.8419 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74247      5  0.0000     0.8419 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74248      5  0.0790     0.8446 0.000 0.000 0.000 0.032 0.968 0.000
#> GSM74416      1  0.4338    -0.1357 0.492 0.000 0.000 0.488 0.000 0.020
#> GSM74417      1  0.4338    -0.1288 0.496 0.000 0.000 0.484 0.000 0.020
#> GSM74418      1  0.4336    -0.1100 0.504 0.000 0.000 0.476 0.000 0.020
#> GSM74419      4  0.1663     0.8160 0.088 0.000 0.000 0.912 0.000 0.000
#> GSM121358     3  0.0000     0.9074 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121359     3  0.0260     0.9058 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM121360     5  0.3312     0.7882 0.028 0.000 0.000 0.180 0.792 0.000
#> GSM121362     5  0.5244     0.6580 0.084 0.000 0.000 0.248 0.640 0.028
#> GSM121364     5  0.4165     0.7093 0.036 0.000 0.000 0.292 0.672 0.000
#> GSM121365     3  0.0000     0.9074 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121366     3  0.0000     0.9074 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121367     3  0.0000     0.9074 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121370     3  0.0146     0.9067 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM121371     3  0.0000     0.9074 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121372     3  0.0260     0.9058 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM121373     5  0.4308     0.7147 0.040 0.000 0.000 0.280 0.676 0.004
#> GSM121374     5  0.4249     0.6695 0.032 0.000 0.000 0.328 0.640 0.000
#> GSM121407     3  0.0260     0.9058 0.000 0.008 0.992 0.000 0.000 0.000
#> GSM74387      5  0.1531     0.7942 0.000 0.000 0.068 0.000 0.928 0.004
#> GSM74388      5  0.2896     0.7461 0.016 0.000 0.000 0.000 0.824 0.160
#> GSM74389      5  0.3679     0.7737 0.040 0.000 0.000 0.200 0.760 0.000
#> GSM74390      6  0.5094     0.3499 0.092 0.000 0.000 0.004 0.308 0.596
#> GSM74391      5  0.4172     0.7176 0.040 0.000 0.000 0.280 0.680 0.000
#> GSM74392      5  0.4151     0.7209 0.040 0.000 0.000 0.276 0.684 0.000
#> GSM74393      5  0.1471     0.8403 0.004 0.000 0.000 0.064 0.932 0.000
#> GSM74394      5  0.0508     0.8412 0.012 0.000 0.000 0.000 0.984 0.004
#> GSM74239      1  0.3446     0.5078 0.692 0.000 0.000 0.000 0.000 0.308
#> GSM74364      1  0.1926     0.6629 0.912 0.000 0.000 0.020 0.000 0.068
#> GSM74365      6  0.3869    -0.0333 0.500 0.000 0.000 0.000 0.000 0.500
#> GSM74366      6  0.0458     0.8065 0.016 0.000 0.000 0.000 0.000 0.984
#> GSM74367      6  0.2631     0.7555 0.180 0.000 0.000 0.000 0.000 0.820
#> GSM74377      6  0.2996     0.6146 0.228 0.000 0.000 0.000 0.000 0.772
#> GSM74378      6  0.0000     0.8035 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74379      6  0.0865     0.8146 0.036 0.000 0.000 0.000 0.000 0.964
#> GSM74380      6  0.1075     0.8147 0.048 0.000 0.000 0.000 0.000 0.952
#> GSM74381      6  0.0632     0.8113 0.024 0.000 0.000 0.000 0.000 0.976
#> GSM121357     3  0.5004     0.4965 0.008 0.316 0.604 0.000 0.072 0.000
#> GSM121361     5  0.0622     0.8410 0.012 0.000 0.000 0.000 0.980 0.008
#> GSM121363     5  0.0508     0.8412 0.012 0.000 0.000 0.000 0.984 0.004
#> GSM121368     5  0.0508     0.8412 0.012 0.000 0.000 0.000 0.984 0.004
#> GSM121369     5  0.0508     0.8412 0.012 0.000 0.000 0.000 0.984 0.004
#> GSM74368      1  0.5140     0.1885 0.520 0.000 0.000 0.392 0.000 0.088
#> GSM74369      1  0.2950     0.6518 0.828 0.000 0.000 0.024 0.000 0.148
#> GSM74370      6  0.3620     0.4604 0.352 0.000 0.000 0.000 0.000 0.648
#> GSM74371      1  0.3043     0.6329 0.796 0.000 0.000 0.004 0.004 0.196
#> GSM74372      6  0.2592     0.7937 0.116 0.000 0.000 0.004 0.016 0.864
#> GSM74373      6  0.1267     0.8108 0.060 0.000 0.000 0.000 0.000 0.940
#> GSM74374      6  0.2730     0.7456 0.192 0.000 0.000 0.000 0.000 0.808
#> GSM74375      6  0.3634     0.4108 0.356 0.000 0.000 0.000 0.000 0.644
#> GSM74376      6  0.0865     0.8114 0.036 0.000 0.000 0.000 0.000 0.964
#> GSM74405      6  0.0632     0.8119 0.024 0.000 0.000 0.000 0.000 0.976
#> GSM74351      1  0.1700     0.6469 0.928 0.000 0.000 0.024 0.000 0.048
#> GSM74352      1  0.3789     0.3572 0.584 0.000 0.000 0.000 0.000 0.416
#> GSM74353      1  0.2838     0.6351 0.808 0.000 0.000 0.004 0.000 0.188
#> GSM74354      1  0.3851     0.1032 0.540 0.000 0.000 0.000 0.000 0.460
#> GSM74355      6  0.0000     0.8035 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74382      1  0.3003     0.6502 0.812 0.000 0.000 0.016 0.000 0.172
#> GSM74383      1  0.3464     0.5065 0.688 0.000 0.000 0.000 0.000 0.312
#> GSM74384      6  0.0260     0.8019 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM74385      1  0.2039     0.6590 0.904 0.000 0.000 0.020 0.000 0.076
#> GSM74386      6  0.2883     0.7298 0.212 0.000 0.000 0.000 0.000 0.788
#> GSM74395      6  0.2912     0.7149 0.216 0.000 0.000 0.000 0.000 0.784
#> GSM74396      6  0.2854     0.7242 0.208 0.000 0.000 0.000 0.000 0.792
#> GSM74397      1  0.5042     0.3997 0.576 0.000 0.000 0.092 0.000 0.332
#> GSM74398      6  0.1204     0.8149 0.056 0.000 0.000 0.000 0.000 0.944
#> GSM74399      6  0.1204     0.8145 0.056 0.000 0.000 0.000 0.000 0.944
#> GSM74400      1  0.2263     0.6597 0.884 0.000 0.000 0.016 0.000 0.100
#> GSM74401      1  0.2214     0.6574 0.888 0.000 0.000 0.016 0.000 0.096

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:mclust 119         2.00e-11 2
#> CV:mclust 112         4.74e-26 3
#> CV:mclust 103         4.17e-33 4
#> CV:mclust 115         1.41e-43 5
#> CV:mclust 104         1.88e-35 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.932           0.940       0.975         0.4995 0.500   0.500
#> 3 3 0.577           0.667       0.849         0.3215 0.728   0.511
#> 4 4 0.555           0.509       0.716         0.1228 0.806   0.517
#> 5 5 0.623           0.547       0.731         0.0650 0.853   0.537
#> 6 6 0.709           0.669       0.799         0.0435 0.895   0.582

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.0000      0.973 0.000 1.000
#> GSM74357      2  0.6343      0.816 0.160 0.840
#> GSM74358      2  0.8327      0.657 0.264 0.736
#> GSM74359      1  0.0000      0.975 1.000 0.000
#> GSM74360      1  0.0000      0.975 1.000 0.000
#> GSM74361      2  0.5178      0.867 0.116 0.884
#> GSM74362      1  0.8909      0.545 0.692 0.308
#> GSM74363      2  0.0000      0.973 0.000 1.000
#> GSM74402      1  0.0000      0.975 1.000 0.000
#> GSM74403      1  0.0000      0.975 1.000 0.000
#> GSM74404      1  0.0000      0.975 1.000 0.000
#> GSM74406      1  0.0000      0.975 1.000 0.000
#> GSM74407      1  0.0000      0.975 1.000 0.000
#> GSM74408      1  0.0000      0.975 1.000 0.000
#> GSM74409      1  0.0000      0.975 1.000 0.000
#> GSM74410      1  0.0000      0.975 1.000 0.000
#> GSM119936     1  0.0000      0.975 1.000 0.000
#> GSM119937     1  0.0000      0.975 1.000 0.000
#> GSM74411      2  0.0000      0.973 0.000 1.000
#> GSM74412      2  0.0000      0.973 0.000 1.000
#> GSM74413      2  0.0000      0.973 0.000 1.000
#> GSM74414      2  0.0000      0.973 0.000 1.000
#> GSM74415      2  0.0000      0.973 0.000 1.000
#> GSM121379     2  0.0000      0.973 0.000 1.000
#> GSM121380     2  0.0000      0.973 0.000 1.000
#> GSM121381     2  0.0000      0.973 0.000 1.000
#> GSM121382     2  0.0000      0.973 0.000 1.000
#> GSM121383     2  0.0000      0.973 0.000 1.000
#> GSM121384     2  0.0000      0.973 0.000 1.000
#> GSM121385     2  0.0000      0.973 0.000 1.000
#> GSM121386     2  0.0000      0.973 0.000 1.000
#> GSM121387     2  0.0000      0.973 0.000 1.000
#> GSM121388     2  0.0000      0.973 0.000 1.000
#> GSM121389     2  0.0000      0.973 0.000 1.000
#> GSM121390     2  0.0000      0.973 0.000 1.000
#> GSM121391     2  0.0000      0.973 0.000 1.000
#> GSM121392     2  0.0000      0.973 0.000 1.000
#> GSM121393     2  0.0000      0.973 0.000 1.000
#> GSM121394     2  0.0000      0.973 0.000 1.000
#> GSM121395     2  0.0000      0.973 0.000 1.000
#> GSM121396     2  0.0000      0.973 0.000 1.000
#> GSM121397     2  0.0000      0.973 0.000 1.000
#> GSM121398     2  0.0000      0.973 0.000 1.000
#> GSM121399     2  0.0000      0.973 0.000 1.000
#> GSM74240      1  0.9954      0.124 0.540 0.460
#> GSM74241      2  0.6048      0.830 0.148 0.852
#> GSM74242      1  0.1414      0.956 0.980 0.020
#> GSM74243      1  0.2423      0.937 0.960 0.040
#> GSM74244      2  0.2236      0.945 0.036 0.964
#> GSM74245      2  0.8081      0.684 0.248 0.752
#> GSM74246      2  0.3274      0.924 0.060 0.940
#> GSM74247      2  0.0938      0.964 0.012 0.988
#> GSM74248      2  0.9209      0.511 0.336 0.664
#> GSM74416      1  0.0000      0.975 1.000 0.000
#> GSM74417      1  0.0000      0.975 1.000 0.000
#> GSM74418      1  0.0000      0.975 1.000 0.000
#> GSM74419      1  0.0000      0.975 1.000 0.000
#> GSM121358     2  0.0000      0.973 0.000 1.000
#> GSM121359     2  0.0000      0.973 0.000 1.000
#> GSM121360     1  0.0000      0.975 1.000 0.000
#> GSM121362     1  0.0000      0.975 1.000 0.000
#> GSM121364     1  0.0000      0.975 1.000 0.000
#> GSM121365     2  0.0000      0.973 0.000 1.000
#> GSM121366     2  0.0000      0.973 0.000 1.000
#> GSM121367     2  0.0000      0.973 0.000 1.000
#> GSM121370     2  0.0000      0.973 0.000 1.000
#> GSM121371     2  0.0000      0.973 0.000 1.000
#> GSM121372     2  0.0000      0.973 0.000 1.000
#> GSM121373     1  0.0000      0.975 1.000 0.000
#> GSM121374     1  0.0000      0.975 1.000 0.000
#> GSM121407     2  0.0000      0.973 0.000 1.000
#> GSM74387      2  0.0000      0.973 0.000 1.000
#> GSM74388      2  0.0000      0.973 0.000 1.000
#> GSM74389      1  0.0000      0.975 1.000 0.000
#> GSM74390      1  0.0000      0.975 1.000 0.000
#> GSM74391      1  0.0000      0.975 1.000 0.000
#> GSM74392      1  0.0000      0.975 1.000 0.000
#> GSM74393      1  0.0000      0.975 1.000 0.000
#> GSM74394      2  0.0000      0.973 0.000 1.000
#> GSM74239      1  0.0000      0.975 1.000 0.000
#> GSM74364      1  0.0000      0.975 1.000 0.000
#> GSM74365      1  0.0000      0.975 1.000 0.000
#> GSM74366      1  0.9286      0.468 0.656 0.344
#> GSM74367      1  0.0000      0.975 1.000 0.000
#> GSM74377      1  0.0000      0.975 1.000 0.000
#> GSM74378      1  0.0938      0.964 0.988 0.012
#> GSM74379      1  0.0000      0.975 1.000 0.000
#> GSM74380      1  0.0000      0.975 1.000 0.000
#> GSM74381      1  0.0000      0.975 1.000 0.000
#> GSM121357     2  0.0000      0.973 0.000 1.000
#> GSM121361     2  0.0000      0.973 0.000 1.000
#> GSM121363     2  0.0000      0.973 0.000 1.000
#> GSM121368     2  0.0000      0.973 0.000 1.000
#> GSM121369     2  0.0376      0.970 0.004 0.996
#> GSM74368      1  0.0000      0.975 1.000 0.000
#> GSM74369      1  0.0000      0.975 1.000 0.000
#> GSM74370      1  0.0000      0.975 1.000 0.000
#> GSM74371      1  0.0000      0.975 1.000 0.000
#> GSM74372      1  0.0000      0.975 1.000 0.000
#> GSM74373      1  0.0000      0.975 1.000 0.000
#> GSM74374      1  0.0000      0.975 1.000 0.000
#> GSM74375      1  0.0000      0.975 1.000 0.000
#> GSM74376      1  0.0000      0.975 1.000 0.000
#> GSM74405      1  0.0000      0.975 1.000 0.000
#> GSM74351      1  0.0000      0.975 1.000 0.000
#> GSM74352      1  0.9710      0.345 0.600 0.400
#> GSM74353      1  0.0000      0.975 1.000 0.000
#> GSM74354      1  0.0000      0.975 1.000 0.000
#> GSM74355      1  0.0000      0.975 1.000 0.000
#> GSM74382      1  0.0000      0.975 1.000 0.000
#> GSM74383      1  0.0000      0.975 1.000 0.000
#> GSM74384      2  0.2043      0.948 0.032 0.968
#> GSM74385      1  0.0000      0.975 1.000 0.000
#> GSM74386      1  0.0000      0.975 1.000 0.000
#> GSM74395      1  0.0000      0.975 1.000 0.000
#> GSM74396      1  0.0000      0.975 1.000 0.000
#> GSM74397      1  0.0000      0.975 1.000 0.000
#> GSM74398      1  0.0000      0.975 1.000 0.000
#> GSM74399      1  0.0000      0.975 1.000 0.000
#> GSM74400      1  0.0000      0.975 1.000 0.000
#> GSM74401      1  0.0000      0.975 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0000     0.7871 0.000 0.000 1.000
#> GSM74357      3  0.0237     0.7860 0.004 0.000 0.996
#> GSM74358      3  0.0424     0.7847 0.008 0.000 0.992
#> GSM74359      3  0.5733     0.3482 0.324 0.000 0.676
#> GSM74360      1  0.5560     0.6107 0.700 0.000 0.300
#> GSM74361      3  0.0000     0.7871 0.000 0.000 1.000
#> GSM74362      3  0.0592     0.7831 0.012 0.000 0.988
#> GSM74363      3  0.0237     0.7873 0.000 0.004 0.996
#> GSM74402      1  0.3752     0.7726 0.856 0.000 0.144
#> GSM74403      1  0.2796     0.8042 0.908 0.000 0.092
#> GSM74404      1  0.3192     0.7934 0.888 0.000 0.112
#> GSM74406      1  0.6026     0.4926 0.624 0.000 0.376
#> GSM74407      1  0.4750     0.7094 0.784 0.000 0.216
#> GSM74408      1  0.6235     0.3637 0.564 0.000 0.436
#> GSM74409      1  0.6225     0.3739 0.568 0.000 0.432
#> GSM74410      3  0.6235     0.0154 0.436 0.000 0.564
#> GSM119936     1  0.5835     0.5520 0.660 0.000 0.340
#> GSM119937     1  0.6079     0.4696 0.612 0.000 0.388
#> GSM74411      3  0.4399     0.6519 0.000 0.188 0.812
#> GSM74412      3  0.6126     0.2408 0.000 0.400 0.600
#> GSM74413      3  0.5178     0.5585 0.000 0.256 0.744
#> GSM74414      2  0.1289     0.8257 0.000 0.968 0.032
#> GSM74415      3  0.1643     0.7802 0.000 0.044 0.956
#> GSM121379     2  0.1643     0.8268 0.000 0.956 0.044
#> GSM121380     2  0.1411     0.8264 0.000 0.964 0.036
#> GSM121381     2  0.4974     0.6882 0.000 0.764 0.236
#> GSM121382     2  0.4750     0.7119 0.000 0.784 0.216
#> GSM121383     2  0.5465     0.6081 0.000 0.712 0.288
#> GSM121384     2  0.1753     0.8264 0.000 0.952 0.048
#> GSM121385     2  0.2448     0.8181 0.000 0.924 0.076
#> GSM121386     2  0.2165     0.8227 0.000 0.936 0.064
#> GSM121387     2  0.4291     0.7479 0.000 0.820 0.180
#> GSM121388     2  0.6140     0.3613 0.000 0.596 0.404
#> GSM121389     2  0.2878     0.8079 0.000 0.904 0.096
#> GSM121390     2  0.0592     0.8191 0.000 0.988 0.012
#> GSM121391     2  0.5905     0.4859 0.000 0.648 0.352
#> GSM121392     2  0.0592     0.8086 0.012 0.988 0.000
#> GSM121393     2  0.1643     0.8268 0.000 0.956 0.044
#> GSM121394     3  0.6305    -0.0448 0.000 0.484 0.516
#> GSM121395     2  0.2261     0.8213 0.000 0.932 0.068
#> GSM121396     3  0.5591     0.4749 0.000 0.304 0.696
#> GSM121397     2  0.2066     0.8238 0.000 0.940 0.060
#> GSM121398     2  0.1529     0.8268 0.000 0.960 0.040
#> GSM121399     2  0.3879     0.7709 0.000 0.848 0.152
#> GSM74240      3  0.0592     0.7831 0.012 0.000 0.988
#> GSM74241      3  0.1529     0.7820 0.000 0.040 0.960
#> GSM74242      3  0.1163     0.7746 0.028 0.000 0.972
#> GSM74243      3  0.1163     0.7748 0.028 0.000 0.972
#> GSM74244      3  0.1031     0.7863 0.000 0.024 0.976
#> GSM74245      3  0.0000     0.7871 0.000 0.000 1.000
#> GSM74246      3  0.1753     0.7779 0.000 0.048 0.952
#> GSM74247      3  0.2959     0.7399 0.000 0.100 0.900
#> GSM74248      3  0.0000     0.7871 0.000 0.000 1.000
#> GSM74416      1  0.3482     0.7839 0.872 0.000 0.128
#> GSM74417      1  0.3551     0.7811 0.868 0.000 0.132
#> GSM74418      1  0.2796     0.8042 0.908 0.000 0.092
#> GSM74419      1  0.6168     0.4201 0.588 0.000 0.412
#> GSM121358     3  0.1163     0.7858 0.000 0.028 0.972
#> GSM121359     3  0.4974     0.5894 0.000 0.236 0.764
#> GSM121360     1  0.6180     0.4028 0.584 0.000 0.416
#> GSM121362     1  0.5115     0.6903 0.768 0.004 0.228
#> GSM121364     3  0.6280    -0.0710 0.460 0.000 0.540
#> GSM121365     3  0.1163     0.7858 0.000 0.028 0.972
#> GSM121366     3  0.2261     0.7650 0.000 0.068 0.932
#> GSM121367     3  0.1163     0.7858 0.000 0.028 0.972
#> GSM121370     3  0.1643     0.7804 0.000 0.044 0.956
#> GSM121371     3  0.1289     0.7847 0.000 0.032 0.968
#> GSM121372     3  0.4605     0.6322 0.000 0.204 0.796
#> GSM121373     1  0.6215     0.3814 0.572 0.000 0.428
#> GSM121374     3  0.6260    -0.0277 0.448 0.000 0.552
#> GSM121407     3  0.5835     0.3956 0.000 0.340 0.660
#> GSM74387      3  0.6062     0.2880 0.000 0.384 0.616
#> GSM74388      2  0.1411     0.7956 0.036 0.964 0.000
#> GSM74389      3  0.5178     0.5002 0.256 0.000 0.744
#> GSM74390      1  0.0237     0.8292 0.996 0.000 0.004
#> GSM74391      1  0.6045     0.4857 0.620 0.000 0.380
#> GSM74392      3  0.6291    -0.1004 0.468 0.000 0.532
#> GSM74393      3  0.3267     0.7060 0.116 0.000 0.884
#> GSM74394      2  0.2152     0.8244 0.016 0.948 0.036
#> GSM74239      1  0.1031     0.8288 0.976 0.000 0.024
#> GSM74364      1  0.0892     0.8292 0.980 0.000 0.020
#> GSM74365      1  0.0747     0.8239 0.984 0.016 0.000
#> GSM74366      2  0.5621     0.4921 0.308 0.692 0.000
#> GSM74367      1  0.0424     0.8263 0.992 0.008 0.000
#> GSM74377      1  0.5465     0.5402 0.712 0.288 0.000
#> GSM74378      2  0.6168     0.2634 0.412 0.588 0.000
#> GSM74379      1  0.2356     0.7977 0.928 0.072 0.000
#> GSM74380      1  0.3192     0.7691 0.888 0.112 0.000
#> GSM74381      1  0.6062     0.3352 0.616 0.384 0.000
#> GSM121357     2  0.5016     0.6830 0.000 0.760 0.240
#> GSM121361     2  0.1315     0.8104 0.020 0.972 0.008
#> GSM121363     2  0.1182     0.8154 0.012 0.976 0.012
#> GSM121368     2  0.1399     0.8241 0.004 0.968 0.028
#> GSM121369     2  0.4931     0.7195 0.004 0.784 0.212
#> GSM74368      1  0.0892     0.8292 0.980 0.000 0.020
#> GSM74369      1  0.0424     0.8296 0.992 0.000 0.008
#> GSM74370      1  0.0592     0.8297 0.988 0.000 0.012
#> GSM74371      1  0.0424     0.8295 0.992 0.000 0.008
#> GSM74372      1  0.0592     0.8297 0.988 0.000 0.012
#> GSM74373      1  0.4555     0.6726 0.800 0.200 0.000
#> GSM74374      1  0.0424     0.8262 0.992 0.008 0.000
#> GSM74375      1  0.3686     0.7418 0.860 0.140 0.000
#> GSM74376      1  0.6252     0.1607 0.556 0.444 0.000
#> GSM74405      1  0.5397     0.5521 0.720 0.280 0.000
#> GSM74351      1  0.1411     0.8260 0.964 0.000 0.036
#> GSM74352      2  0.5431     0.5343 0.284 0.716 0.000
#> GSM74353      1  0.0237     0.8290 0.996 0.000 0.004
#> GSM74354      1  0.0000     0.8282 1.000 0.000 0.000
#> GSM74355      2  0.6299     0.0666 0.476 0.524 0.000
#> GSM74382      1  0.1163     0.8277 0.972 0.000 0.028
#> GSM74383      1  0.0237     0.8290 0.996 0.000 0.004
#> GSM74384      2  0.4555     0.6566 0.200 0.800 0.000
#> GSM74385      1  0.0592     0.8297 0.988 0.000 0.012
#> GSM74386      1  0.0237     0.8290 0.996 0.000 0.004
#> GSM74395      1  0.0892     0.8292 0.980 0.000 0.020
#> GSM74396      1  0.0000     0.8282 1.000 0.000 0.000
#> GSM74397      1  0.1529     0.8246 0.960 0.000 0.040
#> GSM74398      1  0.1529     0.8149 0.960 0.040 0.000
#> GSM74399      1  0.2625     0.7902 0.916 0.084 0.000
#> GSM74400      1  0.2959     0.7778 0.900 0.100 0.000
#> GSM74401      1  0.2959     0.7786 0.900 0.100 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      1  0.6197    0.40799 0.596 0.056 0.344 0.004
#> GSM74357      1  0.6562    0.39120 0.600 0.044 0.328 0.028
#> GSM74358      1  0.6440    0.37992 0.600 0.036 0.336 0.028
#> GSM74359      3  0.7442    0.25900 0.212 0.000 0.504 0.284
#> GSM74360      4  0.6775    0.18725 0.100 0.000 0.384 0.516
#> GSM74361      3  0.5967   -0.00588 0.428 0.020 0.540 0.012
#> GSM74362      3  0.5530    0.26129 0.336 0.000 0.632 0.032
#> GSM74363      1  0.6832    0.47791 0.608 0.120 0.264 0.008
#> GSM74402      4  0.2125    0.75863 0.076 0.000 0.004 0.920
#> GSM74403      4  0.1722    0.76565 0.048 0.000 0.008 0.944
#> GSM74404      4  0.2300    0.76476 0.048 0.000 0.028 0.924
#> GSM74406      4  0.4673    0.67296 0.132 0.000 0.076 0.792
#> GSM74407      4  0.3617    0.72463 0.076 0.000 0.064 0.860
#> GSM74408      4  0.4920    0.63549 0.192 0.000 0.052 0.756
#> GSM74409      4  0.5512    0.61008 0.172 0.000 0.100 0.728
#> GSM74410      4  0.6587    0.46114 0.252 0.000 0.132 0.616
#> GSM119936     4  0.3907    0.69776 0.140 0.000 0.032 0.828
#> GSM119937     4  0.4290    0.67652 0.164 0.000 0.036 0.800
#> GSM74411      3  0.6074    0.21130 0.268 0.084 0.648 0.000
#> GSM74412      3  0.6862    0.18119 0.228 0.176 0.596 0.000
#> GSM74413      3  0.7328   -0.26106 0.392 0.156 0.452 0.000
#> GSM74414      2  0.5123    0.53685 0.232 0.724 0.044 0.000
#> GSM74415      3  0.3402    0.50619 0.164 0.004 0.832 0.000
#> GSM121379     2  0.0188    0.71454 0.004 0.996 0.000 0.000
#> GSM121380     2  0.1211    0.70498 0.040 0.960 0.000 0.000
#> GSM121381     2  0.4155    0.55837 0.240 0.756 0.004 0.000
#> GSM121382     2  0.3636    0.63058 0.172 0.820 0.008 0.000
#> GSM121383     2  0.4122    0.56637 0.236 0.760 0.004 0.000
#> GSM121384     2  0.1022    0.70830 0.032 0.968 0.000 0.000
#> GSM121385     2  0.1637    0.70616 0.060 0.940 0.000 0.000
#> GSM121386     2  0.0921    0.71560 0.028 0.972 0.000 0.000
#> GSM121387     2  0.3208    0.65278 0.148 0.848 0.004 0.000
#> GSM121388     2  0.4950    0.34238 0.376 0.620 0.004 0.000
#> GSM121389     2  0.1118    0.71479 0.036 0.964 0.000 0.000
#> GSM121390     2  0.1867    0.68861 0.072 0.928 0.000 0.000
#> GSM121391     2  0.4955    0.39533 0.344 0.648 0.008 0.000
#> GSM121392     2  0.2704    0.65482 0.124 0.876 0.000 0.000
#> GSM121393     2  0.1118    0.71546 0.036 0.964 0.000 0.000
#> GSM121394     2  0.5229    0.22224 0.428 0.564 0.008 0.000
#> GSM121395     2  0.1302    0.71280 0.044 0.956 0.000 0.000
#> GSM121396     1  0.6008   -0.02353 0.496 0.464 0.040 0.000
#> GSM121397     2  0.0921    0.70936 0.028 0.972 0.000 0.000
#> GSM121398     2  0.0336    0.71572 0.008 0.992 0.000 0.000
#> GSM121399     2  0.2921    0.65997 0.140 0.860 0.000 0.000
#> GSM74240      3  0.0188    0.61770 0.004 0.000 0.996 0.000
#> GSM74241      3  0.1211    0.61451 0.040 0.000 0.960 0.000
#> GSM74242      3  0.2859    0.56610 0.112 0.000 0.880 0.008
#> GSM74243      3  0.2222    0.59757 0.060 0.000 0.924 0.016
#> GSM74244      3  0.1474    0.59931 0.052 0.000 0.948 0.000
#> GSM74245      3  0.1022    0.60834 0.032 0.000 0.968 0.000
#> GSM74246      3  0.1389    0.61629 0.048 0.000 0.952 0.000
#> GSM74247      3  0.1474    0.61544 0.052 0.000 0.948 0.000
#> GSM74248      3  0.0469    0.61458 0.012 0.000 0.988 0.000
#> GSM74416      4  0.1557    0.76431 0.056 0.000 0.000 0.944
#> GSM74417      4  0.2197    0.75281 0.080 0.000 0.004 0.916
#> GSM74418      4  0.1389    0.76701 0.048 0.000 0.000 0.952
#> GSM74419      4  0.4544    0.66735 0.164 0.000 0.048 0.788
#> GSM121358     1  0.6528    0.46847 0.596 0.104 0.300 0.000
#> GSM121359     1  0.7357    0.37972 0.512 0.296 0.192 0.000
#> GSM121360     3  0.3583    0.57200 0.180 0.000 0.816 0.004
#> GSM121362     3  0.7447    0.34759 0.192 0.008 0.548 0.252
#> GSM121364     4  0.7466    0.00853 0.176 0.000 0.388 0.436
#> GSM121365     1  0.6664    0.48312 0.600 0.128 0.272 0.000
#> GSM121366     1  0.6993    0.48073 0.572 0.168 0.260 0.000
#> GSM121367     1  0.6464    0.46130 0.596 0.096 0.308 0.000
#> GSM121370     1  0.6309    0.43139 0.588 0.076 0.336 0.000
#> GSM121371     1  0.6685    0.48425 0.600 0.132 0.268 0.000
#> GSM121372     1  0.7500    0.44457 0.500 0.252 0.248 0.000
#> GSM121373     3  0.7210    0.07184 0.140 0.000 0.456 0.404
#> GSM121374     4  0.7475    0.05283 0.180 0.000 0.372 0.448
#> GSM121407     1  0.7553    0.35636 0.476 0.308 0.216 0.000
#> GSM74387      3  0.4332    0.56271 0.160 0.040 0.800 0.000
#> GSM74388      3  0.7684    0.23015 0.360 0.220 0.420 0.000
#> GSM74389      3  0.3051    0.59266 0.028 0.000 0.884 0.088
#> GSM74390      1  0.8806   -0.21923 0.344 0.040 0.296 0.320
#> GSM74391      3  0.5212    0.51496 0.068 0.000 0.740 0.192
#> GSM74392      3  0.5507    0.49037 0.112 0.000 0.732 0.156
#> GSM74393      3  0.0927    0.61644 0.016 0.000 0.976 0.008
#> GSM74394      3  0.6116    0.44095 0.320 0.068 0.612 0.000
#> GSM74239      4  0.0817    0.77929 0.024 0.000 0.000 0.976
#> GSM74364      4  0.0188    0.77771 0.004 0.000 0.000 0.996
#> GSM74365      4  0.2921    0.74902 0.140 0.000 0.000 0.860
#> GSM74366      2  0.8726    0.19769 0.388 0.400 0.108 0.104
#> GSM74367      4  0.3402    0.73416 0.164 0.000 0.004 0.832
#> GSM74377      4  0.7882    0.36040 0.336 0.176 0.016 0.472
#> GSM74378      2  0.8484    0.17283 0.392 0.396 0.048 0.164
#> GSM74379      4  0.6834    0.51811 0.332 0.024 0.064 0.580
#> GSM74380      4  0.7393    0.47494 0.340 0.072 0.044 0.544
#> GSM74381      1  0.8754   -0.16563 0.384 0.332 0.044 0.240
#> GSM121357     2  0.5102    0.61933 0.188 0.748 0.064 0.000
#> GSM121361     3  0.6894    0.37808 0.344 0.120 0.536 0.000
#> GSM121363     3  0.7634    0.25366 0.352 0.212 0.436 0.000
#> GSM121368     3  0.6993    0.37371 0.336 0.132 0.532 0.000
#> GSM121369     3  0.4599    0.52437 0.248 0.016 0.736 0.000
#> GSM74368      4  0.2737    0.76874 0.104 0.000 0.008 0.888
#> GSM74369      4  0.1118    0.77980 0.036 0.000 0.000 0.964
#> GSM74370      4  0.2385    0.77868 0.052 0.000 0.028 0.920
#> GSM74371      4  0.0817    0.77902 0.024 0.000 0.000 0.976
#> GSM74372      4  0.6792    0.47732 0.140 0.000 0.272 0.588
#> GSM74373      4  0.8455    0.27202 0.356 0.196 0.036 0.412
#> GSM74374      4  0.3196    0.75202 0.136 0.000 0.008 0.856
#> GSM74375      4  0.7127    0.50187 0.304 0.108 0.016 0.572
#> GSM74376      1  0.9602   -0.10350 0.392 0.240 0.200 0.168
#> GSM74405      1  0.9233   -0.16372 0.388 0.204 0.096 0.312
#> GSM74351      4  0.0707    0.77397 0.020 0.000 0.000 0.980
#> GSM74352      2  0.7142    0.31386 0.324 0.524 0.000 0.152
#> GSM74353      4  0.0707    0.77928 0.020 0.000 0.000 0.980
#> GSM74354      4  0.2011    0.77058 0.080 0.000 0.000 0.920
#> GSM74355      1  0.8580   -0.22022 0.388 0.376 0.044 0.192
#> GSM74382      4  0.0336    0.77736 0.008 0.000 0.000 0.992
#> GSM74383      4  0.1557    0.77539 0.056 0.000 0.000 0.944
#> GSM74384      2  0.7585    0.29386 0.388 0.492 0.048 0.072
#> GSM74385      4  0.0707    0.77929 0.020 0.000 0.000 0.980
#> GSM74386      4  0.3552    0.75145 0.128 0.000 0.024 0.848
#> GSM74395      4  0.2329    0.77403 0.072 0.000 0.012 0.916
#> GSM74396      4  0.3636    0.72659 0.172 0.000 0.008 0.820
#> GSM74397      4  0.0469    0.77882 0.012 0.000 0.000 0.988
#> GSM74398      4  0.6395    0.54675 0.316 0.004 0.076 0.604
#> GSM74399      4  0.6648    0.53457 0.328 0.044 0.032 0.596
#> GSM74400      4  0.4827    0.70270 0.124 0.092 0.000 0.784
#> GSM74401      4  0.4775    0.70459 0.140 0.076 0.000 0.784

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.3080     0.7108 0.008 0.008 0.844 0.140 0.000
#> GSM74357      3  0.3044     0.7085 0.008 0.004 0.840 0.148 0.000
#> GSM74358      3  0.2911     0.7185 0.008 0.004 0.852 0.136 0.000
#> GSM74359      4  0.2929     0.6564 0.076 0.000 0.044 0.876 0.004
#> GSM74360      4  0.2696     0.6616 0.072 0.000 0.012 0.892 0.024
#> GSM74361      4  0.4316     0.5578 0.000 0.004 0.208 0.748 0.040
#> GSM74362      4  0.2446     0.6483 0.000 0.000 0.056 0.900 0.044
#> GSM74363      3  0.1822     0.7773 0.004 0.024 0.936 0.036 0.000
#> GSM74402      1  0.2284     0.7319 0.896 0.000 0.004 0.096 0.004
#> GSM74403      1  0.3086     0.6713 0.816 0.000 0.004 0.180 0.000
#> GSM74404      1  0.4166     0.4845 0.648 0.000 0.004 0.348 0.000
#> GSM74406      1  0.4934     0.4113 0.600 0.000 0.036 0.364 0.000
#> GSM74407      1  0.3706     0.6249 0.756 0.000 0.004 0.236 0.004
#> GSM74408      1  0.5646     0.1421 0.480 0.000 0.076 0.444 0.000
#> GSM74409      4  0.4890     0.2909 0.332 0.000 0.040 0.628 0.000
#> GSM74410      4  0.5996     0.2720 0.316 0.000 0.136 0.548 0.000
#> GSM119936     1  0.5043     0.4208 0.600 0.000 0.044 0.356 0.000
#> GSM119937     1  0.5382     0.4245 0.592 0.000 0.072 0.336 0.000
#> GSM74411      3  0.5794     0.3113 0.000 0.000 0.520 0.096 0.384
#> GSM74412      3  0.6168     0.2762 0.000 0.012 0.496 0.096 0.396
#> GSM74413      3  0.4983     0.5292 0.000 0.008 0.676 0.048 0.268
#> GSM74414      5  0.5898     0.2479 0.016 0.324 0.080 0.000 0.580
#> GSM74415      3  0.6370     0.1233 0.000 0.000 0.432 0.164 0.404
#> GSM121379     2  0.1121     0.8957 0.000 0.956 0.044 0.000 0.000
#> GSM121380     2  0.0510     0.8602 0.000 0.984 0.000 0.000 0.016
#> GSM121381     2  0.2773     0.8541 0.000 0.836 0.164 0.000 0.000
#> GSM121382     2  0.2377     0.8806 0.000 0.872 0.128 0.000 0.000
#> GSM121383     2  0.2516     0.8721 0.000 0.860 0.140 0.000 0.000
#> GSM121384     2  0.0510     0.8587 0.000 0.984 0.000 0.000 0.016
#> GSM121385     2  0.1544     0.9006 0.000 0.932 0.068 0.000 0.000
#> GSM121386     2  0.1341     0.8993 0.000 0.944 0.056 0.000 0.000
#> GSM121387     2  0.1671     0.8997 0.000 0.924 0.076 0.000 0.000
#> GSM121388     2  0.3305     0.7949 0.000 0.776 0.224 0.000 0.000
#> GSM121389     2  0.1043     0.8946 0.000 0.960 0.040 0.000 0.000
#> GSM121390     2  0.0609     0.8563 0.000 0.980 0.000 0.000 0.020
#> GSM121391     2  0.2966     0.8360 0.000 0.816 0.184 0.000 0.000
#> GSM121392     2  0.1357     0.8265 0.000 0.948 0.000 0.004 0.048
#> GSM121393     2  0.1043     0.8940 0.000 0.960 0.040 0.000 0.000
#> GSM121394     2  0.3949     0.6445 0.000 0.668 0.332 0.000 0.000
#> GSM121395     2  0.1608     0.9008 0.000 0.928 0.072 0.000 0.000
#> GSM121396     2  0.4517     0.4144 0.000 0.556 0.436 0.008 0.000
#> GSM121397     2  0.0566     0.8771 0.000 0.984 0.012 0.000 0.004
#> GSM121398     2  0.1544     0.9005 0.000 0.932 0.068 0.000 0.000
#> GSM121399     2  0.1965     0.8934 0.000 0.904 0.096 0.000 0.000
#> GSM74240      5  0.5944    -0.0261 0.000 0.000 0.108 0.404 0.488
#> GSM74241      5  0.5886     0.2461 0.000 0.000 0.224 0.176 0.600
#> GSM74242      5  0.6806    -0.0363 0.000 0.000 0.296 0.348 0.356
#> GSM74243      4  0.6748    -0.0340 0.000 0.000 0.260 0.372 0.368
#> GSM74244      5  0.6523     0.1217 0.000 0.000 0.288 0.232 0.480
#> GSM74245      5  0.6636     0.0656 0.000 0.000 0.244 0.312 0.444
#> GSM74246      5  0.5751     0.0942 0.000 0.000 0.100 0.348 0.552
#> GSM74247      5  0.5887     0.2056 0.000 0.000 0.156 0.252 0.592
#> GSM74248      4  0.5844     0.1113 0.000 0.000 0.096 0.484 0.420
#> GSM74416      1  0.2763     0.6956 0.848 0.000 0.004 0.148 0.000
#> GSM74417      1  0.3835     0.6053 0.744 0.000 0.012 0.244 0.000
#> GSM74418      1  0.2763     0.7012 0.848 0.000 0.004 0.148 0.000
#> GSM74419      1  0.5002     0.4775 0.636 0.000 0.052 0.312 0.000
#> GSM121358     3  0.1310     0.7841 0.000 0.024 0.956 0.020 0.000
#> GSM121359     3  0.1725     0.7801 0.000 0.044 0.936 0.000 0.020
#> GSM121360     4  0.3509     0.5765 0.004 0.004 0.004 0.796 0.192
#> GSM121362     4  0.4410     0.6180 0.044 0.060 0.000 0.800 0.096
#> GSM121364     4  0.2740     0.6484 0.096 0.000 0.028 0.876 0.000
#> GSM121365     3  0.1041     0.7853 0.000 0.032 0.964 0.004 0.000
#> GSM121366     3  0.0963     0.7839 0.000 0.036 0.964 0.000 0.000
#> GSM121367     3  0.1153     0.7877 0.000 0.024 0.964 0.008 0.004
#> GSM121370     3  0.1974     0.7818 0.000 0.016 0.932 0.036 0.016
#> GSM121371     3  0.1364     0.7833 0.000 0.036 0.952 0.012 0.000
#> GSM121372     3  0.2381     0.7736 0.000 0.036 0.908 0.004 0.052
#> GSM121373     4  0.2708     0.6610 0.072 0.000 0.020 0.892 0.016
#> GSM121374     4  0.3064     0.6384 0.108 0.000 0.036 0.856 0.000
#> GSM121407     3  0.2446     0.7738 0.000 0.056 0.900 0.000 0.044
#> GSM74387      5  0.5142     0.2516 0.000 0.000 0.088 0.244 0.668
#> GSM74388      5  0.6282     0.3133 0.000 0.368 0.000 0.156 0.476
#> GSM74389      4  0.4087     0.5277 0.000 0.000 0.036 0.756 0.208
#> GSM74390      5  0.6210     0.2344 0.332 0.012 0.004 0.100 0.552
#> GSM74391      4  0.4935     0.5628 0.044 0.000 0.036 0.736 0.184
#> GSM74392      4  0.1934     0.6523 0.008 0.000 0.020 0.932 0.040
#> GSM74393      4  0.4728     0.4620 0.000 0.000 0.060 0.700 0.240
#> GSM74394      5  0.4001     0.3112 0.000 0.004 0.024 0.208 0.764
#> GSM74239      1  0.0693     0.7375 0.980 0.000 0.000 0.012 0.008
#> GSM74364      1  0.0671     0.7385 0.980 0.000 0.000 0.016 0.004
#> GSM74365      1  0.2763     0.6678 0.848 0.000 0.000 0.004 0.148
#> GSM74366      5  0.5698     0.3968 0.208 0.148 0.000 0.004 0.640
#> GSM74367      1  0.1952     0.7110 0.912 0.000 0.000 0.004 0.084
#> GSM74377      1  0.4866     0.3213 0.580 0.028 0.000 0.000 0.392
#> GSM74378      5  0.6369     0.3399 0.236 0.216 0.000 0.004 0.544
#> GSM74379      1  0.4621     0.3144 0.576 0.004 0.000 0.008 0.412
#> GSM74380      1  0.4714     0.3129 0.576 0.012 0.000 0.004 0.408
#> GSM74381      5  0.6529     0.2226 0.316 0.172 0.000 0.008 0.504
#> GSM121357     3  0.6667     0.1349 0.000 0.348 0.416 0.000 0.236
#> GSM121361     5  0.6656     0.2062 0.000 0.252 0.000 0.308 0.440
#> GSM121363     5  0.5967     0.3611 0.000 0.308 0.000 0.136 0.556
#> GSM121368     5  0.5016     0.3920 0.000 0.176 0.000 0.120 0.704
#> GSM121369     4  0.5192     0.1099 0.000 0.032 0.004 0.492 0.472
#> GSM74368      1  0.2761     0.7009 0.872 0.000 0.000 0.024 0.104
#> GSM74369      1  0.1809     0.7219 0.928 0.000 0.000 0.012 0.060
#> GSM74370      1  0.5440     0.3275 0.540 0.000 0.000 0.396 0.064
#> GSM74371      1  0.1251     0.7400 0.956 0.000 0.000 0.036 0.008
#> GSM74372      4  0.5911     0.4890 0.228 0.000 0.000 0.596 0.176
#> GSM74373      1  0.6857    -0.0199 0.420 0.176 0.000 0.016 0.388
#> GSM74374      1  0.2291     0.7372 0.908 0.000 0.000 0.036 0.056
#> GSM74375      1  0.4070     0.5426 0.728 0.012 0.000 0.004 0.256
#> GSM74376      5  0.5115     0.3211 0.280 0.040 0.000 0.016 0.664
#> GSM74405      5  0.5465     0.1222 0.376 0.044 0.000 0.012 0.568
#> GSM74351      1  0.2074     0.7222 0.896 0.000 0.000 0.104 0.000
#> GSM74352      1  0.6507    -0.0109 0.432 0.192 0.000 0.000 0.376
#> GSM74353      1  0.1628     0.7406 0.936 0.000 0.000 0.056 0.008
#> GSM74354      1  0.1106     0.7368 0.964 0.000 0.000 0.012 0.024
#> GSM74355      5  0.5562     0.1132 0.384 0.064 0.000 0.004 0.548
#> GSM74382      1  0.1908     0.7276 0.908 0.000 0.000 0.092 0.000
#> GSM74383      1  0.0898     0.7357 0.972 0.000 0.000 0.008 0.020
#> GSM74384      5  0.6135     0.3776 0.140 0.304 0.000 0.004 0.552
#> GSM74385      1  0.2230     0.7165 0.884 0.000 0.000 0.116 0.000
#> GSM74386      1  0.2344     0.7326 0.904 0.000 0.000 0.032 0.064
#> GSM74395      1  0.1082     0.7344 0.964 0.000 0.000 0.008 0.028
#> GSM74396      1  0.2179     0.7029 0.896 0.000 0.000 0.004 0.100
#> GSM74397      1  0.1430     0.7398 0.944 0.000 0.000 0.052 0.004
#> GSM74398      1  0.4383     0.2941 0.572 0.000 0.000 0.004 0.424
#> GSM74399      1  0.4426     0.3713 0.612 0.004 0.000 0.004 0.380
#> GSM74400      1  0.3801     0.6591 0.812 0.140 0.000 0.008 0.040
#> GSM74401      1  0.2659     0.7041 0.888 0.060 0.000 0.000 0.052

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.3386    0.76122 0.000 0.016 0.788 0.188 0.008 0.000
#> GSM74357      3  0.3323    0.68292 0.000 0.008 0.752 0.240 0.000 0.000
#> GSM74358      3  0.2882    0.76808 0.000 0.008 0.812 0.180 0.000 0.000
#> GSM74359      4  0.2515    0.72373 0.024 0.000 0.072 0.888 0.016 0.000
#> GSM74360      4  0.1705    0.71608 0.012 0.000 0.008 0.940 0.024 0.016
#> GSM74361      4  0.6928    0.28342 0.012 0.032 0.128 0.504 0.292 0.032
#> GSM74362      4  0.3238    0.69803 0.012 0.004 0.044 0.856 0.076 0.008
#> GSM74363      3  0.1426    0.89838 0.000 0.016 0.948 0.028 0.008 0.000
#> GSM74402      1  0.2496    0.75417 0.900 0.000 0.008 0.032 0.044 0.016
#> GSM74403      1  0.3808    0.67088 0.804 0.000 0.000 0.116 0.036 0.044
#> GSM74404      1  0.5633    0.47862 0.628 0.000 0.000 0.220 0.100 0.052
#> GSM74406      1  0.5953    0.16914 0.508 0.000 0.064 0.380 0.024 0.024
#> GSM74407      1  0.4899    0.59016 0.712 0.000 0.000 0.164 0.080 0.044
#> GSM74408      4  0.6482    0.23873 0.360 0.000 0.144 0.456 0.020 0.020
#> GSM74409      4  0.5457    0.59508 0.200 0.004 0.108 0.660 0.012 0.016
#> GSM74410      4  0.5773    0.51949 0.144 0.000 0.236 0.596 0.012 0.012
#> GSM119936     1  0.6125    0.19306 0.516 0.000 0.112 0.336 0.016 0.020
#> GSM119937     1  0.6757   -0.02279 0.420 0.000 0.244 0.296 0.004 0.036
#> GSM74411      5  0.4570    0.63537 0.000 0.000 0.248 0.020 0.688 0.044
#> GSM74412      5  0.4844    0.65961 0.000 0.004 0.228 0.016 0.684 0.068
#> GSM74413      5  0.4908    0.49207 0.000 0.004 0.336 0.020 0.608 0.032
#> GSM74414      6  0.7071    0.14042 0.000 0.208 0.052 0.016 0.288 0.436
#> GSM74415      5  0.4089    0.72299 0.000 0.000 0.176 0.024 0.760 0.040
#> GSM121379     2  0.0665    0.95177 0.000 0.980 0.004 0.000 0.008 0.008
#> GSM121380     2  0.0858    0.94508 0.000 0.968 0.004 0.000 0.000 0.028
#> GSM121381     2  0.2393    0.91074 0.000 0.884 0.092 0.000 0.004 0.020
#> GSM121382     2  0.1218    0.94915 0.000 0.956 0.028 0.012 0.004 0.000
#> GSM121383     2  0.1116    0.94954 0.000 0.960 0.028 0.008 0.004 0.000
#> GSM121384     2  0.0837    0.94716 0.000 0.972 0.004 0.000 0.004 0.020
#> GSM121385     2  0.1053    0.95083 0.000 0.964 0.012 0.000 0.004 0.020
#> GSM121386     2  0.1036    0.94979 0.000 0.964 0.008 0.000 0.004 0.024
#> GSM121387     2  0.0870    0.95144 0.000 0.972 0.012 0.012 0.004 0.000
#> GSM121388     2  0.2425    0.92184 0.000 0.900 0.060 0.016 0.008 0.016
#> GSM121389     2  0.0653    0.95179 0.000 0.980 0.004 0.012 0.004 0.000
#> GSM121390     2  0.1296    0.93594 0.000 0.948 0.004 0.000 0.004 0.044
#> GSM121391     2  0.1226    0.94593 0.000 0.952 0.040 0.004 0.004 0.000
#> GSM121392     2  0.1471    0.92246 0.000 0.932 0.004 0.000 0.000 0.064
#> GSM121393     2  0.1963    0.93615 0.008 0.932 0.016 0.012 0.008 0.024
#> GSM121394     2  0.2488    0.88484 0.000 0.864 0.124 0.008 0.004 0.000
#> GSM121395     2  0.0870    0.95142 0.000 0.972 0.012 0.012 0.004 0.000
#> GSM121396     2  0.3492    0.80609 0.000 0.796 0.172 0.016 0.012 0.004
#> GSM121397     2  0.0922    0.94751 0.000 0.968 0.004 0.000 0.004 0.024
#> GSM121398     2  0.1074    0.95036 0.000 0.960 0.012 0.000 0.000 0.028
#> GSM121399     2  0.0862    0.95228 0.000 0.972 0.016 0.004 0.008 0.000
#> GSM74240      5  0.1812    0.74950 0.000 0.000 0.008 0.080 0.912 0.000
#> GSM74241      5  0.2285    0.78245 0.000 0.000 0.064 0.008 0.900 0.028
#> GSM74242      5  0.2661    0.77786 0.008 0.004 0.060 0.036 0.888 0.004
#> GSM74243      5  0.2551    0.77292 0.004 0.004 0.052 0.052 0.888 0.000
#> GSM74244      5  0.2418    0.78215 0.000 0.000 0.092 0.008 0.884 0.016
#> GSM74245      5  0.2265    0.78461 0.000 0.000 0.068 0.024 0.900 0.008
#> GSM74246      5  0.2521    0.77298 0.000 0.000 0.020 0.056 0.892 0.032
#> GSM74247      5  0.2384    0.78312 0.000 0.000 0.044 0.016 0.900 0.040
#> GSM74248      5  0.2531    0.71872 0.000 0.000 0.008 0.128 0.860 0.004
#> GSM74416      1  0.2862    0.71888 0.872 0.000 0.012 0.072 0.004 0.040
#> GSM74417      1  0.4554    0.61347 0.740 0.000 0.016 0.180 0.024 0.040
#> GSM74418      1  0.2631    0.72905 0.884 0.000 0.016 0.076 0.004 0.020
#> GSM74419      1  0.5559    0.53912 0.676 0.016 0.008 0.196 0.056 0.048
#> GSM121358     3  0.1409    0.89754 0.000 0.012 0.948 0.032 0.008 0.000
#> GSM121359     3  0.2146    0.86667 0.000 0.024 0.908 0.008 0.060 0.000
#> GSM121360     4  0.3500    0.65135 0.000 0.004 0.008 0.820 0.052 0.116
#> GSM121362     4  0.3581    0.68099 0.012 0.008 0.020 0.832 0.020 0.108
#> GSM121364     4  0.2146    0.72498 0.024 0.000 0.060 0.908 0.008 0.000
#> GSM121365     3  0.1332    0.89751 0.000 0.008 0.952 0.028 0.012 0.000
#> GSM121366     3  0.1418    0.88983 0.000 0.024 0.944 0.000 0.032 0.000
#> GSM121367     3  0.1269    0.89942 0.000 0.012 0.956 0.012 0.020 0.000
#> GSM121370     3  0.1760    0.88628 0.000 0.020 0.928 0.004 0.048 0.000
#> GSM121371     3  0.1605    0.89772 0.000 0.016 0.940 0.032 0.012 0.000
#> GSM121372     3  0.2380    0.85268 0.000 0.020 0.892 0.004 0.080 0.004
#> GSM121373     4  0.3133    0.71690 0.016 0.000 0.072 0.860 0.008 0.044
#> GSM121374     4  0.2527    0.71695 0.032 0.000 0.084 0.880 0.004 0.000
#> GSM121407     3  0.2761    0.86804 0.000 0.020 0.884 0.008 0.060 0.028
#> GSM74387      5  0.4811    0.67593 0.000 0.000 0.040 0.068 0.712 0.180
#> GSM74388      6  0.6582    0.43469 0.000 0.152 0.004 0.100 0.188 0.556
#> GSM74389      5  0.4336    0.23358 0.008 0.000 0.000 0.408 0.572 0.012
#> GSM74390      1  0.7144   -0.16518 0.332 0.000 0.000 0.076 0.324 0.268
#> GSM74391      5  0.5829    0.14025 0.072 0.000 0.000 0.364 0.516 0.048
#> GSM74392      4  0.4158    0.57458 0.028 0.000 0.004 0.736 0.216 0.016
#> GSM74393      4  0.4402    0.13183 0.004 0.000 0.000 0.564 0.412 0.020
#> GSM74394      5  0.4732    0.43266 0.000 0.000 0.000 0.068 0.612 0.320
#> GSM74239      1  0.1471    0.74861 0.932 0.000 0.004 0.000 0.000 0.064
#> GSM74364      1  0.1141    0.75067 0.948 0.000 0.000 0.000 0.000 0.052
#> GSM74365      1  0.3240    0.60363 0.752 0.000 0.004 0.000 0.000 0.244
#> GSM74366      6  0.2958    0.71493 0.096 0.012 0.000 0.004 0.028 0.860
#> GSM74367      1  0.2504    0.71026 0.856 0.000 0.004 0.000 0.004 0.136
#> GSM74377      6  0.3266    0.59137 0.272 0.000 0.000 0.000 0.000 0.728
#> GSM74378      6  0.2758    0.71459 0.088 0.028 0.000 0.008 0.004 0.872
#> GSM74379      6  0.3897    0.53461 0.300 0.000 0.000 0.008 0.008 0.684
#> GSM74380      6  0.4305    0.19555 0.436 0.000 0.000 0.000 0.020 0.544
#> GSM74381      6  0.3409    0.71479 0.120 0.024 0.004 0.012 0.008 0.832
#> GSM121357     6  0.5793    0.28588 0.000 0.060 0.336 0.016 0.032 0.556
#> GSM121361     6  0.6241    0.39103 0.000 0.044 0.004 0.240 0.156 0.556
#> GSM121363     6  0.5227    0.56976 0.000 0.072 0.004 0.104 0.112 0.708
#> GSM121368     6  0.4792    0.56152 0.000 0.028 0.000 0.128 0.124 0.720
#> GSM121369     6  0.5661    0.17385 0.000 0.008 0.000 0.376 0.124 0.492
#> GSM74368      1  0.5399    0.42888 0.596 0.000 0.052 0.036 0.004 0.312
#> GSM74369      1  0.4312    0.63742 0.728 0.000 0.032 0.020 0.004 0.216
#> GSM74370      4  0.5956    0.34854 0.200 0.000 0.004 0.532 0.008 0.256
#> GSM74371      1  0.0891    0.75626 0.968 0.000 0.000 0.008 0.000 0.024
#> GSM74372      4  0.6335    0.49593 0.152 0.004 0.000 0.576 0.196 0.072
#> GSM74373      6  0.5193    0.58987 0.252 0.032 0.004 0.024 0.024 0.664
#> GSM74374      1  0.3347    0.74650 0.824 0.000 0.000 0.068 0.004 0.104
#> GSM74375      1  0.4309    0.61942 0.736 0.000 0.000 0.008 0.080 0.176
#> GSM74376      6  0.4228    0.69235 0.096 0.004 0.000 0.020 0.104 0.776
#> GSM74405      6  0.3152    0.71167 0.132 0.000 0.000 0.016 0.020 0.832
#> GSM74351      1  0.2074    0.74355 0.912 0.000 0.004 0.048 0.000 0.036
#> GSM74352      6  0.3726    0.65200 0.216 0.028 0.000 0.004 0.000 0.752
#> GSM74353      1  0.2333    0.75999 0.896 0.000 0.000 0.040 0.004 0.060
#> GSM74354      1  0.1141    0.75146 0.948 0.000 0.000 0.000 0.000 0.052
#> GSM74355      6  0.2968    0.68982 0.168 0.000 0.000 0.000 0.016 0.816
#> GSM74382      1  0.1225    0.75511 0.952 0.000 0.000 0.036 0.000 0.012
#> GSM74383      1  0.2346    0.74547 0.892 0.000 0.004 0.016 0.004 0.084
#> GSM74384      6  0.2605    0.69287 0.032 0.064 0.000 0.012 0.004 0.888
#> GSM74385      1  0.2173    0.75249 0.904 0.000 0.000 0.064 0.004 0.028
#> GSM74386      1  0.2757    0.73723 0.864 0.000 0.000 0.016 0.016 0.104
#> GSM74395      1  0.2094    0.75270 0.908 0.000 0.000 0.024 0.004 0.064
#> GSM74396      1  0.2700    0.69795 0.836 0.000 0.004 0.004 0.000 0.156
#> GSM74397      1  0.0858    0.75623 0.968 0.000 0.000 0.004 0.000 0.028
#> GSM74398      1  0.4553    0.37918 0.620 0.000 0.000 0.000 0.052 0.328
#> GSM74399      1  0.4308   -0.00351 0.516 0.000 0.000 0.004 0.012 0.468
#> GSM74400      1  0.4098    0.68056 0.788 0.104 0.004 0.004 0.012 0.088
#> GSM74401      1  0.2614    0.73811 0.884 0.044 0.000 0.000 0.012 0.060

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> CV:NMF 118         2.16e-09 2
#> CV:NMF  96         5.04e-18 3
#> CV:NMF  73         3.18e-18 4
#> CV:NMF  73         1.17e-18 5
#> CV:NMF  98         1.30e-39 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.204           0.583       0.805         0.4333 0.521   0.521
#> 3 3 0.312           0.573       0.680         0.4399 0.688   0.471
#> 4 4 0.554           0.739       0.838         0.1676 0.886   0.682
#> 5 5 0.641           0.763       0.829         0.0644 0.944   0.791
#> 6 6 0.706           0.722       0.829         0.0412 0.965   0.841

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      1  0.8661     0.6640 0.712 0.288
#> GSM74357      1  0.8713     0.6606 0.708 0.292
#> GSM74358      1  0.8713     0.6606 0.708 0.292
#> GSM74359      1  0.5737     0.7481 0.864 0.136
#> GSM74360      1  0.5737     0.7481 0.864 0.136
#> GSM74361      1  0.7219     0.7263 0.800 0.200
#> GSM74362      1  0.7139     0.7283 0.804 0.196
#> GSM74363      1  0.8713     0.6606 0.708 0.292
#> GSM74402      1  0.0376     0.7227 0.996 0.004
#> GSM74403      1  0.0000     0.7203 1.000 0.000
#> GSM74404      1  0.0000     0.7203 1.000 0.000
#> GSM74406      1  0.0376     0.7227 0.996 0.004
#> GSM74407      1  0.0376     0.7227 0.996 0.004
#> GSM74408      1  0.0000     0.7203 1.000 0.000
#> GSM74409      1  0.0000     0.7203 1.000 0.000
#> GSM74410      1  0.0000     0.7203 1.000 0.000
#> GSM119936     1  0.0000     0.7203 1.000 0.000
#> GSM119937     1  0.0672     0.7244 0.992 0.008
#> GSM74411      2  0.9552     0.2337 0.376 0.624
#> GSM74412      2  0.9552     0.2337 0.376 0.624
#> GSM74413      2  0.9552     0.2337 0.376 0.624
#> GSM74414      2  0.8207     0.5027 0.256 0.744
#> GSM74415      2  0.9552     0.2337 0.376 0.624
#> GSM121379     2  0.0000     0.7479 0.000 1.000
#> GSM121380     2  0.0000     0.7479 0.000 1.000
#> GSM121381     2  0.1414     0.7406 0.020 0.980
#> GSM121382     2  0.0000     0.7479 0.000 1.000
#> GSM121383     2  0.0000     0.7479 0.000 1.000
#> GSM121384     2  0.0000     0.7479 0.000 1.000
#> GSM121385     2  0.0000     0.7479 0.000 1.000
#> GSM121386     2  0.0376     0.7475 0.004 0.996
#> GSM121387     2  0.0000     0.7479 0.000 1.000
#> GSM121388     2  0.1414     0.7399 0.020 0.980
#> GSM121389     2  0.0000     0.7479 0.000 1.000
#> GSM121390     2  0.0000     0.7479 0.000 1.000
#> GSM121391     2  0.0000     0.7479 0.000 1.000
#> GSM121392     2  0.0000     0.7479 0.000 1.000
#> GSM121393     2  0.0000     0.7479 0.000 1.000
#> GSM121394     2  0.0376     0.7468 0.004 0.996
#> GSM121395     2  0.0000     0.7479 0.000 1.000
#> GSM121396     2  0.2948     0.7197 0.052 0.948
#> GSM121397     2  0.0000     0.7479 0.000 1.000
#> GSM121398     2  0.0000     0.7479 0.000 1.000
#> GSM121399     2  0.0000     0.7479 0.000 1.000
#> GSM74240      1  0.9358     0.5899 0.648 0.352
#> GSM74241      1  0.9358     0.5899 0.648 0.352
#> GSM74242      1  0.9358     0.5899 0.648 0.352
#> GSM74243      1  0.9358     0.5899 0.648 0.352
#> GSM74244      1  0.9358     0.5899 0.648 0.352
#> GSM74245      1  0.9358     0.5899 0.648 0.352
#> GSM74246      1  0.9358     0.5899 0.648 0.352
#> GSM74247      1  0.9358     0.5899 0.648 0.352
#> GSM74248      1  0.9358     0.5899 0.648 0.352
#> GSM74416      1  0.0000     0.7203 1.000 0.000
#> GSM74417      1  0.0000     0.7203 1.000 0.000
#> GSM74418      1  0.0000     0.7203 1.000 0.000
#> GSM74419      1  0.0376     0.7227 0.996 0.004
#> GSM121358     1  0.9933     0.3832 0.548 0.452
#> GSM121359     1  0.9970     0.3376 0.532 0.468
#> GSM121360     1  0.5737     0.7481 0.864 0.136
#> GSM121362     1  0.5737     0.7481 0.864 0.136
#> GSM121364     1  0.5737     0.7481 0.864 0.136
#> GSM121365     1  0.9922     0.3914 0.552 0.448
#> GSM121366     1  0.9933     0.3832 0.548 0.452
#> GSM121367     1  0.9933     0.3832 0.548 0.452
#> GSM121370     1  0.9866     0.4263 0.568 0.432
#> GSM121371     1  0.9933     0.3832 0.548 0.452
#> GSM121372     1  0.9983     0.3137 0.524 0.476
#> GSM121373     1  0.5737     0.7481 0.864 0.136
#> GSM121374     1  0.5737     0.7481 0.864 0.136
#> GSM121407     2  0.9209     0.3355 0.336 0.664
#> GSM74387      2  0.4939     0.6796 0.108 0.892
#> GSM74388      2  0.0376     0.7476 0.004 0.996
#> GSM74389      1  0.6247     0.7459 0.844 0.156
#> GSM74390      1  0.9866     0.4460 0.568 0.432
#> GSM74391      1  0.2043     0.7343 0.968 0.032
#> GSM74392      1  0.6801     0.7361 0.820 0.180
#> GSM74393      1  0.6801     0.7361 0.820 0.180
#> GSM74394      2  0.0376     0.7476 0.004 0.996
#> GSM74239      1  0.6343     0.7325 0.840 0.160
#> GSM74364      1  0.4815     0.7316 0.896 0.104
#> GSM74365      1  0.8661     0.6326 0.712 0.288
#> GSM74366      2  0.9922     0.0675 0.448 0.552
#> GSM74367      1  0.6801     0.7151 0.820 0.180
#> GSM74377      2  0.9944     0.0490 0.456 0.544
#> GSM74378      2  0.9922     0.0675 0.448 0.552
#> GSM74379      1  0.9491     0.4874 0.632 0.368
#> GSM74380      1  0.9922     0.2840 0.552 0.448
#> GSM74381      2  0.9944     0.0436 0.456 0.544
#> GSM121357     2  0.5629     0.6562 0.132 0.868
#> GSM121361     2  0.0376     0.7476 0.004 0.996
#> GSM121363     2  0.0376     0.7476 0.004 0.996
#> GSM121368     2  0.0376     0.7476 0.004 0.996
#> GSM121369     2  0.0376     0.7476 0.004 0.996
#> GSM74368      1  0.7376     0.7190 0.792 0.208
#> GSM74369      1  0.7376     0.7190 0.792 0.208
#> GSM74370      1  0.7376     0.7190 0.792 0.208
#> GSM74371      1  0.1843     0.7220 0.972 0.028
#> GSM74372      1  0.5842     0.7212 0.860 0.140
#> GSM74373      1  0.9087     0.5783 0.676 0.324
#> GSM74374      1  0.8207     0.6729 0.744 0.256
#> GSM74375      2  0.9977    -0.0254 0.472 0.528
#> GSM74376      2  0.9988    -0.0417 0.480 0.520
#> GSM74405      2  0.9998    -0.0893 0.492 0.508
#> GSM74351      1  0.0000     0.7203 1.000 0.000
#> GSM74352      2  0.9933     0.0522 0.452 0.548
#> GSM74353      1  0.3879     0.7420 0.924 0.076
#> GSM74354      1  0.8144     0.6777 0.748 0.252
#> GSM74355      2  0.9922     0.0675 0.448 0.552
#> GSM74382      1  0.2778     0.7329 0.952 0.048
#> GSM74383      1  0.7299     0.7088 0.796 0.204
#> GSM74384      2  0.9922     0.0675 0.448 0.552
#> GSM74385      1  0.4562     0.7225 0.904 0.096
#> GSM74386      1  0.6531     0.7187 0.832 0.168
#> GSM74395      1  0.5519     0.7310 0.872 0.128
#> GSM74396      1  0.5519     0.7310 0.872 0.128
#> GSM74397      1  0.5408     0.7309 0.876 0.124
#> GSM74398      2  0.9977    -0.0264 0.472 0.528
#> GSM74399      2  0.9933     0.0570 0.452 0.548
#> GSM74400      1  1.0000     0.1176 0.504 0.496
#> GSM74401      1  1.0000     0.1176 0.504 0.496

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.3573      0.580 0.004 0.120 0.876
#> GSM74357      3  0.3644      0.579 0.004 0.124 0.872
#> GSM74358      3  0.3644      0.579 0.004 0.124 0.872
#> GSM74359      3  0.3933      0.531 0.092 0.028 0.880
#> GSM74360      3  0.3933      0.531 0.092 0.028 0.880
#> GSM74361      3  0.4087      0.564 0.052 0.068 0.880
#> GSM74362      3  0.4189      0.564 0.056 0.068 0.876
#> GSM74363      3  0.3644      0.579 0.004 0.124 0.872
#> GSM74402      3  0.6305      0.313 0.484 0.000 0.516
#> GSM74403      3  0.6308      0.308 0.492 0.000 0.508
#> GSM74404      3  0.6308      0.308 0.492 0.000 0.508
#> GSM74406      3  0.6305      0.313 0.484 0.000 0.516
#> GSM74407      3  0.6309      0.299 0.496 0.000 0.504
#> GSM74408      3  0.6302      0.320 0.480 0.000 0.520
#> GSM74409      3  0.6302      0.320 0.480 0.000 0.520
#> GSM74410      3  0.6302      0.320 0.480 0.000 0.520
#> GSM119936     3  0.6302      0.320 0.480 0.000 0.520
#> GSM119937     3  0.6260      0.311 0.448 0.000 0.552
#> GSM74411      3  0.6659      0.149 0.008 0.460 0.532
#> GSM74412      3  0.6659      0.149 0.008 0.460 0.532
#> GSM74413      3  0.6659      0.149 0.008 0.460 0.532
#> GSM74414      2  0.6796      0.355 0.020 0.612 0.368
#> GSM74415      3  0.6659      0.149 0.008 0.460 0.532
#> GSM121379     2  0.0000      0.909 0.000 1.000 0.000
#> GSM121380     2  0.0000      0.909 0.000 1.000 0.000
#> GSM121381     2  0.2165      0.884 0.000 0.936 0.064
#> GSM121382     2  0.1031      0.907 0.000 0.976 0.024
#> GSM121383     2  0.0424      0.911 0.000 0.992 0.008
#> GSM121384     2  0.0000      0.909 0.000 1.000 0.000
#> GSM121385     2  0.0592      0.909 0.000 0.988 0.012
#> GSM121386     2  0.1163      0.904 0.000 0.972 0.028
#> GSM121387     2  0.0747      0.910 0.000 0.984 0.016
#> GSM121388     2  0.1031      0.906 0.000 0.976 0.024
#> GSM121389     2  0.0237      0.910 0.000 0.996 0.004
#> GSM121390     2  0.0000      0.909 0.000 1.000 0.000
#> GSM121391     2  0.0424      0.911 0.000 0.992 0.008
#> GSM121392     2  0.0000      0.909 0.000 1.000 0.000
#> GSM121393     2  0.0000      0.909 0.000 1.000 0.000
#> GSM121394     2  0.2066      0.887 0.000 0.940 0.060
#> GSM121395     2  0.0237      0.910 0.000 0.996 0.004
#> GSM121396     2  0.2682      0.871 0.004 0.920 0.076
#> GSM121397     2  0.0000      0.909 0.000 1.000 0.000
#> GSM121398     2  0.0424      0.910 0.000 0.992 0.008
#> GSM121399     2  0.1031      0.907 0.000 0.976 0.024
#> GSM74240      3  0.4861      0.573 0.012 0.180 0.808
#> GSM74241      3  0.4861      0.573 0.012 0.180 0.808
#> GSM74242      3  0.4861      0.573 0.012 0.180 0.808
#> GSM74243      3  0.4861      0.573 0.012 0.180 0.808
#> GSM74244      3  0.4861      0.573 0.012 0.180 0.808
#> GSM74245      3  0.4861      0.573 0.012 0.180 0.808
#> GSM74246      3  0.4861      0.573 0.012 0.180 0.808
#> GSM74247      3  0.4861      0.573 0.012 0.180 0.808
#> GSM74248      3  0.4861      0.573 0.012 0.180 0.808
#> GSM74416      3  0.6309      0.307 0.496 0.000 0.504
#> GSM74417      3  0.6309      0.307 0.496 0.000 0.504
#> GSM74418      3  0.6309      0.307 0.496 0.000 0.504
#> GSM74419      3  0.6302      0.316 0.480 0.000 0.520
#> GSM121358     3  0.5831      0.511 0.008 0.284 0.708
#> GSM121359     3  0.5958      0.497 0.008 0.300 0.692
#> GSM121360     3  0.3933      0.531 0.092 0.028 0.880
#> GSM121362     3  0.3933      0.531 0.092 0.028 0.880
#> GSM121364     3  0.3933      0.531 0.092 0.028 0.880
#> GSM121365     3  0.5656      0.514 0.004 0.284 0.712
#> GSM121366     3  0.5831      0.511 0.008 0.284 0.708
#> GSM121367     3  0.5831      0.511 0.008 0.284 0.708
#> GSM121370     3  0.5517      0.524 0.004 0.268 0.728
#> GSM121371     3  0.5831      0.511 0.008 0.284 0.708
#> GSM121372     3  0.6018      0.490 0.008 0.308 0.684
#> GSM121373     3  0.3933      0.531 0.092 0.028 0.880
#> GSM121374     3  0.3933      0.531 0.092 0.028 0.880
#> GSM121407     2  0.6682     -0.015 0.008 0.504 0.488
#> GSM74387      2  0.5956      0.718 0.044 0.768 0.188
#> GSM74388      2  0.3155      0.880 0.044 0.916 0.040
#> GSM74389      3  0.5442      0.538 0.132 0.056 0.812
#> GSM74390      3  0.7710      0.424 0.100 0.240 0.660
#> GSM74391      3  0.6540      0.331 0.408 0.008 0.584
#> GSM74392      3  0.4556      0.554 0.080 0.060 0.860
#> GSM74393      3  0.4556      0.554 0.080 0.060 0.860
#> GSM74394      2  0.3155      0.880 0.044 0.916 0.040
#> GSM74239      1  0.6773      0.592 0.636 0.024 0.340
#> GSM74364      1  0.5882      0.526 0.652 0.000 0.348
#> GSM74365      1  0.7446      0.654 0.664 0.076 0.260
#> GSM74366      1  0.9419      0.594 0.496 0.296 0.208
#> GSM74367      1  0.6284      0.609 0.680 0.016 0.304
#> GSM74377      1  0.9379      0.605 0.504 0.288 0.208
#> GSM74378      1  0.9419      0.594 0.496 0.296 0.208
#> GSM74379      1  0.8117      0.660 0.636 0.128 0.236
#> GSM74380      1  0.9076      0.657 0.552 0.208 0.240
#> GSM74381      1  0.9379      0.605 0.504 0.288 0.208
#> GSM121357     2  0.6264      0.634 0.032 0.724 0.244
#> GSM121361     2  0.3155      0.880 0.044 0.916 0.040
#> GSM121363     2  0.3155      0.880 0.044 0.916 0.040
#> GSM121368     2  0.3155      0.880 0.044 0.916 0.040
#> GSM121369     2  0.3155      0.880 0.044 0.916 0.040
#> GSM74368      1  0.7969      0.462 0.508 0.060 0.432
#> GSM74369      1  0.7969      0.462 0.508 0.060 0.432
#> GSM74370      1  0.7969      0.462 0.508 0.060 0.432
#> GSM74371      1  0.6126      0.314 0.600 0.000 0.400
#> GSM74372      1  0.5733      0.586 0.676 0.000 0.324
#> GSM74373      1  0.7815      0.657 0.644 0.096 0.260
#> GSM74374      1  0.7065      0.644 0.664 0.048 0.288
#> GSM74375      1  0.9509      0.614 0.488 0.284 0.228
#> GSM74376      1  0.9347      0.623 0.512 0.276 0.212
#> GSM74405      1  0.9309      0.635 0.520 0.264 0.216
#> GSM74351      1  0.6309     -0.325 0.500 0.000 0.500
#> GSM74352      1  0.9399      0.600 0.500 0.292 0.208
#> GSM74353      1  0.6954     -0.193 0.500 0.016 0.484
#> GSM74354      1  0.6998      0.642 0.664 0.044 0.292
#> GSM74355      1  0.9419      0.594 0.496 0.296 0.208
#> GSM74382      1  0.6168      0.266 0.588 0.000 0.412
#> GSM74383      1  0.6541      0.621 0.672 0.024 0.304
#> GSM74384      1  0.9419      0.594 0.496 0.296 0.208
#> GSM74385      1  0.5835      0.545 0.660 0.000 0.340
#> GSM74386      1  0.6819      0.592 0.644 0.028 0.328
#> GSM74395      1  0.6126      0.563 0.644 0.004 0.352
#> GSM74396      1  0.6126      0.563 0.644 0.004 0.352
#> GSM74397      1  0.6148      0.553 0.640 0.004 0.356
#> GSM74398      1  0.9401      0.619 0.504 0.280 0.216
#> GSM74399      1  0.9450      0.598 0.492 0.296 0.212
#> GSM74400      1  0.9371      0.636 0.512 0.264 0.224
#> GSM74401      1  0.9371      0.636 0.512 0.264 0.224

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.2036     0.7904 0.000 0.032 0.936 0.032
#> GSM74357      3  0.1724     0.7930 0.000 0.032 0.948 0.020
#> GSM74358      3  0.1724     0.7930 0.000 0.032 0.948 0.020
#> GSM74359      3  0.4579     0.6513 0.032 0.000 0.768 0.200
#> GSM74360      3  0.4579     0.6513 0.032 0.000 0.768 0.200
#> GSM74361      3  0.3831     0.7222 0.012 0.012 0.836 0.140
#> GSM74362      3  0.3933     0.7166 0.012 0.012 0.828 0.148
#> GSM74363      3  0.1724     0.7930 0.000 0.032 0.948 0.020
#> GSM74402      4  0.1576     0.8797 0.004 0.000 0.048 0.948
#> GSM74403      4  0.1174     0.8750 0.012 0.000 0.020 0.968
#> GSM74404      4  0.1174     0.8750 0.012 0.000 0.020 0.968
#> GSM74406      4  0.1576     0.8797 0.004 0.000 0.048 0.948
#> GSM74407      4  0.1488     0.8767 0.012 0.000 0.032 0.956
#> GSM74408      4  0.1792     0.8731 0.000 0.000 0.068 0.932
#> GSM74409      4  0.1792     0.8731 0.000 0.000 0.068 0.932
#> GSM74410      4  0.1792     0.8731 0.000 0.000 0.068 0.932
#> GSM119936     4  0.1792     0.8731 0.000 0.000 0.068 0.932
#> GSM119937     4  0.3764     0.8225 0.040 0.000 0.116 0.844
#> GSM74411      3  0.4697     0.4963 0.000 0.356 0.644 0.000
#> GSM74412      3  0.4697     0.4963 0.000 0.356 0.644 0.000
#> GSM74413      3  0.4697     0.4963 0.000 0.356 0.644 0.000
#> GSM74414      2  0.5755     0.0483 0.028 0.528 0.444 0.000
#> GSM74415      3  0.4697     0.4963 0.000 0.356 0.644 0.000
#> GSM121379     2  0.0188     0.9080 0.000 0.996 0.004 0.000
#> GSM121380     2  0.0469     0.9097 0.000 0.988 0.012 0.000
#> GSM121381     2  0.2081     0.8686 0.000 0.916 0.084 0.000
#> GSM121382     2  0.1302     0.9033 0.000 0.956 0.044 0.000
#> GSM121383     2  0.0707     0.9101 0.000 0.980 0.020 0.000
#> GSM121384     2  0.0188     0.9080 0.000 0.996 0.004 0.000
#> GSM121385     2  0.0592     0.9085 0.000 0.984 0.016 0.000
#> GSM121386     2  0.1022     0.9032 0.000 0.968 0.032 0.000
#> GSM121387     2  0.1118     0.9061 0.000 0.964 0.036 0.000
#> GSM121388     2  0.0817     0.9055 0.000 0.976 0.024 0.000
#> GSM121389     2  0.0336     0.9091 0.000 0.992 0.008 0.000
#> GSM121390     2  0.0000     0.9067 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0707     0.9101 0.000 0.980 0.020 0.000
#> GSM121392     2  0.0000     0.9067 0.000 1.000 0.000 0.000
#> GSM121393     2  0.0000     0.9067 0.000 1.000 0.000 0.000
#> GSM121394     2  0.2081     0.8756 0.000 0.916 0.084 0.000
#> GSM121395     2  0.0336     0.9091 0.000 0.992 0.008 0.000
#> GSM121396     2  0.2469     0.8567 0.000 0.892 0.108 0.000
#> GSM121397     2  0.0336     0.9090 0.000 0.992 0.008 0.000
#> GSM121398     2  0.0707     0.9097 0.000 0.980 0.020 0.000
#> GSM121399     2  0.1302     0.9031 0.000 0.956 0.044 0.000
#> GSM74240      3  0.2706     0.8078 0.000 0.080 0.900 0.020
#> GSM74241      3  0.2706     0.8078 0.000 0.080 0.900 0.020
#> GSM74242      3  0.2813     0.8081 0.000 0.080 0.896 0.024
#> GSM74243      3  0.2813     0.8081 0.000 0.080 0.896 0.024
#> GSM74244      3  0.2706     0.8078 0.000 0.080 0.900 0.020
#> GSM74245      3  0.2706     0.8078 0.000 0.080 0.900 0.020
#> GSM74246      3  0.2706     0.8078 0.000 0.080 0.900 0.020
#> GSM74247      3  0.2706     0.8078 0.000 0.080 0.900 0.020
#> GSM74248      3  0.2706     0.8078 0.000 0.080 0.900 0.020
#> GSM74416      4  0.0657     0.8742 0.004 0.000 0.012 0.984
#> GSM74417      4  0.0657     0.8742 0.004 0.000 0.012 0.984
#> GSM74418      4  0.0657     0.8742 0.004 0.000 0.012 0.984
#> GSM74419      4  0.1661     0.8790 0.004 0.000 0.052 0.944
#> GSM121358     3  0.3583     0.7528 0.000 0.180 0.816 0.004
#> GSM121359     3  0.3528     0.7402 0.000 0.192 0.808 0.000
#> GSM121360     3  0.4579     0.6513 0.032 0.000 0.768 0.200
#> GSM121362     3  0.4579     0.6513 0.032 0.000 0.768 0.200
#> GSM121364     3  0.4579     0.6513 0.032 0.000 0.768 0.200
#> GSM121365     3  0.3725     0.7545 0.000 0.180 0.812 0.008
#> GSM121366     3  0.3583     0.7528 0.000 0.180 0.816 0.004
#> GSM121367     3  0.3583     0.7528 0.000 0.180 0.816 0.004
#> GSM121370     3  0.3718     0.7625 0.000 0.168 0.820 0.012
#> GSM121371     3  0.3583     0.7528 0.000 0.180 0.816 0.004
#> GSM121372     3  0.3688     0.7283 0.000 0.208 0.792 0.000
#> GSM121373     3  0.4579     0.6513 0.032 0.000 0.768 0.200
#> GSM121374     3  0.4579     0.6513 0.032 0.000 0.768 0.200
#> GSM121407     3  0.4907     0.3324 0.000 0.420 0.580 0.000
#> GSM74387      2  0.5716     0.6554 0.088 0.700 0.212 0.000
#> GSM74388      2  0.3570     0.8557 0.092 0.860 0.048 0.000
#> GSM74389      3  0.5292     0.6127 0.020 0.016 0.712 0.252
#> GSM74390      3  0.6196     0.7047 0.136 0.124 0.716 0.024
#> GSM74391      4  0.4426     0.7478 0.032 0.004 0.168 0.796
#> GSM74392      3  0.4376     0.6960 0.016 0.012 0.796 0.176
#> GSM74393      3  0.4376     0.6960 0.016 0.012 0.796 0.176
#> GSM74394      2  0.3697     0.8506 0.100 0.852 0.048 0.000
#> GSM74239      1  0.5090     0.6444 0.728 0.000 0.044 0.228
#> GSM74364      1  0.5691     0.5404 0.648 0.000 0.048 0.304
#> GSM74365      1  0.3736     0.7339 0.860 0.012 0.032 0.096
#> GSM74366      1  0.3351     0.7462 0.844 0.148 0.008 0.000
#> GSM74367      1  0.4800     0.6679 0.760 0.000 0.044 0.196
#> GSM74377      1  0.3249     0.7500 0.852 0.140 0.008 0.000
#> GSM74378      1  0.3351     0.7462 0.844 0.148 0.008 0.000
#> GSM74379      1  0.2910     0.7491 0.908 0.028 0.020 0.044
#> GSM74380      1  0.4358     0.7600 0.832 0.104 0.020 0.044
#> GSM74381      1  0.3249     0.7496 0.852 0.140 0.008 0.000
#> GSM121357     2  0.5929     0.5077 0.064 0.640 0.296 0.000
#> GSM121361     2  0.3570     0.8557 0.092 0.860 0.048 0.000
#> GSM121363     2  0.3570     0.8557 0.092 0.860 0.048 0.000
#> GSM121368     2  0.3570     0.8557 0.092 0.860 0.048 0.000
#> GSM121369     2  0.3570     0.8557 0.092 0.860 0.048 0.000
#> GSM74368      1  0.7017     0.4239 0.576 0.000 0.236 0.188
#> GSM74369      1  0.7017     0.4239 0.576 0.000 0.236 0.188
#> GSM74370      1  0.7017     0.4239 0.576 0.000 0.236 0.188
#> GSM74371      4  0.6008    -0.1208 0.464 0.000 0.040 0.496
#> GSM74372      1  0.5219     0.6308 0.712 0.000 0.044 0.244
#> GSM74373      1  0.2772     0.7378 0.908 0.004 0.040 0.048
#> GSM74374      1  0.3821     0.7184 0.840 0.000 0.040 0.120
#> GSM74375      1  0.3983     0.7536 0.828 0.144 0.020 0.008
#> GSM74376      1  0.4333     0.7489 0.816 0.144 0.024 0.016
#> GSM74405      1  0.3933     0.7572 0.836 0.132 0.008 0.024
#> GSM74351      4  0.2032     0.8595 0.036 0.000 0.028 0.936
#> GSM74352      1  0.3300     0.7484 0.848 0.144 0.008 0.000
#> GSM74353      4  0.5445     0.6986 0.160 0.004 0.092 0.744
#> GSM74354      1  0.3787     0.7167 0.840 0.000 0.036 0.124
#> GSM74355      1  0.3351     0.7462 0.844 0.148 0.008 0.000
#> GSM74382      4  0.5933    -0.1000 0.464 0.000 0.036 0.500
#> GSM74383      1  0.4379     0.6878 0.792 0.000 0.036 0.172
#> GSM74384      1  0.3351     0.7462 0.844 0.148 0.008 0.000
#> GSM74385      1  0.5546     0.5685 0.664 0.000 0.044 0.292
#> GSM74386      1  0.6316     0.6285 0.672 0.020 0.072 0.236
#> GSM74395      1  0.5312     0.6049 0.692 0.000 0.040 0.268
#> GSM74396      1  0.5312     0.6049 0.692 0.000 0.040 0.268
#> GSM74397      1  0.5417     0.5855 0.676 0.000 0.040 0.284
#> GSM74398      1  0.3428     0.7538 0.844 0.144 0.000 0.012
#> GSM74399      1  0.3208     0.7477 0.848 0.148 0.004 0.000
#> GSM74400      1  0.4413     0.7540 0.812 0.140 0.008 0.040
#> GSM74401      1  0.4413     0.7540 0.812 0.140 0.008 0.040

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.1809     0.7800 0.012 0.000 0.928 0.060 0.000
#> GSM74357      3  0.1597     0.7830 0.012 0.000 0.940 0.048 0.000
#> GSM74358      3  0.1597     0.7830 0.012 0.000 0.940 0.048 0.000
#> GSM74359      3  0.5926     0.6296 0.204 0.000 0.632 0.152 0.012
#> GSM74360      3  0.5926     0.6296 0.204 0.000 0.632 0.152 0.012
#> GSM74361      3  0.4627     0.7116 0.100 0.000 0.760 0.132 0.008
#> GSM74362      3  0.4713     0.7058 0.100 0.000 0.752 0.140 0.008
#> GSM74363      3  0.1597     0.7830 0.012 0.000 0.940 0.048 0.000
#> GSM74402      4  0.1310     0.9036 0.024 0.000 0.020 0.956 0.000
#> GSM74403      4  0.2280     0.8728 0.120 0.000 0.000 0.880 0.000
#> GSM74404      4  0.2329     0.8698 0.124 0.000 0.000 0.876 0.000
#> GSM74406      4  0.1310     0.9036 0.024 0.000 0.020 0.956 0.000
#> GSM74407      4  0.1787     0.9005 0.044 0.000 0.016 0.936 0.004
#> GSM74408      4  0.1377     0.8929 0.020 0.000 0.020 0.956 0.004
#> GSM74409      4  0.1377     0.8929 0.020 0.000 0.020 0.956 0.004
#> GSM74410      4  0.1377     0.8929 0.020 0.000 0.020 0.956 0.004
#> GSM119936     4  0.1377     0.8929 0.020 0.000 0.020 0.956 0.004
#> GSM119937     4  0.3488     0.8233 0.064 0.000 0.068 0.852 0.016
#> GSM74411      3  0.3861     0.5540 0.004 0.284 0.712 0.000 0.000
#> GSM74412      3  0.3861     0.5540 0.004 0.284 0.712 0.000 0.000
#> GSM74413      3  0.3861     0.5540 0.004 0.284 0.712 0.000 0.000
#> GSM74414      3  0.5258     0.0314 0.004 0.472 0.488 0.000 0.036
#> GSM74415      3  0.3861     0.5540 0.004 0.284 0.712 0.000 0.000
#> GSM121379     2  0.0290     0.9149 0.000 0.992 0.008 0.000 0.000
#> GSM121380     2  0.0404     0.9158 0.000 0.988 0.012 0.000 0.000
#> GSM121381     2  0.1851     0.8802 0.000 0.912 0.088 0.000 0.000
#> GSM121382     2  0.1571     0.9051 0.004 0.936 0.060 0.000 0.000
#> GSM121383     2  0.0609     0.9168 0.000 0.980 0.020 0.000 0.000
#> GSM121384     2  0.0162     0.9132 0.000 0.996 0.004 0.000 0.000
#> GSM121385     2  0.0609     0.9153 0.000 0.980 0.020 0.000 0.000
#> GSM121386     2  0.0963     0.9117 0.000 0.964 0.036 0.000 0.000
#> GSM121387     2  0.1357     0.9103 0.004 0.948 0.048 0.000 0.000
#> GSM121388     2  0.0963     0.9112 0.000 0.964 0.036 0.000 0.000
#> GSM121389     2  0.0404     0.9157 0.000 0.988 0.012 0.000 0.000
#> GSM121390     2  0.0000     0.9116 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0609     0.9168 0.000 0.980 0.020 0.000 0.000
#> GSM121392     2  0.0000     0.9116 0.000 1.000 0.000 0.000 0.000
#> GSM121393     2  0.0000     0.9116 0.000 1.000 0.000 0.000 0.000
#> GSM121394     2  0.2233     0.8751 0.004 0.892 0.104 0.000 0.000
#> GSM121395     2  0.0404     0.9157 0.000 0.988 0.012 0.000 0.000
#> GSM121396     2  0.2674     0.8439 0.004 0.856 0.140 0.000 0.000
#> GSM121397     2  0.0404     0.9160 0.000 0.988 0.012 0.000 0.000
#> GSM121398     2  0.0794     0.9162 0.000 0.972 0.028 0.000 0.000
#> GSM121399     2  0.1410     0.9053 0.000 0.940 0.060 0.000 0.000
#> GSM74240      3  0.1623     0.7929 0.016 0.020 0.948 0.016 0.000
#> GSM74241      3  0.1623     0.7929 0.016 0.020 0.948 0.016 0.000
#> GSM74242      3  0.1721     0.7929 0.016 0.020 0.944 0.020 0.000
#> GSM74243      3  0.1721     0.7929 0.016 0.020 0.944 0.020 0.000
#> GSM74244      3  0.1623     0.7929 0.016 0.020 0.948 0.016 0.000
#> GSM74245      3  0.1623     0.7929 0.016 0.020 0.948 0.016 0.000
#> GSM74246      3  0.1623     0.7929 0.016 0.020 0.948 0.016 0.000
#> GSM74247      3  0.1623     0.7929 0.016 0.020 0.948 0.016 0.000
#> GSM74248      3  0.1623     0.7929 0.016 0.020 0.948 0.016 0.000
#> GSM74416      4  0.1671     0.8860 0.076 0.000 0.000 0.924 0.000
#> GSM74417      4  0.1671     0.8860 0.076 0.000 0.000 0.924 0.000
#> GSM74418      4  0.1671     0.8860 0.076 0.000 0.000 0.924 0.000
#> GSM74419      4  0.1399     0.9042 0.028 0.000 0.020 0.952 0.000
#> GSM121358     3  0.2777     0.7637 0.000 0.120 0.864 0.016 0.000
#> GSM121359     3  0.2439     0.7555 0.004 0.120 0.876 0.000 0.000
#> GSM121360     3  0.5926     0.6296 0.204 0.000 0.632 0.152 0.012
#> GSM121362     3  0.5926     0.6296 0.204 0.000 0.632 0.152 0.012
#> GSM121364     3  0.5926     0.6296 0.204 0.000 0.632 0.152 0.012
#> GSM121365     3  0.2873     0.7648 0.000 0.120 0.860 0.020 0.000
#> GSM121366     3  0.2777     0.7637 0.000 0.120 0.864 0.016 0.000
#> GSM121367     3  0.2777     0.7637 0.000 0.120 0.864 0.016 0.000
#> GSM121370     3  0.3160     0.7696 0.004 0.116 0.852 0.028 0.000
#> GSM121371     3  0.2777     0.7637 0.000 0.120 0.864 0.016 0.000
#> GSM121372     3  0.2629     0.7476 0.004 0.136 0.860 0.000 0.000
#> GSM121373     3  0.5926     0.6296 0.204 0.000 0.632 0.152 0.012
#> GSM121374     3  0.5932     0.6275 0.200 0.000 0.632 0.156 0.012
#> GSM121407     3  0.4196     0.4127 0.004 0.356 0.640 0.000 0.000
#> GSM74387      2  0.5459     0.6183 0.008 0.660 0.236 0.000 0.096
#> GSM74388      2  0.3536     0.8530 0.008 0.840 0.052 0.000 0.100
#> GSM74389      3  0.5631     0.6123 0.104 0.000 0.652 0.232 0.012
#> GSM74390      3  0.5496     0.6893 0.096 0.060 0.732 0.004 0.108
#> GSM74391      4  0.4640     0.7244 0.088 0.000 0.148 0.756 0.008
#> GSM74392      3  0.5063     0.6884 0.116 0.000 0.720 0.156 0.008
#> GSM74393      3  0.5063     0.6884 0.116 0.000 0.720 0.156 0.008
#> GSM74394      2  0.3570     0.8490 0.008 0.836 0.048 0.000 0.108
#> GSM74239      1  0.5167     0.7474 0.684 0.000 0.000 0.116 0.200
#> GSM74364      1  0.4916     0.7357 0.716 0.000 0.000 0.160 0.124
#> GSM74365      1  0.5088     0.4555 0.528 0.000 0.000 0.036 0.436
#> GSM74366      5  0.0404     0.8833 0.000 0.012 0.000 0.000 0.988
#> GSM74367      1  0.4876     0.7405 0.700 0.000 0.000 0.080 0.220
#> GSM74377      5  0.1281     0.8811 0.032 0.012 0.000 0.000 0.956
#> GSM74378      5  0.0566     0.8830 0.004 0.012 0.000 0.000 0.984
#> GSM74379      5  0.4390    -0.0586 0.428 0.000 0.000 0.004 0.568
#> GSM74380      5  0.3797     0.6329 0.232 0.008 0.000 0.004 0.756
#> GSM74381      5  0.1597     0.8751 0.048 0.012 0.000 0.000 0.940
#> GSM121357     2  0.5579     0.4424 0.008 0.592 0.332 0.000 0.068
#> GSM121361     2  0.3536     0.8530 0.008 0.840 0.052 0.000 0.100
#> GSM121363     2  0.3536     0.8530 0.008 0.840 0.052 0.000 0.100
#> GSM121368     2  0.3536     0.8530 0.008 0.840 0.052 0.000 0.100
#> GSM121369     2  0.3536     0.8530 0.008 0.840 0.052 0.000 0.100
#> GSM74368      1  0.7444     0.5276 0.524 0.000 0.128 0.128 0.220
#> GSM74369      1  0.7444     0.5276 0.524 0.000 0.128 0.128 0.220
#> GSM74370      1  0.7399     0.5315 0.532 0.000 0.128 0.128 0.212
#> GSM74371      1  0.5245     0.5008 0.608 0.000 0.000 0.328 0.064
#> GSM74372      1  0.4504     0.7355 0.748 0.000 0.000 0.084 0.168
#> GSM74373      1  0.4101     0.5552 0.628 0.000 0.000 0.000 0.372
#> GSM74374      1  0.4184     0.6731 0.700 0.000 0.000 0.016 0.284
#> GSM74375      5  0.1622     0.8804 0.028 0.016 0.004 0.004 0.948
#> GSM74376      5  0.3496     0.8030 0.116 0.028 0.016 0.000 0.840
#> GSM74405      5  0.2723     0.8134 0.124 0.012 0.000 0.000 0.864
#> GSM74351      4  0.2471     0.8626 0.136 0.000 0.000 0.864 0.000
#> GSM74352      5  0.0912     0.8841 0.016 0.012 0.000 0.000 0.972
#> GSM74353      4  0.5827     0.6646 0.164 0.000 0.064 0.688 0.084
#> GSM74354      1  0.4437     0.6530 0.664 0.000 0.000 0.020 0.316
#> GSM74355      5  0.0404     0.8833 0.000 0.012 0.000 0.000 0.988
#> GSM74382      1  0.5418     0.4684 0.568 0.000 0.000 0.364 0.068
#> GSM74383      1  0.5051     0.7126 0.664 0.000 0.000 0.072 0.264
#> GSM74384      5  0.0404     0.8833 0.000 0.012 0.000 0.000 0.988
#> GSM74385      1  0.3962     0.7226 0.800 0.000 0.000 0.112 0.088
#> GSM74386      1  0.5797     0.6798 0.636 0.000 0.020 0.092 0.252
#> GSM74395      1  0.4864     0.7532 0.720 0.000 0.000 0.116 0.164
#> GSM74396      1  0.4864     0.7532 0.720 0.000 0.000 0.116 0.164
#> GSM74397      1  0.5002     0.7509 0.708 0.000 0.000 0.132 0.160
#> GSM74398      5  0.1442     0.8809 0.032 0.012 0.000 0.004 0.952
#> GSM74399      5  0.0807     0.8845 0.012 0.012 0.000 0.000 0.976
#> GSM74400      5  0.2857     0.8228 0.112 0.012 0.000 0.008 0.868
#> GSM74401      5  0.2857     0.8228 0.112 0.012 0.000 0.008 0.868

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.2282      0.627 0.000 0.000 0.888 0.024 0.088 0.000
#> GSM74357      3  0.2060      0.641 0.000 0.000 0.900 0.016 0.084 0.000
#> GSM74358      3  0.2060      0.641 0.000 0.000 0.900 0.016 0.084 0.000
#> GSM74359      5  0.3826      0.943 0.012 0.000 0.236 0.016 0.736 0.000
#> GSM74360      5  0.3826      0.943 0.012 0.000 0.236 0.016 0.736 0.000
#> GSM74361      3  0.4629     -0.362 0.000 0.000 0.524 0.040 0.436 0.000
#> GSM74362      3  0.4636     -0.384 0.000 0.000 0.516 0.040 0.444 0.000
#> GSM74363      3  0.2060      0.641 0.000 0.000 0.900 0.016 0.084 0.000
#> GSM74402      4  0.1577      0.896 0.016 0.000 0.008 0.940 0.036 0.000
#> GSM74403      4  0.2163      0.858 0.092 0.000 0.000 0.892 0.016 0.000
#> GSM74404      4  0.2250      0.856 0.092 0.000 0.000 0.888 0.020 0.000
#> GSM74406      4  0.1577      0.896 0.016 0.000 0.008 0.940 0.036 0.000
#> GSM74407      4  0.1832      0.893 0.032 0.000 0.008 0.928 0.032 0.000
#> GSM74408      4  0.1908      0.885 0.004 0.000 0.000 0.900 0.096 0.000
#> GSM74409      4  0.1908      0.885 0.004 0.000 0.000 0.900 0.096 0.000
#> GSM74410      4  0.1908      0.885 0.004 0.000 0.000 0.900 0.096 0.000
#> GSM119936     4  0.1908      0.885 0.004 0.000 0.000 0.900 0.096 0.000
#> GSM119937     4  0.3989      0.822 0.052 0.000 0.032 0.788 0.128 0.000
#> GSM74411      3  0.3337      0.594 0.000 0.260 0.736 0.000 0.004 0.000
#> GSM74412      3  0.3337      0.594 0.000 0.260 0.736 0.000 0.004 0.000
#> GSM74413      3  0.3337      0.594 0.000 0.260 0.736 0.000 0.004 0.000
#> GSM74414      3  0.4754      0.105 0.000 0.452 0.508 0.000 0.008 0.032
#> GSM74415      3  0.3337      0.594 0.000 0.260 0.736 0.000 0.004 0.000
#> GSM121379     2  0.0405      0.909 0.000 0.988 0.008 0.000 0.004 0.000
#> GSM121380     2  0.0363      0.910 0.000 0.988 0.012 0.000 0.000 0.000
#> GSM121381     2  0.1765      0.869 0.000 0.904 0.096 0.000 0.000 0.000
#> GSM121382     2  0.1471      0.898 0.000 0.932 0.064 0.000 0.004 0.000
#> GSM121383     2  0.0632      0.912 0.000 0.976 0.024 0.000 0.000 0.000
#> GSM121384     2  0.0291      0.908 0.000 0.992 0.004 0.000 0.004 0.000
#> GSM121385     2  0.0547      0.910 0.000 0.980 0.020 0.000 0.000 0.000
#> GSM121386     2  0.1007      0.903 0.000 0.956 0.044 0.000 0.000 0.000
#> GSM121387     2  0.1285      0.903 0.000 0.944 0.052 0.000 0.004 0.000
#> GSM121388     2  0.1010      0.904 0.000 0.960 0.036 0.000 0.004 0.000
#> GSM121389     2  0.0363      0.911 0.000 0.988 0.012 0.000 0.000 0.000
#> GSM121390     2  0.0146      0.907 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121391     2  0.0632      0.912 0.000 0.976 0.024 0.000 0.000 0.000
#> GSM121392     2  0.0146      0.907 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121393     2  0.0146      0.907 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121394     2  0.2146      0.860 0.000 0.880 0.116 0.000 0.004 0.000
#> GSM121395     2  0.0363      0.911 0.000 0.988 0.012 0.000 0.000 0.000
#> GSM121396     2  0.2442      0.832 0.000 0.852 0.144 0.000 0.004 0.000
#> GSM121397     2  0.0508      0.910 0.000 0.984 0.012 0.000 0.004 0.000
#> GSM121398     2  0.0713      0.910 0.000 0.972 0.028 0.000 0.000 0.000
#> GSM121399     2  0.1327      0.898 0.000 0.936 0.064 0.000 0.000 0.000
#> GSM74240      3  0.1152      0.693 0.004 0.000 0.952 0.000 0.044 0.000
#> GSM74241      3  0.1152      0.693 0.004 0.000 0.952 0.000 0.044 0.000
#> GSM74242      3  0.1296      0.691 0.004 0.000 0.948 0.004 0.044 0.000
#> GSM74243      3  0.1296      0.691 0.004 0.000 0.948 0.004 0.044 0.000
#> GSM74244      3  0.1152      0.693 0.004 0.000 0.952 0.000 0.044 0.000
#> GSM74245      3  0.1152      0.693 0.004 0.000 0.952 0.000 0.044 0.000
#> GSM74246      3  0.1152      0.693 0.004 0.000 0.952 0.000 0.044 0.000
#> GSM74247      3  0.1152      0.693 0.004 0.000 0.952 0.000 0.044 0.000
#> GSM74248      3  0.1152      0.693 0.004 0.000 0.952 0.000 0.044 0.000
#> GSM74416      4  0.1141      0.882 0.052 0.000 0.000 0.948 0.000 0.000
#> GSM74417      4  0.1141      0.882 0.052 0.000 0.000 0.948 0.000 0.000
#> GSM74418      4  0.1141      0.882 0.052 0.000 0.000 0.948 0.000 0.000
#> GSM74419      4  0.1666      0.897 0.020 0.000 0.008 0.936 0.036 0.000
#> GSM121358     3  0.2275      0.713 0.000 0.096 0.888 0.008 0.008 0.000
#> GSM121359     3  0.1908      0.709 0.000 0.096 0.900 0.000 0.004 0.000
#> GSM121360     5  0.3826      0.943 0.012 0.000 0.236 0.016 0.736 0.000
#> GSM121362     5  0.3826      0.943 0.012 0.000 0.236 0.016 0.736 0.000
#> GSM121364     5  0.3826      0.943 0.012 0.000 0.236 0.016 0.736 0.000
#> GSM121365     3  0.2376      0.712 0.000 0.096 0.884 0.008 0.012 0.000
#> GSM121366     3  0.2275      0.713 0.000 0.096 0.888 0.008 0.008 0.000
#> GSM121367     3  0.2275      0.713 0.000 0.096 0.888 0.008 0.008 0.000
#> GSM121370     3  0.2605      0.710 0.000 0.092 0.876 0.012 0.020 0.000
#> GSM121371     3  0.2275      0.713 0.000 0.096 0.888 0.008 0.008 0.000
#> GSM121372     3  0.2100      0.704 0.000 0.112 0.884 0.000 0.004 0.000
#> GSM121373     5  0.3826      0.943 0.012 0.000 0.236 0.016 0.736 0.000
#> GSM121374     5  0.3813      0.938 0.008 0.000 0.236 0.020 0.736 0.000
#> GSM121407     3  0.3684      0.467 0.000 0.332 0.664 0.000 0.004 0.000
#> GSM74387      2  0.5423      0.602 0.004 0.644 0.236 0.004 0.024 0.088
#> GSM74388      2  0.3592      0.849 0.004 0.832 0.044 0.004 0.024 0.092
#> GSM74389      5  0.5892      0.462 0.016 0.000 0.424 0.128 0.432 0.000
#> GSM74390      3  0.6113      0.435 0.040 0.032 0.632 0.004 0.196 0.096
#> GSM74391      4  0.4615      0.736 0.056 0.000 0.124 0.748 0.072 0.000
#> GSM74392      3  0.5120     -0.475 0.012 0.000 0.476 0.052 0.460 0.000
#> GSM74393      3  0.5120     -0.475 0.012 0.000 0.476 0.052 0.460 0.000
#> GSM74394      2  0.3622      0.846 0.004 0.828 0.040 0.004 0.024 0.100
#> GSM74239      1  0.4116      0.754 0.776 0.000 0.000 0.084 0.020 0.120
#> GSM74364      1  0.3676      0.742 0.808 0.000 0.000 0.120 0.020 0.052
#> GSM74365      1  0.4570      0.480 0.596 0.000 0.000 0.012 0.024 0.368
#> GSM74366      6  0.0000      0.873 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74367      1  0.3681      0.746 0.796 0.000 0.000 0.048 0.012 0.144
#> GSM74377      6  0.1075      0.868 0.048 0.000 0.000 0.000 0.000 0.952
#> GSM74378      6  0.0260      0.873 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM74379      6  0.3996     -0.143 0.484 0.000 0.000 0.000 0.004 0.512
#> GSM74380      6  0.3499      0.603 0.264 0.000 0.000 0.004 0.004 0.728
#> GSM74381      6  0.1327      0.861 0.064 0.000 0.000 0.000 0.000 0.936
#> GSM121357     2  0.5405      0.401 0.004 0.568 0.344 0.004 0.012 0.068
#> GSM121361     2  0.3592      0.849 0.004 0.832 0.044 0.004 0.024 0.092
#> GSM121363     2  0.3592      0.849 0.004 0.832 0.044 0.004 0.024 0.092
#> GSM121368     2  0.3592      0.849 0.004 0.832 0.044 0.004 0.024 0.092
#> GSM121369     2  0.3592      0.849 0.004 0.832 0.044 0.004 0.024 0.092
#> GSM74368      1  0.7026      0.490 0.416 0.000 0.012 0.060 0.336 0.176
#> GSM74369      1  0.7026      0.490 0.416 0.000 0.012 0.060 0.336 0.176
#> GSM74370      1  0.6987      0.495 0.424 0.000 0.012 0.060 0.336 0.168
#> GSM74371      1  0.3729      0.516 0.692 0.000 0.000 0.296 0.012 0.000
#> GSM74372      1  0.4065      0.732 0.796 0.000 0.000 0.064 0.060 0.080
#> GSM74373      1  0.4087      0.610 0.688 0.000 0.000 0.000 0.036 0.276
#> GSM74374      1  0.3932      0.698 0.760 0.000 0.000 0.012 0.040 0.188
#> GSM74375      6  0.1440      0.870 0.032 0.004 0.000 0.004 0.012 0.948
#> GSM74376      6  0.3619      0.779 0.128 0.016 0.012 0.000 0.028 0.816
#> GSM74405      6  0.2664      0.797 0.136 0.000 0.000 0.000 0.016 0.848
#> GSM74351      4  0.2948      0.830 0.092 0.000 0.000 0.848 0.060 0.000
#> GSM74352      6  0.0458      0.875 0.016 0.000 0.000 0.000 0.000 0.984
#> GSM74353      4  0.6109      0.645 0.160 0.000 0.032 0.644 0.096 0.068
#> GSM74354      1  0.3642      0.682 0.744 0.000 0.000 0.012 0.008 0.236
#> GSM74355      6  0.0146      0.873 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM74382      1  0.4062      0.477 0.640 0.000 0.000 0.344 0.004 0.012
#> GSM74383      1  0.4086      0.723 0.752 0.000 0.000 0.044 0.016 0.188
#> GSM74384      6  0.0000      0.873 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74385      1  0.2437      0.723 0.888 0.000 0.000 0.072 0.036 0.004
#> GSM74386      1  0.5237      0.688 0.680 0.000 0.000 0.060 0.076 0.184
#> GSM74395      1  0.3627      0.755 0.808 0.000 0.000 0.092 0.008 0.092
#> GSM74396      1  0.3627      0.755 0.808 0.000 0.000 0.092 0.008 0.092
#> GSM74397      1  0.3655      0.753 0.800 0.000 0.000 0.108 0.004 0.088
#> GSM74398      6  0.1155      0.871 0.036 0.000 0.000 0.004 0.004 0.956
#> GSM74399      6  0.0603      0.875 0.016 0.000 0.000 0.000 0.004 0.980
#> GSM74400      6  0.2894      0.800 0.108 0.000 0.000 0.004 0.036 0.852
#> GSM74401      6  0.2894      0.800 0.108 0.000 0.000 0.004 0.036 0.852

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:hclust  91         3.47e-13 2
#> MAD:hclust  90         5.69e-24 3
#> MAD:hclust 110         2.57e-33 4
#> MAD:hclust 115         1.30e-33 5
#> MAD:hclust 106         2.64e-31 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.919           0.956       0.980         0.4998 0.499   0.499
#> 3 3 0.841           0.844       0.925         0.3347 0.691   0.458
#> 4 4 0.767           0.768       0.870         0.1197 0.906   0.725
#> 5 5 0.748           0.642       0.811         0.0541 0.898   0.656
#> 6 6 0.756           0.647       0.789         0.0380 0.899   0.607

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.3431      0.926 0.064 0.936
#> GSM74357      2  0.6343      0.835 0.160 0.840
#> GSM74358      2  0.6343      0.835 0.160 0.840
#> GSM74359      1  0.0000      0.984 1.000 0.000
#> GSM74360      1  0.0000      0.984 1.000 0.000
#> GSM74361      2  0.6148      0.844 0.152 0.848
#> GSM74362      2  0.6531      0.825 0.168 0.832
#> GSM74363      2  0.3274      0.930 0.060 0.940
#> GSM74402      1  0.0000      0.984 1.000 0.000
#> GSM74403      1  0.0000      0.984 1.000 0.000
#> GSM74404      1  0.0000      0.984 1.000 0.000
#> GSM74406      1  0.0000      0.984 1.000 0.000
#> GSM74407      1  0.0000      0.984 1.000 0.000
#> GSM74408      1  0.0000      0.984 1.000 0.000
#> GSM74409      1  0.0000      0.984 1.000 0.000
#> GSM74410      1  0.0000      0.984 1.000 0.000
#> GSM119936     1  0.0000      0.984 1.000 0.000
#> GSM119937     1  0.0000      0.984 1.000 0.000
#> GSM74411      2  0.0000      0.973 0.000 1.000
#> GSM74412      2  0.0000      0.973 0.000 1.000
#> GSM74413      2  0.0000      0.973 0.000 1.000
#> GSM74414      2  0.0000      0.973 0.000 1.000
#> GSM74415      2  0.0000      0.973 0.000 1.000
#> GSM121379     2  0.0000      0.973 0.000 1.000
#> GSM121380     2  0.0000      0.973 0.000 1.000
#> GSM121381     2  0.0000      0.973 0.000 1.000
#> GSM121382     2  0.0000      0.973 0.000 1.000
#> GSM121383     2  0.0000      0.973 0.000 1.000
#> GSM121384     2  0.0000      0.973 0.000 1.000
#> GSM121385     2  0.0000      0.973 0.000 1.000
#> GSM121386     2  0.0000      0.973 0.000 1.000
#> GSM121387     2  0.0000      0.973 0.000 1.000
#> GSM121388     2  0.0000      0.973 0.000 1.000
#> GSM121389     2  0.0000      0.973 0.000 1.000
#> GSM121390     2  0.0000      0.973 0.000 1.000
#> GSM121391     2  0.0000      0.973 0.000 1.000
#> GSM121392     2  0.0000      0.973 0.000 1.000
#> GSM121393     2  0.0000      0.973 0.000 1.000
#> GSM121394     2  0.0000      0.973 0.000 1.000
#> GSM121395     2  0.0000      0.973 0.000 1.000
#> GSM121396     2  0.0000      0.973 0.000 1.000
#> GSM121397     2  0.0000      0.973 0.000 1.000
#> GSM121398     2  0.0000      0.973 0.000 1.000
#> GSM121399     2  0.0000      0.973 0.000 1.000
#> GSM74240      2  0.7056      0.793 0.192 0.808
#> GSM74241      2  0.5408      0.872 0.124 0.876
#> GSM74242      1  0.9661      0.320 0.608 0.392
#> GSM74243      1  0.9522      0.376 0.628 0.372
#> GSM74244      2  0.2236      0.948 0.036 0.964
#> GSM74245      2  0.6247      0.839 0.156 0.844
#> GSM74246      2  0.0000      0.973 0.000 1.000
#> GSM74247      2  0.0000      0.973 0.000 1.000
#> GSM74248      2  0.7056      0.793 0.192 0.808
#> GSM74416      1  0.0000      0.984 1.000 0.000
#> GSM74417      1  0.0000      0.984 1.000 0.000
#> GSM74418      1  0.0000      0.984 1.000 0.000
#> GSM74419      1  0.0000      0.984 1.000 0.000
#> GSM121358     2  0.0000      0.973 0.000 1.000
#> GSM121359     2  0.0000      0.973 0.000 1.000
#> GSM121360     1  0.0000      0.984 1.000 0.000
#> GSM121362     1  0.0000      0.984 1.000 0.000
#> GSM121364     1  0.0000      0.984 1.000 0.000
#> GSM121365     2  0.0000      0.973 0.000 1.000
#> GSM121366     2  0.0000      0.973 0.000 1.000
#> GSM121367     2  0.0000      0.973 0.000 1.000
#> GSM121370     2  0.0000      0.973 0.000 1.000
#> GSM121371     2  0.0000      0.973 0.000 1.000
#> GSM121372     2  0.0000      0.973 0.000 1.000
#> GSM121373     1  0.0000      0.984 1.000 0.000
#> GSM121374     1  0.0000      0.984 1.000 0.000
#> GSM121407     2  0.0000      0.973 0.000 1.000
#> GSM74387      2  0.0000      0.973 0.000 1.000
#> GSM74388      2  0.0000      0.973 0.000 1.000
#> GSM74389      1  0.0000      0.984 1.000 0.000
#> GSM74390      1  0.0000      0.984 1.000 0.000
#> GSM74391      1  0.0000      0.984 1.000 0.000
#> GSM74392      1  0.0000      0.984 1.000 0.000
#> GSM74393      1  0.0000      0.984 1.000 0.000
#> GSM74394      2  0.0000      0.973 0.000 1.000
#> GSM74239      1  0.0000      0.984 1.000 0.000
#> GSM74364      1  0.0000      0.984 1.000 0.000
#> GSM74365      1  0.0000      0.984 1.000 0.000
#> GSM74366      1  0.2043      0.954 0.968 0.032
#> GSM74367      1  0.0000      0.984 1.000 0.000
#> GSM74377      1  0.0000      0.984 1.000 0.000
#> GSM74378      1  0.0376      0.981 0.996 0.004
#> GSM74379      1  0.0000      0.984 1.000 0.000
#> GSM74380      1  0.0000      0.984 1.000 0.000
#> GSM74381      1  0.0000      0.984 1.000 0.000
#> GSM121357     2  0.0000      0.973 0.000 1.000
#> GSM121361     2  0.0000      0.973 0.000 1.000
#> GSM121363     2  0.0000      0.973 0.000 1.000
#> GSM121368     2  0.0000      0.973 0.000 1.000
#> GSM121369     2  0.0000      0.973 0.000 1.000
#> GSM74368      1  0.0000      0.984 1.000 0.000
#> GSM74369      1  0.0000      0.984 1.000 0.000
#> GSM74370      1  0.0000      0.984 1.000 0.000
#> GSM74371      1  0.0000      0.984 1.000 0.000
#> GSM74372      1  0.0000      0.984 1.000 0.000
#> GSM74373      1  0.0000      0.984 1.000 0.000
#> GSM74374      1  0.0000      0.984 1.000 0.000
#> GSM74375      1  0.0000      0.984 1.000 0.000
#> GSM74376      1  0.0000      0.984 1.000 0.000
#> GSM74405      1  0.0000      0.984 1.000 0.000
#> GSM74351      1  0.0000      0.984 1.000 0.000
#> GSM74352      1  0.4022      0.904 0.920 0.080
#> GSM74353      1  0.0000      0.984 1.000 0.000
#> GSM74354      1  0.0000      0.984 1.000 0.000
#> GSM74355      1  0.0376      0.981 0.996 0.004
#> GSM74382      1  0.0000      0.984 1.000 0.000
#> GSM74383      1  0.0000      0.984 1.000 0.000
#> GSM74384      1  0.4298      0.895 0.912 0.088
#> GSM74385      1  0.0000      0.984 1.000 0.000
#> GSM74386      1  0.0000      0.984 1.000 0.000
#> GSM74395      1  0.0000      0.984 1.000 0.000
#> GSM74396      1  0.0000      0.984 1.000 0.000
#> GSM74397      1  0.0000      0.984 1.000 0.000
#> GSM74398      1  0.0000      0.984 1.000 0.000
#> GSM74399      1  0.0000      0.984 1.000 0.000
#> GSM74400      1  0.0000      0.984 1.000 0.000
#> GSM74401      1  0.0000      0.984 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74357      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74358      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74359      3  0.0747      0.809 0.016 0.000 0.984
#> GSM74360      3  0.2537      0.799 0.080 0.000 0.920
#> GSM74361      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74362      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74363      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74402      3  0.6095      0.406 0.392 0.000 0.608
#> GSM74403      3  0.6260      0.273 0.448 0.000 0.552
#> GSM74404      3  0.6235      0.306 0.436 0.000 0.564
#> GSM74406      3  0.2537      0.799 0.080 0.000 0.920
#> GSM74407      3  0.5058      0.653 0.244 0.000 0.756
#> GSM74408      3  0.2537      0.799 0.080 0.000 0.920
#> GSM74409      3  0.2537      0.799 0.080 0.000 0.920
#> GSM74410      3  0.2448      0.801 0.076 0.000 0.924
#> GSM119936     3  0.2537      0.799 0.080 0.000 0.920
#> GSM119937     3  0.4654      0.695 0.208 0.000 0.792
#> GSM74411      2  0.2537      0.915 0.000 0.920 0.080
#> GSM74412      2  0.1031      0.959 0.000 0.976 0.024
#> GSM74413      2  0.2537      0.915 0.000 0.920 0.080
#> GSM74414      2  0.0000      0.969 0.000 1.000 0.000
#> GSM74415      2  0.6235      0.190 0.000 0.564 0.436
#> GSM121379     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121380     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121381     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121382     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121383     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121384     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121385     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121386     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121387     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121388     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121389     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121390     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121391     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121392     2  0.0424      0.964 0.008 0.992 0.000
#> GSM121393     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121394     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121395     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121396     2  0.0747      0.963 0.000 0.984 0.016
#> GSM121397     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121398     2  0.0000      0.969 0.000 1.000 0.000
#> GSM121399     2  0.0000      0.969 0.000 1.000 0.000
#> GSM74240      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74241      3  0.4796      0.631 0.000 0.220 0.780
#> GSM74242      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74243      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74244      3  0.3340      0.734 0.000 0.120 0.880
#> GSM74245      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74246      3  0.6180      0.284 0.000 0.416 0.584
#> GSM74247      3  0.6267      0.176 0.000 0.452 0.548
#> GSM74248      3  0.0424      0.806 0.000 0.008 0.992
#> GSM74416      3  0.6225      0.316 0.432 0.000 0.568
#> GSM74417      3  0.6225      0.316 0.432 0.000 0.568
#> GSM74418      3  0.6244      0.295 0.440 0.000 0.560
#> GSM74419      3  0.2537      0.799 0.080 0.000 0.920
#> GSM121358     3  0.6026      0.385 0.000 0.376 0.624
#> GSM121359     2  0.2537      0.915 0.000 0.920 0.080
#> GSM121360     3  0.3340      0.777 0.120 0.000 0.880
#> GSM121362     3  0.4842      0.682 0.224 0.000 0.776
#> GSM121364     3  0.1031      0.810 0.024 0.000 0.976
#> GSM121365     3  0.6026      0.385 0.000 0.376 0.624
#> GSM121366     3  0.6026      0.385 0.000 0.376 0.624
#> GSM121367     3  0.6026      0.385 0.000 0.376 0.624
#> GSM121370     3  0.6026      0.385 0.000 0.376 0.624
#> GSM121371     3  0.6026      0.385 0.000 0.376 0.624
#> GSM121372     2  0.2537      0.915 0.000 0.920 0.080
#> GSM121373     3  0.2448      0.800 0.076 0.000 0.924
#> GSM121374     3  0.1031      0.810 0.024 0.000 0.976
#> GSM121407     2  0.0592      0.965 0.000 0.988 0.012
#> GSM74387      2  0.2680      0.923 0.008 0.924 0.068
#> GSM74388      2  0.0892      0.958 0.020 0.980 0.000
#> GSM74389      3  0.0592      0.809 0.012 0.000 0.988
#> GSM74390      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74391      3  0.2537      0.799 0.080 0.000 0.920
#> GSM74392      3  0.0892      0.810 0.020 0.000 0.980
#> GSM74393      3  0.0237      0.807 0.004 0.000 0.996
#> GSM74394      2  0.1315      0.959 0.020 0.972 0.008
#> GSM74239      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74364      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74365      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74366      1  0.0237      0.990 0.996 0.004 0.000
#> GSM74367      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74377      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74378      1  0.0237      0.990 0.996 0.004 0.000
#> GSM74379      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74380      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74381      1  0.0000      0.993 1.000 0.000 0.000
#> GSM121357     2  0.0424      0.967 0.000 0.992 0.008
#> GSM121361     2  0.1453      0.956 0.024 0.968 0.008
#> GSM121363     2  0.1315      0.959 0.020 0.972 0.008
#> GSM121368     2  0.1315      0.959 0.020 0.972 0.008
#> GSM121369     2  0.1774      0.954 0.024 0.960 0.016
#> GSM74368      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74369      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74370      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74371      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74372      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74373      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74374      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74375      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74376      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74405      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74351      1  0.1163      0.973 0.972 0.000 0.028
#> GSM74352      1  0.0424      0.986 0.992 0.008 0.000
#> GSM74353      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74354      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74355      1  0.0237      0.990 0.996 0.004 0.000
#> GSM74382      1  0.1753      0.950 0.952 0.000 0.048
#> GSM74383      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74384      1  0.0424      0.986 0.992 0.008 0.000
#> GSM74385      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74386      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74395      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74396      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74397      1  0.0424      0.993 0.992 0.000 0.008
#> GSM74398      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74399      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74400      1  0.0000      0.993 1.000 0.000 0.000
#> GSM74401      1  0.0000      0.993 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.5028      0.827 0.000 0.400 0.596 0.004
#> GSM74357      3  0.5028      0.827 0.000 0.400 0.596 0.004
#> GSM74358      3  0.5028      0.827 0.000 0.400 0.596 0.004
#> GSM74359      3  0.0336      0.337 0.000 0.000 0.992 0.008
#> GSM74360      3  0.4877     -0.777 0.000 0.000 0.592 0.408
#> GSM74361      3  0.4855      0.828 0.000 0.400 0.600 0.000
#> GSM74362      3  0.4855      0.828 0.000 0.400 0.600 0.000
#> GSM74363      3  0.5039      0.828 0.000 0.404 0.592 0.004
#> GSM74402      4  0.5500      0.938 0.016 0.000 0.464 0.520
#> GSM74403      4  0.5764      0.935 0.028 0.000 0.452 0.520
#> GSM74404      4  0.5764      0.935 0.028 0.000 0.452 0.520
#> GSM74406      4  0.4998      0.931 0.000 0.000 0.488 0.512
#> GSM74407      4  0.5594      0.938 0.020 0.000 0.460 0.520
#> GSM74408      4  0.4998      0.931 0.000 0.000 0.488 0.512
#> GSM74409      4  0.4998      0.931 0.000 0.000 0.488 0.512
#> GSM74410      4  0.4998      0.931 0.000 0.000 0.488 0.512
#> GSM119936     4  0.4998      0.931 0.000 0.000 0.488 0.512
#> GSM119937     4  0.4994      0.934 0.000 0.000 0.480 0.520
#> GSM74411      2  0.1191      0.342 0.004 0.968 0.024 0.004
#> GSM74412      2  0.2197      0.523 0.004 0.916 0.000 0.080
#> GSM74413      2  0.1191      0.342 0.004 0.968 0.024 0.004
#> GSM74414      2  0.5088      0.837 0.004 0.572 0.000 0.424
#> GSM74415      3  0.5328      0.805 0.004 0.472 0.520 0.004
#> GSM121379     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121380     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121381     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121382     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121383     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121384     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121385     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121386     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121387     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121388     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121389     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121390     2  0.4977      0.847 0.000 0.540 0.000 0.460
#> GSM121391     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121392     2  0.4977      0.847 0.000 0.540 0.000 0.460
#> GSM121393     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121394     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121395     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121396     2  0.2973      0.588 0.000 0.856 0.000 0.144
#> GSM121397     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121398     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM121399     2  0.4972      0.849 0.000 0.544 0.000 0.456
#> GSM74240      3  0.5290      0.823 0.004 0.440 0.552 0.004
#> GSM74241      3  0.5308      0.818 0.004 0.452 0.540 0.004
#> GSM74242      3  0.4855      0.826 0.000 0.400 0.600 0.000
#> GSM74243      3  0.4855      0.826 0.000 0.400 0.600 0.000
#> GSM74244      3  0.5297      0.822 0.004 0.444 0.548 0.004
#> GSM74245      3  0.5284      0.824 0.004 0.436 0.556 0.004
#> GSM74246      3  0.5666      0.806 0.004 0.460 0.520 0.016
#> GSM74247      3  0.5666      0.806 0.004 0.460 0.520 0.016
#> GSM74248      3  0.5284      0.824 0.004 0.436 0.556 0.004
#> GSM74416      4  0.5682      0.937 0.024 0.000 0.456 0.520
#> GSM74417      4  0.5682      0.937 0.024 0.000 0.456 0.520
#> GSM74418      4  0.5682      0.937 0.024 0.000 0.456 0.520
#> GSM74419      4  0.4998      0.931 0.000 0.000 0.488 0.512
#> GSM121358     3  0.4941      0.827 0.000 0.436 0.564 0.000
#> GSM121359     2  0.2521      0.286 0.000 0.912 0.064 0.024
#> GSM121360     3  0.4359      0.269 0.164 0.016 0.804 0.016
#> GSM121362     3  0.4012      0.223 0.204 0.004 0.788 0.004
#> GSM121364     3  0.0469      0.328 0.000 0.000 0.988 0.012
#> GSM121365     3  0.4941      0.827 0.000 0.436 0.564 0.000
#> GSM121366     3  0.4941      0.827 0.000 0.436 0.564 0.000
#> GSM121367     3  0.4941      0.827 0.000 0.436 0.564 0.000
#> GSM121370     3  0.4941      0.827 0.000 0.436 0.564 0.000
#> GSM121371     3  0.4941      0.827 0.000 0.436 0.564 0.000
#> GSM121372     2  0.1629      0.374 0.000 0.952 0.024 0.024
#> GSM121373     3  0.0336      0.337 0.000 0.000 0.992 0.008
#> GSM121374     3  0.0336      0.337 0.000 0.000 0.992 0.008
#> GSM121407     2  0.4522      0.783 0.000 0.680 0.000 0.320
#> GSM74387      2  0.5385      0.140 0.140 0.772 0.056 0.032
#> GSM74388      2  0.7969      0.677 0.252 0.384 0.004 0.360
#> GSM74389      3  0.4222      0.733 0.000 0.272 0.728 0.000
#> GSM74390      1  0.0712      0.870 0.984 0.008 0.004 0.004
#> GSM74391      4  0.5328      0.936 0.004 0.004 0.472 0.520
#> GSM74392      3  0.0921      0.279 0.000 0.000 0.972 0.028
#> GSM74393      3  0.4936      0.818 0.004 0.372 0.624 0.000
#> GSM74394      2  0.7967      0.675 0.252 0.388 0.004 0.356
#> GSM74239      1  0.4798      0.809 0.768 0.000 0.052 0.180
#> GSM74364      1  0.5132      0.784 0.748 0.000 0.068 0.184
#> GSM74365      1  0.2593      0.881 0.892 0.000 0.004 0.104
#> GSM74366      1  0.0524      0.872 0.988 0.004 0.000 0.008
#> GSM74367      1  0.4244      0.841 0.800 0.000 0.032 0.168
#> GSM74377      1  0.0000      0.878 1.000 0.000 0.000 0.000
#> GSM74378      1  0.0336      0.875 0.992 0.000 0.000 0.008
#> GSM74379      1  0.0188      0.878 0.996 0.000 0.004 0.000
#> GSM74380      1  0.0000      0.878 1.000 0.000 0.000 0.000
#> GSM74381      1  0.0000      0.878 1.000 0.000 0.000 0.000
#> GSM121357     2  0.4925      0.841 0.000 0.572 0.000 0.428
#> GSM121361     2  0.7969      0.677 0.252 0.384 0.004 0.360
#> GSM121363     2  0.7969      0.677 0.252 0.384 0.004 0.360
#> GSM121368     2  0.7969      0.677 0.252 0.384 0.004 0.360
#> GSM121369     2  0.7978      0.663 0.260 0.396 0.004 0.340
#> GSM74368      1  0.3501      0.872 0.848 0.000 0.020 0.132
#> GSM74369      1  0.3501      0.872 0.848 0.000 0.020 0.132
#> GSM74370      1  0.3501      0.872 0.848 0.000 0.020 0.132
#> GSM74371      4  0.6837      0.152 0.392 0.000 0.104 0.504
#> GSM74372      1  0.3812      0.864 0.832 0.000 0.028 0.140
#> GSM74373      1  0.0000      0.878 1.000 0.000 0.000 0.000
#> GSM74374      1  0.3390      0.873 0.852 0.000 0.016 0.132
#> GSM74375      1  0.0469      0.880 0.988 0.000 0.000 0.012
#> GSM74376      1  0.0376      0.874 0.992 0.004 0.000 0.004
#> GSM74405      1  0.0000      0.878 1.000 0.000 0.000 0.000
#> GSM74351      4  0.6600      0.878 0.084 0.000 0.396 0.520
#> GSM74352      1  0.0376      0.874 0.992 0.004 0.000 0.004
#> GSM74353      1  0.4466      0.826 0.784 0.000 0.036 0.180
#> GSM74354      1  0.3390      0.873 0.852 0.000 0.016 0.132
#> GSM74355      1  0.0188      0.876 0.996 0.000 0.000 0.004
#> GSM74382      4  0.6458      0.891 0.072 0.000 0.408 0.520
#> GSM74383      1  0.4152      0.848 0.808 0.000 0.032 0.160
#> GSM74384      1  0.0524      0.872 0.988 0.004 0.000 0.008
#> GSM74385      1  0.5142      0.780 0.744 0.000 0.064 0.192
#> GSM74386      1  0.4244      0.845 0.804 0.000 0.036 0.160
#> GSM74395      1  0.5021      0.794 0.756 0.000 0.064 0.180
#> GSM74396      1  0.3863      0.862 0.828 0.000 0.028 0.144
#> GSM74397      1  0.5932      0.682 0.680 0.000 0.096 0.224
#> GSM74398      1  0.0188      0.878 0.996 0.000 0.000 0.004
#> GSM74399      1  0.0000      0.878 1.000 0.000 0.000 0.000
#> GSM74400      1  0.2799      0.880 0.884 0.000 0.008 0.108
#> GSM74401      1  0.2799      0.880 0.884 0.000 0.008 0.108

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.1195     0.7476 0.000 0.000 0.960 0.028 0.012
#> GSM74357      3  0.1444     0.7425 0.000 0.000 0.948 0.040 0.012
#> GSM74358      3  0.1444     0.7425 0.000 0.000 0.948 0.040 0.012
#> GSM74359      4  0.6615     0.1853 0.000 0.000 0.324 0.444 0.232
#> GSM74360      4  0.5594     0.4432 0.000 0.000 0.136 0.632 0.232
#> GSM74361      3  0.1997     0.7418 0.000 0.000 0.924 0.040 0.036
#> GSM74362      3  0.4732     0.5151 0.000 0.000 0.716 0.076 0.208
#> GSM74363      3  0.1106     0.7491 0.000 0.000 0.964 0.024 0.012
#> GSM74402      4  0.1205     0.7732 0.040 0.000 0.004 0.956 0.000
#> GSM74403      4  0.1571     0.7689 0.060 0.000 0.004 0.936 0.000
#> GSM74404      4  0.1571     0.7689 0.060 0.000 0.004 0.936 0.000
#> GSM74406      4  0.0566     0.7703 0.012 0.000 0.004 0.984 0.000
#> GSM74407      4  0.1571     0.7689 0.060 0.000 0.004 0.936 0.000
#> GSM74408      4  0.0693     0.7596 0.000 0.000 0.008 0.980 0.012
#> GSM74409      4  0.0798     0.7573 0.000 0.000 0.008 0.976 0.016
#> GSM74410      4  0.0798     0.7573 0.000 0.000 0.008 0.976 0.016
#> GSM119936     4  0.0960     0.7706 0.016 0.000 0.004 0.972 0.008
#> GSM119937     4  0.1717     0.7712 0.052 0.000 0.004 0.936 0.008
#> GSM74411      3  0.6071     0.4445 0.000 0.236 0.572 0.000 0.192
#> GSM74412      3  0.6211     0.3969 0.000 0.264 0.544 0.000 0.192
#> GSM74413      3  0.6071     0.4445 0.000 0.236 0.572 0.000 0.192
#> GSM74414      2  0.2843     0.6862 0.000 0.848 0.008 0.000 0.144
#> GSM74415      3  0.3421     0.7150 0.000 0.008 0.788 0.000 0.204
#> GSM121379     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0162     0.8257 0.000 0.996 0.000 0.000 0.004
#> GSM121388     2  0.0955     0.8132 0.000 0.968 0.000 0.004 0.028
#> GSM121389     2  0.0865     0.8141 0.000 0.972 0.000 0.004 0.024
#> GSM121390     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0324     0.8238 0.000 0.992 0.000 0.004 0.004
#> GSM121393     2  0.0865     0.8141 0.000 0.972 0.000 0.004 0.024
#> GSM121394     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0865     0.8141 0.000 0.972 0.000 0.004 0.024
#> GSM121396     2  0.5401    -0.0310 0.000 0.492 0.452 0.000 0.056
#> GSM121397     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.8274 0.000 1.000 0.000 0.000 0.000
#> GSM74240      3  0.3010     0.7410 0.000 0.000 0.824 0.004 0.172
#> GSM74241      3  0.3109     0.7300 0.000 0.000 0.800 0.000 0.200
#> GSM74242      3  0.3714     0.7279 0.000 0.000 0.812 0.056 0.132
#> GSM74243      3  0.3714     0.7279 0.000 0.000 0.812 0.056 0.132
#> GSM74244      3  0.2732     0.7425 0.000 0.000 0.840 0.000 0.160
#> GSM74245      3  0.2732     0.7425 0.000 0.000 0.840 0.000 0.160
#> GSM74246      3  0.3395     0.7100 0.000 0.000 0.764 0.000 0.236
#> GSM74247      3  0.3395     0.7100 0.000 0.000 0.764 0.000 0.236
#> GSM74248      3  0.3010     0.7410 0.000 0.000 0.824 0.004 0.172
#> GSM74416      4  0.1788     0.7697 0.056 0.000 0.004 0.932 0.008
#> GSM74417      4  0.1788     0.7697 0.056 0.000 0.004 0.932 0.008
#> GSM74418      4  0.1788     0.7697 0.056 0.000 0.004 0.932 0.008
#> GSM74419      4  0.0671     0.7715 0.016 0.000 0.004 0.980 0.000
#> GSM121358     3  0.0867     0.7569 0.000 0.008 0.976 0.008 0.008
#> GSM121359     3  0.4983     0.4494 0.000 0.272 0.664 0.000 0.064
#> GSM121360     5  0.7071     0.1744 0.036 0.000 0.256 0.204 0.504
#> GSM121362     5  0.7945     0.0948 0.092 0.000 0.284 0.224 0.400
#> GSM121364     4  0.6598     0.1977 0.000 0.000 0.316 0.452 0.232
#> GSM121365     3  0.0867     0.7569 0.000 0.008 0.976 0.008 0.008
#> GSM121366     3  0.0981     0.7570 0.000 0.008 0.972 0.008 0.012
#> GSM121367     3  0.0867     0.7569 0.000 0.008 0.976 0.008 0.008
#> GSM121370     3  0.0981     0.7570 0.000 0.008 0.972 0.008 0.012
#> GSM121371     3  0.0867     0.7569 0.000 0.008 0.976 0.008 0.008
#> GSM121372     3  0.5117     0.4360 0.000 0.276 0.652 0.000 0.072
#> GSM121373     4  0.6631     0.1771 0.000 0.000 0.324 0.440 0.236
#> GSM121374     4  0.6615     0.1853 0.000 0.000 0.324 0.444 0.232
#> GSM121407     2  0.5562     0.1381 0.000 0.520 0.408 0.000 0.072
#> GSM74387      3  0.6710     0.1873 0.012 0.164 0.424 0.000 0.400
#> GSM74388      2  0.5680    -0.0490 0.052 0.508 0.012 0.000 0.428
#> GSM74389      3  0.6329     0.2229 0.000 0.000 0.528 0.232 0.240
#> GSM74390      1  0.3398     0.6966 0.780 0.000 0.004 0.000 0.216
#> GSM74391      4  0.1116     0.7728 0.028 0.000 0.004 0.964 0.004
#> GSM74392      4  0.6573     0.1992 0.000 0.000 0.320 0.456 0.224
#> GSM74393      3  0.5740     0.4107 0.000 0.000 0.600 0.128 0.272
#> GSM74394      5  0.5674    -0.0876 0.044 0.464 0.016 0.000 0.476
#> GSM74239      1  0.2409     0.7836 0.900 0.000 0.000 0.068 0.032
#> GSM74364      1  0.2632     0.7782 0.888 0.000 0.000 0.072 0.040
#> GSM74365      1  0.1012     0.8031 0.968 0.000 0.000 0.012 0.020
#> GSM74366      1  0.4138     0.6652 0.616 0.000 0.000 0.000 0.384
#> GSM74367      1  0.2067     0.7934 0.920 0.000 0.000 0.048 0.032
#> GSM74377      1  0.3730     0.7347 0.712 0.000 0.000 0.000 0.288
#> GSM74378      1  0.4138     0.6652 0.616 0.000 0.000 0.000 0.384
#> GSM74379      1  0.2929     0.7770 0.820 0.000 0.000 0.000 0.180
#> GSM74380      1  0.3143     0.7710 0.796 0.000 0.000 0.000 0.204
#> GSM74381      1  0.3913     0.7136 0.676 0.000 0.000 0.000 0.324
#> GSM121357     2  0.3203     0.6529 0.000 0.820 0.012 0.000 0.168
#> GSM121361     2  0.5680    -0.0490 0.052 0.508 0.012 0.000 0.428
#> GSM121363     2  0.5680    -0.0490 0.052 0.508 0.012 0.000 0.428
#> GSM121368     2  0.5680    -0.0490 0.052 0.508 0.012 0.000 0.428
#> GSM121369     5  0.5869    -0.0772 0.052 0.460 0.020 0.000 0.468
#> GSM74368      1  0.1408     0.8020 0.948 0.000 0.000 0.044 0.008
#> GSM74369      1  0.1408     0.8020 0.948 0.000 0.000 0.044 0.008
#> GSM74370      1  0.1124     0.8025 0.960 0.000 0.000 0.036 0.004
#> GSM74371      1  0.5065     0.1442 0.544 0.000 0.000 0.420 0.036
#> GSM74372      1  0.1270     0.8005 0.948 0.000 0.000 0.052 0.000
#> GSM74373      1  0.3857     0.7211 0.688 0.000 0.000 0.000 0.312
#> GSM74374      1  0.0794     0.8030 0.972 0.000 0.000 0.028 0.000
#> GSM74375      1  0.3210     0.7692 0.788 0.000 0.000 0.000 0.212
#> GSM74376      1  0.4101     0.6761 0.628 0.000 0.000 0.000 0.372
#> GSM74405      1  0.3913     0.7136 0.676 0.000 0.000 0.000 0.324
#> GSM74351      4  0.3727     0.6084 0.216 0.000 0.000 0.768 0.016
#> GSM74352      1  0.4114     0.6726 0.624 0.000 0.000 0.000 0.376
#> GSM74353      1  0.1502     0.7978 0.940 0.000 0.000 0.056 0.004
#> GSM74354      1  0.1836     0.7969 0.932 0.000 0.000 0.036 0.032
#> GSM74355      1  0.4114     0.6726 0.624 0.000 0.000 0.000 0.376
#> GSM74382      4  0.3772     0.6421 0.172 0.000 0.000 0.792 0.036
#> GSM74383      1  0.2067     0.7934 0.920 0.000 0.000 0.048 0.032
#> GSM74384      1  0.4161     0.6574 0.608 0.000 0.000 0.000 0.392
#> GSM74385      1  0.2694     0.7755 0.884 0.000 0.000 0.076 0.040
#> GSM74386      1  0.2139     0.7918 0.916 0.000 0.000 0.052 0.032
#> GSM74395      1  0.2473     0.7816 0.896 0.000 0.000 0.072 0.032
#> GSM74396      1  0.2067     0.7937 0.920 0.000 0.000 0.048 0.032
#> GSM74397      1  0.2984     0.7543 0.860 0.000 0.000 0.108 0.032
#> GSM74398      1  0.3109     0.7724 0.800 0.000 0.000 0.000 0.200
#> GSM74399      1  0.3480     0.7541 0.752 0.000 0.000 0.000 0.248
#> GSM74400      1  0.2909     0.7976 0.848 0.000 0.000 0.012 0.140
#> GSM74401      1  0.2953     0.7972 0.844 0.000 0.000 0.012 0.144

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.1588     0.6511 0.000 0.000 0.924 0.004 0.072 0.000
#> GSM74357      3  0.1588     0.6497 0.000 0.000 0.924 0.004 0.072 0.000
#> GSM74358      3  0.1531     0.6525 0.000 0.000 0.928 0.004 0.068 0.000
#> GSM74359      5  0.5627     0.8170 0.000 0.000 0.164 0.288 0.544 0.004
#> GSM74360      5  0.5218     0.6972 0.000 0.000 0.088 0.364 0.544 0.004
#> GSM74361      3  0.3082     0.6140 0.000 0.000 0.828 0.008 0.144 0.020
#> GSM74362      3  0.4653    -0.2762 0.000 0.000 0.492 0.020 0.476 0.012
#> GSM74363      3  0.0777     0.6758 0.000 0.000 0.972 0.004 0.024 0.000
#> GSM74402      4  0.0713     0.9251 0.028 0.000 0.000 0.972 0.000 0.000
#> GSM74403      4  0.1116     0.9239 0.028 0.000 0.000 0.960 0.008 0.004
#> GSM74404      4  0.1116     0.9239 0.028 0.000 0.000 0.960 0.008 0.004
#> GSM74406      4  0.0806     0.9168 0.008 0.000 0.000 0.972 0.020 0.000
#> GSM74407      4  0.1116     0.9239 0.028 0.000 0.000 0.960 0.008 0.004
#> GSM74408      4  0.1036     0.9109 0.004 0.000 0.000 0.964 0.024 0.008
#> GSM74409      4  0.1036     0.9109 0.004 0.000 0.000 0.964 0.024 0.008
#> GSM74410      4  0.1036     0.9057 0.000 0.000 0.004 0.964 0.024 0.008
#> GSM119936     4  0.1149     0.9141 0.008 0.000 0.000 0.960 0.024 0.008
#> GSM119937     4  0.1700     0.9174 0.028 0.000 0.000 0.936 0.024 0.012
#> GSM74411      3  0.6511     0.5813 0.000 0.112 0.564 0.004 0.200 0.120
#> GSM74412      3  0.6680     0.5627 0.000 0.132 0.544 0.004 0.200 0.120
#> GSM74413      3  0.6511     0.5813 0.000 0.112 0.564 0.004 0.200 0.120
#> GSM74414      2  0.5038     0.5895 0.000 0.684 0.016 0.004 0.108 0.188
#> GSM74415      3  0.4994     0.6314 0.000 0.000 0.648 0.004 0.228 0.120
#> GSM121379     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0146     0.9537 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121383     2  0.0146     0.9537 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121384     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0146     0.9537 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121388     2  0.1798     0.9136 0.000 0.932 0.020 0.000 0.020 0.028
#> GSM121389     2  0.0725     0.9436 0.000 0.976 0.000 0.000 0.012 0.012
#> GSM121390     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121393     2  0.1176     0.9317 0.000 0.956 0.000 0.000 0.020 0.024
#> GSM121394     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121395     2  0.0909     0.9393 0.000 0.968 0.000 0.000 0.012 0.020
#> GSM121396     3  0.5069     0.3312 0.000 0.396 0.544 0.000 0.032 0.028
#> GSM121397     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9550 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      3  0.5042     0.5700 0.000 0.000 0.592 0.000 0.308 0.100
#> GSM74241      3  0.5116     0.6162 0.000 0.000 0.612 0.000 0.256 0.132
#> GSM74242      3  0.5220     0.5341 0.000 0.000 0.600 0.024 0.312 0.064
#> GSM74243      3  0.5220     0.5341 0.000 0.000 0.600 0.024 0.312 0.064
#> GSM74244      3  0.4792     0.6082 0.000 0.000 0.644 0.000 0.260 0.096
#> GSM74245      3  0.4812     0.6057 0.000 0.000 0.640 0.000 0.264 0.096
#> GSM74246      3  0.5366     0.5985 0.000 0.000 0.568 0.000 0.284 0.148
#> GSM74247      3  0.5366     0.5985 0.000 0.000 0.568 0.000 0.284 0.148
#> GSM74248      3  0.4986     0.5692 0.000 0.000 0.600 0.000 0.304 0.096
#> GSM74416      4  0.1332     0.9224 0.028 0.000 0.000 0.952 0.008 0.012
#> GSM74417      4  0.1332     0.9224 0.028 0.000 0.000 0.952 0.008 0.012
#> GSM74418      4  0.1332     0.9224 0.028 0.000 0.000 0.952 0.008 0.012
#> GSM74419      4  0.0520     0.9212 0.008 0.000 0.000 0.984 0.008 0.000
#> GSM121358     3  0.0146     0.6854 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM121359     3  0.3400     0.6243 0.000 0.132 0.816 0.000 0.044 0.008
#> GSM121360     5  0.5773     0.6619 0.008 0.000 0.120 0.092 0.664 0.116
#> GSM121362     5  0.6751     0.7178 0.060 0.000 0.160 0.120 0.592 0.068
#> GSM121364     5  0.5627     0.8170 0.000 0.000 0.164 0.288 0.544 0.004
#> GSM121365     3  0.0146     0.6854 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM121366     3  0.0146     0.6854 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM121367     3  0.0146     0.6854 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM121370     3  0.0146     0.6854 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM121371     3  0.0146     0.6854 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM121372     3  0.3527     0.6213 0.000 0.132 0.808 0.000 0.052 0.008
#> GSM121373     5  0.5613     0.8171 0.000 0.000 0.164 0.284 0.548 0.004
#> GSM121374     5  0.5627     0.8170 0.000 0.000 0.164 0.288 0.544 0.004
#> GSM121407     3  0.4972     0.4793 0.000 0.256 0.656 0.000 0.064 0.024
#> GSM74387      6  0.6900    -0.1638 0.000 0.068 0.252 0.000 0.244 0.436
#> GSM74388      6  0.6408     0.2355 0.016 0.292 0.016 0.000 0.180 0.496
#> GSM74389      5  0.5887     0.5544 0.000 0.000 0.324 0.136 0.520 0.020
#> GSM74390      1  0.5187     0.3201 0.600 0.000 0.000 0.000 0.136 0.264
#> GSM74391      4  0.1218     0.9171 0.012 0.000 0.000 0.956 0.028 0.004
#> GSM74392      5  0.5815     0.7859 0.000 0.000 0.164 0.316 0.512 0.008
#> GSM74393      5  0.5421     0.4022 0.000 0.000 0.364 0.068 0.544 0.024
#> GSM74394      6  0.6131     0.2696 0.008 0.244 0.016 0.000 0.192 0.540
#> GSM74239      1  0.1010     0.7717 0.960 0.000 0.000 0.036 0.000 0.004
#> GSM74364      1  0.1528     0.7556 0.936 0.000 0.000 0.048 0.000 0.016
#> GSM74365      1  0.1141     0.7740 0.948 0.000 0.000 0.000 0.000 0.052
#> GSM74366      6  0.3607     0.2223 0.348 0.000 0.000 0.000 0.000 0.652
#> GSM74367      1  0.0547     0.7792 0.980 0.000 0.000 0.020 0.000 0.000
#> GSM74377      1  0.3860     0.1384 0.528 0.000 0.000 0.000 0.000 0.472
#> GSM74378      6  0.3647     0.2088 0.360 0.000 0.000 0.000 0.000 0.640
#> GSM74379      1  0.3244     0.5748 0.732 0.000 0.000 0.000 0.000 0.268
#> GSM74380      1  0.3351     0.5470 0.712 0.000 0.000 0.000 0.000 0.288
#> GSM74381      6  0.3868    -0.1113 0.496 0.000 0.000 0.000 0.000 0.504
#> GSM121357     2  0.5885     0.3643 0.000 0.560 0.032 0.000 0.128 0.280
#> GSM121361     6  0.6431     0.2329 0.016 0.292 0.016 0.000 0.184 0.492
#> GSM121363     6  0.6408     0.2355 0.016 0.292 0.016 0.000 0.180 0.496
#> GSM121368     6  0.6408     0.2355 0.016 0.292 0.016 0.000 0.180 0.496
#> GSM121369     6  0.6433     0.2695 0.016 0.252 0.020 0.000 0.196 0.516
#> GSM74368      1  0.1850     0.7779 0.924 0.000 0.000 0.008 0.016 0.052
#> GSM74369      1  0.1850     0.7779 0.924 0.000 0.000 0.008 0.016 0.052
#> GSM74370      1  0.1850     0.7779 0.924 0.000 0.000 0.008 0.016 0.052
#> GSM74371      1  0.4074     0.3404 0.656 0.000 0.000 0.324 0.004 0.016
#> GSM74372      1  0.2279     0.7782 0.904 0.000 0.000 0.024 0.016 0.056
#> GSM74373      6  0.4098    -0.1163 0.496 0.000 0.000 0.000 0.008 0.496
#> GSM74374      1  0.1644     0.7740 0.932 0.000 0.000 0.004 0.012 0.052
#> GSM74375      1  0.3872     0.3650 0.604 0.000 0.000 0.000 0.004 0.392
#> GSM74376      6  0.3828     0.0558 0.440 0.000 0.000 0.000 0.000 0.560
#> GSM74405      6  0.3868    -0.1113 0.496 0.000 0.000 0.000 0.000 0.504
#> GSM74351      4  0.3600     0.7080 0.192 0.000 0.000 0.776 0.020 0.012
#> GSM74352      6  0.3774     0.1339 0.408 0.000 0.000 0.000 0.000 0.592
#> GSM74353      1  0.2002     0.7802 0.916 0.000 0.000 0.020 0.008 0.056
#> GSM74354      1  0.0000     0.7791 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74355      6  0.3756     0.1487 0.400 0.000 0.000 0.000 0.000 0.600
#> GSM74382      4  0.3730     0.6646 0.236 0.000 0.000 0.740 0.008 0.016
#> GSM74383      1  0.0547     0.7792 0.980 0.000 0.000 0.020 0.000 0.000
#> GSM74384      6  0.3578     0.2288 0.340 0.000 0.000 0.000 0.000 0.660
#> GSM74385      1  0.1801     0.7478 0.924 0.000 0.000 0.056 0.004 0.016
#> GSM74386      1  0.0717     0.7785 0.976 0.000 0.000 0.016 0.000 0.008
#> GSM74395      1  0.1010     0.7713 0.960 0.000 0.000 0.036 0.000 0.004
#> GSM74396      1  0.0547     0.7791 0.980 0.000 0.000 0.020 0.000 0.000
#> GSM74397      1  0.1686     0.7454 0.924 0.000 0.000 0.064 0.000 0.012
#> GSM74398      1  0.3795     0.4211 0.632 0.000 0.000 0.000 0.004 0.364
#> GSM74399      1  0.3966     0.2226 0.552 0.000 0.000 0.000 0.004 0.444
#> GSM74400      1  0.3296     0.6448 0.796 0.000 0.000 0.004 0.020 0.180
#> GSM74401      1  0.3393     0.6314 0.784 0.000 0.000 0.004 0.020 0.192

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:kmeans 119         4.11e-11 2
#> MAD:kmeans 106         4.12e-25 3
#> MAD:kmeans 107         2.49e-29 4
#> MAD:kmeans  96         5.51e-30 5
#> MAD:kmeans  94         3.94e-30 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.989       0.995         0.5034 0.497   0.497
#> 3 3 0.866           0.911       0.960         0.3311 0.739   0.521
#> 4 4 0.917           0.899       0.948         0.1207 0.850   0.590
#> 5 5 0.769           0.749       0.856         0.0467 0.960   0.843
#> 6 6 0.749           0.545       0.739         0.0405 0.927   0.695

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.0000      0.991 0.000 1.000
#> GSM74357      2  0.0000      0.991 0.000 1.000
#> GSM74358      2  0.0000      0.991 0.000 1.000
#> GSM74359      1  0.0000      0.998 1.000 0.000
#> GSM74360      1  0.0000      0.998 1.000 0.000
#> GSM74361      2  0.0000      0.991 0.000 1.000
#> GSM74362      2  0.0000      0.991 0.000 1.000
#> GSM74363      2  0.0000      0.991 0.000 1.000
#> GSM74402      1  0.0000      0.998 1.000 0.000
#> GSM74403      1  0.0000      0.998 1.000 0.000
#> GSM74404      1  0.0000      0.998 1.000 0.000
#> GSM74406      1  0.0000      0.998 1.000 0.000
#> GSM74407      1  0.0000      0.998 1.000 0.000
#> GSM74408      1  0.0000      0.998 1.000 0.000
#> GSM74409      1  0.0000      0.998 1.000 0.000
#> GSM74410      1  0.0000      0.998 1.000 0.000
#> GSM119936     1  0.0000      0.998 1.000 0.000
#> GSM119937     1  0.0000      0.998 1.000 0.000
#> GSM74411      2  0.0000      0.991 0.000 1.000
#> GSM74412      2  0.0000      0.991 0.000 1.000
#> GSM74413      2  0.0000      0.991 0.000 1.000
#> GSM74414      2  0.0000      0.991 0.000 1.000
#> GSM74415      2  0.0000      0.991 0.000 1.000
#> GSM121379     2  0.0000      0.991 0.000 1.000
#> GSM121380     2  0.0000      0.991 0.000 1.000
#> GSM121381     2  0.0000      0.991 0.000 1.000
#> GSM121382     2  0.0000      0.991 0.000 1.000
#> GSM121383     2  0.0000      0.991 0.000 1.000
#> GSM121384     2  0.0000      0.991 0.000 1.000
#> GSM121385     2  0.0000      0.991 0.000 1.000
#> GSM121386     2  0.0000      0.991 0.000 1.000
#> GSM121387     2  0.0000      0.991 0.000 1.000
#> GSM121388     2  0.0000      0.991 0.000 1.000
#> GSM121389     2  0.0000      0.991 0.000 1.000
#> GSM121390     2  0.0000      0.991 0.000 1.000
#> GSM121391     2  0.0000      0.991 0.000 1.000
#> GSM121392     2  0.0000      0.991 0.000 1.000
#> GSM121393     2  0.0000      0.991 0.000 1.000
#> GSM121394     2  0.0000      0.991 0.000 1.000
#> GSM121395     2  0.0000      0.991 0.000 1.000
#> GSM121396     2  0.0000      0.991 0.000 1.000
#> GSM121397     2  0.0000      0.991 0.000 1.000
#> GSM121398     2  0.0000      0.991 0.000 1.000
#> GSM121399     2  0.0000      0.991 0.000 1.000
#> GSM74240      2  0.0000      0.991 0.000 1.000
#> GSM74241      2  0.0000      0.991 0.000 1.000
#> GSM74242      2  0.7883      0.695 0.236 0.764
#> GSM74243      2  0.8327      0.646 0.264 0.736
#> GSM74244      2  0.0000      0.991 0.000 1.000
#> GSM74245      2  0.0000      0.991 0.000 1.000
#> GSM74246      2  0.0000      0.991 0.000 1.000
#> GSM74247      2  0.0000      0.991 0.000 1.000
#> GSM74248      2  0.0000      0.991 0.000 1.000
#> GSM74416      1  0.0000      0.998 1.000 0.000
#> GSM74417      1  0.0000      0.998 1.000 0.000
#> GSM74418      1  0.0000      0.998 1.000 0.000
#> GSM74419      1  0.0000      0.998 1.000 0.000
#> GSM121358     2  0.0000      0.991 0.000 1.000
#> GSM121359     2  0.0000      0.991 0.000 1.000
#> GSM121360     1  0.0000      0.998 1.000 0.000
#> GSM121362     1  0.0000      0.998 1.000 0.000
#> GSM121364     1  0.0000      0.998 1.000 0.000
#> GSM121365     2  0.0000      0.991 0.000 1.000
#> GSM121366     2  0.0000      0.991 0.000 1.000
#> GSM121367     2  0.0000      0.991 0.000 1.000
#> GSM121370     2  0.0000      0.991 0.000 1.000
#> GSM121371     2  0.0000      0.991 0.000 1.000
#> GSM121372     2  0.0000      0.991 0.000 1.000
#> GSM121373     1  0.0000      0.998 1.000 0.000
#> GSM121374     1  0.0000      0.998 1.000 0.000
#> GSM121407     2  0.0000      0.991 0.000 1.000
#> GSM74387      2  0.0000      0.991 0.000 1.000
#> GSM74388      2  0.0000      0.991 0.000 1.000
#> GSM74389      1  0.0000      0.998 1.000 0.000
#> GSM74390      1  0.0000      0.998 1.000 0.000
#> GSM74391      1  0.0000      0.998 1.000 0.000
#> GSM74392      1  0.0000      0.998 1.000 0.000
#> GSM74393      1  0.4562      0.892 0.904 0.096
#> GSM74394      2  0.0000      0.991 0.000 1.000
#> GSM74239      1  0.0000      0.998 1.000 0.000
#> GSM74364      1  0.0000      0.998 1.000 0.000
#> GSM74365      1  0.0000      0.998 1.000 0.000
#> GSM74366      1  0.0000      0.998 1.000 0.000
#> GSM74367      1  0.0000      0.998 1.000 0.000
#> GSM74377      1  0.0000      0.998 1.000 0.000
#> GSM74378      1  0.0000      0.998 1.000 0.000
#> GSM74379      1  0.0000      0.998 1.000 0.000
#> GSM74380      1  0.0000      0.998 1.000 0.000
#> GSM74381      1  0.0000      0.998 1.000 0.000
#> GSM121357     2  0.0000      0.991 0.000 1.000
#> GSM121361     2  0.0000      0.991 0.000 1.000
#> GSM121363     2  0.0000      0.991 0.000 1.000
#> GSM121368     2  0.0000      0.991 0.000 1.000
#> GSM121369     2  0.0000      0.991 0.000 1.000
#> GSM74368      1  0.0000      0.998 1.000 0.000
#> GSM74369      1  0.0000      0.998 1.000 0.000
#> GSM74370      1  0.0000      0.998 1.000 0.000
#> GSM74371      1  0.0000      0.998 1.000 0.000
#> GSM74372      1  0.0000      0.998 1.000 0.000
#> GSM74373      1  0.0000      0.998 1.000 0.000
#> GSM74374      1  0.0000      0.998 1.000 0.000
#> GSM74375      1  0.0000      0.998 1.000 0.000
#> GSM74376      1  0.0000      0.998 1.000 0.000
#> GSM74405      1  0.0000      0.998 1.000 0.000
#> GSM74351      1  0.0000      0.998 1.000 0.000
#> GSM74352      1  0.0376      0.994 0.996 0.004
#> GSM74353      1  0.0000      0.998 1.000 0.000
#> GSM74354      1  0.0000      0.998 1.000 0.000
#> GSM74355      1  0.0000      0.998 1.000 0.000
#> GSM74382      1  0.0000      0.998 1.000 0.000
#> GSM74383      1  0.0000      0.998 1.000 0.000
#> GSM74384      1  0.0000      0.998 1.000 0.000
#> GSM74385      1  0.0000      0.998 1.000 0.000
#> GSM74386      1  0.0000      0.998 1.000 0.000
#> GSM74395      1  0.0000      0.998 1.000 0.000
#> GSM74396      1  0.0000      0.998 1.000 0.000
#> GSM74397      1  0.0000      0.998 1.000 0.000
#> GSM74398      1  0.0000      0.998 1.000 0.000
#> GSM74399      1  0.0000      0.998 1.000 0.000
#> GSM74400      1  0.0000      0.998 1.000 0.000
#> GSM74401      1  0.0000      0.998 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74357      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74358      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74359      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74360      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74361      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74362      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74363      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74402      1  0.6008      0.483 0.628 0.000 0.372
#> GSM74403      1  0.5733      0.577 0.676 0.000 0.324
#> GSM74404      1  0.5810      0.557 0.664 0.000 0.336
#> GSM74406      3  0.0747      0.936 0.016 0.000 0.984
#> GSM74407      1  0.6308      0.144 0.508 0.000 0.492
#> GSM74408      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74409      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74410      3  0.0000      0.946 0.000 0.000 1.000
#> GSM119936     3  0.0747      0.936 0.016 0.000 0.984
#> GSM119937     3  0.5905      0.375 0.352 0.000 0.648
#> GSM74411      2  0.0000      0.986 0.000 1.000 0.000
#> GSM74412      2  0.0000      0.986 0.000 1.000 0.000
#> GSM74413      2  0.0000      0.986 0.000 1.000 0.000
#> GSM74414      2  0.0000      0.986 0.000 1.000 0.000
#> GSM74415      2  0.2448      0.909 0.000 0.924 0.076
#> GSM121379     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121380     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121381     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121382     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121383     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121384     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121385     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121386     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121387     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121388     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121389     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121390     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121391     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121392     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121393     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121394     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121395     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121396     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121397     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121398     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121399     2  0.0000      0.986 0.000 1.000 0.000
#> GSM74240      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74241      3  0.4399      0.785 0.000 0.188 0.812
#> GSM74242      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74243      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74244      3  0.2261      0.906 0.000 0.068 0.932
#> GSM74245      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74246      2  0.5882      0.443 0.000 0.652 0.348
#> GSM74247      2  0.2878      0.886 0.000 0.904 0.096
#> GSM74248      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74416      1  0.5810      0.557 0.664 0.000 0.336
#> GSM74417      1  0.5810      0.557 0.664 0.000 0.336
#> GSM74418      1  0.5810      0.557 0.664 0.000 0.336
#> GSM74419      3  0.0424      0.942 0.008 0.000 0.992
#> GSM121358     3  0.3482      0.858 0.000 0.128 0.872
#> GSM121359     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121360     3  0.2878      0.865 0.096 0.000 0.904
#> GSM121362     3  0.4399      0.748 0.188 0.000 0.812
#> GSM121364     3  0.0000      0.946 0.000 0.000 1.000
#> GSM121365     3  0.3551      0.854 0.000 0.132 0.868
#> GSM121366     3  0.3816      0.836 0.000 0.148 0.852
#> GSM121367     3  0.3482      0.858 0.000 0.128 0.872
#> GSM121370     3  0.3551      0.854 0.000 0.132 0.868
#> GSM121371     3  0.3482      0.858 0.000 0.128 0.872
#> GSM121372     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121373     3  0.0000      0.946 0.000 0.000 1.000
#> GSM121374     3  0.0000      0.946 0.000 0.000 1.000
#> GSM121407     2  0.0000      0.986 0.000 1.000 0.000
#> GSM74387      2  0.0000      0.986 0.000 1.000 0.000
#> GSM74388      2  0.0000      0.986 0.000 1.000 0.000
#> GSM74389      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74390      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74391      3  0.0747      0.937 0.016 0.000 0.984
#> GSM74392      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74393      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74394      2  0.0000      0.986 0.000 1.000 0.000
#> GSM74239      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74364      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74365      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74366      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74367      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74377      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74378      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74379      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74380      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74381      1  0.0000      0.940 1.000 0.000 0.000
#> GSM121357     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121361     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121363     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121368     2  0.0000      0.986 0.000 1.000 0.000
#> GSM121369     2  0.0000      0.986 0.000 1.000 0.000
#> GSM74368      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74369      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74370      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74371      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74372      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74373      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74374      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74375      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74376      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74405      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74351      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74352      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74353      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74354      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74355      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74382      1  0.0237      0.937 0.996 0.000 0.004
#> GSM74383      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74384      1  0.0237      0.936 0.996 0.004 0.000
#> GSM74385      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74386      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74395      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74396      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74397      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74398      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74399      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74400      1  0.0000      0.940 1.000 0.000 0.000
#> GSM74401      1  0.0000      0.940 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.0336      0.942 0.000 0.000 0.992 0.008
#> GSM74357      3  0.0336      0.942 0.000 0.000 0.992 0.008
#> GSM74358      3  0.0336      0.942 0.000 0.000 0.992 0.008
#> GSM74359      4  0.2011      0.906 0.000 0.000 0.080 0.920
#> GSM74360      4  0.0188      0.952 0.000 0.000 0.004 0.996
#> GSM74361      3  0.0592      0.938 0.000 0.000 0.984 0.016
#> GSM74362      3  0.2216      0.869 0.000 0.000 0.908 0.092
#> GSM74363      3  0.0336      0.942 0.000 0.000 0.992 0.008
#> GSM74402      4  0.0188      0.952 0.004 0.000 0.000 0.996
#> GSM74403      4  0.0188      0.952 0.004 0.000 0.000 0.996
#> GSM74404      4  0.0000      0.953 0.000 0.000 0.000 1.000
#> GSM74406      4  0.0000      0.953 0.000 0.000 0.000 1.000
#> GSM74407      4  0.0000      0.953 0.000 0.000 0.000 1.000
#> GSM74408      4  0.0000      0.953 0.000 0.000 0.000 1.000
#> GSM74409      4  0.0000      0.953 0.000 0.000 0.000 1.000
#> GSM74410      4  0.0000      0.953 0.000 0.000 0.000 1.000
#> GSM119936     4  0.0000      0.953 0.000 0.000 0.000 1.000
#> GSM119937     4  0.0000      0.953 0.000 0.000 0.000 1.000
#> GSM74411      2  0.4933      0.224 0.000 0.568 0.432 0.000
#> GSM74412      2  0.1022      0.939 0.000 0.968 0.032 0.000
#> GSM74413      2  0.4776      0.384 0.000 0.624 0.376 0.000
#> GSM74414      2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM74415      3  0.2149      0.876 0.000 0.088 0.912 0.000
#> GSM121379     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121388     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121389     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121393     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121394     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121395     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121396     2  0.0469      0.954 0.000 0.988 0.012 0.000
#> GSM121397     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM74240      3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM74241      3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM74242      3  0.1118      0.924 0.000 0.000 0.964 0.036
#> GSM74243      3  0.1022      0.927 0.000 0.000 0.968 0.032
#> GSM74244      3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM74245      3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM74246      3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM74247      3  0.0188      0.940 0.000 0.004 0.996 0.000
#> GSM74248      3  0.0000      0.942 0.000 0.000 1.000 0.000
#> GSM74416      4  0.0188      0.952 0.004 0.000 0.000 0.996
#> GSM74417      4  0.0188      0.952 0.004 0.000 0.000 0.996
#> GSM74418      4  0.0188      0.952 0.004 0.000 0.000 0.996
#> GSM74419      4  0.0000      0.953 0.000 0.000 0.000 1.000
#> GSM121358     3  0.0376      0.942 0.000 0.004 0.992 0.004
#> GSM121359     3  0.3764      0.712 0.000 0.216 0.784 0.000
#> GSM121360     4  0.2546      0.912 0.028 0.000 0.060 0.912
#> GSM121362     4  0.3383      0.884 0.076 0.000 0.052 0.872
#> GSM121364     4  0.1867      0.913 0.000 0.000 0.072 0.928
#> GSM121365     3  0.0376      0.942 0.000 0.004 0.992 0.004
#> GSM121366     3  0.0376      0.942 0.000 0.004 0.992 0.004
#> GSM121367     3  0.0376      0.942 0.000 0.004 0.992 0.004
#> GSM121370     3  0.0376      0.942 0.000 0.004 0.992 0.004
#> GSM121371     3  0.0376      0.942 0.000 0.004 0.992 0.004
#> GSM121372     3  0.4643      0.468 0.000 0.344 0.656 0.000
#> GSM121373     4  0.1716      0.919 0.000 0.000 0.064 0.936
#> GSM121374     4  0.1940      0.910 0.000 0.000 0.076 0.924
#> GSM121407     2  0.0336      0.956 0.000 0.992 0.008 0.000
#> GSM74387      2  0.1824      0.917 0.004 0.936 0.060 0.000
#> GSM74388      2  0.1722      0.930 0.048 0.944 0.008 0.000
#> GSM74389      4  0.4907      0.288 0.000 0.000 0.420 0.580
#> GSM74390      1  0.0937      0.927 0.976 0.000 0.012 0.012
#> GSM74391      4  0.0000      0.953 0.000 0.000 0.000 1.000
#> GSM74392      4  0.1557      0.924 0.000 0.000 0.056 0.944
#> GSM74393      3  0.4817      0.328 0.000 0.000 0.612 0.388
#> GSM74394      2  0.1722      0.930 0.048 0.944 0.008 0.000
#> GSM74239      1  0.2647      0.897 0.880 0.000 0.000 0.120
#> GSM74364      1  0.2868      0.886 0.864 0.000 0.000 0.136
#> GSM74365      1  0.0707      0.931 0.980 0.000 0.000 0.020
#> GSM74366      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74367      1  0.1940      0.918 0.924 0.000 0.000 0.076
#> GSM74377      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74378      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74379      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74380      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74381      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM121357     2  0.0000      0.961 0.000 1.000 0.000 0.000
#> GSM121361     2  0.1722      0.930 0.048 0.944 0.008 0.000
#> GSM121363     2  0.1722      0.930 0.048 0.944 0.008 0.000
#> GSM121368     2  0.1722      0.930 0.048 0.944 0.008 0.000
#> GSM121369     2  0.1722      0.930 0.048 0.944 0.008 0.000
#> GSM74368      1  0.3444      0.836 0.816 0.000 0.000 0.184
#> GSM74369      1  0.2149      0.914 0.912 0.000 0.000 0.088
#> GSM74370      1  0.2281      0.911 0.904 0.000 0.000 0.096
#> GSM74371      1  0.4830      0.498 0.608 0.000 0.000 0.392
#> GSM74372      1  0.2647      0.896 0.880 0.000 0.000 0.120
#> GSM74373      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74374      1  0.0921      0.930 0.972 0.000 0.000 0.028
#> GSM74375      1  0.0188      0.931 0.996 0.000 0.000 0.004
#> GSM74376      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74405      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74351      4  0.1867      0.890 0.072 0.000 0.000 0.928
#> GSM74352      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74353      1  0.2647      0.898 0.880 0.000 0.000 0.120
#> GSM74354      1  0.1557      0.924 0.944 0.000 0.000 0.056
#> GSM74355      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74382      4  0.1302      0.920 0.044 0.000 0.000 0.956
#> GSM74383      1  0.1716      0.921 0.936 0.000 0.000 0.064
#> GSM74384      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74385      1  0.3444      0.842 0.816 0.000 0.000 0.184
#> GSM74386      1  0.2408      0.907 0.896 0.000 0.000 0.104
#> GSM74395      1  0.3569      0.826 0.804 0.000 0.000 0.196
#> GSM74396      1  0.2216      0.912 0.908 0.000 0.000 0.092
#> GSM74397      1  0.4941      0.377 0.564 0.000 0.000 0.436
#> GSM74398      1  0.0188      0.931 0.996 0.000 0.000 0.004
#> GSM74399      1  0.0000      0.931 1.000 0.000 0.000 0.000
#> GSM74400      1  0.0707      0.931 0.980 0.000 0.000 0.020
#> GSM74401      1  0.0592      0.931 0.984 0.000 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.1282     0.7955 0.000 0.000 0.952 0.004 0.044
#> GSM74357      3  0.1357     0.7927 0.000 0.000 0.948 0.004 0.048
#> GSM74358      3  0.1430     0.7896 0.000 0.000 0.944 0.004 0.052
#> GSM74359      4  0.4338     0.6908 0.000 0.000 0.024 0.696 0.280
#> GSM74360      4  0.3910     0.7118 0.000 0.000 0.008 0.720 0.272
#> GSM74361      3  0.2351     0.7461 0.000 0.000 0.896 0.016 0.088
#> GSM74362      3  0.5074     0.3807 0.000 0.000 0.660 0.072 0.268
#> GSM74363      3  0.0290     0.8137 0.000 0.000 0.992 0.000 0.008
#> GSM74402      4  0.0000     0.8428 0.000 0.000 0.000 1.000 0.000
#> GSM74403      4  0.0000     0.8428 0.000 0.000 0.000 1.000 0.000
#> GSM74404      4  0.0162     0.8407 0.004 0.000 0.000 0.996 0.000
#> GSM74406      4  0.1282     0.8407 0.000 0.000 0.004 0.952 0.044
#> GSM74407      4  0.0000     0.8428 0.000 0.000 0.000 1.000 0.000
#> GSM74408      4  0.1168     0.8418 0.000 0.000 0.008 0.960 0.032
#> GSM74409      4  0.1697     0.8338 0.000 0.000 0.008 0.932 0.060
#> GSM74410      4  0.1557     0.8368 0.000 0.000 0.008 0.940 0.052
#> GSM119936     4  0.0404     0.8444 0.000 0.000 0.000 0.988 0.012
#> GSM119937     4  0.0290     0.8441 0.000 0.000 0.000 0.992 0.008
#> GSM74411      3  0.6812    -0.0691 0.000 0.324 0.364 0.000 0.312
#> GSM74412      2  0.5787     0.4791 0.000 0.616 0.180 0.000 0.204
#> GSM74413      2  0.6811    -0.1844 0.000 0.360 0.336 0.000 0.304
#> GSM74414      2  0.0290     0.8820 0.000 0.992 0.000 0.000 0.008
#> GSM74415      3  0.5542    -0.2911 0.000 0.068 0.500 0.000 0.432
#> GSM121379     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.0609     0.8743 0.000 0.980 0.020 0.000 0.000
#> GSM121389     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0290     0.8821 0.000 0.992 0.000 0.000 0.008
#> GSM121393     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121394     2  0.0162     0.8833 0.000 0.996 0.004 0.000 0.000
#> GSM121395     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121396     2  0.2773     0.7505 0.000 0.836 0.164 0.000 0.000
#> GSM121397     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.8850 0.000 1.000 0.000 0.000 0.000
#> GSM74240      5  0.3661     0.7864 0.000 0.000 0.276 0.000 0.724
#> GSM74241      5  0.3895     0.7687 0.000 0.000 0.320 0.000 0.680
#> GSM74242      5  0.4907     0.7505 0.000 0.000 0.292 0.052 0.656
#> GSM74243      5  0.4866     0.7540 0.000 0.000 0.284 0.052 0.664
#> GSM74244      5  0.3966     0.7602 0.000 0.000 0.336 0.000 0.664
#> GSM74245      5  0.3932     0.7678 0.000 0.000 0.328 0.000 0.672
#> GSM74246      5  0.3612     0.7660 0.000 0.000 0.268 0.000 0.732
#> GSM74247      5  0.3796     0.7690 0.000 0.000 0.300 0.000 0.700
#> GSM74248      5  0.3586     0.7841 0.000 0.000 0.264 0.000 0.736
#> GSM74416      4  0.0000     0.8428 0.000 0.000 0.000 1.000 0.000
#> GSM74417      4  0.0000     0.8428 0.000 0.000 0.000 1.000 0.000
#> GSM74418      4  0.0000     0.8428 0.000 0.000 0.000 1.000 0.000
#> GSM74419      4  0.0771     0.8445 0.000 0.000 0.004 0.976 0.020
#> GSM121358     3  0.0000     0.8155 0.000 0.000 1.000 0.000 0.000
#> GSM121359     3  0.1197     0.7751 0.000 0.048 0.952 0.000 0.000
#> GSM121360     4  0.5305     0.5064 0.024 0.000 0.016 0.536 0.424
#> GSM121362     4  0.5494     0.6039 0.052 0.000 0.012 0.592 0.344
#> GSM121364     4  0.4338     0.6908 0.000 0.000 0.024 0.696 0.280
#> GSM121365     3  0.0000     0.8155 0.000 0.000 1.000 0.000 0.000
#> GSM121366     3  0.0000     0.8155 0.000 0.000 1.000 0.000 0.000
#> GSM121367     3  0.0000     0.8155 0.000 0.000 1.000 0.000 0.000
#> GSM121370     3  0.0000     0.8155 0.000 0.000 1.000 0.000 0.000
#> GSM121371     3  0.0000     0.8155 0.000 0.000 1.000 0.000 0.000
#> GSM121372     3  0.2127     0.7004 0.000 0.108 0.892 0.000 0.000
#> GSM121373     4  0.4297     0.6887 0.000 0.000 0.020 0.692 0.288
#> GSM121374     4  0.4252     0.6954 0.000 0.000 0.020 0.700 0.280
#> GSM121407     2  0.4294     0.1536 0.000 0.532 0.468 0.000 0.000
#> GSM74387      2  0.5780     0.4068 0.024 0.528 0.044 0.000 0.404
#> GSM74388      2  0.4541     0.7359 0.084 0.744 0.000 0.000 0.172
#> GSM74389      5  0.5338     0.2052 0.000 0.000 0.072 0.324 0.604
#> GSM74390      1  0.4454     0.6357 0.708 0.000 0.004 0.028 0.260
#> GSM74391      4  0.1041     0.8435 0.000 0.000 0.004 0.964 0.032
#> GSM74392      4  0.4382     0.6787 0.000 0.000 0.024 0.688 0.288
#> GSM74393      5  0.5182     0.4764 0.000 0.000 0.112 0.208 0.680
#> GSM74394      2  0.4732     0.7132 0.076 0.716 0.000 0.000 0.208
#> GSM74239      1  0.3741     0.7606 0.732 0.000 0.000 0.264 0.004
#> GSM74364      1  0.4009     0.7069 0.684 0.000 0.000 0.312 0.004
#> GSM74365      1  0.1282     0.8652 0.952 0.000 0.000 0.044 0.004
#> GSM74366      1  0.1270     0.8476 0.948 0.000 0.000 0.000 0.052
#> GSM74367      1  0.2763     0.8384 0.848 0.000 0.000 0.148 0.004
#> GSM74377      1  0.0510     0.8602 0.984 0.000 0.000 0.000 0.016
#> GSM74378      1  0.1043     0.8533 0.960 0.000 0.000 0.000 0.040
#> GSM74379      1  0.0451     0.8625 0.988 0.000 0.000 0.004 0.008
#> GSM74380      1  0.0324     0.8628 0.992 0.000 0.000 0.004 0.004
#> GSM74381      1  0.0609     0.8595 0.980 0.000 0.000 0.000 0.020
#> GSM121357     2  0.0162     0.8838 0.000 0.996 0.000 0.000 0.004
#> GSM121361     2  0.4541     0.7359 0.084 0.744 0.000 0.000 0.172
#> GSM121363     2  0.4486     0.7392 0.080 0.748 0.000 0.000 0.172
#> GSM121368     2  0.4486     0.7392 0.080 0.748 0.000 0.000 0.172
#> GSM121369     2  0.4593     0.7302 0.080 0.736 0.000 0.000 0.184
#> GSM74368      1  0.3969     0.7068 0.692 0.000 0.000 0.304 0.004
#> GSM74369      1  0.3010     0.8303 0.824 0.000 0.000 0.172 0.004
#> GSM74370      1  0.3318     0.8215 0.808 0.000 0.000 0.180 0.012
#> GSM74371      4  0.4434    -0.2392 0.460 0.000 0.000 0.536 0.004
#> GSM74372      1  0.3759     0.7972 0.764 0.000 0.000 0.220 0.016
#> GSM74373      1  0.0609     0.8595 0.980 0.000 0.000 0.000 0.020
#> GSM74374      1  0.2077     0.8625 0.908 0.000 0.000 0.084 0.008
#> GSM74375      1  0.0992     0.8649 0.968 0.000 0.000 0.024 0.008
#> GSM74376      1  0.0963     0.8549 0.964 0.000 0.000 0.000 0.036
#> GSM74405      1  0.0609     0.8595 0.980 0.000 0.000 0.000 0.020
#> GSM74351      4  0.1704     0.7824 0.068 0.000 0.000 0.928 0.004
#> GSM74352      1  0.0963     0.8551 0.964 0.000 0.000 0.000 0.036
#> GSM74353      1  0.3689     0.7674 0.740 0.000 0.000 0.256 0.004
#> GSM74354      1  0.2358     0.8570 0.888 0.000 0.000 0.104 0.008
#> GSM74355      1  0.0880     0.8561 0.968 0.000 0.000 0.000 0.032
#> GSM74382      4  0.1041     0.8168 0.032 0.000 0.000 0.964 0.004
#> GSM74383      1  0.2719     0.8408 0.852 0.000 0.000 0.144 0.004
#> GSM74384      1  0.1197     0.8494 0.952 0.000 0.000 0.000 0.048
#> GSM74385      1  0.4327     0.6269 0.632 0.000 0.000 0.360 0.008
#> GSM74386      1  0.3756     0.7692 0.744 0.000 0.000 0.248 0.008
#> GSM74395      1  0.4225     0.6217 0.632 0.000 0.000 0.364 0.004
#> GSM74396      1  0.3109     0.8122 0.800 0.000 0.000 0.200 0.000
#> GSM74397      1  0.4449     0.3430 0.512 0.000 0.000 0.484 0.004
#> GSM74398      1  0.0693     0.8642 0.980 0.000 0.000 0.012 0.008
#> GSM74399      1  0.0404     0.8608 0.988 0.000 0.000 0.000 0.012
#> GSM74400      1  0.1357     0.8659 0.948 0.000 0.000 0.048 0.004
#> GSM74401      1  0.1124     0.8663 0.960 0.000 0.000 0.036 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.1957   0.834377 0.008 0.000 0.920 0.048 0.024 0.000
#> GSM74357      3  0.1850   0.835853 0.008 0.000 0.924 0.052 0.016 0.000
#> GSM74358      3  0.1692   0.840367 0.008 0.000 0.932 0.048 0.012 0.000
#> GSM74359      4  0.1152   0.564954 0.000 0.000 0.004 0.952 0.044 0.000
#> GSM74360      4  0.1010   0.564835 0.004 0.000 0.000 0.960 0.036 0.000
#> GSM74361      3  0.4694   0.599120 0.008 0.000 0.704 0.124 0.164 0.000
#> GSM74362      3  0.5675   0.248150 0.008 0.000 0.444 0.428 0.120 0.000
#> GSM74363      3  0.0881   0.857127 0.008 0.000 0.972 0.012 0.008 0.000
#> GSM74402      4  0.3986   0.157138 0.464 0.000 0.000 0.532 0.004 0.000
#> GSM74403      1  0.3869  -0.160417 0.500 0.000 0.000 0.500 0.000 0.000
#> GSM74404      4  0.3867   0.090936 0.488 0.000 0.000 0.512 0.000 0.000
#> GSM74406      4  0.3578   0.438773 0.340 0.000 0.000 0.660 0.000 0.000
#> GSM74407      4  0.3864   0.136824 0.480 0.000 0.000 0.520 0.000 0.000
#> GSM74408      4  0.3563   0.441783 0.336 0.000 0.000 0.664 0.000 0.000
#> GSM74409      4  0.3244   0.492326 0.268 0.000 0.000 0.732 0.000 0.000
#> GSM74410      4  0.3309   0.488976 0.280 0.000 0.000 0.720 0.000 0.000
#> GSM119936     4  0.3765   0.334776 0.404 0.000 0.000 0.596 0.000 0.000
#> GSM119937     4  0.3843   0.222879 0.452 0.000 0.000 0.548 0.000 0.000
#> GSM74411      5  0.6901   0.380663 0.072 0.236 0.248 0.000 0.444 0.000
#> GSM74412      2  0.6882  -0.183352 0.072 0.408 0.184 0.000 0.336 0.000
#> GSM74413      5  0.7000   0.342923 0.072 0.280 0.240 0.000 0.408 0.000
#> GSM74414      2  0.2237   0.772996 0.068 0.896 0.000 0.000 0.036 0.000
#> GSM74415      5  0.5466   0.528086 0.064 0.044 0.292 0.000 0.600 0.000
#> GSM121379     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121384     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121388     2  0.1219   0.799145 0.004 0.948 0.048 0.000 0.000 0.000
#> GSM121389     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121390     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0291   0.830348 0.004 0.992 0.000 0.000 0.004 0.000
#> GSM121393     2  0.0146   0.832147 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM121394     2  0.0291   0.829380 0.004 0.992 0.004 0.000 0.000 0.000
#> GSM121395     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121396     2  0.2902   0.649072 0.004 0.800 0.196 0.000 0.000 0.000
#> GSM121397     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000   0.833668 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      5  0.2365   0.772284 0.000 0.000 0.072 0.040 0.888 0.000
#> GSM74241      5  0.2118   0.773715 0.000 0.000 0.104 0.008 0.888 0.000
#> GSM74242      5  0.3123   0.749501 0.000 0.000 0.088 0.076 0.836 0.000
#> GSM74243      5  0.3125   0.748354 0.000 0.000 0.080 0.084 0.836 0.000
#> GSM74244      5  0.2257   0.770679 0.000 0.000 0.116 0.008 0.876 0.000
#> GSM74245      5  0.2618   0.768949 0.000 0.000 0.116 0.024 0.860 0.000
#> GSM74246      5  0.1644   0.771581 0.000 0.000 0.076 0.004 0.920 0.000
#> GSM74247      5  0.1866   0.770031 0.008 0.000 0.084 0.000 0.908 0.000
#> GSM74248      5  0.2568   0.767701 0.000 0.000 0.068 0.056 0.876 0.000
#> GSM74416      1  0.3867  -0.120877 0.512 0.000 0.000 0.488 0.000 0.000
#> GSM74417      4  0.3868   0.045146 0.496 0.000 0.000 0.504 0.000 0.000
#> GSM74418      1  0.3868  -0.138376 0.508 0.000 0.000 0.492 0.000 0.000
#> GSM74419      4  0.3747   0.347042 0.396 0.000 0.000 0.604 0.000 0.000
#> GSM121358     3  0.0000   0.863085 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121359     3  0.0777   0.845770 0.004 0.024 0.972 0.000 0.000 0.000
#> GSM121360     4  0.4575   0.367539 0.224 0.000 0.000 0.700 0.060 0.016
#> GSM121362     4  0.4118   0.474722 0.092 0.000 0.004 0.796 0.060 0.048
#> GSM121364     4  0.1152   0.564954 0.000 0.000 0.004 0.952 0.044 0.000
#> GSM121365     3  0.0000   0.863085 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121366     3  0.0000   0.863085 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121367     3  0.0000   0.863085 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121370     3  0.0000   0.863085 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121371     3  0.0000   0.863085 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121372     3  0.0865   0.837031 0.000 0.036 0.964 0.000 0.000 0.000
#> GSM121373     4  0.1410   0.562767 0.008 0.000 0.004 0.944 0.044 0.000
#> GSM121374     4  0.1226   0.564844 0.004 0.000 0.004 0.952 0.040 0.000
#> GSM121407     3  0.4102   0.364817 0.012 0.356 0.628 0.000 0.004 0.000
#> GSM74387      5  0.7583   0.117482 0.296 0.252 0.044 0.000 0.360 0.048
#> GSM74388      2  0.7008   0.327833 0.324 0.420 0.000 0.000 0.124 0.132
#> GSM74389      4  0.4218   0.096095 0.004 0.000 0.012 0.584 0.400 0.000
#> GSM74390      6  0.6340   0.387069 0.276 0.000 0.008 0.032 0.160 0.524
#> GSM74391      4  0.4052   0.404289 0.356 0.000 0.000 0.628 0.016 0.000
#> GSM74392      4  0.1897   0.552036 0.004 0.000 0.004 0.908 0.084 0.000
#> GSM74393      4  0.4854   0.039980 0.016 0.000 0.036 0.580 0.368 0.000
#> GSM74394      2  0.7240   0.237261 0.336 0.368 0.000 0.000 0.168 0.128
#> GSM74239      6  0.4535   0.007906 0.484 0.000 0.000 0.032 0.000 0.484
#> GSM74364      1  0.4578   0.040077 0.520 0.000 0.000 0.036 0.000 0.444
#> GSM74365      6  0.2793   0.657101 0.200 0.000 0.000 0.000 0.000 0.800
#> GSM74366      6  0.2831   0.623593 0.136 0.000 0.000 0.000 0.024 0.840
#> GSM74367      6  0.4114   0.477778 0.356 0.000 0.000 0.008 0.008 0.628
#> GSM74377      6  0.0363   0.696184 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM74378      6  0.2706   0.632833 0.124 0.000 0.000 0.000 0.024 0.852
#> GSM74379      6  0.1444   0.701160 0.072 0.000 0.000 0.000 0.000 0.928
#> GSM74380      6  0.1387   0.700648 0.068 0.000 0.000 0.000 0.000 0.932
#> GSM74381      6  0.1124   0.688096 0.036 0.000 0.000 0.000 0.008 0.956
#> GSM121357     2  0.1528   0.802336 0.048 0.936 0.000 0.000 0.016 0.000
#> GSM121361     2  0.6982   0.332934 0.324 0.424 0.000 0.000 0.124 0.128
#> GSM121363     2  0.6982   0.332934 0.324 0.424 0.000 0.000 0.124 0.128
#> GSM121368     2  0.6982   0.332934 0.324 0.424 0.000 0.000 0.124 0.128
#> GSM121369     2  0.7396   0.296329 0.332 0.396 0.000 0.016 0.124 0.132
#> GSM74368      1  0.5120   0.006546 0.472 0.000 0.000 0.068 0.004 0.456
#> GSM74369      6  0.4474   0.309844 0.412 0.000 0.000 0.024 0.004 0.560
#> GSM74370      6  0.4437   0.397930 0.392 0.000 0.000 0.032 0.000 0.576
#> GSM74371      1  0.5188   0.451233 0.588 0.000 0.000 0.124 0.000 0.288
#> GSM74372      6  0.4798   0.362720 0.364 0.000 0.000 0.052 0.004 0.580
#> GSM74373      6  0.0508   0.696881 0.012 0.000 0.000 0.000 0.004 0.984
#> GSM74374      6  0.3383   0.606306 0.268 0.000 0.000 0.000 0.004 0.728
#> GSM74375      6  0.2266   0.693471 0.108 0.000 0.000 0.000 0.012 0.880
#> GSM74376      6  0.2282   0.659595 0.088 0.000 0.000 0.000 0.024 0.888
#> GSM74405      6  0.1074   0.689793 0.028 0.000 0.000 0.000 0.012 0.960
#> GSM74351      1  0.4903   0.246346 0.552 0.000 0.000 0.380 0.000 0.068
#> GSM74352      6  0.2350   0.654786 0.100 0.000 0.000 0.000 0.020 0.880
#> GSM74353      6  0.4526   0.106087 0.456 0.000 0.000 0.032 0.000 0.512
#> GSM74354      6  0.3601   0.560364 0.312 0.000 0.000 0.000 0.004 0.684
#> GSM74355      6  0.2263   0.655037 0.100 0.000 0.000 0.000 0.016 0.884
#> GSM74382      1  0.4737   0.237964 0.572 0.000 0.000 0.372 0.000 0.056
#> GSM74383      6  0.3894   0.526846 0.324 0.000 0.000 0.008 0.004 0.664
#> GSM74384      6  0.3139   0.599232 0.160 0.000 0.000 0.000 0.028 0.812
#> GSM74385      1  0.4905   0.197298 0.528 0.000 0.000 0.064 0.000 0.408
#> GSM74386      6  0.4836   0.333634 0.380 0.000 0.000 0.052 0.004 0.564
#> GSM74395      1  0.5162  -0.000816 0.468 0.000 0.000 0.072 0.004 0.456
#> GSM74396      6  0.4265   0.408890 0.384 0.000 0.000 0.016 0.004 0.596
#> GSM74397      1  0.5903   0.501742 0.520 0.000 0.000 0.212 0.008 0.260
#> GSM74398      6  0.1765   0.697879 0.096 0.000 0.000 0.000 0.000 0.904
#> GSM74399      6  0.0891   0.698409 0.024 0.000 0.000 0.000 0.008 0.968
#> GSM74400      6  0.3073   0.652924 0.204 0.000 0.000 0.000 0.008 0.788
#> GSM74401      6  0.2854   0.650495 0.208 0.000 0.000 0.000 0.000 0.792

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n disease.state(p) k
#> MAD:skmeans 121         1.64e-11 2
#> MAD:skmeans 117         9.06e-25 3
#> MAD:skmeans 114         1.20e-29 4
#> MAD:skmeans 110         3.19e-42 5
#> MAD:skmeans  74         3.02e-25 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.474           0.813       0.895         0.4850 0.521   0.521
#> 3 3 0.673           0.794       0.903         0.3712 0.720   0.505
#> 4 4 0.646           0.629       0.805         0.1244 0.800   0.488
#> 5 5 0.769           0.764       0.881         0.0657 0.902   0.642
#> 6 6 0.856           0.817       0.908         0.0351 0.958   0.800

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      1  0.8207      0.752 0.744 0.256
#> GSM74357      1  0.8763      0.721 0.704 0.296
#> GSM74358      1  0.7815      0.771 0.768 0.232
#> GSM74359      1  0.6712      0.802 0.824 0.176
#> GSM74360      1  0.0000      0.842 1.000 0.000
#> GSM74361      1  0.8386      0.744 0.732 0.268
#> GSM74362      1  0.8555      0.733 0.720 0.280
#> GSM74363      1  0.9754      0.562 0.592 0.408
#> GSM74402      1  0.0000      0.842 1.000 0.000
#> GSM74403      1  0.0000      0.842 1.000 0.000
#> GSM74404      1  0.0000      0.842 1.000 0.000
#> GSM74406      1  0.0000      0.842 1.000 0.000
#> GSM74407      1  0.0000      0.842 1.000 0.000
#> GSM74408      1  0.0000      0.842 1.000 0.000
#> GSM74409      1  0.0000      0.842 1.000 0.000
#> GSM74410      1  0.0672      0.843 0.992 0.008
#> GSM119936     1  0.0000      0.842 1.000 0.000
#> GSM119937     1  0.0000      0.842 1.000 0.000
#> GSM74411      2  0.0938      0.935 0.012 0.988
#> GSM74412      2  0.0000      0.944 0.000 1.000
#> GSM74413      2  0.0376      0.941 0.004 0.996
#> GSM74414      2  0.0000      0.944 0.000 1.000
#> GSM74415      2  0.9998     -0.347 0.492 0.508
#> GSM121379     2  0.0000      0.944 0.000 1.000
#> GSM121380     2  0.0000      0.944 0.000 1.000
#> GSM121381     2  0.0000      0.944 0.000 1.000
#> GSM121382     2  0.0000      0.944 0.000 1.000
#> GSM121383     2  0.0000      0.944 0.000 1.000
#> GSM121384     2  0.0000      0.944 0.000 1.000
#> GSM121385     2  0.0000      0.944 0.000 1.000
#> GSM121386     2  0.0000      0.944 0.000 1.000
#> GSM121387     2  0.0000      0.944 0.000 1.000
#> GSM121388     2  0.0000      0.944 0.000 1.000
#> GSM121389     2  0.0000      0.944 0.000 1.000
#> GSM121390     2  0.0000      0.944 0.000 1.000
#> GSM121391     2  0.0000      0.944 0.000 1.000
#> GSM121392     2  0.0000      0.944 0.000 1.000
#> GSM121393     2  0.0000      0.944 0.000 1.000
#> GSM121394     2  0.0000      0.944 0.000 1.000
#> GSM121395     2  0.0000      0.944 0.000 1.000
#> GSM121396     2  0.0000      0.944 0.000 1.000
#> GSM121397     2  0.0000      0.944 0.000 1.000
#> GSM121398     2  0.0000      0.944 0.000 1.000
#> GSM121399     2  0.0000      0.944 0.000 1.000
#> GSM74240      1  0.7950      0.764 0.760 0.240
#> GSM74241      1  0.8499      0.743 0.724 0.276
#> GSM74242      1  0.7056      0.794 0.808 0.192
#> GSM74243      1  0.6973      0.796 0.812 0.188
#> GSM74244      1  0.8499      0.736 0.724 0.276
#> GSM74245      1  0.8207      0.753 0.744 0.256
#> GSM74246      1  0.8955      0.705 0.688 0.312
#> GSM74247      1  0.9087      0.691 0.676 0.324
#> GSM74248      1  0.7299      0.787 0.796 0.204
#> GSM74416      1  0.0000      0.842 1.000 0.000
#> GSM74417      1  0.0000      0.842 1.000 0.000
#> GSM74418      1  0.0000      0.842 1.000 0.000
#> GSM74419      1  0.2043      0.842 0.968 0.032
#> GSM121358     1  0.9881      0.505 0.564 0.436
#> GSM121359     2  0.2236      0.912 0.036 0.964
#> GSM121360     1  0.8661      0.705 0.712 0.288
#> GSM121362     1  0.9427      0.611 0.640 0.360
#> GSM121364     1  0.6801      0.800 0.820 0.180
#> GSM121365     1  0.9983      0.412 0.524 0.476
#> GSM121366     1  0.9954      0.451 0.540 0.460
#> GSM121367     1  0.9881      0.505 0.564 0.436
#> GSM121370     1  0.9833      0.530 0.576 0.424
#> GSM121371     1  0.9922      0.480 0.552 0.448
#> GSM121372     2  0.2423      0.908 0.040 0.960
#> GSM121373     1  0.7056      0.794 0.808 0.192
#> GSM121374     1  0.4161      0.833 0.916 0.084
#> GSM121407     2  0.2236      0.912 0.036 0.964
#> GSM74387      2  0.1184      0.931 0.016 0.984
#> GSM74388      2  0.0000      0.944 0.000 1.000
#> GSM74389      1  0.6801      0.800 0.820 0.180
#> GSM74390      1  0.8555      0.741 0.720 0.280
#> GSM74391      1  0.0672      0.843 0.992 0.008
#> GSM74392      1  0.5408      0.822 0.876 0.124
#> GSM74393      1  0.7056      0.794 0.808 0.192
#> GSM74394      2  0.0672      0.939 0.008 0.992
#> GSM74239      1  0.0672      0.842 0.992 0.008
#> GSM74364      1  0.0672      0.842 0.992 0.008
#> GSM74365      1  0.2236      0.838 0.964 0.036
#> GSM74366      2  0.0672      0.938 0.008 0.992
#> GSM74367      1  0.0672      0.842 0.992 0.008
#> GSM74377      2  0.7602      0.712 0.220 0.780
#> GSM74378      2  0.6801      0.755 0.180 0.820
#> GSM74379      1  0.4939      0.806 0.892 0.108
#> GSM74380      1  0.4298      0.814 0.912 0.088
#> GSM74381      2  0.7299      0.728 0.204 0.796
#> GSM121357     2  0.0000      0.944 0.000 1.000
#> GSM121361     2  0.0000      0.944 0.000 1.000
#> GSM121363     2  0.0000      0.944 0.000 1.000
#> GSM121368     2  0.0000      0.944 0.000 1.000
#> GSM121369     2  0.0000      0.944 0.000 1.000
#> GSM74368      1  0.8016      0.764 0.756 0.244
#> GSM74369      1  0.9393      0.631 0.644 0.356
#> GSM74370      1  0.5059      0.801 0.888 0.112
#> GSM74371      1  0.0000      0.842 1.000 0.000
#> GSM74372      1  0.0672      0.842 0.992 0.008
#> GSM74373      2  0.7528      0.715 0.216 0.784
#> GSM74374      1  0.1184      0.841 0.984 0.016
#> GSM74375      1  0.4939      0.827 0.892 0.108
#> GSM74376      2  0.3879      0.875 0.076 0.924
#> GSM74405      2  0.9044      0.551 0.320 0.680
#> GSM74351      1  0.0000      0.842 1.000 0.000
#> GSM74352      2  0.1184      0.932 0.016 0.984
#> GSM74353      1  0.2236      0.838 0.964 0.036
#> GSM74354      1  0.0938      0.842 0.988 0.012
#> GSM74355      2  0.6973      0.745 0.188 0.812
#> GSM74382      1  0.0000      0.842 1.000 0.000
#> GSM74383      1  0.0672      0.842 0.992 0.008
#> GSM74384      2  0.0000      0.944 0.000 1.000
#> GSM74385      1  0.0376      0.842 0.996 0.004
#> GSM74386      1  0.0672      0.842 0.992 0.008
#> GSM74395      1  0.0672      0.842 0.992 0.008
#> GSM74396      1  0.0938      0.842 0.988 0.012
#> GSM74397      1  0.0672      0.842 0.992 0.008
#> GSM74398      1  0.1633      0.841 0.976 0.024
#> GSM74399      1  0.8144      0.675 0.748 0.252
#> GSM74400      1  0.6801      0.749 0.820 0.180
#> GSM74401      1  0.7376      0.721 0.792 0.208

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0237      0.853 0.000 0.004 0.996
#> GSM74357      3  0.0237      0.853 0.004 0.000 0.996
#> GSM74358      3  0.0237      0.853 0.004 0.000 0.996
#> GSM74359      3  0.1031      0.852 0.024 0.000 0.976
#> GSM74360      3  0.6192      0.392 0.420 0.000 0.580
#> GSM74361      3  0.0237      0.853 0.004 0.000 0.996
#> GSM74362      3  0.0475      0.853 0.004 0.004 0.992
#> GSM74363      3  0.0237      0.853 0.000 0.004 0.996
#> GSM74402      3  0.6291      0.235 0.468 0.000 0.532
#> GSM74403      1  0.4346      0.724 0.816 0.000 0.184
#> GSM74404      1  0.4291      0.729 0.820 0.000 0.180
#> GSM74406      3  0.6126      0.436 0.400 0.000 0.600
#> GSM74407      1  0.6180      0.180 0.584 0.000 0.416
#> GSM74408      3  0.4504      0.772 0.196 0.000 0.804
#> GSM74409      3  0.4702      0.758 0.212 0.000 0.788
#> GSM74410      3  0.4452      0.775 0.192 0.000 0.808
#> GSM119936     3  0.4750      0.754 0.216 0.000 0.784
#> GSM119937     3  0.4887      0.743 0.228 0.000 0.772
#> GSM74411      2  0.6026      0.415 0.000 0.624 0.376
#> GSM74412      2  0.0000      0.917 0.000 1.000 0.000
#> GSM74413      2  0.5363      0.604 0.000 0.724 0.276
#> GSM74414      2  0.0000      0.917 0.000 1.000 0.000
#> GSM74415      3  0.1163      0.844 0.000 0.028 0.972
#> GSM121379     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121380     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121381     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121382     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121383     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121384     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121385     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121386     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121387     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121388     2  0.1529      0.893 0.000 0.960 0.040
#> GSM121389     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121390     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121391     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121392     2  0.0237      0.915 0.000 0.996 0.004
#> GSM121393     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121394     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121395     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121396     2  0.2625      0.856 0.000 0.916 0.084
#> GSM121397     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121398     2  0.0000      0.917 0.000 1.000 0.000
#> GSM121399     2  0.0000      0.917 0.000 1.000 0.000
#> GSM74240      3  0.0424      0.853 0.008 0.000 0.992
#> GSM74241      3  0.0592      0.850 0.000 0.012 0.988
#> GSM74242      3  0.1411      0.851 0.036 0.000 0.964
#> GSM74243      3  0.1529      0.850 0.040 0.000 0.960
#> GSM74244      3  0.0000      0.853 0.000 0.000 1.000
#> GSM74245      3  0.0237      0.853 0.000 0.004 0.996
#> GSM74246      3  0.4002      0.737 0.000 0.160 0.840
#> GSM74247      3  0.4178      0.724 0.000 0.172 0.828
#> GSM74248      3  0.0424      0.853 0.008 0.000 0.992
#> GSM74416      1  0.5882      0.388 0.652 0.000 0.348
#> GSM74417      1  0.5988      0.330 0.632 0.000 0.368
#> GSM74418      1  0.5706      0.461 0.680 0.000 0.320
#> GSM74419      3  0.4605      0.766 0.204 0.000 0.796
#> GSM121358     3  0.0237      0.853 0.000 0.004 0.996
#> GSM121359     3  0.3879      0.748 0.000 0.152 0.848
#> GSM121360     3  0.6481      0.710 0.224 0.048 0.728
#> GSM121362     3  0.6402      0.729 0.200 0.056 0.744
#> GSM121364     3  0.4121      0.793 0.168 0.000 0.832
#> GSM121365     3  0.0237      0.853 0.000 0.004 0.996
#> GSM121366     3  0.0237      0.853 0.000 0.004 0.996
#> GSM121367     3  0.0237      0.853 0.000 0.004 0.996
#> GSM121370     3  0.0237      0.853 0.000 0.004 0.996
#> GSM121371     3  0.0237      0.853 0.000 0.004 0.996
#> GSM121372     3  0.2711      0.809 0.000 0.088 0.912
#> GSM121373     3  0.3412      0.820 0.124 0.000 0.876
#> GSM121374     3  0.3267      0.823 0.116 0.000 0.884
#> GSM121407     3  0.4121      0.729 0.000 0.168 0.832
#> GSM74387      2  0.4002      0.767 0.000 0.840 0.160
#> GSM74388      2  0.1399      0.898 0.028 0.968 0.004
#> GSM74389      3  0.3116      0.827 0.108 0.000 0.892
#> GSM74390      3  0.7741      0.637 0.216 0.116 0.668
#> GSM74391      3  0.6308      0.164 0.492 0.000 0.508
#> GSM74392      3  0.4654      0.762 0.208 0.000 0.792
#> GSM74393      3  0.2711      0.837 0.088 0.000 0.912
#> GSM74394      2  0.0424      0.914 0.000 0.992 0.008
#> GSM74239      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74364      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74365      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74366      2  0.6081      0.529 0.344 0.652 0.004
#> GSM74367      1  0.0592      0.903 0.988 0.000 0.012
#> GSM74377      1  0.2063      0.869 0.948 0.044 0.008
#> GSM74378      2  0.6247      0.469 0.376 0.620 0.004
#> GSM74379      1  0.0424      0.905 0.992 0.000 0.008
#> GSM74380      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74381      1  0.4834      0.651 0.792 0.204 0.004
#> GSM121357     2  0.0237      0.915 0.000 0.996 0.004
#> GSM121361     2  0.0475      0.914 0.004 0.992 0.004
#> GSM121363     2  0.0237      0.915 0.000 0.996 0.004
#> GSM121368     2  0.0237      0.915 0.000 0.996 0.004
#> GSM121369     2  0.1529      0.894 0.000 0.960 0.040
#> GSM74368      3  0.6260      0.266 0.448 0.000 0.552
#> GSM74369      1  0.5621      0.456 0.692 0.000 0.308
#> GSM74370      1  0.0237      0.906 0.996 0.000 0.004
#> GSM74371      1  0.0237      0.907 0.996 0.000 0.004
#> GSM74372      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74373      1  0.2200      0.860 0.940 0.056 0.004
#> GSM74374      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74375      1  0.0661      0.906 0.988 0.004 0.008
#> GSM74376      1  0.1711      0.884 0.960 0.032 0.008
#> GSM74405      1  0.0475      0.904 0.992 0.004 0.004
#> GSM74351      1  0.2165      0.863 0.936 0.000 0.064
#> GSM74352      2  0.6247      0.469 0.376 0.620 0.004
#> GSM74353      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74354      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74355      2  0.6500      0.248 0.464 0.532 0.004
#> GSM74382      1  0.1529      0.884 0.960 0.000 0.040
#> GSM74383      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74384      2  0.6169      0.501 0.360 0.636 0.004
#> GSM74385      1  0.0424      0.905 0.992 0.000 0.008
#> GSM74386      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74395      1  0.0237      0.907 0.996 0.000 0.004
#> GSM74396      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74397      1  0.0592      0.903 0.988 0.000 0.012
#> GSM74398      1  0.0237      0.907 0.996 0.000 0.004
#> GSM74399      1  0.0237      0.907 0.996 0.000 0.004
#> GSM74400      1  0.0000      0.908 1.000 0.000 0.000
#> GSM74401      1  0.0237      0.907 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      4  0.5060     0.4580 0.000 0.004 0.412 0.584
#> GSM74357      4  0.4888     0.4598 0.000 0.000 0.412 0.588
#> GSM74358      4  0.4888     0.4598 0.000 0.000 0.412 0.588
#> GSM74359      4  0.2589     0.4739 0.000 0.000 0.116 0.884
#> GSM74360      4  0.6111     0.1738 0.092 0.000 0.256 0.652
#> GSM74361      4  0.4790     0.4732 0.000 0.000 0.380 0.620
#> GSM74362      4  0.4877     0.4667 0.000 0.000 0.408 0.592
#> GSM74363      4  0.5060     0.4580 0.000 0.004 0.412 0.584
#> GSM74402      4  0.3933     0.4750 0.200 0.000 0.008 0.792
#> GSM74403      4  0.5203     0.3793 0.348 0.000 0.016 0.636
#> GSM74404      4  0.5649     0.3654 0.344 0.000 0.036 0.620
#> GSM74406      4  0.5172     0.5108 0.188 0.000 0.068 0.744
#> GSM74407      4  0.5697     0.3885 0.292 0.000 0.052 0.656
#> GSM74408      4  0.1637     0.5238 0.060 0.000 0.000 0.940
#> GSM74409      4  0.3691     0.5397 0.076 0.000 0.068 0.856
#> GSM74410      4  0.3935     0.5483 0.060 0.000 0.100 0.840
#> GSM119936     4  0.2300     0.5166 0.064 0.000 0.016 0.920
#> GSM119937     4  0.5171     0.5476 0.112 0.000 0.128 0.760
#> GSM74411      3  0.3497     0.4783 0.000 0.124 0.852 0.024
#> GSM74412      2  0.2814     0.8246 0.000 0.868 0.132 0.000
#> GSM74413      3  0.5344     0.4446 0.000 0.300 0.668 0.032
#> GSM74414      2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM74415      3  0.0469     0.4334 0.000 0.000 0.988 0.012
#> GSM121379     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121388     2  0.1356     0.9431 0.000 0.960 0.032 0.008
#> GSM121389     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121393     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121394     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121395     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121396     2  0.2921     0.8206 0.000 0.860 0.140 0.000
#> GSM121397     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM74240      3  0.4699     0.6012 0.004 0.000 0.676 0.320
#> GSM74241      3  0.4040     0.6175 0.000 0.000 0.752 0.248
#> GSM74242      3  0.4564     0.5970 0.000 0.000 0.672 0.328
#> GSM74243      3  0.4605     0.5915 0.000 0.000 0.664 0.336
#> GSM74244      3  0.4040     0.6175 0.000 0.000 0.752 0.248
#> GSM74245      3  0.4040     0.6175 0.000 0.000 0.752 0.248
#> GSM74246      3  0.4220     0.6186 0.004 0.000 0.748 0.248
#> GSM74247      3  0.4220     0.6186 0.004 0.000 0.748 0.248
#> GSM74248      3  0.4522     0.6006 0.000 0.000 0.680 0.320
#> GSM74416      4  0.5173     0.3989 0.320 0.000 0.020 0.660
#> GSM74417      4  0.5152     0.4026 0.316 0.000 0.020 0.664
#> GSM74418      4  0.5252     0.3873 0.336 0.000 0.020 0.644
#> GSM74419      4  0.3081     0.5110 0.064 0.000 0.048 0.888
#> GSM121358     4  0.5060     0.4580 0.000 0.004 0.412 0.584
#> GSM121359     3  0.7745    -0.2105 0.000 0.236 0.412 0.352
#> GSM121360     3  0.6217     0.5692 0.084 0.000 0.624 0.292
#> GSM121362     3  0.6152     0.5702 0.052 0.012 0.640 0.296
#> GSM121364     4  0.3850     0.5188 0.044 0.000 0.116 0.840
#> GSM121365     4  0.5060     0.4580 0.000 0.004 0.412 0.584
#> GSM121366     4  0.5060     0.4580 0.000 0.004 0.412 0.584
#> GSM121367     4  0.5060     0.4580 0.000 0.004 0.412 0.584
#> GSM121370     3  0.5105    -0.2889 0.000 0.004 0.564 0.432
#> GSM121371     4  0.5060     0.4580 0.000 0.004 0.412 0.584
#> GSM121372     4  0.7113     0.3056 0.000 0.128 0.416 0.456
#> GSM121373     4  0.4284     0.5208 0.012 0.000 0.224 0.764
#> GSM121374     4  0.4542     0.5271 0.020 0.000 0.228 0.752
#> GSM121407     3  0.7745    -0.2105 0.000 0.236 0.412 0.352
#> GSM74387      3  0.5126     0.2230 0.004 0.444 0.552 0.000
#> GSM74388      2  0.2149     0.8809 0.088 0.912 0.000 0.000
#> GSM74389      3  0.4855     0.5252 0.000 0.000 0.600 0.400
#> GSM74390      3  0.7136     0.5590 0.116 0.024 0.608 0.252
#> GSM74391      4  0.6295    -0.0606 0.072 0.000 0.348 0.580
#> GSM74392      4  0.4955    -0.0252 0.008 0.000 0.344 0.648
#> GSM74393      3  0.4746     0.5622 0.000 0.000 0.632 0.368
#> GSM74394      3  0.5080     0.2914 0.004 0.420 0.576 0.000
#> GSM74239      1  0.2530     0.7774 0.888 0.000 0.000 0.112
#> GSM74364      1  0.2704     0.7685 0.876 0.000 0.000 0.124
#> GSM74365      1  0.0188     0.8351 0.996 0.000 0.000 0.004
#> GSM74366      1  0.4661     0.4912 0.652 0.348 0.000 0.000
#> GSM74367      1  0.2589     0.7720 0.884 0.000 0.000 0.116
#> GSM74377      1  0.0188     0.8344 0.996 0.000 0.004 0.000
#> GSM74378      1  0.4477     0.5554 0.688 0.312 0.000 0.000
#> GSM74379      1  0.0000     0.8348 1.000 0.000 0.000 0.000
#> GSM74380      1  0.0188     0.8351 0.996 0.000 0.000 0.004
#> GSM74381      1  0.1867     0.7975 0.928 0.072 0.000 0.000
#> GSM121357     2  0.0000     0.9776 0.000 1.000 0.000 0.000
#> GSM121361     2  0.2480     0.8788 0.008 0.904 0.088 0.000
#> GSM121363     2  0.0376     0.9719 0.004 0.992 0.004 0.000
#> GSM121368     2  0.0376     0.9719 0.004 0.992 0.004 0.000
#> GSM121369     3  0.5452     0.2583 0.016 0.428 0.556 0.000
#> GSM74368      4  0.6340     0.2166 0.408 0.000 0.064 0.528
#> GSM74369      1  0.3626     0.6741 0.812 0.000 0.004 0.184
#> GSM74370      1  0.0817     0.8277 0.976 0.000 0.024 0.000
#> GSM74371      1  0.3219     0.7288 0.836 0.000 0.000 0.164
#> GSM74372      1  0.1302     0.8192 0.956 0.000 0.000 0.044
#> GSM74373      1  0.1389     0.8144 0.952 0.000 0.048 0.000
#> GSM74374      1  0.0188     0.8351 0.996 0.000 0.000 0.004
#> GSM74375      1  0.5956     0.6012 0.680 0.000 0.220 0.100
#> GSM74376      1  0.4382     0.5409 0.704 0.000 0.296 0.000
#> GSM74405      1  0.0000     0.8348 1.000 0.000 0.000 0.000
#> GSM74351      1  0.5444     0.1839 0.560 0.000 0.016 0.424
#> GSM74352      1  0.4585     0.5219 0.668 0.332 0.000 0.000
#> GSM74353      1  0.0469     0.8338 0.988 0.000 0.000 0.012
#> GSM74354      1  0.0524     0.8352 0.988 0.000 0.004 0.008
#> GSM74355      1  0.4250     0.6121 0.724 0.276 0.000 0.000
#> GSM74382      4  0.5600     0.0618 0.468 0.000 0.020 0.512
#> GSM74383      1  0.0336     0.8350 0.992 0.000 0.000 0.008
#> GSM74384      1  0.4543     0.5348 0.676 0.324 0.000 0.000
#> GSM74385      1  0.3444     0.6978 0.816 0.000 0.000 0.184
#> GSM74386      1  0.4332     0.7167 0.800 0.000 0.160 0.040
#> GSM74395      1  0.1733     0.8251 0.948 0.000 0.024 0.028
#> GSM74396      1  0.0188     0.8351 0.996 0.000 0.000 0.004
#> GSM74397      1  0.4790     0.3484 0.620 0.000 0.000 0.380
#> GSM74398      1  0.0376     0.8356 0.992 0.000 0.004 0.004
#> GSM74399      1  0.0000     0.8348 1.000 0.000 0.000 0.000
#> GSM74400      1  0.0817     0.8300 0.976 0.000 0.000 0.024
#> GSM74401      1  0.0188     0.8351 0.996 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0609     0.9006 0.000 0.000 0.980 0.020 0.000
#> GSM74357      3  0.0609     0.9006 0.000 0.000 0.980 0.020 0.000
#> GSM74358      3  0.0609     0.9006 0.000 0.000 0.980 0.020 0.000
#> GSM74359      4  0.5435     0.0823 0.000 0.000 0.428 0.512 0.060
#> GSM74360      4  0.2624     0.6261 0.000 0.000 0.012 0.872 0.116
#> GSM74361      3  0.2927     0.7986 0.000 0.000 0.868 0.040 0.092
#> GSM74362      3  0.5490     0.4920 0.000 0.000 0.644 0.128 0.228
#> GSM74363      3  0.0609     0.9006 0.000 0.000 0.980 0.020 0.000
#> GSM74402      4  0.5815     0.5657 0.068 0.000 0.268 0.632 0.032
#> GSM74403      4  0.3321     0.6945 0.136 0.000 0.000 0.832 0.032
#> GSM74404      4  0.4194     0.6785 0.132 0.000 0.000 0.780 0.088
#> GSM74406      4  0.0865     0.6852 0.000 0.000 0.024 0.972 0.004
#> GSM74407      4  0.7305     0.5442 0.100 0.000 0.184 0.544 0.172
#> GSM74408      4  0.3454     0.6544 0.000 0.000 0.156 0.816 0.028
#> GSM74409      4  0.2439     0.6496 0.000 0.000 0.120 0.876 0.004
#> GSM74410      4  0.4366     0.5095 0.000 0.000 0.320 0.664 0.016
#> GSM119936     4  0.3577     0.6479 0.000 0.000 0.160 0.808 0.032
#> GSM119937     4  0.5891     0.3314 0.068 0.000 0.428 0.492 0.012
#> GSM74411      5  0.2625     0.7982 0.000 0.016 0.108 0.000 0.876
#> GSM74412      2  0.3177     0.7319 0.000 0.792 0.000 0.000 0.208
#> GSM74413      5  0.3966     0.7465 0.000 0.132 0.072 0.000 0.796
#> GSM74414      2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM74415      5  0.1341     0.8351 0.000 0.000 0.056 0.000 0.944
#> GSM121379     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.1851     0.8995 0.000 0.912 0.088 0.000 0.000
#> GSM121389     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121393     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121394     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121396     2  0.2471     0.8443 0.000 0.864 0.136 0.000 0.000
#> GSM121397     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM74240      5  0.0290     0.8587 0.000 0.000 0.000 0.008 0.992
#> GSM74241      5  0.0290     0.8587 0.000 0.000 0.000 0.008 0.992
#> GSM74242      5  0.0609     0.8556 0.000 0.000 0.000 0.020 0.980
#> GSM74243      5  0.0609     0.8556 0.000 0.000 0.000 0.020 0.980
#> GSM74244      5  0.0290     0.8587 0.000 0.000 0.000 0.008 0.992
#> GSM74245      5  0.0290     0.8587 0.000 0.000 0.000 0.008 0.992
#> GSM74246      5  0.0290     0.8587 0.000 0.000 0.000 0.008 0.992
#> GSM74247      5  0.0290     0.8587 0.000 0.000 0.000 0.008 0.992
#> GSM74248      5  0.0290     0.8587 0.000 0.000 0.000 0.008 0.992
#> GSM74416      4  0.2654     0.6994 0.084 0.000 0.000 0.884 0.032
#> GSM74417      4  0.0290     0.6872 0.000 0.000 0.000 0.992 0.008
#> GSM74418      4  0.0703     0.6920 0.024 0.000 0.000 0.976 0.000
#> GSM74419      4  0.4879     0.5658 0.016 0.000 0.264 0.688 0.032
#> GSM121358     3  0.0000     0.9083 0.000 0.000 1.000 0.000 0.000
#> GSM121359     3  0.0290     0.9019 0.000 0.008 0.992 0.000 0.000
#> GSM121360     5  0.4684     0.2847 0.008 0.000 0.004 0.452 0.536
#> GSM121362     5  0.5715     0.1790 0.028 0.000 0.032 0.460 0.480
#> GSM121364     4  0.5053     0.4982 0.000 0.000 0.216 0.688 0.096
#> GSM121365     3  0.0000     0.9083 0.000 0.000 1.000 0.000 0.000
#> GSM121366     3  0.0000     0.9083 0.000 0.000 1.000 0.000 0.000
#> GSM121367     3  0.0000     0.9083 0.000 0.000 1.000 0.000 0.000
#> GSM121370     3  0.0000     0.9083 0.000 0.000 1.000 0.000 0.000
#> GSM121371     3  0.0000     0.9083 0.000 0.000 1.000 0.000 0.000
#> GSM121372     3  0.0000     0.9083 0.000 0.000 1.000 0.000 0.000
#> GSM121373     4  0.6309     0.2566 0.000 0.000 0.288 0.520 0.192
#> GSM121374     4  0.4708     0.4314 0.000 0.000 0.292 0.668 0.040
#> GSM121407     3  0.0290     0.9019 0.000 0.008 0.992 0.000 0.000
#> GSM74387      5  0.2719     0.7676 0.004 0.144 0.000 0.000 0.852
#> GSM74388      2  0.2077     0.8868 0.084 0.908 0.000 0.000 0.008
#> GSM74389      5  0.1764     0.8268 0.000 0.000 0.008 0.064 0.928
#> GSM74390      5  0.0290     0.8538 0.008 0.000 0.000 0.000 0.992
#> GSM74391      5  0.4425     0.2912 0.000 0.000 0.008 0.392 0.600
#> GSM74392      5  0.4109     0.5566 0.000 0.000 0.012 0.288 0.700
#> GSM74393      5  0.0880     0.8499 0.000 0.000 0.000 0.032 0.968
#> GSM74394      5  0.2439     0.7924 0.004 0.120 0.000 0.000 0.876
#> GSM74239      1  0.4047     0.4596 0.676 0.000 0.000 0.320 0.004
#> GSM74364      4  0.4648     0.1345 0.464 0.000 0.000 0.524 0.012
#> GSM74365      1  0.0290     0.8807 0.992 0.000 0.000 0.008 0.000
#> GSM74366      1  0.3132     0.7379 0.820 0.172 0.000 0.000 0.008
#> GSM74367      1  0.3491     0.6446 0.768 0.000 0.000 0.228 0.004
#> GSM74377      1  0.0290     0.8795 0.992 0.000 0.000 0.000 0.008
#> GSM74378      1  0.2136     0.8248 0.904 0.088 0.000 0.000 0.008
#> GSM74379      1  0.0290     0.8807 0.992 0.000 0.000 0.008 0.000
#> GSM74380      1  0.0162     0.8807 0.996 0.000 0.000 0.004 0.000
#> GSM74381      1  0.0451     0.8790 0.988 0.004 0.000 0.000 0.008
#> GSM121357     2  0.0000     0.9723 0.000 1.000 0.000 0.000 0.000
#> GSM121361     2  0.2886     0.8158 0.008 0.844 0.000 0.000 0.148
#> GSM121363     2  0.0671     0.9601 0.004 0.980 0.000 0.000 0.016
#> GSM121368     2  0.0566     0.9624 0.004 0.984 0.000 0.000 0.012
#> GSM121369     5  0.2971     0.7576 0.008 0.156 0.000 0.000 0.836
#> GSM74368      3  0.7899    -0.0650 0.308 0.000 0.388 0.220 0.084
#> GSM74369      1  0.2899     0.8120 0.872 0.000 0.096 0.028 0.004
#> GSM74370      1  0.1628     0.8622 0.936 0.000 0.000 0.056 0.008
#> GSM74371      4  0.4118     0.4713 0.336 0.000 0.000 0.660 0.004
#> GSM74372      1  0.1043     0.8730 0.960 0.000 0.000 0.040 0.000
#> GSM74373      1  0.0162     0.8807 0.996 0.000 0.000 0.004 0.000
#> GSM74374      1  0.0162     0.8807 0.996 0.000 0.000 0.004 0.000
#> GSM74375      1  0.6456     0.0401 0.468 0.000 0.000 0.340 0.192
#> GSM74376      1  0.2020     0.8186 0.900 0.000 0.000 0.000 0.100
#> GSM74405      1  0.0162     0.8802 0.996 0.000 0.000 0.000 0.004
#> GSM74351      4  0.4616     0.5532 0.288 0.000 0.000 0.676 0.036
#> GSM74352      1  0.2462     0.8050 0.880 0.112 0.000 0.000 0.008
#> GSM74353      1  0.0609     0.8804 0.980 0.000 0.000 0.020 0.000
#> GSM74354      1  0.2124     0.8346 0.900 0.000 0.000 0.096 0.004
#> GSM74355      1  0.1830     0.8420 0.924 0.068 0.000 0.000 0.008
#> GSM74382      4  0.3035     0.6978 0.112 0.000 0.000 0.856 0.032
#> GSM74383      1  0.1043     0.8715 0.960 0.000 0.000 0.040 0.000
#> GSM74384      1  0.2193     0.8208 0.900 0.092 0.000 0.000 0.008
#> GSM74385      4  0.4434     0.1630 0.460 0.000 0.000 0.536 0.004
#> GSM74386      1  0.5921     0.3637 0.568 0.000 0.000 0.136 0.296
#> GSM74395      1  0.2305     0.8396 0.896 0.000 0.000 0.092 0.012
#> GSM74396      1  0.0963     0.8737 0.964 0.000 0.000 0.036 0.000
#> GSM74397      4  0.4731     0.4728 0.328 0.000 0.000 0.640 0.032
#> GSM74398      1  0.0451     0.8812 0.988 0.000 0.000 0.008 0.004
#> GSM74399      1  0.0000     0.8807 1.000 0.000 0.000 0.000 0.000
#> GSM74400      1  0.2329     0.7992 0.876 0.000 0.000 0.124 0.000
#> GSM74401      1  0.0703     0.8784 0.976 0.000 0.000 0.024 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.0790      0.926 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM74357      3  0.0790      0.926 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM74358      3  0.0790      0.926 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM74359      4  0.0622      0.896 0.012 0.000 0.008 0.980 0.000 0.000
#> GSM74360      4  0.0632      0.898 0.024 0.000 0.000 0.976 0.000 0.000
#> GSM74361      3  0.3427      0.750 0.008 0.000 0.804 0.032 0.156 0.000
#> GSM74362      5  0.5923      0.177 0.008 0.000 0.356 0.168 0.468 0.000
#> GSM74363      3  0.0790      0.926 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM74402      1  0.2568      0.761 0.876 0.000 0.068 0.056 0.000 0.000
#> GSM74403      1  0.0363      0.786 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM74404      1  0.0000      0.784 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74406      1  0.3014      0.715 0.804 0.000 0.012 0.184 0.000 0.000
#> GSM74407      1  0.0405      0.785 0.988 0.000 0.000 0.008 0.004 0.000
#> GSM74408      1  0.5095      0.488 0.584 0.000 0.104 0.312 0.000 0.000
#> GSM74409      4  0.1765      0.827 0.096 0.000 0.000 0.904 0.000 0.000
#> GSM74410      1  0.5149      0.567 0.624 0.000 0.184 0.192 0.000 0.000
#> GSM119936     1  0.3481      0.717 0.792 0.000 0.048 0.160 0.000 0.000
#> GSM119937     1  0.4831      0.561 0.668 0.000 0.164 0.168 0.000 0.000
#> GSM74411      5  0.0937      0.873 0.000 0.000 0.040 0.000 0.960 0.000
#> GSM74412      2  0.3431      0.692 0.000 0.756 0.016 0.000 0.228 0.000
#> GSM74413      5  0.2474      0.817 0.000 0.080 0.040 0.000 0.880 0.000
#> GSM74414      2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74415      5  0.0547      0.882 0.000 0.000 0.020 0.000 0.980 0.000
#> GSM121379     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0146      0.962 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM121382     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121384     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121388     2  0.2340      0.829 0.000 0.852 0.148 0.000 0.000 0.000
#> GSM121389     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121390     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121393     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121394     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121395     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121396     2  0.2219      0.841 0.000 0.864 0.136 0.000 0.000 0.000
#> GSM121397     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000      0.964 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      5  0.0000      0.887 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74241      5  0.0000      0.887 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74242      5  0.0291      0.886 0.004 0.000 0.004 0.000 0.992 0.000
#> GSM74243      5  0.0146      0.887 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM74244      5  0.0000      0.887 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74245      5  0.0000      0.887 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74246      5  0.0000      0.887 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74247      5  0.0000      0.887 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74248      5  0.0000      0.887 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74416      1  0.0458      0.785 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM74417      1  0.2969      0.683 0.776 0.000 0.000 0.224 0.000 0.000
#> GSM74418      1  0.2631      0.721 0.820 0.000 0.000 0.180 0.000 0.000
#> GSM74419      1  0.3534      0.723 0.800 0.000 0.076 0.124 0.000 0.000
#> GSM121358     3  0.0000      0.939 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121359     3  0.0000      0.939 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121360     4  0.1049      0.872 0.000 0.000 0.000 0.960 0.032 0.008
#> GSM121362     4  0.1007      0.877 0.000 0.000 0.000 0.956 0.044 0.000
#> GSM121364     4  0.0725      0.899 0.012 0.000 0.000 0.976 0.012 0.000
#> GSM121365     3  0.0000      0.939 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121366     3  0.0000      0.939 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121367     3  0.0000      0.939 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121370     3  0.0000      0.939 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121371     3  0.0000      0.939 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121372     3  0.0000      0.939 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121373     4  0.0717      0.897 0.008 0.000 0.000 0.976 0.016 0.000
#> GSM121374     4  0.0632      0.898 0.024 0.000 0.000 0.976 0.000 0.000
#> GSM121407     3  0.0000      0.939 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74387      5  0.2007      0.860 0.000 0.040 0.016 0.012 0.924 0.008
#> GSM74388      2  0.2039      0.883 0.000 0.904 0.000 0.020 0.000 0.076
#> GSM74389      5  0.2805      0.759 0.012 0.000 0.000 0.160 0.828 0.000
#> GSM74390      5  0.0806      0.879 0.000 0.000 0.000 0.020 0.972 0.008
#> GSM74391      5  0.4294      0.206 0.428 0.000 0.000 0.020 0.552 0.000
#> GSM74392      5  0.4057      0.276 0.008 0.000 0.000 0.436 0.556 0.000
#> GSM74393      5  0.0405      0.884 0.008 0.000 0.000 0.004 0.988 0.000
#> GSM74394      5  0.2402      0.825 0.000 0.084 0.000 0.020 0.888 0.008
#> GSM74239      1  0.3867     -0.223 0.512 0.000 0.000 0.000 0.000 0.488
#> GSM74364      1  0.2826      0.669 0.844 0.000 0.000 0.028 0.000 0.128
#> GSM74365      6  0.1714      0.871 0.092 0.000 0.000 0.000 0.000 0.908
#> GSM74366      6  0.2006      0.826 0.000 0.080 0.000 0.016 0.000 0.904
#> GSM74367      6  0.4569      0.437 0.396 0.000 0.000 0.040 0.000 0.564
#> GSM74377      6  0.0000      0.888 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74378      6  0.0000      0.888 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74379      6  0.1075      0.886 0.048 0.000 0.000 0.000 0.000 0.952
#> GSM74380      6  0.0260      0.889 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM74381      6  0.0000      0.888 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM121357     2  0.0622      0.954 0.000 0.980 0.012 0.008 0.000 0.000
#> GSM121361     2  0.3294      0.783 0.000 0.812 0.000 0.020 0.156 0.012
#> GSM121363     2  0.1065      0.944 0.000 0.964 0.000 0.020 0.008 0.008
#> GSM121368     2  0.0951      0.946 0.000 0.968 0.000 0.020 0.004 0.008
#> GSM121369     5  0.2382      0.836 0.000 0.072 0.004 0.020 0.896 0.008
#> GSM74368      3  0.6771      0.368 0.152 0.000 0.528 0.020 0.060 0.240
#> GSM74369      6  0.2294      0.832 0.036 0.000 0.072 0.000 0.000 0.892
#> GSM74370      6  0.2263      0.866 0.048 0.000 0.000 0.056 0.000 0.896
#> GSM74371      1  0.0146      0.782 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM74372      6  0.2178      0.848 0.132 0.000 0.000 0.000 0.000 0.868
#> GSM74373      6  0.0260      0.889 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM74374      6  0.0363      0.890 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM74375      1  0.5520      0.406 0.532 0.000 0.000 0.000 0.156 0.312
#> GSM74376      6  0.0000      0.888 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74405      6  0.0000      0.888 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74351      1  0.0000      0.784 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74352      6  0.0909      0.878 0.000 0.020 0.000 0.012 0.000 0.968
#> GSM74353      6  0.1663      0.875 0.088 0.000 0.000 0.000 0.000 0.912
#> GSM74354      6  0.3383      0.729 0.268 0.000 0.000 0.000 0.004 0.728
#> GSM74355      6  0.0458      0.884 0.000 0.000 0.000 0.016 0.000 0.984
#> GSM74382      1  0.0000      0.784 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74383      6  0.2883      0.790 0.212 0.000 0.000 0.000 0.000 0.788
#> GSM74384      6  0.0000      0.888 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74385      4  0.5099      0.190 0.424 0.000 0.000 0.496 0.000 0.080
#> GSM74386      6  0.7382      0.198 0.200 0.000 0.000 0.144 0.272 0.384
#> GSM74395      6  0.3650      0.772 0.216 0.000 0.000 0.024 0.004 0.756
#> GSM74396      6  0.2854      0.794 0.208 0.000 0.000 0.000 0.000 0.792
#> GSM74397      1  0.0146      0.784 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM74398      6  0.0260      0.889 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM74399      6  0.0146      0.889 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74400      6  0.2912      0.770 0.216 0.000 0.000 0.000 0.000 0.784
#> GSM74401      6  0.1610      0.876 0.084 0.000 0.000 0.000 0.000 0.916

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> MAD:pam 117         4.39e-11 2
#> MAD:pam 107         9.17e-24 3
#> MAD:pam  84         1.16e-28 4
#> MAD:pam 104         5.26e-42 5
#> MAD:pam 111         4.15e-37 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.805           0.914       0.957         0.4970 0.502   0.502
#> 3 3 0.882           0.915       0.950         0.3095 0.821   0.651
#> 4 4 0.707           0.806       0.879         0.1071 0.924   0.786
#> 5 5 0.838           0.845       0.916         0.0862 0.899   0.666
#> 6 6 0.802           0.669       0.813         0.0435 0.925   0.672

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.0000      0.925 0.000 1.000
#> GSM74357      2  0.0000      0.925 0.000 1.000
#> GSM74358      2  0.0000      0.925 0.000 1.000
#> GSM74359      2  0.9129      0.596 0.328 0.672
#> GSM74360      1  0.9795      0.159 0.584 0.416
#> GSM74361      2  0.0000      0.925 0.000 1.000
#> GSM74362      2  0.0000      0.925 0.000 1.000
#> GSM74363      2  0.0376      0.926 0.004 0.996
#> GSM74402      1  0.0000      0.990 1.000 0.000
#> GSM74403      1  0.0000      0.990 1.000 0.000
#> GSM74404      1  0.0000      0.990 1.000 0.000
#> GSM74406      1  0.0376      0.986 0.996 0.004
#> GSM74407      1  0.0000      0.990 1.000 0.000
#> GSM74408      1  0.0000      0.990 1.000 0.000
#> GSM74409      1  0.0000      0.990 1.000 0.000
#> GSM74410      1  0.0000      0.990 1.000 0.000
#> GSM119936     1  0.0000      0.990 1.000 0.000
#> GSM119937     1  0.0000      0.990 1.000 0.000
#> GSM74411      2  0.0000      0.925 0.000 1.000
#> GSM74412      2  0.0000      0.925 0.000 1.000
#> GSM74413      2  0.0000      0.925 0.000 1.000
#> GSM74414      2  0.1184      0.926 0.016 0.984
#> GSM74415      2  0.0000      0.925 0.000 1.000
#> GSM121379     2  0.1184      0.926 0.016 0.984
#> GSM121380     2  0.1184      0.926 0.016 0.984
#> GSM121381     2  0.1184      0.926 0.016 0.984
#> GSM121382     2  0.1184      0.926 0.016 0.984
#> GSM121383     2  0.1184      0.926 0.016 0.984
#> GSM121384     2  0.1184      0.926 0.016 0.984
#> GSM121385     2  0.1184      0.926 0.016 0.984
#> GSM121386     2  0.1184      0.926 0.016 0.984
#> GSM121387     2  0.1184      0.926 0.016 0.984
#> GSM121388     2  0.1184      0.926 0.016 0.984
#> GSM121389     2  0.1184      0.926 0.016 0.984
#> GSM121390     2  0.1184      0.926 0.016 0.984
#> GSM121391     2  0.1184      0.926 0.016 0.984
#> GSM121392     2  0.1184      0.926 0.016 0.984
#> GSM121393     2  0.1843      0.921 0.028 0.972
#> GSM121394     2  0.1184      0.926 0.016 0.984
#> GSM121395     2  0.1184      0.926 0.016 0.984
#> GSM121396     2  0.0938      0.926 0.012 0.988
#> GSM121397     2  0.1184      0.926 0.016 0.984
#> GSM121398     2  0.1184      0.926 0.016 0.984
#> GSM121399     2  0.1184      0.926 0.016 0.984
#> GSM74240      2  0.4161      0.887 0.084 0.916
#> GSM74241      2  0.4431      0.882 0.092 0.908
#> GSM74242      2  0.6623      0.818 0.172 0.828
#> GSM74243      2  0.6623      0.818 0.172 0.828
#> GSM74244      2  0.0376      0.925 0.004 0.996
#> GSM74245      2  0.0376      0.925 0.004 0.996
#> GSM74246      2  0.0672      0.925 0.008 0.992
#> GSM74247      2  0.0376      0.925 0.004 0.996
#> GSM74248      2  0.2603      0.910 0.044 0.956
#> GSM74416      1  0.0000      0.990 1.000 0.000
#> GSM74417      1  0.0000      0.990 1.000 0.000
#> GSM74418      1  0.0000      0.990 1.000 0.000
#> GSM74419      1  0.0000      0.990 1.000 0.000
#> GSM121358     2  0.0000      0.925 0.000 1.000
#> GSM121359     2  0.0000      0.925 0.000 1.000
#> GSM121360     2  0.7528      0.767 0.216 0.784
#> GSM121362     2  0.9710      0.457 0.400 0.600
#> GSM121364     2  0.9732      0.439 0.404 0.596
#> GSM121365     2  0.0000      0.925 0.000 1.000
#> GSM121366     2  0.0000      0.925 0.000 1.000
#> GSM121367     2  0.0000      0.925 0.000 1.000
#> GSM121370     2  0.0000      0.925 0.000 1.000
#> GSM121371     2  0.0000      0.925 0.000 1.000
#> GSM121372     2  0.0000      0.925 0.000 1.000
#> GSM121373     2  0.9795      0.409 0.416 0.584
#> GSM121374     2  0.9732      0.439 0.404 0.596
#> GSM121407     2  0.0000      0.925 0.000 1.000
#> GSM74387      2  0.1184      0.923 0.016 0.984
#> GSM74388      2  0.6887      0.810 0.184 0.816
#> GSM74389      2  0.6623      0.818 0.172 0.828
#> GSM74390      1  0.2236      0.950 0.964 0.036
#> GSM74391      1  0.0672      0.983 0.992 0.008
#> GSM74392      2  0.9775      0.419 0.412 0.588
#> GSM74393      2  0.6531      0.822 0.168 0.832
#> GSM74394      2  0.5519      0.856 0.128 0.872
#> GSM74239      1  0.0000      0.990 1.000 0.000
#> GSM74364      1  0.0000      0.990 1.000 0.000
#> GSM74365      1  0.0000      0.990 1.000 0.000
#> GSM74366      1  0.0000      0.990 1.000 0.000
#> GSM74367      1  0.0000      0.990 1.000 0.000
#> GSM74377      1  0.0000      0.990 1.000 0.000
#> GSM74378      1  0.0000      0.990 1.000 0.000
#> GSM74379      1  0.0000      0.990 1.000 0.000
#> GSM74380      1  0.0000      0.990 1.000 0.000
#> GSM74381      1  0.0000      0.990 1.000 0.000
#> GSM121357     2  0.1184      0.926 0.016 0.984
#> GSM121361     2  0.6438      0.826 0.164 0.836
#> GSM121363     2  0.6048      0.840 0.148 0.852
#> GSM121368     2  0.5294      0.863 0.120 0.880
#> GSM121369     2  0.5946      0.843 0.144 0.856
#> GSM74368      1  0.0000      0.990 1.000 0.000
#> GSM74369      1  0.0000      0.990 1.000 0.000
#> GSM74370      1  0.0000      0.990 1.000 0.000
#> GSM74371      1  0.0000      0.990 1.000 0.000
#> GSM74372      1  0.0000      0.990 1.000 0.000
#> GSM74373      1  0.0000      0.990 1.000 0.000
#> GSM74374      1  0.0000      0.990 1.000 0.000
#> GSM74375      1  0.0000      0.990 1.000 0.000
#> GSM74376      1  0.0000      0.990 1.000 0.000
#> GSM74405      1  0.0000      0.990 1.000 0.000
#> GSM74351      1  0.0000      0.990 1.000 0.000
#> GSM74352      1  0.0000      0.990 1.000 0.000
#> GSM74353      1  0.0000      0.990 1.000 0.000
#> GSM74354      1  0.0000      0.990 1.000 0.000
#> GSM74355      1  0.0000      0.990 1.000 0.000
#> GSM74382      1  0.0000      0.990 1.000 0.000
#> GSM74383      1  0.0000      0.990 1.000 0.000
#> GSM74384      1  0.0000      0.990 1.000 0.000
#> GSM74385      1  0.0000      0.990 1.000 0.000
#> GSM74386      1  0.0000      0.990 1.000 0.000
#> GSM74395      1  0.0000      0.990 1.000 0.000
#> GSM74396      1  0.0000      0.990 1.000 0.000
#> GSM74397      1  0.0000      0.990 1.000 0.000
#> GSM74398      1  0.0000      0.990 1.000 0.000
#> GSM74399      1  0.0000      0.990 1.000 0.000
#> GSM74400      1  0.0000      0.990 1.000 0.000
#> GSM74401      1  0.0000      0.990 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      2  0.4931      0.815 0.000 0.768 0.232
#> GSM74357      2  0.4931      0.815 0.000 0.768 0.232
#> GSM74358      2  0.4931      0.815 0.000 0.768 0.232
#> GSM74359      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74360      3  0.0747      0.931 0.016 0.000 0.984
#> GSM74361      2  0.6302      0.358 0.000 0.520 0.480
#> GSM74362      3  0.0592      0.940 0.000 0.012 0.988
#> GSM74363      2  0.4931      0.815 0.000 0.768 0.232
#> GSM74402      1  0.0237      0.997 0.996 0.000 0.004
#> GSM74403      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74404      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74406      1  0.0237      0.997 0.996 0.000 0.004
#> GSM74407      1  0.0237      0.997 0.996 0.000 0.004
#> GSM74408      1  0.0237      0.997 0.996 0.000 0.004
#> GSM74409      1  0.0237      0.997 0.996 0.000 0.004
#> GSM74410      1  0.0237      0.997 0.996 0.000 0.004
#> GSM119936     1  0.0237      0.997 0.996 0.000 0.004
#> GSM119937     1  0.0237      0.997 0.996 0.000 0.004
#> GSM74411      2  0.4931      0.815 0.000 0.768 0.232
#> GSM74412      2  0.4931      0.815 0.000 0.768 0.232
#> GSM74413      2  0.4887      0.817 0.000 0.772 0.228
#> GSM74414      2  0.0000      0.872 0.000 1.000 0.000
#> GSM74415      2  0.6260      0.444 0.000 0.552 0.448
#> GSM121379     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121380     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121381     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121382     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121383     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121384     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121385     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121386     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121387     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121388     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121389     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121390     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121391     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121392     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121393     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121394     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121395     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121396     2  0.2537      0.857 0.000 0.920 0.080
#> GSM121397     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121398     2  0.0000      0.872 0.000 1.000 0.000
#> GSM121399     2  0.0000      0.872 0.000 1.000 0.000
#> GSM74240      3  0.0237      0.947 0.000 0.004 0.996
#> GSM74241      3  0.1529      0.908 0.000 0.040 0.960
#> GSM74242      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74243      3  0.0237      0.947 0.000 0.004 0.996
#> GSM74244      3  0.0237      0.947 0.000 0.004 0.996
#> GSM74245      3  0.0237      0.947 0.000 0.004 0.996
#> GSM74246      3  0.0237      0.947 0.000 0.004 0.996
#> GSM74247      3  0.0237      0.947 0.000 0.004 0.996
#> GSM74248      3  0.0237      0.947 0.000 0.004 0.996
#> GSM74416      1  0.0237      0.997 0.996 0.000 0.004
#> GSM74417      1  0.0237      0.997 0.996 0.000 0.004
#> GSM74418      1  0.0237      0.997 0.996 0.000 0.004
#> GSM74419      1  0.0237      0.997 0.996 0.000 0.004
#> GSM121358     2  0.4931      0.815 0.000 0.768 0.232
#> GSM121359     2  0.4931      0.815 0.000 0.768 0.232
#> GSM121360     3  0.0237      0.947 0.000 0.004 0.996
#> GSM121362     3  0.3983      0.778 0.144 0.004 0.852
#> GSM121364     3  0.0000      0.946 0.000 0.000 1.000
#> GSM121365     2  0.4931      0.815 0.000 0.768 0.232
#> GSM121366     2  0.4931      0.815 0.000 0.768 0.232
#> GSM121367     2  0.4931      0.815 0.000 0.768 0.232
#> GSM121370     2  0.4931      0.815 0.000 0.768 0.232
#> GSM121371     2  0.4931      0.815 0.000 0.768 0.232
#> GSM121372     2  0.4931      0.815 0.000 0.768 0.232
#> GSM121373     3  0.0000      0.946 0.000 0.000 1.000
#> GSM121374     3  0.0000      0.946 0.000 0.000 1.000
#> GSM121407     2  0.4931      0.815 0.000 0.768 0.232
#> GSM74387      3  0.0237      0.947 0.000 0.004 0.996
#> GSM74388      3  0.0475      0.945 0.004 0.004 0.992
#> GSM74389      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74390      3  0.6154      0.326 0.408 0.000 0.592
#> GSM74391      3  0.6244      0.229 0.440 0.000 0.560
#> GSM74392      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74393      3  0.0000      0.946 0.000 0.000 1.000
#> GSM74394      3  0.0237      0.947 0.000 0.004 0.996
#> GSM74239      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74364      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74365      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74366      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74367      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74377      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74378      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74379      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74380      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74381      1  0.0000      0.999 1.000 0.000 0.000
#> GSM121357     2  0.0424      0.871 0.000 0.992 0.008
#> GSM121361     3  0.0237      0.947 0.000 0.004 0.996
#> GSM121363     3  0.0237      0.947 0.000 0.004 0.996
#> GSM121368     3  0.0237      0.947 0.000 0.004 0.996
#> GSM121369     3  0.0237      0.947 0.000 0.004 0.996
#> GSM74368      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74369      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74370      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74371      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74372      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74373      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74374      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74375      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74376      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74405      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74351      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74352      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74353      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74354      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74355      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74382      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74383      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74384      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74385      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74386      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74395      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74396      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74397      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74398      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74399      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74400      1  0.0000      0.999 1.000 0.000 0.000
#> GSM74401      1  0.0000      0.999 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      2  0.5756     0.7709 0.000 0.692 0.224 0.084
#> GSM74357      2  0.7105     0.6423 0.000 0.560 0.256 0.184
#> GSM74358      2  0.7149     0.6302 0.000 0.552 0.264 0.184
#> GSM74359      3  0.3649     0.7608 0.000 0.000 0.796 0.204
#> GSM74360      3  0.3982     0.7366 0.004 0.000 0.776 0.220
#> GSM74361      3  0.6110     0.1125 0.000 0.368 0.576 0.056
#> GSM74362      3  0.1474     0.8385 0.000 0.000 0.948 0.052
#> GSM74363      2  0.6265     0.7467 0.000 0.656 0.220 0.124
#> GSM74402      4  0.3873     0.7732 0.228 0.000 0.000 0.772
#> GSM74403      1  0.3219     0.8494 0.836 0.000 0.000 0.164
#> GSM74404      1  0.2921     0.8665 0.860 0.000 0.000 0.140
#> GSM74406      4  0.2408     0.9215 0.104 0.000 0.000 0.896
#> GSM74407      4  0.3444     0.8447 0.184 0.000 0.000 0.816
#> GSM74408      4  0.2408     0.9215 0.104 0.000 0.000 0.896
#> GSM74409      4  0.2408     0.9215 0.104 0.000 0.000 0.896
#> GSM74410      4  0.2408     0.9215 0.104 0.000 0.000 0.896
#> GSM119936     4  0.2469     0.9198 0.108 0.000 0.000 0.892
#> GSM119937     4  0.2408     0.9215 0.104 0.000 0.000 0.896
#> GSM74411      2  0.5727     0.7690 0.000 0.692 0.228 0.080
#> GSM74412      2  0.5759     0.7651 0.000 0.688 0.232 0.080
#> GSM74413      2  0.5593     0.7821 0.000 0.708 0.212 0.080
#> GSM74414      2  0.1452     0.8502 0.000 0.956 0.008 0.036
#> GSM74415      3  0.6419    -0.1583 0.000 0.420 0.512 0.068
#> GSM121379     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121388     2  0.1209     0.8502 0.000 0.964 0.004 0.032
#> GSM121389     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0188     0.8503 0.000 0.996 0.000 0.004
#> GSM121391     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121392     2  0.1209     0.8502 0.000 0.964 0.004 0.032
#> GSM121393     2  0.1396     0.8496 0.004 0.960 0.004 0.032
#> GSM121394     2  0.0188     0.8511 0.000 0.996 0.000 0.004
#> GSM121395     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121396     2  0.4525     0.8202 0.000 0.804 0.116 0.080
#> GSM121397     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000     0.8508 0.000 1.000 0.000 0.000
#> GSM74240      3  0.0592     0.8511 0.000 0.000 0.984 0.016
#> GSM74241      3  0.3707     0.7244 0.000 0.132 0.840 0.028
#> GSM74242      3  0.1867     0.8383 0.000 0.000 0.928 0.072
#> GSM74243      3  0.1637     0.8402 0.000 0.000 0.940 0.060
#> GSM74244      3  0.1118     0.8452 0.000 0.000 0.964 0.036
#> GSM74245      3  0.1302     0.8429 0.000 0.000 0.956 0.044
#> GSM74246      3  0.0817     0.8504 0.000 0.000 0.976 0.024
#> GSM74247      3  0.0336     0.8490 0.000 0.000 0.992 0.008
#> GSM74248      3  0.0592     0.8511 0.000 0.000 0.984 0.016
#> GSM74416      1  0.4933     0.3142 0.568 0.000 0.000 0.432
#> GSM74417      1  0.4730     0.5156 0.636 0.000 0.000 0.364
#> GSM74418      1  0.4866     0.4019 0.596 0.000 0.000 0.404
#> GSM74419      4  0.2530     0.9177 0.112 0.000 0.000 0.888
#> GSM121358     2  0.5628     0.7788 0.000 0.704 0.216 0.080
#> GSM121359     2  0.5184     0.7872 0.000 0.732 0.212 0.056
#> GSM121360     3  0.2589     0.8175 0.000 0.000 0.884 0.116
#> GSM121362     3  0.4610     0.7149 0.100 0.000 0.800 0.100
#> GSM121364     3  0.3764     0.7478 0.000 0.000 0.784 0.216
#> GSM121365     2  0.5593     0.7812 0.000 0.708 0.212 0.080
#> GSM121366     2  0.5593     0.7812 0.000 0.708 0.212 0.080
#> GSM121367     2  0.5628     0.7788 0.000 0.704 0.216 0.080
#> GSM121370     2  0.5661     0.7758 0.000 0.700 0.220 0.080
#> GSM121371     2  0.5628     0.7788 0.000 0.704 0.216 0.080
#> GSM121372     2  0.5593     0.7812 0.000 0.708 0.212 0.080
#> GSM121373     3  0.3444     0.7762 0.000 0.000 0.816 0.184
#> GSM121374     3  0.3764     0.7502 0.000 0.000 0.784 0.216
#> GSM121407     2  0.5464     0.7838 0.000 0.716 0.212 0.072
#> GSM74387      3  0.0336     0.8473 0.000 0.000 0.992 0.008
#> GSM74388      3  0.1610     0.8419 0.016 0.000 0.952 0.032
#> GSM74389      3  0.2760     0.8108 0.000 0.000 0.872 0.128
#> GSM74390      3  0.7538     0.0706 0.260 0.000 0.492 0.248
#> GSM74391      4  0.6827     0.3590 0.128 0.000 0.304 0.568
#> GSM74392      3  0.3907     0.7285 0.000 0.000 0.768 0.232
#> GSM74393      3  0.1211     0.8479 0.000 0.000 0.960 0.040
#> GSM74394      3  0.1022     0.8503 0.000 0.000 0.968 0.032
#> GSM74239      1  0.2973     0.8633 0.856 0.000 0.000 0.144
#> GSM74364      1  0.2973     0.8633 0.856 0.000 0.000 0.144
#> GSM74365      1  0.1474     0.8949 0.948 0.000 0.000 0.052
#> GSM74366      1  0.0000     0.8953 1.000 0.000 0.000 0.000
#> GSM74367      1  0.0592     0.8982 0.984 0.000 0.000 0.016
#> GSM74377      1  0.0000     0.8953 1.000 0.000 0.000 0.000
#> GSM74378      1  0.0000     0.8953 1.000 0.000 0.000 0.000
#> GSM74379      1  0.0188     0.8962 0.996 0.000 0.000 0.004
#> GSM74380      1  0.0188     0.8962 0.996 0.000 0.000 0.004
#> GSM74381      1  0.0000     0.8953 1.000 0.000 0.000 0.000
#> GSM121357     2  0.2483     0.8463 0.000 0.916 0.032 0.052
#> GSM121361     3  0.1022     0.8503 0.000 0.000 0.968 0.032
#> GSM121363     3  0.1022     0.8503 0.000 0.000 0.968 0.032
#> GSM121368     3  0.1022     0.8503 0.000 0.000 0.968 0.032
#> GSM121369     3  0.1022     0.8503 0.000 0.000 0.968 0.032
#> GSM74368      1  0.4304     0.6640 0.716 0.000 0.000 0.284
#> GSM74369      1  0.2814     0.8680 0.868 0.000 0.000 0.132
#> GSM74370      1  0.0469     0.8963 0.988 0.000 0.000 0.012
#> GSM74371      1  0.2921     0.8661 0.860 0.000 0.000 0.140
#> GSM74372      1  0.0469     0.8963 0.988 0.000 0.000 0.012
#> GSM74373      1  0.0000     0.8953 1.000 0.000 0.000 0.000
#> GSM74374      1  0.0336     0.8966 0.992 0.000 0.000 0.008
#> GSM74375      1  0.2011     0.8896 0.920 0.000 0.000 0.080
#> GSM74376      1  0.0000     0.8953 1.000 0.000 0.000 0.000
#> GSM74405      1  0.0000     0.8953 1.000 0.000 0.000 0.000
#> GSM74351      1  0.3356     0.8359 0.824 0.000 0.000 0.176
#> GSM74352      1  0.2408     0.8830 0.896 0.000 0.000 0.104
#> GSM74353      1  0.2760     0.8721 0.872 0.000 0.000 0.128
#> GSM74354      1  0.1118     0.8977 0.964 0.000 0.000 0.036
#> GSM74355      1  0.0000     0.8953 1.000 0.000 0.000 0.000
#> GSM74382      1  0.2973     0.8633 0.856 0.000 0.000 0.144
#> GSM74383      1  0.1940     0.8916 0.924 0.000 0.000 0.076
#> GSM74384      1  0.0188     0.8931 0.996 0.000 0.000 0.004
#> GSM74385      1  0.2814     0.8711 0.868 0.000 0.000 0.132
#> GSM74386      1  0.0469     0.8972 0.988 0.000 0.000 0.012
#> GSM74395      1  0.0921     0.8935 0.972 0.000 0.000 0.028
#> GSM74396      1  0.0469     0.8963 0.988 0.000 0.000 0.012
#> GSM74397      1  0.3311     0.8442 0.828 0.000 0.000 0.172
#> GSM74398      1  0.0336     0.8966 0.992 0.000 0.000 0.008
#> GSM74399      1  0.0188     0.8967 0.996 0.000 0.000 0.004
#> GSM74400      1  0.2469     0.8791 0.892 0.000 0.000 0.108
#> GSM74401      1  0.2589     0.8753 0.884 0.000 0.000 0.116

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM74357      3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM74358      3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM74359      5  0.1485      0.921 0.000 0.000 0.032 0.020 0.948
#> GSM74360      5  0.1668      0.918 0.000 0.000 0.028 0.032 0.940
#> GSM74361      3  0.3586      0.602 0.000 0.000 0.736 0.000 0.264
#> GSM74362      5  0.3508      0.733 0.000 0.000 0.252 0.000 0.748
#> GSM74363      3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM74402      4  0.3039      0.735 0.192 0.000 0.000 0.808 0.000
#> GSM74403      1  0.4268      0.268 0.556 0.000 0.000 0.444 0.000
#> GSM74404      1  0.3857      0.641 0.688 0.000 0.000 0.312 0.000
#> GSM74406      4  0.0912      0.813 0.016 0.000 0.000 0.972 0.012
#> GSM74407      4  0.1341      0.801 0.056 0.000 0.000 0.944 0.000
#> GSM74408      4  0.0290      0.822 0.008 0.000 0.000 0.992 0.000
#> GSM74409      4  0.0290      0.822 0.008 0.000 0.000 0.992 0.000
#> GSM74410      4  0.0290      0.822 0.008 0.000 0.000 0.992 0.000
#> GSM119936     4  0.0290      0.822 0.008 0.000 0.000 0.992 0.000
#> GSM119937     4  0.0290      0.822 0.008 0.000 0.000 0.992 0.000
#> GSM74411      3  0.0693      0.936 0.000 0.012 0.980 0.000 0.008
#> GSM74412      3  0.0898      0.934 0.000 0.020 0.972 0.000 0.008
#> GSM74413      3  0.2358      0.881 0.000 0.104 0.888 0.000 0.008
#> GSM74414      2  0.2074      0.876 0.000 0.896 0.104 0.000 0.000
#> GSM74415      3  0.2377      0.835 0.000 0.000 0.872 0.000 0.128
#> GSM121379     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121380     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121381     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121382     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121383     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121384     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121385     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121386     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121387     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121388     2  0.0162      0.978 0.000 0.996 0.004 0.000 0.000
#> GSM121389     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121390     2  0.0000      0.978 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121392     2  0.0162      0.978 0.000 0.996 0.004 0.000 0.000
#> GSM121393     2  0.0162      0.978 0.000 0.996 0.004 0.000 0.000
#> GSM121394     2  0.0404      0.975 0.000 0.988 0.012 0.000 0.000
#> GSM121395     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121396     3  0.1732      0.895 0.000 0.080 0.920 0.000 0.000
#> GSM121397     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121398     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM121399     2  0.0162      0.981 0.000 0.996 0.004 0.000 0.000
#> GSM74240      5  0.1410      0.920 0.000 0.000 0.060 0.000 0.940
#> GSM74241      5  0.2424      0.877 0.000 0.000 0.132 0.000 0.868
#> GSM74242      5  0.1965      0.909 0.000 0.000 0.096 0.000 0.904
#> GSM74243      5  0.1851      0.913 0.000 0.000 0.088 0.000 0.912
#> GSM74244      5  0.2230      0.891 0.000 0.000 0.116 0.000 0.884
#> GSM74245      5  0.2230      0.891 0.000 0.000 0.116 0.000 0.884
#> GSM74246      5  0.1732      0.909 0.000 0.000 0.080 0.000 0.920
#> GSM74247      5  0.2230      0.891 0.000 0.000 0.116 0.000 0.884
#> GSM74248      5  0.1908      0.905 0.000 0.000 0.092 0.000 0.908
#> GSM74416      4  0.3177      0.720 0.208 0.000 0.000 0.792 0.000
#> GSM74417      4  0.3177      0.720 0.208 0.000 0.000 0.792 0.000
#> GSM74418      4  0.3177      0.720 0.208 0.000 0.000 0.792 0.000
#> GSM74419      4  0.0290      0.822 0.008 0.000 0.000 0.992 0.000
#> GSM121358     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM121359     3  0.2843      0.844 0.000 0.144 0.848 0.000 0.008
#> GSM121360     5  0.1764      0.919 0.000 0.000 0.064 0.008 0.928
#> GSM121362     5  0.1251      0.902 0.036 0.000 0.000 0.008 0.956
#> GSM121364     5  0.1668      0.919 0.000 0.000 0.032 0.028 0.940
#> GSM121365     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM121366     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM121367     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM121370     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM121371     3  0.0000      0.941 0.000 0.000 1.000 0.000 0.000
#> GSM121372     3  0.1251      0.927 0.000 0.036 0.956 0.000 0.008
#> GSM121373     5  0.1281      0.921 0.000 0.000 0.032 0.012 0.956
#> GSM121374     5  0.1485      0.921 0.000 0.000 0.032 0.020 0.948
#> GSM121407     3  0.2886      0.836 0.000 0.148 0.844 0.000 0.008
#> GSM74387      5  0.1478      0.918 0.000 0.000 0.064 0.000 0.936
#> GSM74388      5  0.0324      0.917 0.000 0.000 0.004 0.004 0.992
#> GSM74389      5  0.1597      0.922 0.000 0.000 0.048 0.012 0.940
#> GSM74390      5  0.5909      0.477 0.272 0.000 0.016 0.100 0.612
#> GSM74391      5  0.5880      0.483 0.116 0.000 0.004 0.296 0.584
#> GSM74392      5  0.1741      0.913 0.000 0.000 0.024 0.040 0.936
#> GSM74393      5  0.0963      0.922 0.000 0.000 0.036 0.000 0.964
#> GSM74394      5  0.0324      0.917 0.000 0.000 0.004 0.004 0.992
#> GSM74239      1  0.3242      0.766 0.784 0.000 0.000 0.216 0.000
#> GSM74364      1  0.3730      0.687 0.712 0.000 0.000 0.288 0.000
#> GSM74365      1  0.2179      0.828 0.888 0.000 0.000 0.112 0.000
#> GSM74366      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM74367      1  0.0794      0.854 0.972 0.000 0.000 0.028 0.000
#> GSM74377      1  0.0794      0.854 0.972 0.000 0.000 0.028 0.000
#> GSM74378      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM74379      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM74380      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM74381      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM121357     2  0.3452      0.674 0.000 0.756 0.244 0.000 0.000
#> GSM121361     5  0.0324      0.917 0.000 0.000 0.004 0.004 0.992
#> GSM121363     5  0.0324      0.917 0.000 0.000 0.004 0.004 0.992
#> GSM121368     5  0.0324      0.917 0.000 0.000 0.004 0.004 0.992
#> GSM121369     5  0.0162      0.917 0.000 0.000 0.004 0.000 0.996
#> GSM74368      4  0.4291      0.061 0.464 0.000 0.000 0.536 0.000
#> GSM74369      1  0.3636      0.708 0.728 0.000 0.000 0.272 0.000
#> GSM74370      1  0.0162      0.853 0.996 0.000 0.000 0.004 0.000
#> GSM74371      1  0.3109      0.779 0.800 0.000 0.000 0.200 0.000
#> GSM74372      1  0.1041      0.839 0.964 0.000 0.000 0.004 0.032
#> GSM74373      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM74374      1  0.0162      0.853 0.996 0.000 0.000 0.004 0.000
#> GSM74375      1  0.3109      0.778 0.800 0.000 0.000 0.200 0.000
#> GSM74376      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM74405      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM74351      4  0.4307     -0.117 0.496 0.000 0.000 0.504 0.000
#> GSM74352      1  0.3424      0.743 0.760 0.000 0.000 0.240 0.000
#> GSM74353      1  0.3612      0.716 0.732 0.000 0.000 0.268 0.000
#> GSM74354      1  0.1544      0.845 0.932 0.000 0.000 0.068 0.000
#> GSM74355      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM74382      1  0.3774      0.674 0.704 0.000 0.000 0.296 0.000
#> GSM74383      1  0.2230      0.828 0.884 0.000 0.000 0.116 0.000
#> GSM74384      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM74385      1  0.3636      0.710 0.728 0.000 0.000 0.272 0.000
#> GSM74386      1  0.0703      0.852 0.976 0.000 0.000 0.024 0.000
#> GSM74395      1  0.0162      0.853 0.996 0.000 0.000 0.004 0.000
#> GSM74396      1  0.0162      0.853 0.996 0.000 0.000 0.004 0.000
#> GSM74397      1  0.3003      0.787 0.812 0.000 0.000 0.188 0.000
#> GSM74398      1  0.0000      0.853 1.000 0.000 0.000 0.000 0.000
#> GSM74399      1  0.0703      0.854 0.976 0.000 0.000 0.024 0.000
#> GSM74400      1  0.3586      0.718 0.736 0.000 0.000 0.264 0.000
#> GSM74401      1  0.3612      0.713 0.732 0.000 0.000 0.268 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.0146     0.8693 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM74357      3  0.0146     0.8693 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM74358      3  0.0146     0.8693 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM74359      5  0.0000     0.9057 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74360      5  0.0000     0.9057 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74361      3  0.3592     0.4973 0.000 0.000 0.656 0.000 0.344 0.000
#> GSM74362      5  0.2482     0.7896 0.004 0.000 0.148 0.000 0.848 0.000
#> GSM74363      3  0.0146     0.8693 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM74402      4  0.3782     0.4975 0.360 0.000 0.000 0.636 0.000 0.004
#> GSM74403      4  0.4755     0.3369 0.460 0.000 0.000 0.492 0.000 0.048
#> GSM74404      4  0.5674     0.3395 0.332 0.000 0.000 0.496 0.000 0.172
#> GSM74406      4  0.0713     0.6850 0.000 0.000 0.000 0.972 0.028 0.000
#> GSM74407      4  0.0713     0.6911 0.000 0.000 0.000 0.972 0.000 0.028
#> GSM74408      4  0.0000     0.7065 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74409      4  0.0000     0.7065 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74410      4  0.0000     0.7065 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM119936     4  0.0363     0.7049 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM119937     4  0.0000     0.7065 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74411      3  0.2913     0.8194 0.004 0.180 0.812 0.000 0.004 0.000
#> GSM74412      3  0.2871     0.8119 0.000 0.192 0.804 0.000 0.004 0.000
#> GSM74413      3  0.3081     0.7868 0.000 0.220 0.776 0.000 0.004 0.000
#> GSM74414      2  0.1908     0.8724 0.004 0.900 0.096 0.000 0.000 0.000
#> GSM74415      3  0.3629     0.6368 0.016 0.000 0.724 0.000 0.260 0.000
#> GSM121379     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121388     2  0.0146     0.9792 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM121389     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121390     2  0.0146     0.9792 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0146     0.9792 0.004 0.996 0.000 0.000 0.000 0.000
#> GSM121393     2  0.0291     0.9759 0.004 0.992 0.000 0.004 0.000 0.000
#> GSM121394     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121396     3  0.3081     0.7882 0.000 0.220 0.776 0.000 0.004 0.000
#> GSM121397     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9811 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      5  0.1501     0.8972 0.076 0.000 0.000 0.000 0.924 0.000
#> GSM74241      5  0.1531     0.8997 0.068 0.000 0.004 0.000 0.928 0.000
#> GSM74242      5  0.0000     0.9057 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74243      5  0.0000     0.9057 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74244      5  0.1501     0.8972 0.076 0.000 0.000 0.000 0.924 0.000
#> GSM74245      5  0.1327     0.9003 0.064 0.000 0.000 0.000 0.936 0.000
#> GSM74246      5  0.1765     0.8885 0.096 0.000 0.000 0.000 0.904 0.000
#> GSM74247      5  0.1814     0.8864 0.100 0.000 0.000 0.000 0.900 0.000
#> GSM74248      5  0.1444     0.8983 0.072 0.000 0.000 0.000 0.928 0.000
#> GSM74416      4  0.4184     0.3744 0.488 0.000 0.000 0.500 0.000 0.012
#> GSM74417      4  0.4184     0.3744 0.488 0.000 0.000 0.500 0.000 0.012
#> GSM74418      4  0.4184     0.3744 0.488 0.000 0.000 0.500 0.000 0.012
#> GSM74419      4  0.0000     0.7065 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM121358     3  0.0146     0.8693 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM121359     3  0.2964     0.8034 0.000 0.204 0.792 0.000 0.004 0.000
#> GSM121360     5  0.1556     0.8961 0.080 0.000 0.000 0.000 0.920 0.000
#> GSM121362     5  0.1141     0.8759 0.000 0.000 0.000 0.000 0.948 0.052
#> GSM121364     5  0.0000     0.9057 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM121365     3  0.0146     0.8693 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM121366     3  0.0146     0.8693 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM121367     3  0.0146     0.8693 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM121370     3  0.0146     0.8693 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM121371     3  0.0146     0.8693 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM121372     3  0.2772     0.8194 0.000 0.180 0.816 0.000 0.004 0.000
#> GSM121373     5  0.0000     0.9057 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM121374     5  0.0000     0.9057 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM121407     3  0.3189     0.7674 0.000 0.236 0.760 0.000 0.004 0.000
#> GSM74387      5  0.2883     0.7997 0.212 0.000 0.000 0.000 0.788 0.000
#> GSM74388      1  0.3999    -0.4495 0.500 0.000 0.004 0.000 0.496 0.000
#> GSM74389      5  0.0000     0.9057 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74390      5  0.4913     0.4195 0.000 0.000 0.000 0.092 0.612 0.296
#> GSM74391      5  0.4168     0.5929 0.000 0.000 0.000 0.256 0.696 0.048
#> GSM74392      5  0.0000     0.9057 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74393      5  0.0146     0.9057 0.004 0.000 0.000 0.000 0.996 0.000
#> GSM74394      1  0.3999    -0.4495 0.500 0.000 0.004 0.000 0.496 0.000
#> GSM74239      1  0.5719     0.1730 0.460 0.000 0.000 0.168 0.000 0.372
#> GSM74364      1  0.5808     0.1338 0.492 0.000 0.000 0.288 0.000 0.220
#> GSM74365      6  0.3955     0.4130 0.384 0.000 0.000 0.008 0.000 0.608
#> GSM74366      6  0.0146     0.8209 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74367      6  0.2631     0.6969 0.180 0.000 0.000 0.000 0.000 0.820
#> GSM74377      6  0.3390     0.5632 0.296 0.000 0.000 0.000 0.000 0.704
#> GSM74378      6  0.0146     0.8209 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74379      6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74380      6  0.0260     0.8214 0.008 0.000 0.000 0.000 0.000 0.992
#> GSM74381      6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM121357     2  0.3276     0.6526 0.004 0.764 0.228 0.000 0.004 0.000
#> GSM121361     1  0.3999    -0.4495 0.500 0.000 0.004 0.000 0.496 0.000
#> GSM121363     1  0.3999    -0.4495 0.500 0.000 0.004 0.000 0.496 0.000
#> GSM121368     1  0.3999    -0.4495 0.500 0.000 0.004 0.000 0.496 0.000
#> GSM121369     5  0.3634     0.6300 0.356 0.000 0.000 0.000 0.644 0.000
#> GSM74368      1  0.5724    -0.0677 0.456 0.000 0.000 0.376 0.000 0.168
#> GSM74369      1  0.5844     0.2098 0.488 0.000 0.000 0.244 0.000 0.268
#> GSM74370      6  0.0146     0.8221 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74371      1  0.5913     0.1938 0.468 0.000 0.000 0.256 0.000 0.276
#> GSM74372      6  0.0146     0.8221 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74373      6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74374      6  0.0146     0.8221 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74375      6  0.4463     0.3671 0.376 0.000 0.000 0.036 0.000 0.588
#> GSM74376      6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74405      6  0.0000     0.8219 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74351      1  0.4899    -0.3368 0.488 0.000 0.000 0.452 0.000 0.060
#> GSM74352      6  0.4757     0.1097 0.468 0.000 0.000 0.048 0.000 0.484
#> GSM74353      1  0.5585     0.1918 0.488 0.000 0.000 0.148 0.000 0.364
#> GSM74354      6  0.3899     0.4481 0.364 0.000 0.000 0.008 0.000 0.628
#> GSM74355      6  0.0146     0.8209 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74382      1  0.5458    -0.1657 0.480 0.000 0.000 0.396 0.000 0.124
#> GSM74383      6  0.5002     0.1878 0.412 0.000 0.000 0.072 0.000 0.516
#> GSM74384      6  0.0146     0.8209 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74385      1  0.5616     0.2146 0.492 0.000 0.000 0.156 0.000 0.352
#> GSM74386      6  0.0622     0.8140 0.008 0.000 0.000 0.012 0.000 0.980
#> GSM74395      6  0.0146     0.8221 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74396      6  0.0363     0.8199 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM74397      6  0.5530     0.1151 0.364 0.000 0.000 0.140 0.000 0.496
#> GSM74398      6  0.0146     0.8221 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74399      6  0.2838     0.6859 0.188 0.000 0.000 0.004 0.000 0.808
#> GSM74400      1  0.5503     0.1354 0.484 0.000 0.000 0.132 0.000 0.384
#> GSM74401      1  0.5578     0.1983 0.492 0.000 0.000 0.148 0.000 0.360

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:mclust 115         4.59e-13 2
#> MAD:mclust 117         2.26e-23 3
#> MAD:mclust 115         1.30e-28 4
#> MAD:mclust 116         5.98e-42 5
#> MAD:mclust  91         3.80e-29 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.963           0.954       0.980         0.5023 0.497   0.497
#> 3 3 0.537           0.679       0.842         0.3187 0.760   0.555
#> 4 4 0.578           0.476       0.692         0.1253 0.831   0.559
#> 5 5 0.612           0.538       0.738         0.0634 0.819   0.436
#> 6 6 0.736           0.695       0.824         0.0406 0.927   0.683

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.5842      0.834 0.140 0.860
#> GSM74357      1  0.8443      0.625 0.728 0.272
#> GSM74358      1  0.4562      0.892 0.904 0.096
#> GSM74359      1  0.0000      0.986 1.000 0.000
#> GSM74360      1  0.0000      0.986 1.000 0.000
#> GSM74361      2  0.3879      0.906 0.076 0.924
#> GSM74362      1  0.6148      0.821 0.848 0.152
#> GSM74363      2  0.2043      0.946 0.032 0.968
#> GSM74402      1  0.0000      0.986 1.000 0.000
#> GSM74403      1  0.0000      0.986 1.000 0.000
#> GSM74404      1  0.0000      0.986 1.000 0.000
#> GSM74406      1  0.0000      0.986 1.000 0.000
#> GSM74407      1  0.0000      0.986 1.000 0.000
#> GSM74408      1  0.0000      0.986 1.000 0.000
#> GSM74409      1  0.0000      0.986 1.000 0.000
#> GSM74410      1  0.0000      0.986 1.000 0.000
#> GSM119936     1  0.0000      0.986 1.000 0.000
#> GSM119937     1  0.0000      0.986 1.000 0.000
#> GSM74411      2  0.0000      0.971 0.000 1.000
#> GSM74412      2  0.0000      0.971 0.000 1.000
#> GSM74413      2  0.0000      0.971 0.000 1.000
#> GSM74414      2  0.0000      0.971 0.000 1.000
#> GSM74415      2  0.0000      0.971 0.000 1.000
#> GSM121379     2  0.0000      0.971 0.000 1.000
#> GSM121380     2  0.0000      0.971 0.000 1.000
#> GSM121381     2  0.0000      0.971 0.000 1.000
#> GSM121382     2  0.0000      0.971 0.000 1.000
#> GSM121383     2  0.0000      0.971 0.000 1.000
#> GSM121384     2  0.0000      0.971 0.000 1.000
#> GSM121385     2  0.0000      0.971 0.000 1.000
#> GSM121386     2  0.0000      0.971 0.000 1.000
#> GSM121387     2  0.0000      0.971 0.000 1.000
#> GSM121388     2  0.0000      0.971 0.000 1.000
#> GSM121389     2  0.0000      0.971 0.000 1.000
#> GSM121390     2  0.0000      0.971 0.000 1.000
#> GSM121391     2  0.0000      0.971 0.000 1.000
#> GSM121392     2  0.0000      0.971 0.000 1.000
#> GSM121393     2  0.0000      0.971 0.000 1.000
#> GSM121394     2  0.0000      0.971 0.000 1.000
#> GSM121395     2  0.0000      0.971 0.000 1.000
#> GSM121396     2  0.0000      0.971 0.000 1.000
#> GSM121397     2  0.0000      0.971 0.000 1.000
#> GSM121398     2  0.0000      0.971 0.000 1.000
#> GSM121399     2  0.0000      0.971 0.000 1.000
#> GSM74240      2  0.8327      0.655 0.264 0.736
#> GSM74241      2  0.0938      0.962 0.012 0.988
#> GSM74242      1  0.0000      0.986 1.000 0.000
#> GSM74243      1  0.0000      0.986 1.000 0.000
#> GSM74244      2  0.0000      0.971 0.000 1.000
#> GSM74245      2  0.4022      0.902 0.080 0.920
#> GSM74246      2  0.0000      0.971 0.000 1.000
#> GSM74247      2  0.0000      0.971 0.000 1.000
#> GSM74248      2  0.9686      0.362 0.396 0.604
#> GSM74416      1  0.0000      0.986 1.000 0.000
#> GSM74417      1  0.0000      0.986 1.000 0.000
#> GSM74418      1  0.0000      0.986 1.000 0.000
#> GSM74419      1  0.0000      0.986 1.000 0.000
#> GSM121358     2  0.0000      0.971 0.000 1.000
#> GSM121359     2  0.0000      0.971 0.000 1.000
#> GSM121360     1  0.1843      0.963 0.972 0.028
#> GSM121362     1  0.2043      0.959 0.968 0.032
#> GSM121364     1  0.0000      0.986 1.000 0.000
#> GSM121365     2  0.0000      0.971 0.000 1.000
#> GSM121366     2  0.0000      0.971 0.000 1.000
#> GSM121367     2  0.0000      0.971 0.000 1.000
#> GSM121370     2  0.0000      0.971 0.000 1.000
#> GSM121371     2  0.0000      0.971 0.000 1.000
#> GSM121372     2  0.0000      0.971 0.000 1.000
#> GSM121373     1  0.0000      0.986 1.000 0.000
#> GSM121374     1  0.0000      0.986 1.000 0.000
#> GSM121407     2  0.0000      0.971 0.000 1.000
#> GSM74387      2  0.0000      0.971 0.000 1.000
#> GSM74388      2  0.0000      0.971 0.000 1.000
#> GSM74389      1  0.0000      0.986 1.000 0.000
#> GSM74390      1  0.3584      0.923 0.932 0.068
#> GSM74391      1  0.0000      0.986 1.000 0.000
#> GSM74392      1  0.0000      0.986 1.000 0.000
#> GSM74393      1  0.0000      0.986 1.000 0.000
#> GSM74394      2  0.0000      0.971 0.000 1.000
#> GSM74239      1  0.0000      0.986 1.000 0.000
#> GSM74364      1  0.0000      0.986 1.000 0.000
#> GSM74365      1  0.0000      0.986 1.000 0.000
#> GSM74366      2  0.0672      0.965 0.008 0.992
#> GSM74367      1  0.0000      0.986 1.000 0.000
#> GSM74377      1  0.0000      0.986 1.000 0.000
#> GSM74378      2  0.7674      0.718 0.224 0.776
#> GSM74379      1  0.0000      0.986 1.000 0.000
#> GSM74380      1  0.0000      0.986 1.000 0.000
#> GSM74381      1  0.1414      0.969 0.980 0.020
#> GSM121357     2  0.0000      0.971 0.000 1.000
#> GSM121361     2  0.0000      0.971 0.000 1.000
#> GSM121363     2  0.0000      0.971 0.000 1.000
#> GSM121368     2  0.0000      0.971 0.000 1.000
#> GSM121369     2  0.0000      0.971 0.000 1.000
#> GSM74368      1  0.0376      0.983 0.996 0.004
#> GSM74369      1  0.0000      0.986 1.000 0.000
#> GSM74370      1  0.0000      0.986 1.000 0.000
#> GSM74371      1  0.0000      0.986 1.000 0.000
#> GSM74372      1  0.0000      0.986 1.000 0.000
#> GSM74373      1  0.0000      0.986 1.000 0.000
#> GSM74374      1  0.0000      0.986 1.000 0.000
#> GSM74375      1  0.0376      0.983 0.996 0.004
#> GSM74376      1  0.6801      0.783 0.820 0.180
#> GSM74405      1  0.0000      0.986 1.000 0.000
#> GSM74351      1  0.0000      0.986 1.000 0.000
#> GSM74352      2  0.0000      0.971 0.000 1.000
#> GSM74353      1  0.0000      0.986 1.000 0.000
#> GSM74354      1  0.0000      0.986 1.000 0.000
#> GSM74355      2  0.9522      0.427 0.372 0.628
#> GSM74382      1  0.0000      0.986 1.000 0.000
#> GSM74383      1  0.0000      0.986 1.000 0.000
#> GSM74384      2  0.0000      0.971 0.000 1.000
#> GSM74385      1  0.0000      0.986 1.000 0.000
#> GSM74386      1  0.0000      0.986 1.000 0.000
#> GSM74395      1  0.0000      0.986 1.000 0.000
#> GSM74396      1  0.0000      0.986 1.000 0.000
#> GSM74397      1  0.0000      0.986 1.000 0.000
#> GSM74398      1  0.0000      0.986 1.000 0.000
#> GSM74399      1  0.0000      0.986 1.000 0.000
#> GSM74400      1  0.0000      0.986 1.000 0.000
#> GSM74401      1  0.0000      0.986 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0000     0.8266 0.000 0.000 1.000
#> GSM74357      3  0.0237     0.8254 0.004 0.000 0.996
#> GSM74358      3  0.0892     0.8138 0.020 0.000 0.980
#> GSM74359      3  0.5785     0.2498 0.332 0.000 0.668
#> GSM74360      1  0.4346     0.7783 0.816 0.000 0.184
#> GSM74361      3  0.0237     0.8254 0.004 0.000 0.996
#> GSM74362      3  0.0237     0.8254 0.004 0.000 0.996
#> GSM74363      3  0.0000     0.8266 0.000 0.000 1.000
#> GSM74402      1  0.4121     0.7881 0.832 0.000 0.168
#> GSM74403      1  0.3482     0.8038 0.872 0.000 0.128
#> GSM74404      1  0.3551     0.8027 0.868 0.000 0.132
#> GSM74406      1  0.5810     0.6287 0.664 0.000 0.336
#> GSM74407      1  0.4399     0.7756 0.812 0.000 0.188
#> GSM74408      1  0.6026     0.5697 0.624 0.000 0.376
#> GSM74409      1  0.6045     0.5634 0.620 0.000 0.380
#> GSM74410      1  0.6280     0.4107 0.540 0.000 0.460
#> GSM119936     1  0.5785     0.6340 0.668 0.000 0.332
#> GSM119937     1  0.4702     0.7584 0.788 0.000 0.212
#> GSM74411      3  0.4346     0.7640 0.000 0.184 0.816
#> GSM74412      3  0.6095     0.3890 0.000 0.392 0.608
#> GSM74413      3  0.4399     0.7599 0.000 0.188 0.812
#> GSM74414      2  0.0592     0.7530 0.000 0.988 0.012
#> GSM74415      3  0.3116     0.8172 0.000 0.108 0.892
#> GSM121379     2  0.2711     0.7363 0.000 0.912 0.088
#> GSM121380     2  0.1643     0.7497 0.000 0.956 0.044
#> GSM121381     2  0.6309    -0.0577 0.000 0.504 0.496
#> GSM121382     2  0.6280     0.0832 0.000 0.540 0.460
#> GSM121383     2  0.6309    -0.0559 0.000 0.504 0.496
#> GSM121384     2  0.1964     0.7472 0.000 0.944 0.056
#> GSM121385     2  0.3686     0.7033 0.000 0.860 0.140
#> GSM121386     2  0.4062     0.6819 0.000 0.836 0.164
#> GSM121387     2  0.5968     0.3564 0.000 0.636 0.364
#> GSM121388     3  0.5465     0.6176 0.000 0.288 0.712
#> GSM121389     2  0.4235     0.6686 0.000 0.824 0.176
#> GSM121390     2  0.0592     0.7530 0.000 0.988 0.012
#> GSM121391     3  0.6079     0.3957 0.000 0.388 0.612
#> GSM121392     2  0.0000     0.7523 0.000 1.000 0.000
#> GSM121393     2  0.3686     0.7023 0.000 0.860 0.140
#> GSM121394     3  0.5138     0.6765 0.000 0.252 0.748
#> GSM121395     2  0.2878     0.7325 0.000 0.904 0.096
#> GSM121396     3  0.4062     0.7815 0.000 0.164 0.836
#> GSM121397     2  0.2261     0.7438 0.000 0.932 0.068
#> GSM121398     2  0.2796     0.7346 0.000 0.908 0.092
#> GSM121399     2  0.6252     0.1375 0.000 0.556 0.444
#> GSM74240      3  0.0237     0.8254 0.004 0.000 0.996
#> GSM74241      3  0.2772     0.8321 0.004 0.080 0.916
#> GSM74242      3  0.2066     0.7797 0.060 0.000 0.940
#> GSM74243      3  0.1643     0.7944 0.044 0.000 0.956
#> GSM74244      3  0.2066     0.8354 0.000 0.060 0.940
#> GSM74245      3  0.0237     0.8254 0.004 0.000 0.996
#> GSM74246      3  0.3879     0.7914 0.000 0.152 0.848
#> GSM74247      3  0.4605     0.7424 0.000 0.204 0.796
#> GSM74248      3  0.0237     0.8254 0.004 0.000 0.996
#> GSM74416      1  0.4121     0.7884 0.832 0.000 0.168
#> GSM74417      1  0.4062     0.7902 0.836 0.000 0.164
#> GSM74418      1  0.3686     0.8007 0.860 0.000 0.140
#> GSM74419      1  0.6215     0.4812 0.572 0.000 0.428
#> GSM121358     3  0.1964     0.8354 0.000 0.056 0.944
#> GSM121359     3  0.4002     0.7847 0.000 0.160 0.840
#> GSM121360     1  0.5263     0.7893 0.828 0.088 0.084
#> GSM121362     1  0.5179     0.7874 0.832 0.088 0.080
#> GSM121364     1  0.6302     0.3653 0.520 0.000 0.480
#> GSM121365     3  0.2165     0.8347 0.000 0.064 0.936
#> GSM121366     3  0.2625     0.8284 0.000 0.084 0.916
#> GSM121367     3  0.1643     0.8345 0.000 0.044 0.956
#> GSM121370     3  0.2066     0.8355 0.000 0.060 0.940
#> GSM121371     3  0.2066     0.8354 0.000 0.060 0.940
#> GSM121372     3  0.4121     0.7783 0.000 0.168 0.832
#> GSM121373     1  0.5291     0.7079 0.732 0.000 0.268
#> GSM121374     1  0.6309     0.3109 0.500 0.000 0.500
#> GSM121407     3  0.5621     0.5796 0.000 0.308 0.692
#> GSM74387      2  0.5785     0.4235 0.000 0.668 0.332
#> GSM74388      2  0.1860     0.7386 0.052 0.948 0.000
#> GSM74389      3  0.5178     0.4746 0.256 0.000 0.744
#> GSM74390      1  0.3340     0.7447 0.880 0.120 0.000
#> GSM74391      1  0.5098     0.7276 0.752 0.000 0.248
#> GSM74392      1  0.6291     0.3904 0.532 0.000 0.468
#> GSM74393      3  0.3941     0.6647 0.156 0.000 0.844
#> GSM74394      2  0.0592     0.7515 0.012 0.988 0.000
#> GSM74239      1  0.0237     0.8185 0.996 0.000 0.004
#> GSM74364      1  0.0237     0.8185 0.996 0.000 0.004
#> GSM74365      1  0.0892     0.8108 0.980 0.020 0.000
#> GSM74366      2  0.4654     0.6361 0.208 0.792 0.000
#> GSM74367      1  0.0424     0.8155 0.992 0.008 0.000
#> GSM74377      2  0.6274     0.1791 0.456 0.544 0.000
#> GSM74378      2  0.5397     0.5454 0.280 0.720 0.000
#> GSM74379      1  0.3879     0.7124 0.848 0.152 0.000
#> GSM74380      1  0.4796     0.6268 0.780 0.220 0.000
#> GSM74381      2  0.6204     0.2678 0.424 0.576 0.000
#> GSM121357     2  0.3879     0.6938 0.000 0.848 0.152
#> GSM121361     2  0.1411     0.7452 0.036 0.964 0.000
#> GSM121363     2  0.1031     0.7488 0.024 0.976 0.000
#> GSM121368     2  0.0592     0.7515 0.012 0.988 0.000
#> GSM121369     2  0.0983     0.7540 0.004 0.980 0.016
#> GSM74368      1  0.1267     0.8195 0.972 0.004 0.024
#> GSM74369      1  0.0475     0.8177 0.992 0.004 0.004
#> GSM74370      1  0.0237     0.8167 0.996 0.004 0.000
#> GSM74371      1  0.0424     0.8188 0.992 0.000 0.008
#> GSM74372      1  0.0237     0.8167 0.996 0.004 0.000
#> GSM74373      1  0.6026     0.3165 0.624 0.376 0.000
#> GSM74374      1  0.0892     0.8108 0.980 0.020 0.000
#> GSM74375      1  0.4399     0.6712 0.812 0.188 0.000
#> GSM74376      2  0.6140     0.3165 0.404 0.596 0.000
#> GSM74405      1  0.6215     0.1728 0.572 0.428 0.000
#> GSM74351      1  0.2625     0.8132 0.916 0.000 0.084
#> GSM74352      2  0.4452     0.6532 0.192 0.808 0.000
#> GSM74353      1  0.0000     0.8177 1.000 0.000 0.000
#> GSM74354      1  0.0592     0.8140 0.988 0.012 0.000
#> GSM74355      2  0.5678     0.4891 0.316 0.684 0.000
#> GSM74382      1  0.2537     0.8138 0.920 0.000 0.080
#> GSM74383      1  0.0237     0.8167 0.996 0.004 0.000
#> GSM74384      2  0.4178     0.6713 0.172 0.828 0.000
#> GSM74385      1  0.0237     0.8185 0.996 0.000 0.004
#> GSM74386      1  0.0237     0.8167 0.996 0.004 0.000
#> GSM74395      1  0.0237     0.8185 0.996 0.000 0.004
#> GSM74396      1  0.0237     0.8167 0.996 0.004 0.000
#> GSM74397      1  0.1163     0.8190 0.972 0.000 0.028
#> GSM74398      1  0.2165     0.7874 0.936 0.064 0.000
#> GSM74399      1  0.4974     0.6019 0.764 0.236 0.000
#> GSM74400      1  0.2066     0.7897 0.940 0.060 0.000
#> GSM74401      1  0.2625     0.7731 0.916 0.084 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.3105    0.51663 0.004 0.000 0.856 0.140
#> GSM74357      3  0.3306    0.49539 0.004 0.000 0.840 0.156
#> GSM74358      3  0.2773    0.54045 0.004 0.000 0.880 0.116
#> GSM74359      4  0.6611    0.17650 0.080 0.000 0.460 0.460
#> GSM74360      4  0.7159    0.34980 0.244 0.000 0.200 0.556
#> GSM74361      3  0.5018    0.20129 0.012 0.000 0.656 0.332
#> GSM74362      3  0.4994   -0.12745 0.000 0.000 0.520 0.480
#> GSM74363      3  0.0844    0.64150 0.004 0.012 0.980 0.004
#> GSM74402      1  0.1004    0.83175 0.972 0.000 0.024 0.004
#> GSM74403      1  0.0804    0.83375 0.980 0.000 0.012 0.008
#> GSM74404      1  0.1677    0.82250 0.948 0.000 0.012 0.040
#> GSM74406      1  0.5507    0.62718 0.732 0.000 0.156 0.112
#> GSM74407      1  0.3245    0.77504 0.880 0.000 0.064 0.056
#> GSM74408      1  0.5309    0.64796 0.744 0.000 0.164 0.092
#> GSM74409      1  0.7034    0.33711 0.576 0.000 0.220 0.204
#> GSM74410      1  0.7031    0.32447 0.556 0.000 0.288 0.156
#> GSM119936     1  0.4337    0.72067 0.808 0.000 0.140 0.052
#> GSM119937     1  0.3013    0.78528 0.888 0.000 0.080 0.032
#> GSM74411      3  0.5556    0.53890 0.000 0.188 0.720 0.092
#> GSM74412      3  0.6717    0.29141 0.000 0.332 0.560 0.108
#> GSM74413      3  0.5463    0.45387 0.000 0.256 0.692 0.052
#> GSM74414      2  0.1182    0.61589 0.000 0.968 0.016 0.016
#> GSM74415      3  0.3978    0.51109 0.000 0.012 0.796 0.192
#> GSM121379     2  0.3569    0.59111 0.000 0.804 0.196 0.000
#> GSM121380     2  0.1743    0.62282 0.000 0.940 0.056 0.004
#> GSM121381     2  0.5151    0.17242 0.000 0.532 0.464 0.004
#> GSM121382     2  0.5112    0.24356 0.000 0.560 0.436 0.004
#> GSM121383     2  0.5132    0.21283 0.000 0.548 0.448 0.004
#> GSM121384     2  0.1661    0.62242 0.000 0.944 0.052 0.004
#> GSM121385     2  0.4188    0.55060 0.000 0.752 0.244 0.004
#> GSM121386     2  0.3982    0.57384 0.000 0.776 0.220 0.004
#> GSM121387     2  0.4889    0.38576 0.000 0.636 0.360 0.004
#> GSM121388     3  0.4925    0.06819 0.000 0.428 0.572 0.000
#> GSM121389     2  0.3751    0.58900 0.000 0.800 0.196 0.004
#> GSM121390     2  0.0376    0.61476 0.000 0.992 0.004 0.004
#> GSM121391     3  0.5263    0.01755 0.000 0.448 0.544 0.008
#> GSM121392     2  0.1489    0.59953 0.000 0.952 0.004 0.044
#> GSM121393     2  0.4072    0.54512 0.000 0.748 0.252 0.000
#> GSM121394     3  0.5016    0.15972 0.000 0.396 0.600 0.004
#> GSM121395     2  0.3837    0.57252 0.000 0.776 0.224 0.000
#> GSM121396     3  0.4647    0.40061 0.000 0.288 0.704 0.008
#> GSM121397     2  0.2401    0.61991 0.000 0.904 0.092 0.004
#> GSM121398     2  0.3688    0.58443 0.000 0.792 0.208 0.000
#> GSM121399     2  0.5112    0.24307 0.000 0.560 0.436 0.004
#> GSM74240      4  0.4643    0.34702 0.000 0.000 0.344 0.656
#> GSM74241      3  0.5277   -0.00325 0.000 0.008 0.532 0.460
#> GSM74242      3  0.5163   -0.09412 0.004 0.000 0.516 0.480
#> GSM74243      3  0.5163   -0.09181 0.004 0.000 0.516 0.480
#> GSM74244      4  0.4994    0.11199 0.000 0.000 0.480 0.520
#> GSM74245      4  0.4992    0.12303 0.000 0.000 0.476 0.524
#> GSM74246      4  0.4567    0.39137 0.000 0.008 0.276 0.716
#> GSM74247      4  0.4844    0.37140 0.000 0.012 0.300 0.688
#> GSM74248      4  0.4855    0.27371 0.000 0.000 0.400 0.600
#> GSM74416      1  0.0779    0.83425 0.980 0.000 0.016 0.004
#> GSM74417      1  0.1284    0.82888 0.964 0.000 0.024 0.012
#> GSM74418      1  0.0779    0.83425 0.980 0.000 0.016 0.004
#> GSM74419      1  0.4499    0.70648 0.792 0.000 0.160 0.048
#> GSM121358     3  0.0524    0.64259 0.000 0.008 0.988 0.004
#> GSM121359     3  0.3636    0.55785 0.000 0.172 0.820 0.008
#> GSM121360     4  0.1767    0.47989 0.012 0.000 0.044 0.944
#> GSM121362     4  0.3669    0.48203 0.052 0.032 0.040 0.876
#> GSM121364     4  0.7069    0.23143 0.124 0.000 0.408 0.468
#> GSM121365     3  0.0707    0.64583 0.000 0.020 0.980 0.000
#> GSM121366     3  0.1389    0.64725 0.000 0.048 0.952 0.000
#> GSM121367     3  0.0000    0.64051 0.000 0.000 1.000 0.000
#> GSM121370     3  0.1004    0.63417 0.000 0.004 0.972 0.024
#> GSM121371     3  0.0336    0.64367 0.000 0.008 0.992 0.000
#> GSM121372     3  0.3324    0.59227 0.000 0.136 0.852 0.012
#> GSM121373     4  0.5025    0.42434 0.032 0.000 0.252 0.716
#> GSM121374     4  0.6826    0.24099 0.100 0.000 0.416 0.484
#> GSM121407     3  0.4770    0.40863 0.000 0.288 0.700 0.012
#> GSM74387      4  0.5334    0.42587 0.000 0.172 0.088 0.740
#> GSM74388      4  0.4817    0.11552 0.000 0.388 0.000 0.612
#> GSM74389      4  0.4991    0.29956 0.004 0.000 0.388 0.608
#> GSM74390      4  0.5705    0.27862 0.064 0.260 0.000 0.676
#> GSM74391      4  0.7451    0.13467 0.408 0.000 0.172 0.420
#> GSM74392      4  0.5756    0.27448 0.032 0.000 0.400 0.568
#> GSM74393      4  0.4889    0.33122 0.004 0.000 0.360 0.636
#> GSM74394      4  0.4431    0.24742 0.000 0.304 0.000 0.696
#> GSM74239      1  0.0336    0.83808 0.992 0.000 0.000 0.008
#> GSM74364      1  0.0000    0.83724 1.000 0.000 0.000 0.000
#> GSM74365      1  0.1398    0.83142 0.956 0.004 0.000 0.040
#> GSM74366      2  0.5827    0.20234 0.036 0.568 0.000 0.396
#> GSM74367      1  0.1305    0.83293 0.960 0.004 0.000 0.036
#> GSM74377      1  0.7893    0.06324 0.376 0.324 0.000 0.300
#> GSM74378      2  0.6243    0.18433 0.060 0.548 0.000 0.392
#> GSM74379      1  0.6153    0.50325 0.604 0.068 0.000 0.328
#> GSM74380      1  0.6261    0.50876 0.608 0.080 0.000 0.312
#> GSM74381      2  0.6770    0.11386 0.096 0.496 0.000 0.408
#> GSM121357     2  0.3554    0.61318 0.000 0.844 0.136 0.020
#> GSM121361     4  0.4564    0.21578 0.000 0.328 0.000 0.672
#> GSM121363     4  0.4907    0.05206 0.000 0.420 0.000 0.580
#> GSM121368     4  0.4776    0.13471 0.000 0.376 0.000 0.624
#> GSM121369     4  0.3625    0.40173 0.000 0.160 0.012 0.828
#> GSM74368      1  0.0524    0.83775 0.988 0.000 0.004 0.008
#> GSM74369      1  0.0657    0.83776 0.984 0.004 0.000 0.012
#> GSM74370      1  0.5750    0.36701 0.532 0.028 0.000 0.440
#> GSM74371      1  0.0188    0.83785 0.996 0.000 0.000 0.004
#> GSM74372      4  0.5442    0.11439 0.336 0.028 0.000 0.636
#> GSM74373      4  0.7830    0.01770 0.272 0.324 0.000 0.404
#> GSM74374      1  0.4428    0.64385 0.720 0.004 0.000 0.276
#> GSM74375      1  0.4300    0.75047 0.820 0.092 0.000 0.088
#> GSM74376      2  0.6785    0.10269 0.096 0.484 0.000 0.420
#> GSM74405      4  0.7423   -0.05625 0.168 0.404 0.000 0.428
#> GSM74351      1  0.0524    0.83593 0.988 0.000 0.008 0.004
#> GSM74352      2  0.5722    0.41735 0.136 0.716 0.000 0.148
#> GSM74353      1  0.0524    0.83766 0.988 0.004 0.000 0.008
#> GSM74354      1  0.1576    0.82875 0.948 0.004 0.000 0.048
#> GSM74355      2  0.6508    0.20721 0.084 0.556 0.000 0.360
#> GSM74382      1  0.0336    0.83623 0.992 0.000 0.008 0.000
#> GSM74383      1  0.1109    0.83490 0.968 0.004 0.000 0.028
#> GSM74384      2  0.5548    0.22423 0.024 0.588 0.000 0.388
#> GSM74385      1  0.0188    0.83807 0.996 0.000 0.000 0.004
#> GSM74386      1  0.3355    0.76507 0.836 0.004 0.000 0.160
#> GSM74395      1  0.1637    0.82866 0.940 0.000 0.000 0.060
#> GSM74396      1  0.2888    0.78494 0.872 0.004 0.000 0.124
#> GSM74397      1  0.0188    0.83785 0.996 0.000 0.000 0.004
#> GSM74398      1  0.5773    0.52197 0.620 0.044 0.000 0.336
#> GSM74399      1  0.6025    0.58983 0.668 0.096 0.000 0.236
#> GSM74400      1  0.1042    0.83603 0.972 0.008 0.000 0.020
#> GSM74401      1  0.1520    0.83275 0.956 0.020 0.000 0.024

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      4  0.5419    0.38926 0.000 0.100 0.208 0.680 0.012
#> GSM74357      4  0.5532    0.38054 0.000 0.100 0.224 0.664 0.012
#> GSM74358      4  0.5755    0.36132 0.000 0.096 0.252 0.636 0.016
#> GSM74359      4  0.3049    0.49271 0.048 0.000 0.064 0.876 0.012
#> GSM74360      4  0.4996    0.43958 0.072 0.000 0.092 0.764 0.072
#> GSM74361      4  0.4704    0.40551 0.016 0.040 0.216 0.728 0.000
#> GSM74362      4  0.2929    0.44961 0.000 0.004 0.128 0.856 0.012
#> GSM74363      4  0.7158    0.21690 0.000 0.276 0.276 0.428 0.020
#> GSM74402      1  0.1168    0.81629 0.960 0.000 0.008 0.032 0.000
#> GSM74403      1  0.2248    0.79052 0.900 0.000 0.012 0.088 0.000
#> GSM74404      1  0.3724    0.70063 0.788 0.000 0.028 0.184 0.000
#> GSM74406      1  0.4632    0.20914 0.540 0.000 0.012 0.448 0.000
#> GSM74407      1  0.3317    0.75814 0.840 0.000 0.044 0.116 0.000
#> GSM74408      4  0.4843    0.33284 0.328 0.024 0.008 0.640 0.000
#> GSM74409      4  0.4522    0.44673 0.252 0.012 0.016 0.716 0.004
#> GSM74410      4  0.4549    0.45566 0.244 0.032 0.008 0.716 0.000
#> GSM119936     1  0.4656    0.12553 0.508 0.000 0.012 0.480 0.000
#> GSM119937     4  0.4449   -0.10915 0.484 0.004 0.000 0.512 0.000
#> GSM74411      3  0.4259    0.49419 0.000 0.172 0.776 0.036 0.016
#> GSM74412      3  0.4220    0.49986 0.000 0.200 0.760 0.008 0.032
#> GSM74413      3  0.4353    0.44798 0.000 0.224 0.740 0.024 0.012
#> GSM74414      2  0.6387    0.43077 0.008 0.544 0.172 0.000 0.276
#> GSM74415      3  0.2645    0.56867 0.000 0.096 0.884 0.008 0.012
#> GSM121379     2  0.2488    0.76064 0.000 0.872 0.000 0.004 0.124
#> GSM121380     2  0.3861    0.64614 0.000 0.712 0.000 0.004 0.284
#> GSM121381     2  0.2026    0.74642 0.000 0.928 0.016 0.012 0.044
#> GSM121382     2  0.1087    0.75658 0.000 0.968 0.008 0.008 0.016
#> GSM121383     2  0.1087    0.75394 0.000 0.968 0.008 0.008 0.016
#> GSM121384     2  0.3861    0.64550 0.000 0.712 0.000 0.004 0.284
#> GSM121385     2  0.2124    0.76928 0.000 0.900 0.000 0.004 0.096
#> GSM121386     2  0.2488    0.76301 0.000 0.872 0.000 0.004 0.124
#> GSM121387     2  0.1914    0.76580 0.000 0.924 0.000 0.016 0.060
#> GSM121388     2  0.1498    0.73298 0.000 0.952 0.016 0.024 0.008
#> GSM121389     2  0.2707    0.75664 0.000 0.860 0.000 0.008 0.132
#> GSM121390     2  0.4135    0.57597 0.000 0.656 0.000 0.004 0.340
#> GSM121391     2  0.1524    0.73366 0.000 0.952 0.016 0.016 0.016
#> GSM121392     2  0.4288    0.50617 0.000 0.612 0.000 0.004 0.384
#> GSM121393     2  0.2921    0.76194 0.000 0.856 0.000 0.020 0.124
#> GSM121394     2  0.2591    0.70436 0.000 0.904 0.044 0.032 0.020
#> GSM121395     2  0.2179    0.76798 0.000 0.896 0.000 0.004 0.100
#> GSM121396     2  0.3624    0.65508 0.000 0.844 0.084 0.052 0.020
#> GSM121397     2  0.3715    0.66939 0.000 0.736 0.000 0.004 0.260
#> GSM121398     2  0.2389    0.76657 0.000 0.880 0.004 0.000 0.116
#> GSM121399     2  0.0566    0.75664 0.000 0.984 0.000 0.004 0.012
#> GSM74240      3  0.4724    0.55657 0.000 0.000 0.732 0.164 0.104
#> GSM74241      3  0.2251    0.61231 0.000 0.024 0.916 0.008 0.052
#> GSM74242      3  0.2670    0.59871 0.004 0.016 0.888 0.088 0.004
#> GSM74243      3  0.2943    0.59297 0.004 0.016 0.868 0.108 0.004
#> GSM74244      3  0.2338    0.61599 0.000 0.016 0.916 0.036 0.032
#> GSM74245      3  0.2859    0.61556 0.000 0.016 0.888 0.060 0.036
#> GSM74246      3  0.4605    0.58060 0.000 0.004 0.756 0.108 0.132
#> GSM74247      3  0.4252    0.60629 0.000 0.020 0.796 0.056 0.128
#> GSM74248      3  0.4522    0.56129 0.000 0.000 0.744 0.176 0.080
#> GSM74416      1  0.1942    0.80217 0.920 0.000 0.012 0.068 0.000
#> GSM74417      1  0.3318    0.70972 0.800 0.000 0.008 0.192 0.000
#> GSM74418      1  0.1608    0.80536 0.928 0.000 0.000 0.072 0.000
#> GSM74419      1  0.4715    0.53379 0.672 0.004 0.032 0.292 0.000
#> GSM121358     4  0.7262    0.15861 0.000 0.284 0.324 0.372 0.020
#> GSM121359     2  0.7035    0.02278 0.000 0.420 0.360 0.200 0.020
#> GSM121360     4  0.6050    0.12620 0.000 0.000 0.144 0.544 0.312
#> GSM121362     4  0.5761    0.22547 0.004 0.004 0.096 0.612 0.284
#> GSM121364     4  0.3514    0.48363 0.056 0.000 0.072 0.852 0.020
#> GSM121365     4  0.7271    0.15277 0.000 0.288 0.328 0.364 0.020
#> GSM121366     3  0.7267   -0.12540 0.000 0.348 0.352 0.280 0.020
#> GSM121367     4  0.7276    0.13083 0.000 0.288 0.340 0.352 0.020
#> GSM121370     3  0.7249   -0.15999 0.000 0.272 0.372 0.336 0.020
#> GSM121371     4  0.7281    0.14485 0.000 0.296 0.328 0.356 0.020
#> GSM121372     2  0.6997    0.04568 0.000 0.428 0.360 0.192 0.020
#> GSM121373     4  0.4129    0.43951 0.016 0.000 0.076 0.808 0.100
#> GSM121374     4  0.3201    0.48724 0.036 0.000 0.064 0.872 0.028
#> GSM121407     2  0.6845    0.10057 0.000 0.460 0.340 0.184 0.016
#> GSM74387      3  0.5377    0.42820 0.000 0.012 0.648 0.064 0.276
#> GSM74388      5  0.4312    0.58469 0.000 0.016 0.136 0.060 0.788
#> GSM74389      3  0.5648    0.18302 0.000 0.000 0.476 0.448 0.076
#> GSM74390      5  0.6596    0.32974 0.020 0.008 0.292 0.124 0.556
#> GSM74391      3  0.7016    0.09092 0.256 0.000 0.452 0.276 0.016
#> GSM74392      4  0.5015    0.27114 0.020 0.000 0.272 0.676 0.032
#> GSM74393      3  0.5891    0.21618 0.000 0.000 0.468 0.432 0.100
#> GSM74394      3  0.5549    0.00724 0.000 0.004 0.480 0.056 0.460
#> GSM74239      1  0.0794    0.81738 0.972 0.000 0.000 0.000 0.028
#> GSM74364      1  0.0404    0.81972 0.988 0.000 0.000 0.000 0.012
#> GSM74365      1  0.2561    0.73979 0.856 0.000 0.000 0.000 0.144
#> GSM74366      5  0.3071    0.69330 0.080 0.036 0.012 0.000 0.872
#> GSM74367      1  0.1341    0.80838 0.944 0.000 0.000 0.000 0.056
#> GSM74377      5  0.4680    0.22501 0.448 0.008 0.004 0.000 0.540
#> GSM74378      5  0.2962    0.69132 0.084 0.048 0.000 0.000 0.868
#> GSM74379      1  0.4434    0.05323 0.536 0.000 0.004 0.000 0.460
#> GSM74380      1  0.4101    0.34293 0.628 0.000 0.000 0.000 0.372
#> GSM74381      5  0.3218    0.70494 0.124 0.016 0.012 0.000 0.848
#> GSM121357     2  0.6743    0.36621 0.000 0.448 0.124 0.028 0.400
#> GSM121361     5  0.4485    0.60274 0.000 0.032 0.080 0.096 0.792
#> GSM121363     5  0.3525    0.63015 0.000 0.028 0.080 0.040 0.852
#> GSM121368     5  0.3523    0.61169 0.000 0.004 0.120 0.044 0.832
#> GSM121369     5  0.5460    0.45315 0.000 0.000 0.148 0.196 0.656
#> GSM74368      1  0.3142    0.79197 0.864 0.004 0.000 0.056 0.076
#> GSM74369      1  0.2361    0.78460 0.892 0.000 0.000 0.012 0.096
#> GSM74370      5  0.6642    0.39299 0.232 0.000 0.008 0.252 0.508
#> GSM74371      1  0.0162    0.82050 0.996 0.000 0.000 0.004 0.000
#> GSM74372      5  0.8338    0.25335 0.248 0.000 0.160 0.224 0.368
#> GSM74373      5  0.3815    0.66896 0.220 0.004 0.012 0.000 0.764
#> GSM74374      1  0.3719    0.66421 0.776 0.000 0.012 0.004 0.208
#> GSM74375      1  0.3323    0.73627 0.844 0.004 0.036 0.000 0.116
#> GSM74376      5  0.5480    0.56866 0.284 0.008 0.076 0.000 0.632
#> GSM74405      5  0.3961    0.67697 0.212 0.000 0.028 0.000 0.760
#> GSM74351      1  0.1357    0.81335 0.948 0.000 0.004 0.048 0.000
#> GSM74352      5  0.5695    0.54312 0.256 0.132 0.000 0.000 0.612
#> GSM74353      1  0.0807    0.82136 0.976 0.000 0.000 0.012 0.012
#> GSM74354      1  0.1357    0.81331 0.948 0.000 0.004 0.000 0.048
#> GSM74355      5  0.4010    0.69311 0.176 0.032 0.008 0.000 0.784
#> GSM74382      1  0.1430    0.81124 0.944 0.000 0.004 0.052 0.000
#> GSM74383      1  0.1121    0.81355 0.956 0.000 0.000 0.000 0.044
#> GSM74384      5  0.2588    0.67742 0.048 0.060 0.000 0.000 0.892
#> GSM74385      1  0.1197    0.81339 0.952 0.000 0.000 0.048 0.000
#> GSM74386      1  0.3352    0.77846 0.852 0.000 0.012 0.036 0.100
#> GSM74395      1  0.1483    0.82167 0.952 0.000 0.012 0.008 0.028
#> GSM74396      1  0.1732    0.79759 0.920 0.000 0.000 0.000 0.080
#> GSM74397      1  0.0290    0.82019 0.992 0.000 0.000 0.008 0.000
#> GSM74398      1  0.4503    0.45558 0.664 0.000 0.024 0.000 0.312
#> GSM74399      1  0.4127    0.46502 0.680 0.000 0.008 0.000 0.312
#> GSM74400      1  0.0880    0.81686 0.968 0.000 0.000 0.000 0.032
#> GSM74401      1  0.0771    0.81896 0.976 0.000 0.004 0.000 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.3468    0.62232 0.000 0.008 0.728 0.264 0.000 0.000
#> GSM74357      3  0.3126    0.65296 0.000 0.000 0.752 0.248 0.000 0.000
#> GSM74358      3  0.2912    0.69716 0.000 0.000 0.784 0.216 0.000 0.000
#> GSM74359      4  0.3248    0.59586 0.004 0.000 0.224 0.768 0.000 0.004
#> GSM74360      4  0.2586    0.65972 0.012 0.000 0.064 0.892 0.016 0.016
#> GSM74361      4  0.5055    0.58307 0.004 0.040 0.116 0.712 0.128 0.000
#> GSM74362      4  0.2890    0.64682 0.000 0.000 0.128 0.844 0.024 0.004
#> GSM74363      3  0.2257    0.79714 0.000 0.008 0.876 0.116 0.000 0.000
#> GSM74402      1  0.0858    0.79566 0.968 0.000 0.004 0.028 0.000 0.000
#> GSM74403      1  0.2915    0.71865 0.808 0.000 0.000 0.184 0.008 0.000
#> GSM74404      1  0.4518    0.48240 0.612 0.000 0.004 0.348 0.036 0.000
#> GSM74406      1  0.5265    0.19418 0.500 0.000 0.100 0.400 0.000 0.000
#> GSM74407      1  0.3245    0.71157 0.796 0.000 0.004 0.184 0.016 0.000
#> GSM74408      4  0.5565    0.40160 0.240 0.000 0.208 0.552 0.000 0.000
#> GSM74409      4  0.4634    0.54448 0.124 0.000 0.188 0.688 0.000 0.000
#> GSM74410      4  0.5235    0.28455 0.100 0.000 0.380 0.520 0.000 0.000
#> GSM119936     1  0.5673    0.05904 0.448 0.000 0.156 0.396 0.000 0.000
#> GSM119937     1  0.5872   -0.05269 0.404 0.000 0.196 0.400 0.000 0.000
#> GSM74411      5  0.3756    0.73257 0.000 0.024 0.184 0.012 0.776 0.004
#> GSM74412      5  0.3653    0.75868 0.000 0.040 0.140 0.012 0.804 0.004
#> GSM74413      5  0.4041    0.72167 0.000 0.040 0.184 0.012 0.760 0.004
#> GSM74414      5  0.7220    0.25457 0.000 0.320 0.080 0.016 0.420 0.164
#> GSM74415      5  0.2568    0.79376 0.000 0.016 0.096 0.012 0.876 0.000
#> GSM121379     2  0.0146    0.95668 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM121380     2  0.0935    0.94983 0.000 0.964 0.000 0.004 0.000 0.032
#> GSM121381     2  0.2588    0.87512 0.000 0.860 0.124 0.004 0.000 0.012
#> GSM121382     2  0.0912    0.95482 0.000 0.972 0.008 0.012 0.004 0.004
#> GSM121383     2  0.0717    0.95482 0.000 0.976 0.016 0.008 0.000 0.000
#> GSM121384     2  0.0777    0.95234 0.000 0.972 0.000 0.004 0.000 0.024
#> GSM121385     2  0.0405    0.95695 0.000 0.988 0.008 0.000 0.000 0.004
#> GSM121386     2  0.0458    0.95587 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM121387     2  0.0405    0.95673 0.000 0.988 0.004 0.008 0.000 0.000
#> GSM121388     2  0.1636    0.94649 0.000 0.936 0.036 0.024 0.000 0.004
#> GSM121389     2  0.0862    0.95434 0.000 0.972 0.004 0.016 0.000 0.008
#> GSM121390     2  0.1753    0.91685 0.000 0.912 0.000 0.004 0.000 0.084
#> GSM121391     2  0.1049    0.94851 0.000 0.960 0.032 0.008 0.000 0.000
#> GSM121392     2  0.2257    0.88383 0.000 0.876 0.000 0.008 0.000 0.116
#> GSM121393     2  0.1477    0.94008 0.000 0.940 0.008 0.048 0.000 0.004
#> GSM121394     2  0.2174    0.90644 0.000 0.896 0.088 0.008 0.008 0.000
#> GSM121395     2  0.0665    0.95653 0.000 0.980 0.008 0.008 0.000 0.004
#> GSM121396     2  0.3124    0.87721 0.000 0.852 0.096 0.016 0.032 0.004
#> GSM121397     2  0.0935    0.95039 0.000 0.964 0.000 0.004 0.000 0.032
#> GSM121398     2  0.0551    0.95692 0.000 0.984 0.004 0.004 0.000 0.008
#> GSM121399     2  0.0405    0.95644 0.000 0.988 0.000 0.008 0.000 0.004
#> GSM74240      5  0.2662    0.70651 0.000 0.000 0.004 0.152 0.840 0.004
#> GSM74241      5  0.1471    0.80494 0.000 0.000 0.064 0.000 0.932 0.004
#> GSM74242      5  0.2988    0.78772 0.004 0.000 0.060 0.084 0.852 0.000
#> GSM74243      5  0.2882    0.78828 0.004 0.000 0.060 0.076 0.860 0.000
#> GSM74244      5  0.1757    0.80361 0.000 0.000 0.076 0.008 0.916 0.000
#> GSM74245      5  0.1926    0.80495 0.000 0.000 0.068 0.020 0.912 0.000
#> GSM74246      5  0.1769    0.77889 0.000 0.000 0.012 0.060 0.924 0.004
#> GSM74247      5  0.1152    0.80486 0.000 0.000 0.044 0.000 0.952 0.004
#> GSM74248      5  0.2584    0.71860 0.000 0.000 0.004 0.144 0.848 0.004
#> GSM74416      1  0.2006    0.77259 0.892 0.000 0.004 0.104 0.000 0.000
#> GSM74417      1  0.3470    0.65681 0.740 0.000 0.012 0.248 0.000 0.000
#> GSM74418      1  0.1958    0.77521 0.896 0.000 0.004 0.100 0.000 0.000
#> GSM74419      1  0.4837    0.42026 0.580 0.016 0.008 0.376 0.020 0.000
#> GSM121358     3  0.2095    0.83721 0.000 0.004 0.904 0.076 0.016 0.000
#> GSM121359     3  0.2997    0.74974 0.000 0.060 0.844 0.000 0.096 0.000
#> GSM121360     4  0.5445    0.41742 0.000 0.004 0.048 0.608 0.048 0.292
#> GSM121362     4  0.4666    0.58509 0.000 0.012 0.060 0.724 0.016 0.188
#> GSM121364     4  0.3073    0.63233 0.016 0.000 0.164 0.816 0.000 0.004
#> GSM121365     3  0.1225    0.84563 0.000 0.000 0.952 0.036 0.012 0.000
#> GSM121366     3  0.1405    0.82994 0.000 0.024 0.948 0.004 0.024 0.000
#> GSM121367     3  0.1168    0.84494 0.000 0.000 0.956 0.028 0.016 0.000
#> GSM121370     3  0.2146    0.83837 0.000 0.004 0.908 0.044 0.044 0.000
#> GSM121371     3  0.1226    0.84243 0.000 0.004 0.952 0.040 0.004 0.000
#> GSM121372     3  0.2928    0.76306 0.000 0.056 0.856 0.004 0.084 0.000
#> GSM121373     4  0.4478    0.58743 0.000 0.000 0.200 0.708 0.004 0.088
#> GSM121374     4  0.3411    0.58766 0.004 0.000 0.232 0.756 0.000 0.008
#> GSM121407     3  0.2523    0.78964 0.000 0.036 0.888 0.004 0.068 0.004
#> GSM74387      5  0.2528    0.78138 0.000 0.000 0.024 0.028 0.892 0.056
#> GSM74388      6  0.5189    0.59790 0.000 0.048 0.000 0.100 0.164 0.688
#> GSM74389      4  0.4103    0.10128 0.000 0.000 0.004 0.544 0.448 0.004
#> GSM74390      6  0.6035    0.34773 0.012 0.004 0.000 0.180 0.284 0.520
#> GSM74391      5  0.5543    0.23924 0.148 0.000 0.004 0.296 0.552 0.000
#> GSM74392      4  0.3329    0.58044 0.012 0.000 0.012 0.796 0.180 0.000
#> GSM74393      4  0.4262    0.15487 0.000 0.000 0.004 0.560 0.424 0.012
#> GSM74394      5  0.4889    0.37202 0.000 0.000 0.000 0.084 0.604 0.312
#> GSM74239      1  0.0713    0.79166 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM74364      1  0.0260    0.79627 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM74365      1  0.2730    0.67615 0.808 0.000 0.000 0.000 0.000 0.192
#> GSM74366      6  0.1590    0.78642 0.048 0.008 0.000 0.000 0.008 0.936
#> GSM74367      1  0.1267    0.78157 0.940 0.000 0.000 0.000 0.000 0.060
#> GSM74377      6  0.3266    0.63609 0.272 0.000 0.000 0.000 0.000 0.728
#> GSM74378      6  0.1391    0.78547 0.040 0.016 0.000 0.000 0.000 0.944
#> GSM74379      6  0.3221    0.64520 0.264 0.000 0.000 0.000 0.000 0.736
#> GSM74380      1  0.3862    0.00985 0.524 0.000 0.000 0.000 0.000 0.476
#> GSM74381      6  0.1367    0.78740 0.044 0.012 0.000 0.000 0.000 0.944
#> GSM121357     6  0.5561    0.33003 0.000 0.088 0.332 0.008 0.012 0.560
#> GSM121361     6  0.3598    0.69413 0.000 0.040 0.000 0.116 0.028 0.816
#> GSM121363     6  0.2198    0.74846 0.000 0.032 0.000 0.032 0.024 0.912
#> GSM121368     6  0.1616    0.76045 0.000 0.012 0.000 0.020 0.028 0.940
#> GSM121369     6  0.4523    0.60309 0.000 0.016 0.004 0.204 0.056 0.720
#> GSM74368      1  0.4739    0.67808 0.736 0.004 0.072 0.028 0.004 0.156
#> GSM74369      1  0.3704    0.65012 0.764 0.000 0.024 0.004 0.004 0.204
#> GSM74370      6  0.4528    0.61761 0.072 0.000 0.004 0.200 0.008 0.716
#> GSM74371      1  0.0508    0.79660 0.984 0.000 0.004 0.012 0.000 0.000
#> GSM74372      4  0.6958    0.37253 0.132 0.000 0.004 0.508 0.164 0.192
#> GSM74373      6  0.2757    0.76432 0.136 0.008 0.000 0.004 0.004 0.848
#> GSM74374      1  0.3652    0.64971 0.760 0.000 0.000 0.020 0.008 0.212
#> GSM74375      1  0.2400    0.76603 0.900 0.004 0.000 0.008 0.040 0.048
#> GSM74376      6  0.3393    0.73658 0.192 0.004 0.000 0.000 0.020 0.784
#> GSM74405      6  0.1753    0.78461 0.084 0.000 0.000 0.000 0.004 0.912
#> GSM74351      1  0.1610    0.78326 0.916 0.000 0.000 0.084 0.000 0.000
#> GSM74352      6  0.4049    0.63867 0.256 0.032 0.000 0.004 0.000 0.708
#> GSM74353      1  0.0993    0.79961 0.964 0.000 0.000 0.024 0.000 0.012
#> GSM74354      1  0.0935    0.79115 0.964 0.000 0.004 0.000 0.000 0.032
#> GSM74355      6  0.2515    0.77640 0.104 0.008 0.000 0.004 0.008 0.876
#> GSM74382      1  0.1806    0.78013 0.908 0.000 0.004 0.088 0.000 0.000
#> GSM74383      1  0.1588    0.77794 0.924 0.000 0.000 0.004 0.000 0.072
#> GSM74384      6  0.1168    0.78335 0.028 0.016 0.000 0.000 0.000 0.956
#> GSM74385      1  0.2149    0.77810 0.888 0.000 0.004 0.104 0.000 0.004
#> GSM74386      1  0.2747    0.78842 0.876 0.000 0.004 0.076 0.008 0.036
#> GSM74395      1  0.1728    0.79490 0.924 0.000 0.004 0.064 0.000 0.008
#> GSM74396      1  0.1812    0.77098 0.912 0.000 0.000 0.008 0.000 0.080
#> GSM74397      1  0.0767    0.79760 0.976 0.000 0.004 0.008 0.000 0.012
#> GSM74398      1  0.3565    0.49007 0.692 0.000 0.000 0.000 0.004 0.304
#> GSM74399      1  0.3854    0.05188 0.536 0.000 0.000 0.000 0.000 0.464
#> GSM74400      1  0.0508    0.79588 0.984 0.000 0.004 0.000 0.000 0.012
#> GSM74401      1  0.0508    0.79584 0.984 0.000 0.004 0.000 0.000 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> MAD:NMF 119         2.13e-09 2
#> MAD:NMF 100         1.57e-13 3
#> MAD:NMF  64         6.35e-14 4
#> MAD:NMF  73         2.37e-23 5
#> MAD:NMF 102         8.44e-42 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.674           0.887       0.943         0.4813 0.514   0.514
#> 3 3 0.747           0.856       0.912         0.3616 0.811   0.635
#> 4 4 0.717           0.796       0.858         0.1067 0.929   0.789
#> 5 5 0.734           0.536       0.781         0.0639 0.879   0.594
#> 6 6 0.787           0.695       0.821         0.0533 0.928   0.705

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.9608      0.461 0.384 0.616
#> GSM74357      2  0.9608      0.461 0.384 0.616
#> GSM74358      2  0.9608      0.461 0.384 0.616
#> GSM74359      1  0.0000      0.952 1.000 0.000
#> GSM74360      1  0.0000      0.952 1.000 0.000
#> GSM74361      1  0.9209      0.464 0.664 0.336
#> GSM74362      1  0.7883      0.673 0.764 0.236
#> GSM74363      2  0.9608      0.461 0.384 0.616
#> GSM74402      1  0.0000      0.952 1.000 0.000
#> GSM74403      1  0.0000      0.952 1.000 0.000
#> GSM74404      1  0.0000      0.952 1.000 0.000
#> GSM74406      1  0.0000      0.952 1.000 0.000
#> GSM74407      1  0.9087      0.493 0.676 0.324
#> GSM74408      1  0.0000      0.952 1.000 0.000
#> GSM74409      1  0.0000      0.952 1.000 0.000
#> GSM74410      1  0.0000      0.952 1.000 0.000
#> GSM119936     1  0.0000      0.952 1.000 0.000
#> GSM119937     1  0.0376      0.952 0.996 0.004
#> GSM74411      2  0.0000      0.928 0.000 1.000
#> GSM74412      2  0.0000      0.928 0.000 1.000
#> GSM74413      2  0.0000      0.928 0.000 1.000
#> GSM74414      2  0.0000      0.928 0.000 1.000
#> GSM74415      2  0.0000      0.928 0.000 1.000
#> GSM121379     2  0.0000      0.928 0.000 1.000
#> GSM121380     2  0.0000      0.928 0.000 1.000
#> GSM121381     2  0.0000      0.928 0.000 1.000
#> GSM121382     2  0.0000      0.928 0.000 1.000
#> GSM121383     2  0.0000      0.928 0.000 1.000
#> GSM121384     2  0.0000      0.928 0.000 1.000
#> GSM121385     2  0.0000      0.928 0.000 1.000
#> GSM121386     2  0.0000      0.928 0.000 1.000
#> GSM121387     2  0.0000      0.928 0.000 1.000
#> GSM121388     2  0.0000      0.928 0.000 1.000
#> GSM121389     2  0.0000      0.928 0.000 1.000
#> GSM121390     2  0.0000      0.928 0.000 1.000
#> GSM121391     2  0.0000      0.928 0.000 1.000
#> GSM121392     2  0.0000      0.928 0.000 1.000
#> GSM121393     2  0.4690      0.884 0.100 0.900
#> GSM121394     2  0.0000      0.928 0.000 1.000
#> GSM121395     2  0.0000      0.928 0.000 1.000
#> GSM121396     2  0.0000      0.928 0.000 1.000
#> GSM121397     2  0.0000      0.928 0.000 1.000
#> GSM121398     2  0.0000      0.928 0.000 1.000
#> GSM121399     2  0.0000      0.928 0.000 1.000
#> GSM74240      2  0.0376      0.927 0.004 0.996
#> GSM74241      2  0.0376      0.927 0.004 0.996
#> GSM74242      2  0.5629      0.865 0.132 0.868
#> GSM74243      2  0.5629      0.865 0.132 0.868
#> GSM74244      2  0.0376      0.927 0.004 0.996
#> GSM74245      2  0.0376      0.927 0.004 0.996
#> GSM74246      2  0.0376      0.927 0.004 0.996
#> GSM74247      2  0.0376      0.927 0.004 0.996
#> GSM74248      2  0.0376      0.927 0.004 0.996
#> GSM74416      1  0.0000      0.952 1.000 0.000
#> GSM74417      1  0.0000      0.952 1.000 0.000
#> GSM74418      1  0.0000      0.952 1.000 0.000
#> GSM74419      1  0.3733      0.902 0.928 0.072
#> GSM121358     2  0.1184      0.923 0.016 0.984
#> GSM121359     2  0.0000      0.928 0.000 1.000
#> GSM121360     1  0.0376      0.952 0.996 0.004
#> GSM121362     1  0.0376      0.952 0.996 0.004
#> GSM121364     1  0.0000      0.952 1.000 0.000
#> GSM121365     2  0.5629      0.865 0.132 0.868
#> GSM121366     2  0.0000      0.928 0.000 1.000
#> GSM121367     2  0.4298      0.891 0.088 0.912
#> GSM121370     2  0.0000      0.928 0.000 1.000
#> GSM121371     2  0.5629      0.865 0.132 0.868
#> GSM121372     2  0.0000      0.928 0.000 1.000
#> GSM121373     1  0.0376      0.952 0.996 0.004
#> GSM121374     1  0.0000      0.952 1.000 0.000
#> GSM121407     2  0.0000      0.928 0.000 1.000
#> GSM74387      2  0.0000      0.928 0.000 1.000
#> GSM74388      2  0.0000      0.928 0.000 1.000
#> GSM74389      2  0.5629      0.865 0.132 0.868
#> GSM74390      2  0.2043      0.917 0.032 0.968
#> GSM74391      1  0.4562      0.878 0.904 0.096
#> GSM74392      1  0.3584      0.908 0.932 0.068
#> GSM74393      1  0.3584      0.908 0.932 0.068
#> GSM74394      2  0.0376      0.927 0.004 0.996
#> GSM74239      1  0.1414      0.949 0.980 0.020
#> GSM74364      1  0.0000      0.952 1.000 0.000
#> GSM74365      1  0.1414      0.949 0.980 0.020
#> GSM74366      2  0.5178      0.875 0.116 0.884
#> GSM74367      1  0.1414      0.949 0.980 0.020
#> GSM74377      2  0.6343      0.841 0.160 0.840
#> GSM74378      2  0.5519      0.867 0.128 0.872
#> GSM74379      2  0.6887      0.817 0.184 0.816
#> GSM74380      2  0.6887      0.817 0.184 0.816
#> GSM74381      2  0.6148      0.848 0.152 0.848
#> GSM121357     2  0.0000      0.928 0.000 1.000
#> GSM121361     2  0.0000      0.928 0.000 1.000
#> GSM121363     2  0.0000      0.928 0.000 1.000
#> GSM121368     2  0.0000      0.928 0.000 1.000
#> GSM121369     2  0.0376      0.927 0.004 0.996
#> GSM74368      1  0.1633      0.947 0.976 0.024
#> GSM74369      1  0.1633      0.947 0.976 0.024
#> GSM74370      1  0.0376      0.952 0.996 0.004
#> GSM74371      1  0.0000      0.952 1.000 0.000
#> GSM74372      1  0.1184      0.950 0.984 0.016
#> GSM74373      2  0.7139      0.803 0.196 0.804
#> GSM74374      1  0.1414      0.949 0.980 0.020
#> GSM74375      1  0.9988     -0.029 0.520 0.480
#> GSM74376      2  0.6801      0.821 0.180 0.820
#> GSM74405      2  0.6148      0.848 0.152 0.848
#> GSM74351      1  0.0000      0.952 1.000 0.000
#> GSM74352      2  0.5519      0.867 0.128 0.872
#> GSM74353      1  0.0376      0.952 0.996 0.004
#> GSM74354      1  0.1414      0.949 0.980 0.020
#> GSM74355      2  0.5519      0.867 0.128 0.872
#> GSM74382      1  0.0000      0.952 1.000 0.000
#> GSM74383      1  0.1414      0.949 0.980 0.020
#> GSM74384      2  0.5408      0.869 0.124 0.876
#> GSM74385      1  0.0000      0.952 1.000 0.000
#> GSM74386      1  0.1414      0.949 0.980 0.020
#> GSM74395      1  0.1414      0.949 0.980 0.020
#> GSM74396      1  0.1414      0.949 0.980 0.020
#> GSM74397      1  0.1414      0.949 0.980 0.020
#> GSM74398      2  0.7950      0.746 0.240 0.760
#> GSM74399      2  0.7950      0.746 0.240 0.760
#> GSM74400      1  0.2948      0.925 0.948 0.052
#> GSM74401      1  0.2948      0.925 0.948 0.052

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.4974      0.614 0.236 0.000 0.764
#> GSM74357      3  0.4974      0.614 0.236 0.000 0.764
#> GSM74358      3  0.4974      0.614 0.236 0.000 0.764
#> GSM74359      1  0.0592      0.913 0.988 0.000 0.012
#> GSM74360      1  0.1860      0.917 0.948 0.000 0.052
#> GSM74361      1  0.6813      0.227 0.520 0.012 0.468
#> GSM74362      1  0.6045      0.501 0.620 0.000 0.380
#> GSM74363      3  0.4974      0.614 0.236 0.000 0.764
#> GSM74402      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74403      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74404      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74406      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74407      1  0.6295      0.258 0.528 0.000 0.472
#> GSM74408      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74409      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74410      1  0.0237      0.909 0.996 0.000 0.004
#> GSM119936     1  0.0237      0.909 0.996 0.000 0.004
#> GSM119937     1  0.2261      0.917 0.932 0.000 0.068
#> GSM74411      2  0.2261      0.943 0.000 0.932 0.068
#> GSM74412      2  0.2261      0.943 0.000 0.932 0.068
#> GSM74413      2  0.2261      0.943 0.000 0.932 0.068
#> GSM74414      2  0.2066      0.947 0.000 0.940 0.060
#> GSM74415      2  0.2356      0.940 0.000 0.928 0.072
#> GSM121379     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121380     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121381     2  0.0424      0.962 0.000 0.992 0.008
#> GSM121382     2  0.0237      0.963 0.000 0.996 0.004
#> GSM121383     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121384     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121385     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121386     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121387     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121388     2  0.2356      0.940 0.000 0.928 0.072
#> GSM121389     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121390     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121391     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121392     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121393     3  0.5016      0.709 0.000 0.240 0.760
#> GSM121394     2  0.0237      0.963 0.000 0.996 0.004
#> GSM121395     2  0.0237      0.962 0.000 0.996 0.004
#> GSM121396     2  0.2261      0.943 0.000 0.932 0.068
#> GSM121397     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121398     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121399     2  0.0237      0.963 0.000 0.996 0.004
#> GSM74240      3  0.5216      0.708 0.000 0.260 0.740
#> GSM74241      3  0.5216      0.708 0.000 0.260 0.740
#> GSM74242      3  0.2682      0.836 0.004 0.076 0.920
#> GSM74243      3  0.2682      0.836 0.004 0.076 0.920
#> GSM74244      3  0.5216      0.708 0.000 0.260 0.740
#> GSM74245      3  0.5216      0.708 0.000 0.260 0.740
#> GSM74246      3  0.5216      0.708 0.000 0.260 0.740
#> GSM74247      3  0.5216      0.708 0.000 0.260 0.740
#> GSM74248      3  0.5216      0.708 0.000 0.260 0.740
#> GSM74416      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74417      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74418      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74419      1  0.4654      0.797 0.792 0.000 0.208
#> GSM121358     3  0.6235      0.339 0.000 0.436 0.564
#> GSM121359     2  0.2261      0.943 0.000 0.932 0.068
#> GSM121360     1  0.2356      0.917 0.928 0.000 0.072
#> GSM121362     1  0.2356      0.917 0.928 0.000 0.072
#> GSM121364     1  0.0592      0.913 0.988 0.000 0.012
#> GSM121365     3  0.2945      0.834 0.004 0.088 0.908
#> GSM121366     2  0.2261      0.943 0.000 0.932 0.068
#> GSM121367     3  0.3551      0.811 0.000 0.132 0.868
#> GSM121370     2  0.3192      0.896 0.000 0.888 0.112
#> GSM121371     3  0.2945      0.834 0.004 0.088 0.908
#> GSM121372     2  0.2261      0.943 0.000 0.932 0.068
#> GSM121373     1  0.2165      0.917 0.936 0.000 0.064
#> GSM121374     1  0.0592      0.913 0.988 0.000 0.012
#> GSM121407     2  0.2066      0.947 0.000 0.940 0.060
#> GSM74387      2  0.2066      0.947 0.000 0.940 0.060
#> GSM74388      2  0.0000      0.963 0.000 1.000 0.000
#> GSM74389      3  0.2682      0.836 0.004 0.076 0.920
#> GSM74390      3  0.4452      0.769 0.000 0.192 0.808
#> GSM74391      1  0.5058      0.757 0.756 0.000 0.244
#> GSM74392      1  0.4504      0.818 0.804 0.000 0.196
#> GSM74393      1  0.4504      0.818 0.804 0.000 0.196
#> GSM74394      2  0.2711      0.896 0.000 0.912 0.088
#> GSM74239      1  0.2796      0.914 0.908 0.000 0.092
#> GSM74364      1  0.0592      0.911 0.988 0.000 0.012
#> GSM74365      1  0.2796      0.914 0.908 0.000 0.092
#> GSM74366      3  0.2796      0.829 0.000 0.092 0.908
#> GSM74367      1  0.2796      0.914 0.908 0.000 0.092
#> GSM74377      3  0.1491      0.834 0.016 0.016 0.968
#> GSM74378      3  0.1529      0.837 0.000 0.040 0.960
#> GSM74379      3  0.1647      0.824 0.036 0.004 0.960
#> GSM74380      3  0.1647      0.824 0.036 0.004 0.960
#> GSM74381      3  0.1315      0.836 0.008 0.020 0.972
#> GSM121357     2  0.2165      0.945 0.000 0.936 0.064
#> GSM121361     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121363     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121368     2  0.0000      0.963 0.000 1.000 0.000
#> GSM121369     2  0.2711      0.896 0.000 0.912 0.088
#> GSM74368      1  0.2959      0.910 0.900 0.000 0.100
#> GSM74369      1  0.2959      0.910 0.900 0.000 0.100
#> GSM74370      1  0.2356      0.917 0.928 0.000 0.072
#> GSM74371      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74372      1  0.2711      0.915 0.912 0.000 0.088
#> GSM74373      3  0.1989      0.819 0.048 0.004 0.948
#> GSM74374      1  0.2796      0.914 0.908 0.000 0.092
#> GSM74375      3  0.6095      0.187 0.392 0.000 0.608
#> GSM74376      3  0.1525      0.825 0.032 0.004 0.964
#> GSM74405      3  0.1315      0.836 0.008 0.020 0.972
#> GSM74351      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74352      3  0.1529      0.837 0.000 0.040 0.960
#> GSM74353      1  0.2261      0.917 0.932 0.000 0.068
#> GSM74354      1  0.2796      0.914 0.908 0.000 0.092
#> GSM74355      3  0.1529      0.837 0.000 0.040 0.960
#> GSM74382      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74383      1  0.2796      0.914 0.908 0.000 0.092
#> GSM74384      3  0.2356      0.834 0.000 0.072 0.928
#> GSM74385      1  0.0237      0.909 0.996 0.000 0.004
#> GSM74386      1  0.2878      0.912 0.904 0.000 0.096
#> GSM74395      1  0.2796      0.914 0.908 0.000 0.092
#> GSM74396      1  0.2796      0.914 0.908 0.000 0.092
#> GSM74397      1  0.2796      0.914 0.908 0.000 0.092
#> GSM74398      3  0.3030      0.794 0.092 0.004 0.904
#> GSM74399      3  0.3030      0.794 0.092 0.004 0.904
#> GSM74400      1  0.3482      0.890 0.872 0.000 0.128
#> GSM74401      1  0.3482      0.890 0.872 0.000 0.128

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.5697     0.4975 0.280 0.000 0.664 0.056
#> GSM74357      3  0.5697     0.4975 0.280 0.000 0.664 0.056
#> GSM74358      3  0.5697     0.4975 0.280 0.000 0.664 0.056
#> GSM74359      1  0.4817     0.0401 0.612 0.000 0.000 0.388
#> GSM74360      1  0.1867     0.8018 0.928 0.000 0.000 0.072
#> GSM74361      1  0.6723     0.3063 0.548 0.008 0.368 0.076
#> GSM74362      1  0.5927     0.5510 0.660 0.000 0.264 0.076
#> GSM74363      3  0.5697     0.4975 0.280 0.000 0.664 0.056
#> GSM74402      4  0.4406     0.8616 0.300 0.000 0.000 0.700
#> GSM74403      4  0.3311     0.9132 0.172 0.000 0.000 0.828
#> GSM74404      4  0.3311     0.9132 0.172 0.000 0.000 0.828
#> GSM74406      4  0.4431     0.8562 0.304 0.000 0.000 0.696
#> GSM74407      1  0.6214     0.3487 0.576 0.000 0.360 0.064
#> GSM74408      4  0.4356     0.8694 0.292 0.000 0.000 0.708
#> GSM74409      4  0.4356     0.8694 0.292 0.000 0.000 0.708
#> GSM74410      4  0.4356     0.8694 0.292 0.000 0.000 0.708
#> GSM119936     4  0.4356     0.8694 0.292 0.000 0.000 0.708
#> GSM119937     1  0.0921     0.8404 0.972 0.000 0.000 0.028
#> GSM74411      2  0.1867     0.9426 0.000 0.928 0.072 0.000
#> GSM74412      2  0.1867     0.9426 0.000 0.928 0.072 0.000
#> GSM74413      2  0.1867     0.9426 0.000 0.928 0.072 0.000
#> GSM74414      2  0.1716     0.9464 0.000 0.936 0.064 0.000
#> GSM74415      2  0.1940     0.9399 0.000 0.924 0.076 0.000
#> GSM121379     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0469     0.9608 0.000 0.988 0.012 0.000
#> GSM121382     2  0.0188     0.9625 0.000 0.996 0.004 0.000
#> GSM121383     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121388     2  0.1867     0.9425 0.000 0.928 0.072 0.000
#> GSM121389     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121393     3  0.5882     0.6747 0.008 0.224 0.696 0.072
#> GSM121394     2  0.0188     0.9625 0.000 0.996 0.004 0.000
#> GSM121395     2  0.0188     0.9614 0.000 0.996 0.004 0.000
#> GSM121396     2  0.1867     0.9426 0.000 0.928 0.072 0.000
#> GSM121397     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0188     0.9625 0.000 0.996 0.004 0.000
#> GSM74240      3  0.4040     0.6708 0.000 0.248 0.752 0.000
#> GSM74241      3  0.4040     0.6708 0.000 0.248 0.752 0.000
#> GSM74242      3  0.3978     0.7478 0.028 0.064 0.860 0.048
#> GSM74243      3  0.3978     0.7478 0.028 0.064 0.860 0.048
#> GSM74244      3  0.4040     0.6708 0.000 0.248 0.752 0.000
#> GSM74245      3  0.4040     0.6708 0.000 0.248 0.752 0.000
#> GSM74246      3  0.4040     0.6708 0.000 0.248 0.752 0.000
#> GSM74247      3  0.4040     0.6708 0.000 0.248 0.752 0.000
#> GSM74248      3  0.4040     0.6708 0.000 0.248 0.752 0.000
#> GSM74416      4  0.3311     0.9132 0.172 0.000 0.000 0.828
#> GSM74417      4  0.3311     0.9132 0.172 0.000 0.000 0.828
#> GSM74418      4  0.3311     0.9132 0.172 0.000 0.000 0.828
#> GSM74419      1  0.4956     0.7253 0.776 0.000 0.108 0.116
#> GSM121358     3  0.4925     0.3036 0.000 0.428 0.572 0.000
#> GSM121359     2  0.1867     0.9426 0.000 0.928 0.072 0.000
#> GSM121360     1  0.0707     0.8452 0.980 0.000 0.000 0.020
#> GSM121362     1  0.0707     0.8452 0.980 0.000 0.000 0.020
#> GSM121364     1  0.4817     0.0401 0.612 0.000 0.000 0.388
#> GSM121365     3  0.4195     0.7477 0.028 0.076 0.848 0.048
#> GSM121366     2  0.1867     0.9426 0.000 0.928 0.072 0.000
#> GSM121367     3  0.3914     0.7461 0.004 0.120 0.840 0.036
#> GSM121370     2  0.2647     0.8945 0.000 0.880 0.120 0.000
#> GSM121371     3  0.4195     0.7477 0.028 0.076 0.848 0.048
#> GSM121372     2  0.1867     0.9426 0.000 0.928 0.072 0.000
#> GSM121373     1  0.1302     0.8287 0.956 0.000 0.000 0.044
#> GSM121374     1  0.4817     0.0401 0.612 0.000 0.000 0.388
#> GSM121407     2  0.1716     0.9465 0.000 0.936 0.064 0.000
#> GSM74387      2  0.1716     0.9465 0.000 0.936 0.064 0.000
#> GSM74388      2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM74389      3  0.3978     0.7478 0.028 0.064 0.860 0.048
#> GSM74390      3  0.3852     0.7238 0.000 0.180 0.808 0.012
#> GSM74391      1  0.4740     0.7192 0.788 0.000 0.132 0.080
#> GSM74392      1  0.3970     0.7602 0.840 0.000 0.084 0.076
#> GSM74393      1  0.3970     0.7602 0.840 0.000 0.084 0.076
#> GSM74394      2  0.2401     0.8864 0.000 0.904 0.092 0.004
#> GSM74239      1  0.0000     0.8517 1.000 0.000 0.000 0.000
#> GSM74364      4  0.4679     0.7136 0.352 0.000 0.000 0.648
#> GSM74365      1  0.0000     0.8517 1.000 0.000 0.000 0.000
#> GSM74366      3  0.5290     0.7417 0.028 0.080 0.784 0.108
#> GSM74367      1  0.0000     0.8517 1.000 0.000 0.000 0.000
#> GSM74377      3  0.4949     0.7373 0.072 0.012 0.792 0.124
#> GSM74378      3  0.4562     0.7440 0.036 0.028 0.820 0.116
#> GSM74379      3  0.4780     0.7299 0.096 0.000 0.788 0.116
#> GSM74380      3  0.4780     0.7299 0.096 0.000 0.788 0.116
#> GSM74381      3  0.4795     0.7404 0.060 0.016 0.804 0.120
#> GSM121357     2  0.1792     0.9452 0.000 0.932 0.068 0.000
#> GSM121361     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121363     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121368     2  0.0000     0.9628 0.000 1.000 0.000 0.000
#> GSM121369     2  0.2401     0.8864 0.000 0.904 0.092 0.004
#> GSM74368      1  0.0657     0.8499 0.984 0.000 0.004 0.012
#> GSM74369      1  0.0657     0.8499 0.984 0.000 0.004 0.012
#> GSM74370      1  0.0707     0.8452 0.980 0.000 0.000 0.020
#> GSM74371      4  0.3311     0.9132 0.172 0.000 0.000 0.828
#> GSM74372      1  0.0469     0.8512 0.988 0.000 0.000 0.012
#> GSM74373      3  0.5119     0.7203 0.112 0.000 0.764 0.124
#> GSM74374      1  0.0188     0.8510 0.996 0.000 0.000 0.004
#> GSM74375      3  0.6277     0.0866 0.468 0.000 0.476 0.056
#> GSM74376      3  0.4888     0.7284 0.096 0.000 0.780 0.124
#> GSM74405      3  0.4795     0.7404 0.060 0.016 0.804 0.120
#> GSM74351      4  0.3311     0.9132 0.172 0.000 0.000 0.828
#> GSM74352      3  0.4562     0.7440 0.036 0.028 0.820 0.116
#> GSM74353      1  0.0921     0.8404 0.972 0.000 0.000 0.028
#> GSM74354      1  0.0188     0.8510 0.996 0.000 0.000 0.004
#> GSM74355      3  0.4562     0.7440 0.036 0.028 0.820 0.116
#> GSM74382      4  0.3444     0.9105 0.184 0.000 0.000 0.816
#> GSM74383      1  0.0000     0.8517 1.000 0.000 0.000 0.000
#> GSM74384      3  0.5147     0.7425 0.032 0.060 0.792 0.116
#> GSM74385      4  0.3311     0.9132 0.172 0.000 0.000 0.828
#> GSM74386      1  0.0524     0.8511 0.988 0.000 0.004 0.008
#> GSM74395      1  0.0000     0.8517 1.000 0.000 0.000 0.000
#> GSM74396      1  0.0000     0.8517 1.000 0.000 0.000 0.000
#> GSM74397      1  0.0000     0.8517 1.000 0.000 0.000 0.000
#> GSM74398      3  0.5568     0.6959 0.152 0.000 0.728 0.120
#> GSM74399      3  0.5568     0.6959 0.152 0.000 0.728 0.120
#> GSM74400      1  0.1297     0.8319 0.964 0.000 0.016 0.020
#> GSM74401      1  0.1297     0.8319 0.964 0.000 0.016 0.020

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.5180      0.564 0.024 0.000 0.728 0.100 0.148
#> GSM74357      3  0.5180      0.564 0.024 0.000 0.728 0.100 0.148
#> GSM74358      3  0.5180      0.564 0.024 0.000 0.728 0.100 0.148
#> GSM74359      4  0.0510      0.186 0.016 0.000 0.000 0.984 0.000
#> GSM74360      4  0.4982      0.363 0.032 0.000 0.000 0.556 0.412
#> GSM74361      3  0.7162     -0.119 0.024 0.000 0.440 0.300 0.236
#> GSM74362      4  0.7314      0.276 0.028 0.000 0.332 0.396 0.244
#> GSM74363      3  0.5180      0.564 0.024 0.000 0.728 0.100 0.148
#> GSM74402      4  0.3913     -0.113 0.000 0.000 0.000 0.676 0.324
#> GSM74403      5  0.4653      0.276 0.012 0.000 0.000 0.472 0.516
#> GSM74404      5  0.4653      0.276 0.012 0.000 0.000 0.472 0.516
#> GSM74406      4  0.3895     -0.109 0.000 0.000 0.000 0.680 0.320
#> GSM74407      3  0.7356     -0.124 0.036 0.000 0.428 0.304 0.232
#> GSM74408      4  0.3913     -0.116 0.000 0.000 0.000 0.676 0.324
#> GSM74409      4  0.3913     -0.116 0.000 0.000 0.000 0.676 0.324
#> GSM74410      4  0.3913     -0.116 0.000 0.000 0.000 0.676 0.324
#> GSM119936     4  0.3913     -0.116 0.000 0.000 0.000 0.676 0.324
#> GSM119937     4  0.4744      0.356 0.016 0.000 0.000 0.508 0.476
#> GSM74411      2  0.2561      0.886 0.000 0.856 0.144 0.000 0.000
#> GSM74412      2  0.2561      0.886 0.000 0.856 0.144 0.000 0.000
#> GSM74413      2  0.2561      0.886 0.000 0.856 0.144 0.000 0.000
#> GSM74414      2  0.2471      0.891 0.000 0.864 0.136 0.000 0.000
#> GSM74415      2  0.2605      0.884 0.000 0.852 0.148 0.000 0.000
#> GSM121379     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.1341      0.920 0.000 0.944 0.056 0.000 0.000
#> GSM121382     2  0.0609      0.928 0.000 0.980 0.020 0.000 0.000
#> GSM121383     2  0.0162      0.928 0.000 0.996 0.004 0.000 0.000
#> GSM121384     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.2424      0.893 0.000 0.868 0.132 0.000 0.000
#> GSM121389     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0510      0.928 0.000 0.984 0.016 0.000 0.000
#> GSM121392     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121393     1  0.5240      0.610 0.676 0.204 0.120 0.000 0.000
#> GSM121394     2  0.0794      0.926 0.000 0.972 0.028 0.000 0.000
#> GSM121395     2  0.0404      0.928 0.000 0.988 0.012 0.000 0.000
#> GSM121396     2  0.2561      0.886 0.000 0.856 0.144 0.000 0.000
#> GSM121397     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0609      0.928 0.000 0.980 0.020 0.000 0.000
#> GSM74240      3  0.2852      0.728 0.000 0.172 0.828 0.000 0.000
#> GSM74241      3  0.2852      0.728 0.000 0.172 0.828 0.000 0.000
#> GSM74242      3  0.0404      0.723 0.012 0.000 0.988 0.000 0.000
#> GSM74243      3  0.0404      0.723 0.012 0.000 0.988 0.000 0.000
#> GSM74244      3  0.2852      0.728 0.000 0.172 0.828 0.000 0.000
#> GSM74245      3  0.2852      0.728 0.000 0.172 0.828 0.000 0.000
#> GSM74246      3  0.2852      0.728 0.000 0.172 0.828 0.000 0.000
#> GSM74247      3  0.2852      0.728 0.000 0.172 0.828 0.000 0.000
#> GSM74248      3  0.2852      0.728 0.000 0.172 0.828 0.000 0.000
#> GSM74416      5  0.4653      0.276 0.012 0.000 0.000 0.472 0.516
#> GSM74417      5  0.4653      0.276 0.012 0.000 0.000 0.472 0.516
#> GSM74418      5  0.4653      0.276 0.012 0.000 0.000 0.472 0.516
#> GSM74419      4  0.6783      0.358 0.024 0.000 0.176 0.520 0.280
#> GSM121358     3  0.4030      0.405 0.000 0.352 0.648 0.000 0.000
#> GSM121359     2  0.2605      0.883 0.000 0.852 0.148 0.000 0.000
#> GSM121360     4  0.5112      0.359 0.036 0.000 0.000 0.496 0.468
#> GSM121362     4  0.5112      0.359 0.036 0.000 0.000 0.496 0.468
#> GSM121364     4  0.0510      0.186 0.016 0.000 0.000 0.984 0.000
#> GSM121365     3  0.0324      0.727 0.004 0.004 0.992 0.000 0.000
#> GSM121366     2  0.2605      0.883 0.000 0.852 0.148 0.000 0.000
#> GSM121367     3  0.1357      0.736 0.004 0.048 0.948 0.000 0.000
#> GSM121370     2  0.3074      0.831 0.000 0.804 0.196 0.000 0.000
#> GSM121371     3  0.0324      0.727 0.004 0.004 0.992 0.000 0.000
#> GSM121372     2  0.2605      0.883 0.000 0.852 0.148 0.000 0.000
#> GSM121373     4  0.5092      0.362 0.036 0.000 0.000 0.524 0.440
#> GSM121374     4  0.0510      0.186 0.016 0.000 0.000 0.984 0.000
#> GSM121407     2  0.2471      0.891 0.000 0.864 0.136 0.000 0.000
#> GSM74387      2  0.2471      0.891 0.000 0.864 0.136 0.000 0.000
#> GSM74388      2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM74389      3  0.0404      0.723 0.012 0.000 0.988 0.000 0.000
#> GSM74390      3  0.2286      0.735 0.004 0.108 0.888 0.000 0.000
#> GSM74391      4  0.7122      0.352 0.032 0.000 0.204 0.476 0.288
#> GSM74392      4  0.6644      0.367 0.016 0.000 0.160 0.504 0.320
#> GSM74393      4  0.6644      0.367 0.016 0.000 0.160 0.504 0.320
#> GSM74394      2  0.2645      0.869 0.044 0.888 0.068 0.000 0.000
#> GSM74239      4  0.5238      0.333 0.044 0.000 0.000 0.480 0.476
#> GSM74364      5  0.4659      0.109 0.012 0.000 0.000 0.492 0.496
#> GSM74365      4  0.5297      0.331 0.048 0.000 0.000 0.476 0.476
#> GSM74366      1  0.2927      0.852 0.872 0.068 0.060 0.000 0.000
#> GSM74367      5  0.5297     -0.389 0.048 0.000 0.000 0.476 0.476
#> GSM74377      1  0.1404      0.898 0.956 0.008 0.028 0.004 0.004
#> GSM74378      1  0.1943      0.890 0.924 0.020 0.056 0.000 0.000
#> GSM74379      1  0.1588      0.894 0.948 0.000 0.028 0.008 0.016
#> GSM74380      1  0.1588      0.894 0.948 0.000 0.028 0.008 0.016
#> GSM74381      1  0.1525      0.898 0.948 0.012 0.036 0.000 0.004
#> GSM121357     2  0.2629      0.891 0.004 0.860 0.136 0.000 0.000
#> GSM121361     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121363     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121368     2  0.0000      0.928 0.000 1.000 0.000 0.000 0.000
#> GSM121369     2  0.2645      0.869 0.044 0.888 0.068 0.000 0.000
#> GSM74368      5  0.5406     -0.388 0.056 0.000 0.000 0.468 0.476
#> GSM74369      5  0.5406     -0.388 0.056 0.000 0.000 0.468 0.476
#> GSM74370      4  0.4906      0.355 0.024 0.000 0.000 0.496 0.480
#> GSM74371      5  0.4653      0.276 0.012 0.000 0.000 0.472 0.516
#> GSM74372      5  0.5178     -0.398 0.040 0.000 0.000 0.480 0.480
#> GSM74373      1  0.1043      0.885 0.960 0.000 0.000 0.000 0.040
#> GSM74374      4  0.5296      0.337 0.048 0.000 0.000 0.480 0.472
#> GSM74375      1  0.6302      0.301 0.584 0.000 0.016 0.156 0.244
#> GSM74376      1  0.1211      0.893 0.960 0.000 0.016 0.000 0.024
#> GSM74405      1  0.1525      0.898 0.948 0.012 0.036 0.000 0.004
#> GSM74351      5  0.4653      0.276 0.012 0.000 0.000 0.472 0.516
#> GSM74352      1  0.1943      0.890 0.924 0.020 0.056 0.000 0.000
#> GSM74353      4  0.4744      0.356 0.016 0.000 0.000 0.508 0.476
#> GSM74354      4  0.5296      0.337 0.048 0.000 0.000 0.480 0.472
#> GSM74355      1  0.1943      0.890 0.924 0.020 0.056 0.000 0.000
#> GSM74382      5  0.4659      0.265 0.012 0.000 0.000 0.488 0.500
#> GSM74383      5  0.5297     -0.391 0.048 0.000 0.000 0.476 0.476
#> GSM74384      1  0.2588      0.871 0.892 0.048 0.060 0.000 0.000
#> GSM74385      5  0.4653      0.276 0.012 0.000 0.000 0.472 0.516
#> GSM74386      5  0.5353     -0.389 0.052 0.000 0.000 0.472 0.476
#> GSM74395      5  0.5297     -0.389 0.048 0.000 0.000 0.476 0.476
#> GSM74396      5  0.5297     -0.389 0.048 0.000 0.000 0.476 0.476
#> GSM74397      4  0.5297      0.331 0.048 0.000 0.000 0.476 0.476
#> GSM74398      1  0.2634      0.857 0.900 0.000 0.020 0.056 0.024
#> GSM74399      1  0.2634      0.857 0.900 0.000 0.020 0.056 0.024
#> GSM74400      5  0.5818     -0.375 0.092 0.000 0.000 0.444 0.464
#> GSM74401      5  0.5818     -0.375 0.092 0.000 0.000 0.444 0.464

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      5  0.4132      0.429 0.044 0.000 0.220 0.000 0.728 0.008
#> GSM74357      5  0.4132      0.429 0.044 0.000 0.220 0.000 0.728 0.008
#> GSM74358      5  0.4132      0.429 0.044 0.000 0.220 0.000 0.728 0.008
#> GSM74359      4  0.5953      0.296 0.344 0.000 0.196 0.456 0.000 0.004
#> GSM74360      1  0.3455      0.709 0.800 0.000 0.144 0.056 0.000 0.000
#> GSM74361      5  0.6250     -0.620 0.236 0.000 0.316 0.000 0.436 0.012
#> GSM74362      3  0.6405      0.732 0.300 0.000 0.360 0.000 0.328 0.012
#> GSM74363      5  0.4132      0.429 0.044 0.000 0.220 0.000 0.728 0.008
#> GSM74402      4  0.3777      0.763 0.084 0.000 0.124 0.788 0.000 0.004
#> GSM74403      4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74404      4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74406      4  0.3826      0.760 0.088 0.000 0.124 0.784 0.000 0.004
#> GSM74407      5  0.6262     -0.493 0.204 0.000 0.356 0.000 0.424 0.016
#> GSM74408      4  0.3675      0.766 0.076 0.000 0.124 0.796 0.000 0.004
#> GSM74409      4  0.3675      0.766 0.076 0.000 0.124 0.796 0.000 0.004
#> GSM74410      4  0.3675      0.766 0.076 0.000 0.124 0.796 0.000 0.004
#> GSM119936     4  0.3675      0.766 0.076 0.000 0.124 0.796 0.000 0.004
#> GSM119937     1  0.1049      0.809 0.960 0.000 0.032 0.008 0.000 0.000
#> GSM74411      2  0.5510      0.654 0.000 0.540 0.324 0.000 0.132 0.004
#> GSM74412      2  0.5510      0.654 0.000 0.540 0.324 0.000 0.132 0.004
#> GSM74413      2  0.5510      0.654 0.000 0.540 0.324 0.000 0.132 0.004
#> GSM74414      2  0.5434      0.667 0.000 0.552 0.320 0.000 0.124 0.004
#> GSM74415      2  0.5541      0.651 0.000 0.536 0.324 0.000 0.136 0.004
#> GSM121379     2  0.0146      0.787 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM121380     2  0.0692      0.780 0.000 0.976 0.020 0.000 0.000 0.004
#> GSM121381     2  0.3065      0.783 0.000 0.844 0.100 0.000 0.052 0.004
#> GSM121382     2  0.2445      0.790 0.000 0.872 0.108 0.000 0.020 0.000
#> GSM121383     2  0.1411      0.795 0.000 0.936 0.060 0.000 0.004 0.000
#> GSM121384     2  0.0692      0.780 0.000 0.976 0.020 0.000 0.000 0.004
#> GSM121385     2  0.0146      0.787 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM121386     2  0.0937      0.794 0.000 0.960 0.040 0.000 0.000 0.000
#> GSM121387     2  0.1007      0.794 0.000 0.956 0.044 0.000 0.000 0.000
#> GSM121388     2  0.5374      0.669 0.000 0.564 0.312 0.000 0.120 0.004
#> GSM121389     2  0.1643      0.752 0.000 0.924 0.068 0.000 0.000 0.008
#> GSM121390     2  0.0692      0.780 0.000 0.976 0.020 0.000 0.000 0.004
#> GSM121391     2  0.1951      0.794 0.000 0.908 0.076 0.000 0.016 0.000
#> GSM121392     2  0.1643      0.752 0.000 0.924 0.068 0.000 0.000 0.008
#> GSM121393     6  0.5277      0.659 0.000 0.116 0.084 0.000 0.104 0.696
#> GSM121394     2  0.2605      0.789 0.000 0.864 0.108 0.000 0.028 0.000
#> GSM121395     2  0.2326      0.758 0.000 0.888 0.092 0.000 0.012 0.008
#> GSM121396     2  0.5486      0.659 0.000 0.548 0.316 0.000 0.132 0.004
#> GSM121397     2  0.0146      0.787 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM121398     2  0.0790      0.792 0.000 0.968 0.032 0.000 0.000 0.000
#> GSM121399     2  0.2445      0.790 0.000 0.872 0.108 0.000 0.020 0.000
#> GSM74240      5  0.2738      0.720 0.000 0.000 0.176 0.000 0.820 0.004
#> GSM74241      5  0.2738      0.720 0.000 0.000 0.176 0.000 0.820 0.004
#> GSM74242      5  0.0291      0.705 0.000 0.000 0.004 0.000 0.992 0.004
#> GSM74243      5  0.0291      0.705 0.000 0.000 0.004 0.000 0.992 0.004
#> GSM74244      5  0.2738      0.720 0.000 0.000 0.176 0.000 0.820 0.004
#> GSM74245      5  0.2738      0.720 0.000 0.000 0.176 0.000 0.820 0.004
#> GSM74246      5  0.2738      0.720 0.000 0.000 0.176 0.000 0.820 0.004
#> GSM74247      5  0.2738      0.720 0.000 0.000 0.176 0.000 0.820 0.004
#> GSM74248      5  0.2738      0.720 0.000 0.000 0.176 0.000 0.820 0.004
#> GSM74416      4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74417      4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74418      4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74419      3  0.6920      0.813 0.360 0.000 0.408 0.044 0.172 0.016
#> GSM121358     5  0.5140      0.508 0.000 0.164 0.192 0.000 0.640 0.004
#> GSM121359     2  0.5541      0.650 0.000 0.536 0.324 0.000 0.136 0.004
#> GSM121360     1  0.2668      0.746 0.828 0.000 0.168 0.000 0.000 0.004
#> GSM121362     1  0.2595      0.750 0.836 0.000 0.160 0.000 0.000 0.004
#> GSM121364     4  0.5953      0.296 0.344 0.000 0.196 0.456 0.000 0.004
#> GSM121365     5  0.0146      0.711 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM121366     2  0.5541      0.650 0.000 0.536 0.324 0.000 0.136 0.004
#> GSM121367     5  0.1075      0.722 0.000 0.000 0.048 0.000 0.952 0.000
#> GSM121370     2  0.5854      0.584 0.000 0.488 0.324 0.000 0.184 0.004
#> GSM121371     5  0.0146      0.711 0.000 0.000 0.004 0.000 0.996 0.000
#> GSM121372     2  0.5541      0.650 0.000 0.536 0.324 0.000 0.136 0.004
#> GSM121373     1  0.3168      0.739 0.820 0.000 0.148 0.028 0.000 0.004
#> GSM121374     4  0.5953      0.296 0.344 0.000 0.196 0.456 0.000 0.004
#> GSM121407     2  0.5434      0.662 0.000 0.552 0.320 0.000 0.124 0.004
#> GSM74387      2  0.5367      0.670 0.000 0.572 0.300 0.000 0.124 0.004
#> GSM74388      2  0.0692      0.786 0.000 0.976 0.020 0.000 0.000 0.004
#> GSM74389      5  0.0291      0.705 0.000 0.000 0.004 0.000 0.992 0.004
#> GSM74390      5  0.2100      0.725 0.000 0.000 0.112 0.000 0.884 0.004
#> GSM74391      3  0.6323      0.837 0.364 0.000 0.416 0.000 0.200 0.020
#> GSM74392      1  0.5879     -0.773 0.432 0.000 0.408 0.000 0.152 0.008
#> GSM74393      1  0.5879     -0.773 0.432 0.000 0.408 0.000 0.152 0.008
#> GSM74394      2  0.3483      0.748 0.000 0.836 0.048 0.000 0.068 0.048
#> GSM74239      1  0.0972      0.826 0.964 0.000 0.008 0.000 0.000 0.028
#> GSM74364      4  0.2762      0.653 0.196 0.000 0.000 0.804 0.000 0.000
#> GSM74365      1  0.1049      0.825 0.960 0.000 0.008 0.000 0.000 0.032
#> GSM74366      6  0.2084      0.861 0.000 0.044 0.016 0.000 0.024 0.916
#> GSM74367      1  0.1049      0.825 0.960 0.000 0.008 0.000 0.000 0.032
#> GSM74377      6  0.0547      0.899 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM74378      6  0.0951      0.892 0.000 0.004 0.008 0.000 0.020 0.968
#> GSM74379      6  0.1082      0.896 0.040 0.000 0.004 0.000 0.000 0.956
#> GSM74380      6  0.1082      0.896 0.040 0.000 0.004 0.000 0.000 0.956
#> GSM74381      6  0.0622      0.899 0.012 0.000 0.000 0.000 0.008 0.980
#> GSM121357     2  0.5535      0.661 0.000 0.548 0.320 0.000 0.124 0.008
#> GSM121361     2  0.0692      0.786 0.000 0.976 0.020 0.000 0.000 0.004
#> GSM121363     2  0.0692      0.786 0.000 0.976 0.020 0.000 0.000 0.004
#> GSM121368     2  0.0692      0.786 0.000 0.976 0.020 0.000 0.000 0.004
#> GSM121369     2  0.3483      0.748 0.000 0.836 0.048 0.000 0.068 0.048
#> GSM74368      1  0.1391      0.815 0.944 0.000 0.016 0.000 0.000 0.040
#> GSM74369      1  0.1391      0.815 0.944 0.000 0.016 0.000 0.000 0.040
#> GSM74370      1  0.2362      0.772 0.860 0.000 0.136 0.000 0.000 0.004
#> GSM74371      4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74372      1  0.2667      0.781 0.852 0.000 0.128 0.000 0.000 0.020
#> GSM74373      6  0.1349      0.888 0.056 0.000 0.004 0.000 0.000 0.940
#> GSM74374      1  0.1924      0.824 0.920 0.000 0.048 0.004 0.000 0.028
#> GSM74375      6  0.4101      0.253 0.408 0.000 0.012 0.000 0.000 0.580
#> GSM74376      6  0.1082      0.895 0.040 0.000 0.004 0.000 0.000 0.956
#> GSM74405      6  0.0622      0.899 0.012 0.000 0.000 0.000 0.008 0.980
#> GSM74351      4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74352      6  0.0951      0.892 0.000 0.004 0.008 0.000 0.020 0.968
#> GSM74353      1  0.1049      0.809 0.960 0.000 0.032 0.008 0.000 0.000
#> GSM74354      1  0.1924      0.824 0.920 0.000 0.048 0.004 0.000 0.028
#> GSM74355      6  0.0951      0.892 0.000 0.004 0.008 0.000 0.020 0.968
#> GSM74382      4  0.0458      0.804 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM74383      1  0.1780      0.824 0.924 0.000 0.048 0.000 0.000 0.028
#> GSM74384      6  0.1700      0.875 0.000 0.028 0.012 0.000 0.024 0.936
#> GSM74385      4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74386      1  0.1225      0.821 0.952 0.000 0.012 0.000 0.000 0.036
#> GSM74395      1  0.1049      0.825 0.960 0.000 0.008 0.000 0.000 0.032
#> GSM74396      1  0.1049      0.825 0.960 0.000 0.008 0.000 0.000 0.032
#> GSM74397      1  0.1049      0.825 0.960 0.000 0.008 0.000 0.000 0.032
#> GSM74398      6  0.1970      0.854 0.092 0.000 0.008 0.000 0.000 0.900
#> GSM74399      6  0.1970      0.854 0.092 0.000 0.008 0.000 0.000 0.900
#> GSM74400      1  0.2294      0.803 0.892 0.000 0.036 0.000 0.000 0.072
#> GSM74401      1  0.2294      0.803 0.892 0.000 0.036 0.000 0.000 0.072

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:hclust 114         5.47e-10 2
#> ATC:hclust 117         3.22e-14 3
#> ATC:hclust 110         4.29e-17 4
#> ATC:hclust  71         7.26e-13 5
#> ATC:hclust 109         2.14e-23 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.994       0.997         0.5028 0.498   0.498
#> 3 3 0.563           0.579       0.791         0.3008 0.736   0.515
#> 4 4 0.849           0.905       0.939         0.1408 0.808   0.501
#> 5 5 0.787           0.707       0.836         0.0584 0.978   0.912
#> 6 6 0.781           0.647       0.756         0.0422 0.898   0.595

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      1  0.0376      0.994 0.996 0.004
#> GSM74357      1  0.0000      0.997 1.000 0.000
#> GSM74358      1  0.0000      0.997 1.000 0.000
#> GSM74359      1  0.0000      0.997 1.000 0.000
#> GSM74360      1  0.0000      0.997 1.000 0.000
#> GSM74361      1  0.1414      0.981 0.980 0.020
#> GSM74362      1  0.0000      0.997 1.000 0.000
#> GSM74363      1  0.1184      0.984 0.984 0.016
#> GSM74402      1  0.0000      0.997 1.000 0.000
#> GSM74403      1  0.0000      0.997 1.000 0.000
#> GSM74404      1  0.0000      0.997 1.000 0.000
#> GSM74406      1  0.0000      0.997 1.000 0.000
#> GSM74407      1  0.0000      0.997 1.000 0.000
#> GSM74408      1  0.0000      0.997 1.000 0.000
#> GSM74409      1  0.0000      0.997 1.000 0.000
#> GSM74410      1  0.0000      0.997 1.000 0.000
#> GSM119936     1  0.0000      0.997 1.000 0.000
#> GSM119937     1  0.0000      0.997 1.000 0.000
#> GSM74411      2  0.0000      0.997 0.000 1.000
#> GSM74412      2  0.0000      0.997 0.000 1.000
#> GSM74413      2  0.0000      0.997 0.000 1.000
#> GSM74414      2  0.0000      0.997 0.000 1.000
#> GSM74415      2  0.0000      0.997 0.000 1.000
#> GSM121379     2  0.0000      0.997 0.000 1.000
#> GSM121380     2  0.0000      0.997 0.000 1.000
#> GSM121381     2  0.0000      0.997 0.000 1.000
#> GSM121382     2  0.0000      0.997 0.000 1.000
#> GSM121383     2  0.0000      0.997 0.000 1.000
#> GSM121384     2  0.0000      0.997 0.000 1.000
#> GSM121385     2  0.0000      0.997 0.000 1.000
#> GSM121386     2  0.0000      0.997 0.000 1.000
#> GSM121387     2  0.0000      0.997 0.000 1.000
#> GSM121388     2  0.0000      0.997 0.000 1.000
#> GSM121389     2  0.0000      0.997 0.000 1.000
#> GSM121390     2  0.0000      0.997 0.000 1.000
#> GSM121391     2  0.0000      0.997 0.000 1.000
#> GSM121392     2  0.0000      0.997 0.000 1.000
#> GSM121393     2  0.0000      0.997 0.000 1.000
#> GSM121394     2  0.0000      0.997 0.000 1.000
#> GSM121395     2  0.0000      0.997 0.000 1.000
#> GSM121396     2  0.0000      0.997 0.000 1.000
#> GSM121397     2  0.0000      0.997 0.000 1.000
#> GSM121398     2  0.0000      0.997 0.000 1.000
#> GSM121399     2  0.0000      0.997 0.000 1.000
#> GSM74240      2  0.0000      0.997 0.000 1.000
#> GSM74241      2  0.0000      0.997 0.000 1.000
#> GSM74242      2  0.4298      0.904 0.088 0.912
#> GSM74243      2  0.4815      0.885 0.104 0.896
#> GSM74244      2  0.0000      0.997 0.000 1.000
#> GSM74245      2  0.0000      0.997 0.000 1.000
#> GSM74246      2  0.0000      0.997 0.000 1.000
#> GSM74247      2  0.0000      0.997 0.000 1.000
#> GSM74248      2  0.0000      0.997 0.000 1.000
#> GSM74416      1  0.0000      0.997 1.000 0.000
#> GSM74417      1  0.0000      0.997 1.000 0.000
#> GSM74418      1  0.0000      0.997 1.000 0.000
#> GSM74419      1  0.0000      0.997 1.000 0.000
#> GSM121358     2  0.0000      0.997 0.000 1.000
#> GSM121359     2  0.0000      0.997 0.000 1.000
#> GSM121360     1  0.0000      0.997 1.000 0.000
#> GSM121362     1  0.0000      0.997 1.000 0.000
#> GSM121364     1  0.0000      0.997 1.000 0.000
#> GSM121365     2  0.0000      0.997 0.000 1.000
#> GSM121366     2  0.0000      0.997 0.000 1.000
#> GSM121367     2  0.0000      0.997 0.000 1.000
#> GSM121370     2  0.0000      0.997 0.000 1.000
#> GSM121371     2  0.0000      0.997 0.000 1.000
#> GSM121372     2  0.0000      0.997 0.000 1.000
#> GSM121373     1  0.0000      0.997 1.000 0.000
#> GSM121374     1  0.0000      0.997 1.000 0.000
#> GSM121407     2  0.0000      0.997 0.000 1.000
#> GSM74387      2  0.0000      0.997 0.000 1.000
#> GSM74388      2  0.0000      0.997 0.000 1.000
#> GSM74389      1  0.1184      0.984 0.984 0.016
#> GSM74390      2  0.0000      0.997 0.000 1.000
#> GSM74391      1  0.0000      0.997 1.000 0.000
#> GSM74392      1  0.0000      0.997 1.000 0.000
#> GSM74393      1  0.0000      0.997 1.000 0.000
#> GSM74394      2  0.0000      0.997 0.000 1.000
#> GSM74239      1  0.0000      0.997 1.000 0.000
#> GSM74364      1  0.0000      0.997 1.000 0.000
#> GSM74365      1  0.0000      0.997 1.000 0.000
#> GSM74366      2  0.0000      0.997 0.000 1.000
#> GSM74367      1  0.0000      0.997 1.000 0.000
#> GSM74377      1  0.0000      0.997 1.000 0.000
#> GSM74378      2  0.0000      0.997 0.000 1.000
#> GSM74379      1  0.0000      0.997 1.000 0.000
#> GSM74380      1  0.0000      0.997 1.000 0.000
#> GSM74381      1  0.2603      0.956 0.956 0.044
#> GSM121357     2  0.0000      0.997 0.000 1.000
#> GSM121361     2  0.0000      0.997 0.000 1.000
#> GSM121363     2  0.0000      0.997 0.000 1.000
#> GSM121368     2  0.0000      0.997 0.000 1.000
#> GSM121369     2  0.0000      0.997 0.000 1.000
#> GSM74368      1  0.0000      0.997 1.000 0.000
#> GSM74369      1  0.0000      0.997 1.000 0.000
#> GSM74370      1  0.0000      0.997 1.000 0.000
#> GSM74371      1  0.0000      0.997 1.000 0.000
#> GSM74372      1  0.0000      0.997 1.000 0.000
#> GSM74373      1  0.0000      0.997 1.000 0.000
#> GSM74374      1  0.0000      0.997 1.000 0.000
#> GSM74375      1  0.0000      0.997 1.000 0.000
#> GSM74376      1  0.2603      0.956 0.956 0.044
#> GSM74405      1  0.0938      0.988 0.988 0.012
#> GSM74351      1  0.0000      0.997 1.000 0.000
#> GSM74352      1  0.0376      0.994 0.996 0.004
#> GSM74353      1  0.0000      0.997 1.000 0.000
#> GSM74354      1  0.0000      0.997 1.000 0.000
#> GSM74355      2  0.0000      0.997 0.000 1.000
#> GSM74382      1  0.0000      0.997 1.000 0.000
#> GSM74383      1  0.0000      0.997 1.000 0.000
#> GSM74384      2  0.0000      0.997 0.000 1.000
#> GSM74385      1  0.0000      0.997 1.000 0.000
#> GSM74386      1  0.0000      0.997 1.000 0.000
#> GSM74395      1  0.0000      0.997 1.000 0.000
#> GSM74396      1  0.0000      0.997 1.000 0.000
#> GSM74397      1  0.0000      0.997 1.000 0.000
#> GSM74398      1  0.0000      0.997 1.000 0.000
#> GSM74399      1  0.0000      0.997 1.000 0.000
#> GSM74400      1  0.0000      0.997 1.000 0.000
#> GSM74401      1  0.0000      0.997 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.5219     0.4974 0.196 0.016 0.788
#> GSM74357      3  0.4702     0.4850 0.212 0.000 0.788
#> GSM74358      3  0.4702     0.4850 0.212 0.000 0.788
#> GSM74359      1  0.1031     0.7606 0.976 0.000 0.024
#> GSM74360      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74361      3  0.5428     0.5448 0.064 0.120 0.816
#> GSM74362      3  0.4702     0.4850 0.212 0.000 0.788
#> GSM74363      3  0.5219     0.4974 0.196 0.016 0.788
#> GSM74402      1  0.1031     0.7606 0.976 0.000 0.024
#> GSM74403      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74404      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74406      1  0.1031     0.7606 0.976 0.000 0.024
#> GSM74407      3  0.4605     0.4877 0.204 0.000 0.796
#> GSM74408      1  0.1031     0.7606 0.976 0.000 0.024
#> GSM74409      1  0.1031     0.7606 0.976 0.000 0.024
#> GSM74410      1  0.1031     0.7606 0.976 0.000 0.024
#> GSM119936     1  0.1031     0.7606 0.976 0.000 0.024
#> GSM119937     1  0.0747     0.7660 0.984 0.000 0.016
#> GSM74411      2  0.2356     0.8560 0.000 0.928 0.072
#> GSM74412      2  0.0000     0.9007 0.000 1.000 0.000
#> GSM74413      2  0.2448     0.8538 0.000 0.924 0.076
#> GSM74414      2  0.0000     0.9007 0.000 1.000 0.000
#> GSM74415      2  0.6305     0.2340 0.000 0.516 0.484
#> GSM121379     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121380     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121381     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121382     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121383     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121384     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121385     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121386     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121387     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121388     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121389     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121390     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121391     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121392     2  0.0592     0.8938 0.000 0.988 0.012
#> GSM121393     2  0.4346     0.7098 0.000 0.816 0.184
#> GSM121394     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121395     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121396     2  0.1289     0.8833 0.000 0.968 0.032
#> GSM121397     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121398     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM121399     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM74240      3  0.6299    -0.1607 0.000 0.476 0.524
#> GSM74241      3  0.6299    -0.1607 0.000 0.476 0.524
#> GSM74242      3  0.5901     0.4880 0.040 0.192 0.768
#> GSM74243      3  0.5901     0.4880 0.040 0.192 0.768
#> GSM74244      2  0.6026     0.4924 0.000 0.624 0.376
#> GSM74245      3  0.6008     0.1611 0.000 0.372 0.628
#> GSM74246      2  0.5678     0.5929 0.000 0.684 0.316
#> GSM74247      2  0.5678     0.5929 0.000 0.684 0.316
#> GSM74248      3  0.5810     0.2509 0.000 0.336 0.664
#> GSM74416      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74417      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74418      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74419      1  0.1031     0.7606 0.976 0.000 0.024
#> GSM121358     3  0.6307    -0.1971 0.000 0.488 0.512
#> GSM121359     2  0.3192     0.8224 0.000 0.888 0.112
#> GSM121360     1  0.6215     0.4803 0.572 0.000 0.428
#> GSM121362     3  0.6299    -0.2248 0.476 0.000 0.524
#> GSM121364     1  0.1031     0.7606 0.976 0.000 0.024
#> GSM121365     3  0.5058     0.4265 0.000 0.244 0.756
#> GSM121366     2  0.5810     0.5621 0.000 0.664 0.336
#> GSM121367     3  0.6307    -0.1971 0.000 0.488 0.512
#> GSM121370     2  0.6026     0.4924 0.000 0.624 0.376
#> GSM121371     3  0.5810     0.2509 0.000 0.336 0.664
#> GSM121372     2  0.5138     0.6708 0.000 0.748 0.252
#> GSM121373     1  0.0000     0.7702 1.000 0.000 0.000
#> GSM121374     1  0.1031     0.7606 0.976 0.000 0.024
#> GSM121407     2  0.0000     0.9007 0.000 1.000 0.000
#> GSM74387      2  0.0000     0.9007 0.000 1.000 0.000
#> GSM74388      2  0.0592     0.8938 0.000 0.988 0.012
#> GSM74389      3  0.5219     0.4974 0.196 0.016 0.788
#> GSM74390      3  0.4887     0.4513 0.000 0.228 0.772
#> GSM74391      3  0.6305     0.0374 0.484 0.000 0.516
#> GSM74392      1  0.1031     0.7606 0.976 0.000 0.024
#> GSM74393      3  0.5859     0.3411 0.344 0.000 0.656
#> GSM74394      2  0.0592     0.8938 0.000 0.988 0.012
#> GSM74239      1  0.5529     0.6356 0.704 0.000 0.296
#> GSM74364      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74365      1  0.6308     0.3564 0.508 0.000 0.492
#> GSM74366      3  0.6291     0.0623 0.000 0.468 0.532
#> GSM74367      1  0.6252     0.4518 0.556 0.000 0.444
#> GSM74377      3  0.5465     0.2646 0.288 0.000 0.712
#> GSM74378      3  0.6180     0.4430 0.024 0.260 0.716
#> GSM74379      3  0.5948     0.0830 0.360 0.000 0.640
#> GSM74380      3  0.5948     0.0830 0.360 0.000 0.640
#> GSM74381      3  0.5431     0.2724 0.284 0.000 0.716
#> GSM121357     2  0.2537     0.8414 0.000 0.920 0.080
#> GSM121361     2  0.0592     0.8938 0.000 0.988 0.012
#> GSM121363     2  0.0592     0.8938 0.000 0.988 0.012
#> GSM121368     2  0.0592     0.8938 0.000 0.988 0.012
#> GSM121369     2  0.5678     0.4773 0.000 0.684 0.316
#> GSM74368      3  0.6180    -0.0575 0.416 0.000 0.584
#> GSM74369      1  0.6045     0.5490 0.620 0.000 0.380
#> GSM74370      1  0.5591     0.6307 0.696 0.000 0.304
#> GSM74371      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74372      1  0.5835     0.5969 0.660 0.000 0.340
#> GSM74373      3  0.6126    -0.0564 0.400 0.000 0.600
#> GSM74374      1  0.5591     0.6307 0.696 0.000 0.304
#> GSM74375      3  0.5465     0.2646 0.288 0.000 0.712
#> GSM74376      3  0.5431     0.2724 0.284 0.000 0.716
#> GSM74405      3  0.5431     0.2724 0.284 0.000 0.716
#> GSM74351      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74352      3  0.5431     0.2724 0.284 0.000 0.716
#> GSM74353      1  0.5621     0.6274 0.692 0.000 0.308
#> GSM74354      1  0.5591     0.6307 0.696 0.000 0.304
#> GSM74355      3  0.6180     0.4430 0.024 0.260 0.716
#> GSM74382      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74383      1  0.5591     0.6307 0.696 0.000 0.304
#> GSM74384      3  0.6274     0.0976 0.000 0.456 0.544
#> GSM74385      1  0.0000     0.7702 1.000 0.000 0.000
#> GSM74386      1  0.6260     0.4433 0.552 0.000 0.448
#> GSM74395      1  0.6244     0.4598 0.560 0.000 0.440
#> GSM74396      1  0.6235     0.4673 0.564 0.000 0.436
#> GSM74397      1  0.6260     0.4433 0.552 0.000 0.448
#> GSM74398      3  0.6295    -0.2961 0.472 0.000 0.528
#> GSM74399      3  0.5968     0.0703 0.364 0.000 0.636
#> GSM74400      1  0.6244     0.4627 0.560 0.000 0.440
#> GSM74401      1  0.6244     0.4627 0.560 0.000 0.440

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.0817    0.92727 0.024 0.000 0.976 0.000
#> GSM74357      3  0.0817    0.92727 0.024 0.000 0.976 0.000
#> GSM74358      3  0.0817    0.92727 0.024 0.000 0.976 0.000
#> GSM74359      4  0.1174    0.98820 0.020 0.000 0.012 0.968
#> GSM74360      4  0.1174    0.98820 0.020 0.000 0.012 0.968
#> GSM74361      3  0.0817    0.92727 0.024 0.000 0.976 0.000
#> GSM74362      3  0.1302    0.91486 0.044 0.000 0.956 0.000
#> GSM74363      3  0.0817    0.92727 0.024 0.000 0.976 0.000
#> GSM74402      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74403      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74404      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74406      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74407      3  0.4277    0.62541 0.280 0.000 0.720 0.000
#> GSM74408      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74409      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74410      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM119936     4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM119937     4  0.1174    0.98091 0.020 0.000 0.012 0.968
#> GSM74411      2  0.1297    0.94121 0.000 0.964 0.020 0.016
#> GSM74412      2  0.0927    0.94887 0.000 0.976 0.008 0.016
#> GSM74413      2  0.1297    0.94121 0.000 0.964 0.020 0.016
#> GSM74414      2  0.0469    0.95545 0.000 0.988 0.012 0.000
#> GSM74415      3  0.1510    0.92457 0.000 0.028 0.956 0.016
#> GSM121379     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121388     2  0.0188    0.95687 0.000 0.996 0.004 0.000
#> GSM121389     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0188    0.95599 0.000 0.996 0.004 0.000
#> GSM121391     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0188    0.95599 0.000 0.996 0.004 0.000
#> GSM121393     2  0.4944    0.74732 0.072 0.768 0.160 0.000
#> GSM121394     2  0.0336    0.95565 0.000 0.992 0.008 0.000
#> GSM121395     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121396     2  0.0779    0.95020 0.000 0.980 0.004 0.016
#> GSM121397     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000    0.95759 0.000 1.000 0.000 0.000
#> GSM74240      3  0.1510    0.92457 0.000 0.028 0.956 0.016
#> GSM74241      3  0.1510    0.92457 0.000 0.028 0.956 0.016
#> GSM74242      3  0.0657    0.92964 0.012 0.004 0.984 0.000
#> GSM74243      3  0.0657    0.92964 0.012 0.004 0.984 0.000
#> GSM74244      3  0.1610    0.92235 0.000 0.032 0.952 0.016
#> GSM74245      3  0.1648    0.92767 0.012 0.016 0.956 0.016
#> GSM74246      3  0.3969    0.77598 0.000 0.180 0.804 0.016
#> GSM74247      3  0.3969    0.77598 0.000 0.180 0.804 0.016
#> GSM74248      3  0.1394    0.92887 0.012 0.008 0.964 0.016
#> GSM74416      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74417      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74418      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74419      4  0.1059    0.98482 0.016 0.000 0.012 0.972
#> GSM121358     3  0.1388    0.92532 0.000 0.028 0.960 0.012
#> GSM121359     2  0.1297    0.94121 0.000 0.964 0.020 0.016
#> GSM121360     1  0.3080    0.90166 0.880 0.000 0.024 0.096
#> GSM121362     1  0.3080    0.90166 0.880 0.000 0.024 0.096
#> GSM121364     4  0.1174    0.98820 0.020 0.000 0.012 0.968
#> GSM121365     3  0.0657    0.92964 0.012 0.004 0.984 0.000
#> GSM121366     3  0.2861    0.87211 0.000 0.096 0.888 0.016
#> GSM121367     3  0.1388    0.92532 0.000 0.028 0.960 0.012
#> GSM121370     3  0.1610    0.92235 0.000 0.032 0.952 0.016
#> GSM121371     3  0.0804    0.92973 0.012 0.008 0.980 0.000
#> GSM121372     2  0.5511    0.00782 0.000 0.500 0.484 0.016
#> GSM121373     4  0.1174    0.98820 0.020 0.000 0.012 0.968
#> GSM121374     4  0.1174    0.98820 0.020 0.000 0.012 0.968
#> GSM121407     2  0.0336    0.95565 0.000 0.992 0.008 0.000
#> GSM74387      2  0.0927    0.94887 0.000 0.976 0.008 0.016
#> GSM74388      2  0.0188    0.95599 0.000 0.996 0.004 0.000
#> GSM74389      3  0.0817    0.92727 0.024 0.000 0.976 0.000
#> GSM74390      3  0.0592    0.92874 0.016 0.000 0.984 0.000
#> GSM74391      3  0.5510    0.37504 0.376 0.000 0.600 0.024
#> GSM74392      4  0.1174    0.98820 0.020 0.000 0.012 0.968
#> GSM74393      3  0.3444    0.76793 0.184 0.000 0.816 0.000
#> GSM74394      2  0.0817    0.94919 0.000 0.976 0.024 0.000
#> GSM74239      1  0.3271    0.88765 0.856 0.000 0.012 0.132
#> GSM74364      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74365      1  0.0804    0.90074 0.980 0.000 0.012 0.008
#> GSM74366      1  0.6730    0.41222 0.592 0.276 0.132 0.000
#> GSM74367      1  0.2805    0.90455 0.888 0.000 0.012 0.100
#> GSM74377      1  0.0336    0.89762 0.992 0.000 0.008 0.000
#> GSM74378      1  0.0927    0.88528 0.976 0.016 0.008 0.000
#> GSM74379      1  0.0188    0.89852 0.996 0.000 0.004 0.000
#> GSM74380      1  0.0188    0.89852 0.996 0.000 0.004 0.000
#> GSM74381      1  0.0336    0.89762 0.992 0.000 0.008 0.000
#> GSM121357     2  0.2704    0.84655 0.000 0.876 0.124 0.000
#> GSM121361     2  0.0469    0.95545 0.000 0.988 0.012 0.000
#> GSM121363     2  0.0188    0.95599 0.000 0.996 0.004 0.000
#> GSM121368     2  0.0469    0.95545 0.000 0.988 0.012 0.000
#> GSM121369     2  0.6693    0.43670 0.116 0.580 0.304 0.000
#> GSM74368      1  0.2796    0.90519 0.892 0.000 0.016 0.092
#> GSM74369      1  0.2988    0.89958 0.876 0.000 0.012 0.112
#> GSM74370      1  0.4485    0.74996 0.740 0.000 0.012 0.248
#> GSM74371      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74372      1  0.2928    0.90182 0.880 0.000 0.012 0.108
#> GSM74373      1  0.0188    0.89852 0.996 0.000 0.004 0.000
#> GSM74374      1  0.3271    0.88765 0.856 0.000 0.012 0.132
#> GSM74375      1  0.0188    0.89852 0.996 0.000 0.004 0.000
#> GSM74376      1  0.0336    0.89762 0.992 0.000 0.008 0.000
#> GSM74405      1  0.0336    0.89762 0.992 0.000 0.008 0.000
#> GSM74351      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74352      1  0.0336    0.89762 0.992 0.000 0.008 0.000
#> GSM74353      1  0.3271    0.88765 0.856 0.000 0.012 0.132
#> GSM74354      1  0.3217    0.89036 0.860 0.000 0.012 0.128
#> GSM74355      1  0.0927    0.88528 0.976 0.016 0.008 0.000
#> GSM74382      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74383      1  0.3271    0.88765 0.856 0.000 0.012 0.132
#> GSM74384      1  0.6618    0.43166 0.604 0.272 0.124 0.000
#> GSM74385      4  0.0592    0.99489 0.016 0.000 0.000 0.984
#> GSM74386      1  0.2741    0.90524 0.892 0.000 0.012 0.096
#> GSM74395      1  0.2805    0.90455 0.888 0.000 0.012 0.100
#> GSM74396      1  0.2805    0.90455 0.888 0.000 0.012 0.100
#> GSM74397      1  0.2805    0.90455 0.888 0.000 0.012 0.100
#> GSM74398      1  0.0336    0.89870 0.992 0.000 0.008 0.000
#> GSM74399      1  0.0188    0.89852 0.996 0.000 0.004 0.000
#> GSM74400      1  0.2805    0.90455 0.888 0.000 0.012 0.100
#> GSM74401      1  0.2805    0.90455 0.888 0.000 0.012 0.100

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0727      0.780 0.004 0.000 0.980 0.004 0.012
#> GSM74357      3  0.0968      0.776 0.004 0.000 0.972 0.012 0.012
#> GSM74358      3  0.0968      0.776 0.004 0.000 0.972 0.012 0.012
#> GSM74359      4  0.2516      0.866 0.000 0.000 0.000 0.860 0.140
#> GSM74360      4  0.2674      0.866 0.004 0.000 0.000 0.856 0.140
#> GSM74361      3  0.0324      0.784 0.004 0.000 0.992 0.000 0.004
#> GSM74362      3  0.3187      0.705 0.036 0.000 0.864 0.012 0.088
#> GSM74363      3  0.0486      0.783 0.004 0.000 0.988 0.004 0.004
#> GSM74402      4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> GSM74403      4  0.1357      0.904 0.004 0.000 0.000 0.948 0.048
#> GSM74404      4  0.1357      0.904 0.004 0.000 0.000 0.948 0.048
#> GSM74406      4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> GSM74407      3  0.4371      0.506 0.268 0.000 0.708 0.012 0.012
#> GSM74408      4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> GSM74409      4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> GSM74410      4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> GSM119936     4  0.0000      0.907 0.000 0.000 0.000 1.000 0.000
#> GSM119937     4  0.5644      0.470 0.328 0.000 0.000 0.576 0.096
#> GSM74411      2  0.5423      0.490 0.000 0.548 0.064 0.000 0.388
#> GSM74412      2  0.4403      0.573 0.000 0.608 0.008 0.000 0.384
#> GSM74413      2  0.5476      0.484 0.000 0.544 0.068 0.000 0.388
#> GSM74414      2  0.3774      0.683 0.000 0.704 0.000 0.000 0.296
#> GSM74415      3  0.4299      0.578 0.000 0.004 0.608 0.000 0.388
#> GSM121379     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.2813      0.752 0.000 0.832 0.000 0.000 0.168
#> GSM121389     2  0.0290      0.795 0.000 0.992 0.000 0.000 0.008
#> GSM121390     2  0.0162      0.796 0.000 0.996 0.000 0.000 0.004
#> GSM121391     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.1671      0.759 0.000 0.924 0.000 0.000 0.076
#> GSM121393     2  0.5895      0.169 0.036 0.540 0.040 0.000 0.384
#> GSM121394     2  0.1792      0.779 0.000 0.916 0.000 0.000 0.084
#> GSM121395     2  0.0290      0.795 0.000 0.992 0.000 0.000 0.008
#> GSM121396     2  0.4252      0.610 0.000 0.652 0.008 0.000 0.340
#> GSM121397     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000      0.798 0.000 1.000 0.000 0.000 0.000
#> GSM74240      3  0.3550      0.726 0.000 0.004 0.760 0.000 0.236
#> GSM74241      3  0.3550      0.726 0.000 0.004 0.760 0.000 0.236
#> GSM74242      3  0.0162      0.785 0.004 0.000 0.996 0.000 0.000
#> GSM74243      3  0.0162      0.785 0.004 0.000 0.996 0.000 0.000
#> GSM74244      3  0.3861      0.691 0.000 0.004 0.712 0.000 0.284
#> GSM74245      3  0.2930      0.758 0.000 0.004 0.832 0.000 0.164
#> GSM74246      3  0.5670      0.465 0.000 0.084 0.528 0.000 0.388
#> GSM74247      3  0.5670      0.465 0.000 0.084 0.528 0.000 0.388
#> GSM74248      3  0.2233      0.776 0.004 0.000 0.892 0.000 0.104
#> GSM74416      4  0.1991      0.899 0.004 0.000 0.004 0.916 0.076
#> GSM74417      4  0.1991      0.899 0.004 0.000 0.004 0.916 0.076
#> GSM74418      4  0.1991      0.899 0.004 0.000 0.004 0.916 0.076
#> GSM74419      4  0.3532      0.823 0.092 0.000 0.000 0.832 0.076
#> GSM121358     3  0.2629      0.768 0.000 0.004 0.860 0.000 0.136
#> GSM121359     2  0.5510      0.487 0.000 0.548 0.072 0.000 0.380
#> GSM121360     1  0.3868      0.641 0.800 0.000 0.000 0.060 0.140
#> GSM121362     1  0.4210      0.626 0.788 0.000 0.008 0.064 0.140
#> GSM121364     4  0.2516      0.866 0.000 0.000 0.000 0.860 0.140
#> GSM121365     3  0.0162      0.785 0.004 0.000 0.996 0.000 0.000
#> GSM121366     3  0.4801      0.652 0.000 0.048 0.668 0.000 0.284
#> GSM121367     3  0.2583      0.769 0.000 0.004 0.864 0.000 0.132
#> GSM121370     3  0.3861      0.691 0.000 0.004 0.712 0.000 0.284
#> GSM121371     3  0.0324      0.785 0.004 0.000 0.992 0.000 0.004
#> GSM121372     3  0.6603      0.205 0.000 0.212 0.400 0.000 0.388
#> GSM121373     4  0.2843      0.866 0.008 0.000 0.000 0.848 0.144
#> GSM121374     4  0.2516      0.866 0.000 0.000 0.000 0.860 0.140
#> GSM121407     2  0.3612      0.693 0.000 0.732 0.000 0.000 0.268
#> GSM74387      2  0.4707      0.550 0.000 0.588 0.020 0.000 0.392
#> GSM74388      2  0.2891      0.739 0.000 0.824 0.000 0.000 0.176
#> GSM74389      3  0.0486      0.783 0.004 0.000 0.988 0.004 0.004
#> GSM74390      3  0.0451      0.785 0.004 0.000 0.988 0.000 0.008
#> GSM74391      3  0.5775      0.191 0.416 0.000 0.512 0.012 0.060
#> GSM74392      4  0.2516      0.866 0.000 0.000 0.000 0.860 0.140
#> GSM74393      3  0.5292      0.526 0.180 0.000 0.700 0.012 0.108
#> GSM74394      2  0.3999      0.638 0.000 0.656 0.000 0.000 0.344
#> GSM74239      1  0.1894      0.759 0.920 0.000 0.000 0.072 0.008
#> GSM74364      4  0.4311      0.781 0.144 0.000 0.004 0.776 0.076
#> GSM74365      1  0.0162      0.738 0.996 0.000 0.000 0.000 0.004
#> GSM74366      5  0.6287      0.639 0.340 0.076 0.036 0.000 0.548
#> GSM74367      1  0.1410      0.767 0.940 0.000 0.000 0.060 0.000
#> GSM74377      1  0.3857      0.495 0.688 0.000 0.000 0.000 0.312
#> GSM74378      1  0.4425      0.278 0.600 0.000 0.008 0.000 0.392
#> GSM74379      1  0.3452      0.580 0.756 0.000 0.000 0.000 0.244
#> GSM74380      1  0.3586      0.560 0.736 0.000 0.000 0.000 0.264
#> GSM74381      1  0.4147      0.476 0.676 0.000 0.008 0.000 0.316
#> GSM121357     2  0.5576      0.484 0.000 0.536 0.076 0.000 0.388
#> GSM121361     2  0.3752      0.686 0.000 0.708 0.000 0.000 0.292
#> GSM121363     2  0.3752      0.686 0.000 0.708 0.000 0.000 0.292
#> GSM121368     2  0.3752      0.686 0.000 0.708 0.000 0.000 0.292
#> GSM121369     5  0.5442      0.319 0.020 0.228 0.076 0.000 0.676
#> GSM74368      1  0.1282      0.764 0.952 0.000 0.004 0.044 0.000
#> GSM74369      1  0.1764      0.763 0.928 0.000 0.000 0.064 0.008
#> GSM74370      1  0.3586      0.676 0.828 0.000 0.000 0.096 0.076
#> GSM74371      4  0.2116      0.898 0.008 0.000 0.004 0.912 0.076
#> GSM74372      1  0.1341      0.767 0.944 0.000 0.000 0.056 0.000
#> GSM74373      1  0.3684      0.541 0.720 0.000 0.000 0.000 0.280
#> GSM74374      1  0.1894      0.759 0.920 0.000 0.000 0.072 0.008
#> GSM74375      1  0.3661      0.547 0.724 0.000 0.000 0.000 0.276
#> GSM74376      1  0.4147      0.476 0.676 0.000 0.008 0.000 0.316
#> GSM74405      1  0.4147      0.476 0.676 0.000 0.008 0.000 0.316
#> GSM74351      4  0.1991      0.899 0.004 0.000 0.004 0.916 0.076
#> GSM74352      1  0.4147      0.476 0.676 0.000 0.008 0.000 0.316
#> GSM74353      1  0.1894      0.759 0.920 0.000 0.000 0.072 0.008
#> GSM74354      1  0.1764      0.763 0.928 0.000 0.000 0.064 0.008
#> GSM74355      1  0.4425      0.278 0.600 0.000 0.008 0.000 0.392
#> GSM74382      4  0.1430      0.904 0.004 0.000 0.000 0.944 0.052
#> GSM74383      1  0.1894      0.759 0.920 0.000 0.000 0.072 0.008
#> GSM74384      5  0.6210      0.625 0.348 0.068 0.036 0.000 0.548
#> GSM74385      4  0.2116      0.898 0.008 0.000 0.004 0.912 0.076
#> GSM74386      1  0.1270      0.766 0.948 0.000 0.000 0.052 0.000
#> GSM74395      1  0.1410      0.767 0.940 0.000 0.000 0.060 0.000
#> GSM74396      1  0.1410      0.767 0.940 0.000 0.000 0.060 0.000
#> GSM74397      1  0.1410      0.767 0.940 0.000 0.000 0.060 0.000
#> GSM74398      1  0.0290      0.737 0.992 0.000 0.000 0.000 0.008
#> GSM74399      1  0.3534      0.569 0.744 0.000 0.000 0.000 0.256
#> GSM74400      1  0.1410      0.767 0.940 0.000 0.000 0.060 0.000
#> GSM74401      1  0.1410      0.767 0.940 0.000 0.000 0.060 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      5  0.0405    0.79709 0.008 0.000 0.000 0.004 0.988 0.000
#> GSM74357      5  0.0551    0.79615 0.008 0.000 0.000 0.004 0.984 0.004
#> GSM74358      5  0.0551    0.79615 0.008 0.000 0.000 0.004 0.984 0.004
#> GSM74359      4  0.3876    0.80216 0.000 0.000 0.156 0.772 0.004 0.068
#> GSM74360      4  0.4131    0.79879 0.004 0.000 0.176 0.752 0.004 0.064
#> GSM74361      5  0.0260    0.79699 0.008 0.000 0.000 0.000 0.992 0.000
#> GSM74362      5  0.2660    0.71771 0.008 0.000 0.100 0.016 0.872 0.004
#> GSM74363      5  0.0405    0.79709 0.008 0.000 0.000 0.004 0.988 0.000
#> GSM74402      4  0.0146    0.87716 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM74403      4  0.1906    0.87477 0.008 0.000 0.036 0.924 0.000 0.032
#> GSM74404      4  0.1906    0.87477 0.008 0.000 0.036 0.924 0.000 0.032
#> GSM74406      4  0.0146    0.87716 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM74407      5  0.3722    0.56449 0.260 0.000 0.004 0.008 0.724 0.004
#> GSM74408      4  0.0146    0.87716 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM74409      4  0.0146    0.87716 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM74410      4  0.0146    0.87716 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM119936     4  0.0146    0.87716 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM119937     1  0.4535    0.15938 0.548 0.000 0.012 0.424 0.000 0.016
#> GSM74411      3  0.4681    0.60871 0.004 0.280 0.664 0.000 0.032 0.020
#> GSM74412      3  0.4242    0.56410 0.004 0.312 0.660 0.000 0.004 0.020
#> GSM74413      3  0.4681    0.60871 0.004 0.280 0.664 0.000 0.032 0.020
#> GSM74414      2  0.6074    0.13616 0.004 0.424 0.348 0.000 0.000 0.224
#> GSM74415      3  0.4138    0.50274 0.004 0.000 0.656 0.000 0.320 0.020
#> GSM121379     2  0.0000    0.79278 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0146    0.79214 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM121381     2  0.0363    0.79094 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM121382     2  0.0260    0.79191 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM121383     2  0.0146    0.79263 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM121384     2  0.0000    0.79278 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000    0.79278 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000    0.79278 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0146    0.79263 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM121388     2  0.4935    0.00301 0.000 0.484 0.460 0.000 0.004 0.052
#> GSM121389     2  0.1124    0.77793 0.000 0.956 0.036 0.000 0.000 0.008
#> GSM121390     2  0.0790    0.78199 0.000 0.968 0.032 0.000 0.000 0.000
#> GSM121391     2  0.0146    0.79263 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM121392     2  0.3123    0.70628 0.000 0.832 0.056 0.000 0.000 0.112
#> GSM121393     6  0.4915    0.04644 0.000 0.320 0.072 0.000 0.004 0.604
#> GSM121394     2  0.2531    0.67377 0.000 0.856 0.132 0.000 0.000 0.012
#> GSM121395     2  0.1934    0.76509 0.000 0.916 0.044 0.000 0.000 0.040
#> GSM121396     3  0.4289    0.53806 0.000 0.332 0.640 0.000 0.008 0.020
#> GSM121397     2  0.0000    0.79278 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000    0.79278 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0260    0.79191 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM74240      5  0.3857    0.02513 0.000 0.000 0.468 0.000 0.532 0.000
#> GSM74241      5  0.3864   -0.01540 0.000 0.000 0.480 0.000 0.520 0.000
#> GSM74242      5  0.0603    0.79573 0.004 0.000 0.016 0.000 0.980 0.000
#> GSM74243      5  0.0603    0.79573 0.004 0.000 0.016 0.000 0.980 0.000
#> GSM74244      3  0.3810    0.26978 0.000 0.000 0.572 0.000 0.428 0.000
#> GSM74245      5  0.3531    0.44398 0.000 0.000 0.328 0.000 0.672 0.000
#> GSM74246      3  0.4435    0.55520 0.000 0.032 0.664 0.000 0.292 0.012
#> GSM74247      3  0.4435    0.55520 0.000 0.032 0.664 0.000 0.292 0.012
#> GSM74248      5  0.2260    0.71029 0.000 0.000 0.140 0.000 0.860 0.000
#> GSM74416      4  0.3110    0.86103 0.008 0.000 0.072 0.848 0.000 0.072
#> GSM74417      4  0.3110    0.86103 0.008 0.000 0.072 0.848 0.000 0.072
#> GSM74418      4  0.3110    0.86103 0.008 0.000 0.072 0.848 0.000 0.072
#> GSM74419      4  0.4290    0.70230 0.176 0.000 0.076 0.740 0.004 0.004
#> GSM121358     5  0.3405    0.53281 0.000 0.000 0.272 0.000 0.724 0.004
#> GSM121359     3  0.4716    0.61078 0.000 0.280 0.656 0.000 0.048 0.016
#> GSM121360     1  0.4800    0.61125 0.720 0.000 0.176 0.036 0.004 0.064
#> GSM121362     1  0.4843    0.59214 0.720 0.000 0.176 0.024 0.012 0.068
#> GSM121364     4  0.3821    0.80401 0.000 0.000 0.156 0.776 0.004 0.064
#> GSM121365     5  0.0260    0.79530 0.000 0.000 0.008 0.000 0.992 0.000
#> GSM121366     3  0.4433    0.32803 0.000 0.016 0.560 0.000 0.416 0.008
#> GSM121367     5  0.3290    0.56463 0.000 0.000 0.252 0.000 0.744 0.004
#> GSM121370     3  0.4057    0.26929 0.000 0.000 0.556 0.000 0.436 0.008
#> GSM121371     5  0.0603    0.79188 0.000 0.000 0.016 0.000 0.980 0.004
#> GSM121372     3  0.4837    0.59989 0.000 0.084 0.660 0.000 0.248 0.008
#> GSM121373     4  0.4207    0.79934 0.008 0.000 0.172 0.752 0.004 0.064
#> GSM121374     4  0.3821    0.80401 0.000 0.000 0.156 0.776 0.004 0.064
#> GSM121407     3  0.4697    0.23032 0.000 0.432 0.528 0.000 0.004 0.036
#> GSM74387      3  0.4235    0.56975 0.000 0.300 0.668 0.000 0.008 0.024
#> GSM74388      2  0.5126    0.51051 0.000 0.624 0.160 0.000 0.000 0.216
#> GSM74389      5  0.0405    0.79709 0.008 0.000 0.000 0.004 0.988 0.000
#> GSM74390      5  0.0291    0.79671 0.004 0.000 0.004 0.000 0.992 0.000
#> GSM74391      5  0.5092    0.28374 0.388 0.000 0.040 0.016 0.552 0.004
#> GSM74392      4  0.3876    0.80216 0.000 0.000 0.156 0.772 0.004 0.068
#> GSM74393      5  0.3964    0.65571 0.068 0.000 0.120 0.016 0.792 0.004
#> GSM74394      2  0.6029    0.13500 0.000 0.396 0.356 0.000 0.000 0.248
#> GSM74239      1  0.1194    0.85128 0.956 0.000 0.008 0.032 0.000 0.004
#> GSM74364      4  0.5604    0.65227 0.216 0.000 0.076 0.636 0.000 0.072
#> GSM74365      1  0.0692    0.80687 0.976 0.000 0.004 0.000 0.000 0.020
#> GSM74366      6  0.3834    0.64831 0.124 0.016 0.056 0.000 0.004 0.800
#> GSM74367      1  0.0935    0.85251 0.964 0.000 0.004 0.032 0.000 0.000
#> GSM74377      6  0.3765    0.66060 0.404 0.000 0.000 0.000 0.000 0.596
#> GSM74378      6  0.2883    0.68457 0.212 0.000 0.000 0.000 0.000 0.788
#> GSM74379      1  0.3838   -0.41023 0.552 0.000 0.000 0.000 0.000 0.448
#> GSM74380      6  0.3868    0.50904 0.492 0.000 0.000 0.000 0.000 0.508
#> GSM74381      6  0.3695    0.68950 0.376 0.000 0.000 0.000 0.000 0.624
#> GSM121357     3  0.6374    0.13511 0.000 0.316 0.448 0.000 0.024 0.212
#> GSM121361     2  0.5962    0.18371 0.000 0.424 0.348 0.000 0.000 0.228
#> GSM121363     2  0.5962    0.18371 0.000 0.424 0.348 0.000 0.000 0.228
#> GSM121368     2  0.5962    0.18371 0.000 0.424 0.348 0.000 0.000 0.228
#> GSM121369     6  0.5257    0.09455 0.000 0.080 0.312 0.000 0.016 0.592
#> GSM74368      1  0.0837    0.84366 0.972 0.000 0.004 0.020 0.004 0.000
#> GSM74369      1  0.1080    0.85236 0.960 0.000 0.004 0.032 0.000 0.004
#> GSM74370      1  0.2638    0.79064 0.888 0.000 0.032 0.044 0.000 0.036
#> GSM74371      4  0.3264    0.85844 0.012 0.000 0.076 0.840 0.000 0.072
#> GSM74372      1  0.1151    0.85005 0.956 0.000 0.012 0.032 0.000 0.000
#> GSM74373      6  0.3979    0.58212 0.456 0.000 0.004 0.000 0.000 0.540
#> GSM74374      1  0.1194    0.85128 0.956 0.000 0.008 0.032 0.000 0.004
#> GSM74375      6  0.3843    0.59657 0.452 0.000 0.000 0.000 0.000 0.548
#> GSM74376      6  0.3695    0.68950 0.376 0.000 0.000 0.000 0.000 0.624
#> GSM74405      6  0.3706    0.68725 0.380 0.000 0.000 0.000 0.000 0.620
#> GSM74351      4  0.3110    0.86103 0.008 0.000 0.072 0.848 0.000 0.072
#> GSM74352      6  0.3706    0.68725 0.380 0.000 0.000 0.000 0.000 0.620
#> GSM74353      1  0.1080    0.85182 0.960 0.000 0.004 0.032 0.000 0.004
#> GSM74354      1  0.1194    0.85128 0.956 0.000 0.008 0.032 0.000 0.004
#> GSM74355      6  0.2883    0.68457 0.212 0.000 0.000 0.000 0.000 0.788
#> GSM74382      4  0.2122    0.87323 0.008 0.000 0.040 0.912 0.000 0.040
#> GSM74383      1  0.1194    0.85128 0.956 0.000 0.008 0.032 0.000 0.004
#> GSM74384      6  0.3834    0.64831 0.124 0.016 0.056 0.000 0.004 0.800
#> GSM74385      4  0.3264    0.85844 0.012 0.000 0.076 0.840 0.000 0.072
#> GSM74386      1  0.1003    0.85010 0.964 0.000 0.004 0.028 0.000 0.004
#> GSM74395      1  0.0935    0.85251 0.964 0.000 0.004 0.032 0.000 0.000
#> GSM74396      1  0.0935    0.85251 0.964 0.000 0.004 0.032 0.000 0.000
#> GSM74397      1  0.0935    0.85251 0.964 0.000 0.004 0.032 0.000 0.000
#> GSM74398      1  0.0632    0.80320 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM74399      1  0.3867   -0.51517 0.512 0.000 0.000 0.000 0.000 0.488
#> GSM74400      1  0.0790    0.85259 0.968 0.000 0.000 0.032 0.000 0.000
#> GSM74401      1  0.0790    0.85259 0.968 0.000 0.000 0.032 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:kmeans 121         1.03e-12 2
#> ATC:kmeans  71         1.25e-06 3
#> ATC:kmeans 116         7.41e-26 4
#> ATC:kmeans 103         2.03e-20 5
#> ATC:kmeans 101         1.16e-28 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.983           0.956       0.983         0.5043 0.496   0.496
#> 3 3 0.922           0.939       0.971         0.2572 0.822   0.658
#> 4 4 0.968           0.952       0.981         0.1201 0.895   0.724
#> 5 5 0.812           0.743       0.862         0.0702 0.946   0.820
#> 6 6 0.776           0.762       0.832         0.0549 0.890   0.597

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      1  0.8713     0.5731 0.708 0.292
#> GSM74357      1  0.0000     0.9889 1.000 0.000
#> GSM74358      1  0.0000     0.9889 1.000 0.000
#> GSM74359      1  0.0000     0.9889 1.000 0.000
#> GSM74360      1  0.0000     0.9889 1.000 0.000
#> GSM74361      2  0.9522     0.4200 0.372 0.628
#> GSM74362      1  0.0000     0.9889 1.000 0.000
#> GSM74363      2  0.9996     0.0635 0.488 0.512
#> GSM74402      1  0.0000     0.9889 1.000 0.000
#> GSM74403      1  0.0000     0.9889 1.000 0.000
#> GSM74404      1  0.0000     0.9889 1.000 0.000
#> GSM74406      1  0.0000     0.9889 1.000 0.000
#> GSM74407      1  0.0000     0.9889 1.000 0.000
#> GSM74408      1  0.0000     0.9889 1.000 0.000
#> GSM74409      1  0.0000     0.9889 1.000 0.000
#> GSM74410      1  0.0000     0.9889 1.000 0.000
#> GSM119936     1  0.0000     0.9889 1.000 0.000
#> GSM119937     1  0.0000     0.9889 1.000 0.000
#> GSM74411      2  0.0000     0.9744 0.000 1.000
#> GSM74412      2  0.0000     0.9744 0.000 1.000
#> GSM74413      2  0.0000     0.9744 0.000 1.000
#> GSM74414      2  0.0000     0.9744 0.000 1.000
#> GSM74415      2  0.0000     0.9744 0.000 1.000
#> GSM121379     2  0.0000     0.9744 0.000 1.000
#> GSM121380     2  0.0000     0.9744 0.000 1.000
#> GSM121381     2  0.0000     0.9744 0.000 1.000
#> GSM121382     2  0.0000     0.9744 0.000 1.000
#> GSM121383     2  0.0000     0.9744 0.000 1.000
#> GSM121384     2  0.0000     0.9744 0.000 1.000
#> GSM121385     2  0.0000     0.9744 0.000 1.000
#> GSM121386     2  0.0000     0.9744 0.000 1.000
#> GSM121387     2  0.0000     0.9744 0.000 1.000
#> GSM121388     2  0.0000     0.9744 0.000 1.000
#> GSM121389     2  0.0000     0.9744 0.000 1.000
#> GSM121390     2  0.0000     0.9744 0.000 1.000
#> GSM121391     2  0.0000     0.9744 0.000 1.000
#> GSM121392     2  0.0000     0.9744 0.000 1.000
#> GSM121393     2  0.0000     0.9744 0.000 1.000
#> GSM121394     2  0.0000     0.9744 0.000 1.000
#> GSM121395     2  0.0000     0.9744 0.000 1.000
#> GSM121396     2  0.0000     0.9744 0.000 1.000
#> GSM121397     2  0.0000     0.9744 0.000 1.000
#> GSM121398     2  0.0000     0.9744 0.000 1.000
#> GSM121399     2  0.0000     0.9744 0.000 1.000
#> GSM74240      2  0.0000     0.9744 0.000 1.000
#> GSM74241      2  0.0000     0.9744 0.000 1.000
#> GSM74242      2  0.0000     0.9744 0.000 1.000
#> GSM74243      2  0.0000     0.9744 0.000 1.000
#> GSM74244      2  0.0000     0.9744 0.000 1.000
#> GSM74245      2  0.0000     0.9744 0.000 1.000
#> GSM74246      2  0.0000     0.9744 0.000 1.000
#> GSM74247      2  0.0000     0.9744 0.000 1.000
#> GSM74248      2  0.0000     0.9744 0.000 1.000
#> GSM74416      1  0.0000     0.9889 1.000 0.000
#> GSM74417      1  0.0000     0.9889 1.000 0.000
#> GSM74418      1  0.0000     0.9889 1.000 0.000
#> GSM74419      1  0.0000     0.9889 1.000 0.000
#> GSM121358     2  0.0000     0.9744 0.000 1.000
#> GSM121359     2  0.0000     0.9744 0.000 1.000
#> GSM121360     1  0.0000     0.9889 1.000 0.000
#> GSM121362     1  0.0000     0.9889 1.000 0.000
#> GSM121364     1  0.0000     0.9889 1.000 0.000
#> GSM121365     2  0.0000     0.9744 0.000 1.000
#> GSM121366     2  0.0000     0.9744 0.000 1.000
#> GSM121367     2  0.0000     0.9744 0.000 1.000
#> GSM121370     2  0.0000     0.9744 0.000 1.000
#> GSM121371     2  0.0000     0.9744 0.000 1.000
#> GSM121372     2  0.0000     0.9744 0.000 1.000
#> GSM121373     1  0.0000     0.9889 1.000 0.000
#> GSM121374     1  0.0000     0.9889 1.000 0.000
#> GSM121407     2  0.0000     0.9744 0.000 1.000
#> GSM74387      2  0.0000     0.9744 0.000 1.000
#> GSM74388      2  0.0000     0.9744 0.000 1.000
#> GSM74389      2  0.9608     0.3898 0.384 0.616
#> GSM74390      2  0.0000     0.9744 0.000 1.000
#> GSM74391      1  0.0000     0.9889 1.000 0.000
#> GSM74392      1  0.0000     0.9889 1.000 0.000
#> GSM74393      1  0.0000     0.9889 1.000 0.000
#> GSM74394      2  0.0000     0.9744 0.000 1.000
#> GSM74239      1  0.0000     0.9889 1.000 0.000
#> GSM74364      1  0.0000     0.9889 1.000 0.000
#> GSM74365      1  0.0000     0.9889 1.000 0.000
#> GSM74366      2  0.0000     0.9744 0.000 1.000
#> GSM74367      1  0.0000     0.9889 1.000 0.000
#> GSM74377      1  0.0000     0.9889 1.000 0.000
#> GSM74378      2  0.0000     0.9744 0.000 1.000
#> GSM74379      1  0.0000     0.9889 1.000 0.000
#> GSM74380      1  0.0000     0.9889 1.000 0.000
#> GSM74381      1  0.6438     0.7984 0.836 0.164
#> GSM121357     2  0.0000     0.9744 0.000 1.000
#> GSM121361     2  0.0000     0.9744 0.000 1.000
#> GSM121363     2  0.0000     0.9744 0.000 1.000
#> GSM121368     2  0.0000     0.9744 0.000 1.000
#> GSM121369     2  0.0000     0.9744 0.000 1.000
#> GSM74368      1  0.0000     0.9889 1.000 0.000
#> GSM74369      1  0.0000     0.9889 1.000 0.000
#> GSM74370      1  0.0000     0.9889 1.000 0.000
#> GSM74371      1  0.0000     0.9889 1.000 0.000
#> GSM74372      1  0.0000     0.9889 1.000 0.000
#> GSM74373      1  0.0000     0.9889 1.000 0.000
#> GSM74374      1  0.0000     0.9889 1.000 0.000
#> GSM74375      1  0.0000     0.9889 1.000 0.000
#> GSM74376      1  0.6623     0.7869 0.828 0.172
#> GSM74405      1  0.0672     0.9813 0.992 0.008
#> GSM74351      1  0.0000     0.9889 1.000 0.000
#> GSM74352      1  0.0000     0.9889 1.000 0.000
#> GSM74353      1  0.0000     0.9889 1.000 0.000
#> GSM74354      1  0.0000     0.9889 1.000 0.000
#> GSM74355      2  0.7815     0.6892 0.232 0.768
#> GSM74382      1  0.0000     0.9889 1.000 0.000
#> GSM74383      1  0.0000     0.9889 1.000 0.000
#> GSM74384      2  0.0000     0.9744 0.000 1.000
#> GSM74385      1  0.0000     0.9889 1.000 0.000
#> GSM74386      1  0.0000     0.9889 1.000 0.000
#> GSM74395      1  0.0000     0.9889 1.000 0.000
#> GSM74396      1  0.0000     0.9889 1.000 0.000
#> GSM74397      1  0.0000     0.9889 1.000 0.000
#> GSM74398      1  0.0000     0.9889 1.000 0.000
#> GSM74399      1  0.0000     0.9889 1.000 0.000
#> GSM74400      1  0.0000     0.9889 1.000 0.000
#> GSM74401      1  0.0000     0.9889 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0592      0.939 0.012 0.000 0.988
#> GSM74357      3  0.0592      0.939 0.012 0.000 0.988
#> GSM74358      3  0.0592      0.939 0.012 0.000 0.988
#> GSM74359      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74360      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74361      3  0.0592      0.939 0.012 0.000 0.988
#> GSM74362      3  0.3619      0.829 0.136 0.000 0.864
#> GSM74363      3  0.0592      0.939 0.012 0.000 0.988
#> GSM74402      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74403      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74404      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74406      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74407      3  0.6280      0.171 0.460 0.000 0.540
#> GSM74408      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74409      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74410      1  0.0237      0.987 0.996 0.000 0.004
#> GSM119936     1  0.0237      0.987 0.996 0.000 0.004
#> GSM119937     1  0.0237      0.987 0.996 0.000 0.004
#> GSM74411      2  0.0000      0.957 0.000 1.000 0.000
#> GSM74412      2  0.0000      0.957 0.000 1.000 0.000
#> GSM74413      2  0.0000      0.957 0.000 1.000 0.000
#> GSM74414      2  0.0000      0.957 0.000 1.000 0.000
#> GSM74415      2  0.4796      0.727 0.000 0.780 0.220
#> GSM121379     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121380     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121381     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121382     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121383     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121384     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121385     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121386     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121387     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121388     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121389     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121390     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121391     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121392     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121393     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121394     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121395     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121396     2  0.2959      0.869 0.000 0.900 0.100
#> GSM121397     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121398     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121399     2  0.0000      0.957 0.000 1.000 0.000
#> GSM74240      3  0.2261      0.917 0.000 0.068 0.932
#> GSM74241      3  0.2356      0.914 0.000 0.072 0.928
#> GSM74242      3  0.0592      0.942 0.000 0.012 0.988
#> GSM74243      3  0.0592      0.942 0.000 0.012 0.988
#> GSM74244      3  0.2356      0.914 0.000 0.072 0.928
#> GSM74245      3  0.0747      0.943 0.000 0.016 0.984
#> GSM74246      2  0.4842      0.722 0.000 0.776 0.224
#> GSM74247      2  0.4842      0.722 0.000 0.776 0.224
#> GSM74248      3  0.0747      0.943 0.000 0.016 0.984
#> GSM74416      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74417      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74418      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74419      1  0.0237      0.987 0.996 0.000 0.004
#> GSM121358     3  0.0747      0.943 0.000 0.016 0.984
#> GSM121359     2  0.4842      0.722 0.000 0.776 0.224
#> GSM121360     1  0.0000      0.987 1.000 0.000 0.000
#> GSM121362     1  0.0237      0.987 0.996 0.000 0.004
#> GSM121364     1  0.0237      0.987 0.996 0.000 0.004
#> GSM121365     3  0.0747      0.943 0.000 0.016 0.984
#> GSM121366     3  0.2959      0.888 0.000 0.100 0.900
#> GSM121367     3  0.0747      0.943 0.000 0.016 0.984
#> GSM121370     3  0.2959      0.888 0.000 0.100 0.900
#> GSM121371     3  0.0747      0.943 0.000 0.016 0.984
#> GSM121372     2  0.4796      0.727 0.000 0.780 0.220
#> GSM121373     1  0.0237      0.987 0.996 0.000 0.004
#> GSM121374     1  0.0237      0.987 0.996 0.000 0.004
#> GSM121407     2  0.0000      0.957 0.000 1.000 0.000
#> GSM74387      2  0.0000      0.957 0.000 1.000 0.000
#> GSM74388      2  0.0000      0.957 0.000 1.000 0.000
#> GSM74389      3  0.0592      0.939 0.012 0.000 0.988
#> GSM74390      3  0.1529      0.933 0.000 0.040 0.960
#> GSM74391      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74392      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74393      1  0.0892      0.973 0.980 0.000 0.020
#> GSM74394      2  0.0000      0.957 0.000 1.000 0.000
#> GSM74239      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74364      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74365      1  0.0424      0.982 0.992 0.000 0.008
#> GSM74366      2  0.0661      0.948 0.004 0.988 0.008
#> GSM74367      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74377      1  0.0592      0.980 0.988 0.000 0.012
#> GSM74378      2  0.0829      0.945 0.004 0.984 0.012
#> GSM74379      1  0.0592      0.980 0.988 0.000 0.012
#> GSM74380      1  0.0592      0.980 0.988 0.000 0.012
#> GSM74381      2  0.4634      0.754 0.164 0.824 0.012
#> GSM121357     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121361     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121363     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121368     2  0.0000      0.957 0.000 1.000 0.000
#> GSM121369     2  0.0000      0.957 0.000 1.000 0.000
#> GSM74368      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74369      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74370      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74371      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74372      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74373      1  0.0592      0.980 0.988 0.000 0.012
#> GSM74374      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74375      1  0.0592      0.980 0.988 0.000 0.012
#> GSM74376      2  0.5406      0.665 0.224 0.764 0.012
#> GSM74405      1  0.4915      0.752 0.804 0.184 0.012
#> GSM74351      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74352      1  0.5493      0.682 0.756 0.232 0.012
#> GSM74353      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74354      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74355      2  0.0829      0.945 0.004 0.984 0.012
#> GSM74382      1  0.0237      0.987 0.996 0.000 0.004
#> GSM74383      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74384      2  0.0829      0.945 0.004 0.984 0.012
#> GSM74385      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74386      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74395      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74396      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74397      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74398      1  0.0592      0.980 0.988 0.000 0.012
#> GSM74399      1  0.0592      0.980 0.988 0.000 0.012
#> GSM74400      1  0.0000      0.987 1.000 0.000 0.000
#> GSM74401      1  0.0000      0.987 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM74357      3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM74358      3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM74359      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74360      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74361      3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM74362      3  0.3219      0.742 0.000 0.000 0.836 0.164
#> GSM74363      3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM74402      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74403      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74404      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74406      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74407      4  0.4967      0.151 0.000 0.000 0.452 0.548
#> GSM74408      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74409      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74410      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM119936     4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM119937     4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74411      2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM74412      2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM74413      2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM74414      2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM74415      2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121379     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121388     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121389     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121393     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121394     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121395     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121396     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121397     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM74240      3  0.2647      0.857 0.000 0.120 0.880 0.000
#> GSM74241      3  0.2704      0.854 0.000 0.124 0.876 0.000
#> GSM74242      3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM74243      3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM74244      3  0.2704      0.854 0.000 0.124 0.876 0.000
#> GSM74245      3  0.0336      0.932 0.000 0.008 0.992 0.000
#> GSM74246      2  0.0188      0.996 0.000 0.996 0.004 0.000
#> GSM74247      2  0.0188      0.996 0.000 0.996 0.004 0.000
#> GSM74248      3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM74416      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74417      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74418      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74419      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM121358     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM121359     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121360     4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM121362     4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM121364     4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM121365     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM121366     3  0.3486      0.781 0.000 0.188 0.812 0.000
#> GSM121367     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM121370     3  0.3444      0.787 0.000 0.184 0.816 0.000
#> GSM121371     3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM121372     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121373     4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM121374     4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM121407     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM74387      2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM74388      2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM74389      3  0.0000      0.935 0.000 0.000 1.000 0.000
#> GSM74390      3  0.1557      0.904 0.000 0.056 0.944 0.000
#> GSM74391      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74392      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74393      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74394      2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM74239      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74364      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74365      4  0.4830      0.332 0.392 0.000 0.000 0.608
#> GSM74366      1  0.3569      0.712 0.804 0.196 0.000 0.000
#> GSM74367      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74377      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74378      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74379      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74380      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74381      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM121357     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121361     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121363     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121368     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM121369     2  0.0000      1.000 0.000 1.000 0.000 0.000
#> GSM74368      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74369      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74370      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74371      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74372      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74373      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74374      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74375      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74376      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74405      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74351      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74352      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74353      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74354      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74355      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74382      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74383      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74384      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74385      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74386      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74395      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74396      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74397      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74398      1  0.4331      0.582 0.712 0.000 0.000 0.288
#> GSM74399      1  0.0000      0.954 1.000 0.000 0.000 0.000
#> GSM74400      4  0.0000      0.980 0.000 0.000 0.000 1.000
#> GSM74401      4  0.0000      0.980 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      5  0.3707    0.79074 0.000 0.000 0.284 0.000 0.716
#> GSM74357      5  0.3707    0.79074 0.000 0.000 0.284 0.000 0.716
#> GSM74358      5  0.3707    0.79074 0.000 0.000 0.284 0.000 0.716
#> GSM74359      4  0.1732    0.80178 0.000 0.000 0.000 0.920 0.080
#> GSM74360      4  0.0963    0.82572 0.000 0.000 0.000 0.964 0.036
#> GSM74361      5  0.3707    0.79074 0.000 0.000 0.284 0.000 0.716
#> GSM74362      5  0.3779    0.56005 0.000 0.000 0.012 0.236 0.752
#> GSM74363      5  0.3707    0.79074 0.000 0.000 0.284 0.000 0.716
#> GSM74402      4  0.1270    0.81757 0.000 0.000 0.000 0.948 0.052
#> GSM74403      4  0.0162    0.83460 0.000 0.000 0.000 0.996 0.004
#> GSM74404      4  0.0162    0.83460 0.000 0.000 0.000 0.996 0.004
#> GSM74406      4  0.1341    0.81549 0.000 0.000 0.000 0.944 0.056
#> GSM74407      4  0.4774    0.20299 0.000 0.000 0.028 0.612 0.360
#> GSM74408      4  0.1341    0.81549 0.000 0.000 0.000 0.944 0.056
#> GSM74409      4  0.1341    0.81549 0.000 0.000 0.000 0.944 0.056
#> GSM74410      4  0.1341    0.81549 0.000 0.000 0.000 0.944 0.056
#> GSM119936     4  0.1341    0.81549 0.000 0.000 0.000 0.944 0.056
#> GSM119937     4  0.0162    0.83460 0.000 0.000 0.000 0.996 0.004
#> GSM74411      2  0.4307    0.00215 0.000 0.504 0.496 0.000 0.000
#> GSM74412      2  0.4219    0.26363 0.000 0.584 0.416 0.000 0.000
#> GSM74413      2  0.4307    0.00215 0.000 0.504 0.496 0.000 0.000
#> GSM74414      2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM74415      3  0.4287    0.08779 0.000 0.460 0.540 0.000 0.000
#> GSM121379     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121389     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0290    0.92660 0.008 0.992 0.000 0.000 0.000
#> GSM121393     2  0.0290    0.92660 0.008 0.992 0.000 0.000 0.000
#> GSM121394     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121396     2  0.2471    0.78551 0.000 0.864 0.136 0.000 0.000
#> GSM121397     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM74240      3  0.0290    0.61989 0.000 0.008 0.992 0.000 0.000
#> GSM74241      3  0.0290    0.61989 0.000 0.008 0.992 0.000 0.000
#> GSM74242      3  0.4302   -0.35333 0.000 0.000 0.520 0.000 0.480
#> GSM74243      3  0.4304   -0.36355 0.000 0.000 0.516 0.000 0.484
#> GSM74244      3  0.0290    0.61989 0.000 0.008 0.992 0.000 0.000
#> GSM74245      3  0.0000    0.61398 0.000 0.000 1.000 0.000 0.000
#> GSM74246      3  0.3816    0.48298 0.000 0.304 0.696 0.000 0.000
#> GSM74247      3  0.3816    0.48298 0.000 0.304 0.696 0.000 0.000
#> GSM74248      3  0.0000    0.61398 0.000 0.000 1.000 0.000 0.000
#> GSM74416      4  0.1341    0.84538 0.000 0.000 0.000 0.944 0.056
#> GSM74417      4  0.1341    0.84538 0.000 0.000 0.000 0.944 0.056
#> GSM74418      4  0.1341    0.84538 0.000 0.000 0.000 0.944 0.056
#> GSM74419      4  0.1341    0.81549 0.000 0.000 0.000 0.944 0.056
#> GSM121358     3  0.2074    0.53357 0.000 0.000 0.896 0.000 0.104
#> GSM121359     3  0.4201    0.25368 0.000 0.408 0.592 0.000 0.000
#> GSM121360     4  0.3395    0.83848 0.000 0.000 0.000 0.764 0.236
#> GSM121362     4  0.1043    0.82746 0.000 0.000 0.000 0.960 0.040
#> GSM121364     4  0.1732    0.80178 0.000 0.000 0.000 0.920 0.080
#> GSM121365     3  0.4182   -0.13216 0.000 0.000 0.600 0.000 0.400
#> GSM121366     3  0.0609    0.62060 0.000 0.020 0.980 0.000 0.000
#> GSM121367     3  0.2773    0.45344 0.000 0.000 0.836 0.000 0.164
#> GSM121370     3  0.0609    0.62060 0.000 0.020 0.980 0.000 0.000
#> GSM121371     3  0.4060   -0.00581 0.000 0.000 0.640 0.000 0.360
#> GSM121372     3  0.4045    0.37720 0.000 0.356 0.644 0.000 0.000
#> GSM121373     4  0.0880    0.82747 0.000 0.000 0.000 0.968 0.032
#> GSM121374     4  0.1732    0.80178 0.000 0.000 0.000 0.920 0.080
#> GSM121407     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM74387      2  0.4030    0.42030 0.000 0.648 0.352 0.000 0.000
#> GSM74388      2  0.0290    0.92660 0.008 0.992 0.000 0.000 0.000
#> GSM74389      5  0.3730    0.78598 0.000 0.000 0.288 0.000 0.712
#> GSM74390      3  0.2438    0.57573 0.000 0.040 0.900 0.000 0.060
#> GSM74391      4  0.1410    0.81329 0.000 0.000 0.000 0.940 0.060
#> GSM74392      4  0.1732    0.80178 0.000 0.000 0.000 0.920 0.080
#> GSM74393      5  0.4227    0.34560 0.000 0.000 0.000 0.420 0.580
#> GSM74394      2  0.0290    0.92660 0.008 0.992 0.000 0.000 0.000
#> GSM74239      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74364      4  0.3305    0.84055 0.000 0.000 0.000 0.776 0.224
#> GSM74365      4  0.5909    0.66784 0.164 0.000 0.000 0.592 0.244
#> GSM74366      1  0.3160    0.68059 0.808 0.188 0.000 0.000 0.004
#> GSM74367      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74377      1  0.0290    0.91233 0.992 0.000 0.000 0.000 0.008
#> GSM74378      1  0.0162    0.91245 0.996 0.000 0.000 0.000 0.004
#> GSM74379      1  0.1197    0.89279 0.952 0.000 0.000 0.000 0.048
#> GSM74380      1  0.1121    0.89608 0.956 0.000 0.000 0.000 0.044
#> GSM74381      1  0.0162    0.91245 0.996 0.000 0.000 0.000 0.004
#> GSM121357     2  0.0000    0.93032 0.000 1.000 0.000 0.000 0.000
#> GSM121361     2  0.0290    0.92660 0.008 0.992 0.000 0.000 0.000
#> GSM121363     2  0.0290    0.92660 0.008 0.992 0.000 0.000 0.000
#> GSM121368     2  0.0290    0.92660 0.008 0.992 0.000 0.000 0.000
#> GSM121369     2  0.0290    0.92660 0.008 0.992 0.000 0.000 0.000
#> GSM74368      4  0.3395    0.83858 0.000 0.000 0.000 0.764 0.236
#> GSM74369      4  0.3395    0.83858 0.000 0.000 0.000 0.764 0.236
#> GSM74370      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74371      4  0.3274    0.84120 0.000 0.000 0.000 0.780 0.220
#> GSM74372      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74373      1  0.0609    0.91078 0.980 0.000 0.000 0.000 0.020
#> GSM74374      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74375      1  0.0609    0.91078 0.980 0.000 0.000 0.000 0.020
#> GSM74376      1  0.0000    0.91253 1.000 0.000 0.000 0.000 0.000
#> GSM74405      1  0.0162    0.91245 0.996 0.000 0.000 0.000 0.004
#> GSM74351      4  0.1410    0.84568 0.000 0.000 0.000 0.940 0.060
#> GSM74352      1  0.0000    0.91253 1.000 0.000 0.000 0.000 0.000
#> GSM74353      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74354      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74355      1  0.0162    0.91245 0.996 0.000 0.000 0.000 0.004
#> GSM74382      4  0.1341    0.84538 0.000 0.000 0.000 0.944 0.056
#> GSM74383      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74384      1  0.1205    0.87933 0.956 0.040 0.000 0.000 0.004
#> GSM74385      4  0.3274    0.84120 0.000 0.000 0.000 0.780 0.220
#> GSM74386      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74395      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74396      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74397      4  0.3395    0.83865 0.000 0.000 0.000 0.764 0.236
#> GSM74398      1  0.6410    0.09480 0.488 0.000 0.000 0.320 0.192
#> GSM74399      1  0.0609    0.91078 0.980 0.000 0.000 0.000 0.020
#> GSM74400      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244
#> GSM74401      4  0.3452    0.83646 0.000 0.000 0.000 0.756 0.244

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.1124     0.8304 0.000 0.000 0.956 0.008 0.036 0.000
#> GSM74357      3  0.1124     0.8304 0.000 0.000 0.956 0.008 0.036 0.000
#> GSM74358      3  0.1124     0.8304 0.000 0.000 0.956 0.008 0.036 0.000
#> GSM74359      4  0.3509     0.7944 0.240 0.000 0.016 0.744 0.000 0.000
#> GSM74360      4  0.3470     0.7953 0.248 0.000 0.012 0.740 0.000 0.000
#> GSM74361      3  0.1225     0.8300 0.000 0.000 0.952 0.012 0.036 0.000
#> GSM74362      3  0.2135     0.7166 0.000 0.000 0.872 0.128 0.000 0.000
#> GSM74363      3  0.1124     0.8304 0.000 0.000 0.956 0.008 0.036 0.000
#> GSM74402      4  0.3728     0.8392 0.344 0.000 0.004 0.652 0.000 0.000
#> GSM74403      4  0.3659     0.8276 0.364 0.000 0.000 0.636 0.000 0.000
#> GSM74404      4  0.3659     0.8276 0.364 0.000 0.000 0.636 0.000 0.000
#> GSM74406      4  0.3699     0.8428 0.336 0.000 0.004 0.660 0.000 0.000
#> GSM74407      4  0.6074     0.5026 0.248 0.000 0.264 0.480 0.008 0.000
#> GSM74408      4  0.3699     0.8428 0.336 0.000 0.004 0.660 0.000 0.000
#> GSM74409      4  0.3699     0.8428 0.336 0.000 0.004 0.660 0.000 0.000
#> GSM74410      4  0.3699     0.8428 0.336 0.000 0.004 0.660 0.000 0.000
#> GSM119936     4  0.3699     0.8428 0.336 0.000 0.004 0.660 0.000 0.000
#> GSM119937     4  0.3684     0.8215 0.372 0.000 0.000 0.628 0.000 0.000
#> GSM74411      5  0.4060     0.5942 0.000 0.284 0.000 0.032 0.684 0.000
#> GSM74412      5  0.4306     0.4879 0.000 0.344 0.000 0.032 0.624 0.000
#> GSM74413      5  0.4040     0.5978 0.000 0.280 0.000 0.032 0.688 0.000
#> GSM74414      2  0.2201     0.9133 0.000 0.912 0.012 0.048 0.024 0.004
#> GSM74415      5  0.3658     0.6473 0.000 0.216 0.000 0.032 0.752 0.000
#> GSM121379     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121380     2  0.0000     0.9402 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121382     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121383     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121384     2  0.0000     0.9402 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121386     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121387     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121388     2  0.0665     0.9397 0.000 0.980 0.008 0.004 0.008 0.000
#> GSM121389     2  0.0508     0.9371 0.000 0.984 0.012 0.004 0.000 0.000
#> GSM121390     2  0.0837     0.9333 0.000 0.972 0.020 0.004 0.004 0.000
#> GSM121391     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121392     2  0.1381     0.9262 0.000 0.952 0.020 0.020 0.004 0.004
#> GSM121393     2  0.1237     0.9275 0.000 0.956 0.020 0.020 0.004 0.000
#> GSM121394     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121395     2  0.0508     0.9371 0.000 0.984 0.012 0.004 0.000 0.000
#> GSM121396     2  0.3183     0.6822 0.000 0.788 0.004 0.008 0.200 0.000
#> GSM121397     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121398     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121399     2  0.0260     0.9406 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM74240      5  0.0713     0.6960 0.000 0.000 0.028 0.000 0.972 0.000
#> GSM74241      5  0.0713     0.6960 0.000 0.000 0.028 0.000 0.972 0.000
#> GSM74242      3  0.3670     0.6843 0.000 0.000 0.704 0.012 0.284 0.000
#> GSM74243      3  0.3650     0.6880 0.000 0.000 0.708 0.012 0.280 0.000
#> GSM74244      5  0.0713     0.6960 0.000 0.000 0.028 0.000 0.972 0.000
#> GSM74245      5  0.0935     0.6941 0.000 0.000 0.032 0.004 0.964 0.000
#> GSM74246      5  0.2398     0.7026 0.000 0.104 0.000 0.020 0.876 0.000
#> GSM74247      5  0.2398     0.7026 0.000 0.104 0.000 0.020 0.876 0.000
#> GSM74248      5  0.0935     0.6941 0.000 0.000 0.032 0.004 0.964 0.000
#> GSM74416      4  0.3828     0.7339 0.440 0.000 0.000 0.560 0.000 0.000
#> GSM74417      4  0.3828     0.7339 0.440 0.000 0.000 0.560 0.000 0.000
#> GSM74418      4  0.3828     0.7339 0.440 0.000 0.000 0.560 0.000 0.000
#> GSM74419      4  0.3699     0.8428 0.336 0.000 0.004 0.660 0.000 0.000
#> GSM121358     5  0.5334     0.1494 0.000 0.000 0.320 0.128 0.552 0.000
#> GSM121359     5  0.4750     0.6689 0.000 0.176 0.008 0.120 0.696 0.000
#> GSM121360     1  0.3898     0.3581 0.652 0.000 0.012 0.336 0.000 0.000
#> GSM121362     4  0.3729     0.7659 0.296 0.000 0.012 0.692 0.000 0.000
#> GSM121364     4  0.3509     0.7944 0.240 0.000 0.016 0.744 0.000 0.000
#> GSM121365     3  0.5289     0.4967 0.000 0.000 0.560 0.124 0.316 0.000
#> GSM121366     5  0.3295     0.6446 0.000 0.000 0.056 0.128 0.816 0.000
#> GSM121367     5  0.5462    -0.0548 0.000 0.000 0.376 0.128 0.496 0.000
#> GSM121370     5  0.3295     0.6446 0.000 0.000 0.056 0.128 0.816 0.000
#> GSM121371     3  0.5418     0.4178 0.000 0.000 0.520 0.128 0.352 0.000
#> GSM121372     5  0.4449     0.6836 0.000 0.136 0.008 0.124 0.732 0.000
#> GSM121373     4  0.3564     0.7929 0.264 0.000 0.012 0.724 0.000 0.000
#> GSM121374     4  0.3420     0.7934 0.240 0.000 0.012 0.748 0.000 0.000
#> GSM121407     2  0.1138     0.9320 0.000 0.960 0.004 0.012 0.024 0.000
#> GSM74387      2  0.4556    -0.0314 0.000 0.516 0.008 0.020 0.456 0.000
#> GSM74388      2  0.2651     0.9034 0.000 0.892 0.028 0.052 0.016 0.012
#> GSM74389      3  0.1297     0.8295 0.000 0.000 0.948 0.012 0.040 0.000
#> GSM74390      5  0.5948     0.3697 0.000 0.044 0.232 0.140 0.584 0.000
#> GSM74391      4  0.3922     0.8378 0.320 0.000 0.016 0.664 0.000 0.000
#> GSM74392      4  0.3509     0.7944 0.240 0.000 0.016 0.744 0.000 0.000
#> GSM74393      4  0.4264     0.3464 0.032 0.000 0.332 0.636 0.000 0.000
#> GSM74394      2  0.2651     0.9034 0.000 0.892 0.028 0.052 0.016 0.012
#> GSM74239      1  0.1387     0.7998 0.932 0.000 0.000 0.068 0.000 0.000
#> GSM74364      1  0.3050     0.5253 0.764 0.000 0.000 0.236 0.000 0.000
#> GSM74365      1  0.1398     0.7564 0.940 0.000 0.000 0.008 0.000 0.052
#> GSM74366      6  0.2889     0.7719 0.000 0.096 0.004 0.044 0.000 0.856
#> GSM74367      1  0.0458     0.8253 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM74377      6  0.0725     0.8814 0.012 0.000 0.000 0.012 0.000 0.976
#> GSM74378      6  0.0458     0.8798 0.000 0.000 0.000 0.016 0.000 0.984
#> GSM74379      6  0.3797     0.7195 0.292 0.000 0.000 0.016 0.000 0.692
#> GSM74380      6  0.3457     0.7805 0.232 0.000 0.000 0.016 0.000 0.752
#> GSM74381      6  0.0603     0.8817 0.004 0.000 0.000 0.016 0.000 0.980
#> GSM121357     2  0.1599     0.9247 0.000 0.940 0.008 0.028 0.024 0.000
#> GSM121361     2  0.2651     0.9034 0.000 0.892 0.028 0.052 0.016 0.012
#> GSM121363     2  0.2651     0.9034 0.000 0.892 0.028 0.052 0.016 0.012
#> GSM121368     2  0.2738     0.9013 0.000 0.888 0.028 0.052 0.020 0.012
#> GSM121369     2  0.2738     0.9013 0.000 0.888 0.028 0.052 0.020 0.012
#> GSM74368      1  0.2562     0.6783 0.828 0.000 0.000 0.172 0.000 0.000
#> GSM74369      1  0.2527     0.6824 0.832 0.000 0.000 0.168 0.000 0.000
#> GSM74370      1  0.1267     0.8060 0.940 0.000 0.000 0.060 0.000 0.000
#> GSM74371      1  0.3390     0.3250 0.704 0.000 0.000 0.296 0.000 0.000
#> GSM74372      1  0.0291     0.8158 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM74373      6  0.2667     0.8455 0.128 0.000 0.000 0.020 0.000 0.852
#> GSM74374      1  0.0260     0.8246 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM74375      6  0.3487     0.7877 0.224 0.000 0.000 0.020 0.000 0.756
#> GSM74376      6  0.0146     0.8822 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM74405      6  0.0603     0.8817 0.004 0.000 0.000 0.016 0.000 0.980
#> GSM74351      4  0.3847     0.7009 0.456 0.000 0.000 0.544 0.000 0.000
#> GSM74352      6  0.0520     0.8821 0.008 0.000 0.000 0.008 0.000 0.984
#> GSM74353      1  0.0713     0.8224 0.972 0.000 0.000 0.028 0.000 0.000
#> GSM74354      1  0.0000     0.8210 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74355      6  0.0603     0.8817 0.004 0.000 0.000 0.016 0.000 0.980
#> GSM74382      4  0.3833     0.7263 0.444 0.000 0.000 0.556 0.000 0.000
#> GSM74383      1  0.0363     0.8252 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM74384      6  0.1693     0.8527 0.000 0.020 0.004 0.044 0.000 0.932
#> GSM74385      1  0.3288     0.4005 0.724 0.000 0.000 0.276 0.000 0.000
#> GSM74386      1  0.0363     0.8233 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM74395      1  0.0458     0.8253 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM74396      1  0.1007     0.8156 0.956 0.000 0.000 0.044 0.000 0.000
#> GSM74397      1  0.2527     0.6829 0.832 0.000 0.000 0.168 0.000 0.000
#> GSM74398      1  0.3916     0.2810 0.680 0.000 0.000 0.020 0.000 0.300
#> GSM74399      6  0.3088     0.8234 0.172 0.000 0.000 0.020 0.000 0.808
#> GSM74400      1  0.0363     0.8188 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM74401      1  0.0260     0.8153 0.992 0.000 0.000 0.008 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>               n disease.state(p) k
#> ATC:skmeans 118         2.26e-12 2
#> ATC:skmeans 120         2.66e-15 3
#> ATC:skmeans 119         3.26e-18 4
#> ATC:skmeans 104         7.19e-22 5
#> ATC:skmeans 109         2.94e-30 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.976       0.990         0.4990 0.504   0.504
#> 3 3 0.920           0.904       0.960         0.2810 0.806   0.634
#> 4 4 0.780           0.845       0.902         0.1619 0.844   0.596
#> 5 5 0.805           0.840       0.917         0.0699 0.879   0.582
#> 6 6 0.906           0.858       0.940         0.0391 0.963   0.820

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      1  0.4022      0.907 0.920 0.080
#> GSM74357      1  0.0376      0.980 0.996 0.004
#> GSM74358      1  0.0376      0.980 0.996 0.004
#> GSM74359      1  0.0000      0.982 1.000 0.000
#> GSM74360      1  0.0000      0.982 1.000 0.000
#> GSM74361      1  0.1184      0.969 0.984 0.016
#> GSM74362      1  0.0000      0.982 1.000 0.000
#> GSM74363      1  0.9909      0.226 0.556 0.444
#> GSM74402      1  0.0000      0.982 1.000 0.000
#> GSM74403      1  0.0000      0.982 1.000 0.000
#> GSM74404      1  0.0000      0.982 1.000 0.000
#> GSM74406      1  0.0000      0.982 1.000 0.000
#> GSM74407      1  0.0000      0.982 1.000 0.000
#> GSM74408      1  0.0000      0.982 1.000 0.000
#> GSM74409      1  0.0000      0.982 1.000 0.000
#> GSM74410      1  0.0000      0.982 1.000 0.000
#> GSM119936     1  0.0000      0.982 1.000 0.000
#> GSM119937     1  0.0000      0.982 1.000 0.000
#> GSM74411      2  0.0000      1.000 0.000 1.000
#> GSM74412      2  0.0000      1.000 0.000 1.000
#> GSM74413      2  0.0000      1.000 0.000 1.000
#> GSM74414      2  0.0000      1.000 0.000 1.000
#> GSM74415      2  0.0000      1.000 0.000 1.000
#> GSM121379     2  0.0000      1.000 0.000 1.000
#> GSM121380     2  0.0000      1.000 0.000 1.000
#> GSM121381     2  0.0000      1.000 0.000 1.000
#> GSM121382     2  0.0000      1.000 0.000 1.000
#> GSM121383     2  0.0000      1.000 0.000 1.000
#> GSM121384     2  0.0000      1.000 0.000 1.000
#> GSM121385     2  0.0000      1.000 0.000 1.000
#> GSM121386     2  0.0000      1.000 0.000 1.000
#> GSM121387     2  0.0000      1.000 0.000 1.000
#> GSM121388     2  0.0000      1.000 0.000 1.000
#> GSM121389     2  0.0000      1.000 0.000 1.000
#> GSM121390     2  0.0000      1.000 0.000 1.000
#> GSM121391     2  0.0000      1.000 0.000 1.000
#> GSM121392     2  0.0000      1.000 0.000 1.000
#> GSM121393     2  0.0000      1.000 0.000 1.000
#> GSM121394     2  0.0000      1.000 0.000 1.000
#> GSM121395     2  0.0000      1.000 0.000 1.000
#> GSM121396     2  0.0000      1.000 0.000 1.000
#> GSM121397     2  0.0000      1.000 0.000 1.000
#> GSM121398     2  0.0000      1.000 0.000 1.000
#> GSM121399     2  0.0000      1.000 0.000 1.000
#> GSM74240      2  0.0000      1.000 0.000 1.000
#> GSM74241      2  0.0000      1.000 0.000 1.000
#> GSM74242      1  0.6531      0.799 0.832 0.168
#> GSM74243      1  0.3733      0.915 0.928 0.072
#> GSM74244      2  0.0000      1.000 0.000 1.000
#> GSM74245      2  0.0000      1.000 0.000 1.000
#> GSM74246      2  0.0000      1.000 0.000 1.000
#> GSM74247      2  0.0000      1.000 0.000 1.000
#> GSM74248      2  0.0000      1.000 0.000 1.000
#> GSM74416      1  0.0000      0.982 1.000 0.000
#> GSM74417      1  0.0000      0.982 1.000 0.000
#> GSM74418      1  0.0000      0.982 1.000 0.000
#> GSM74419      1  0.0000      0.982 1.000 0.000
#> GSM121358     2  0.0000      1.000 0.000 1.000
#> GSM121359     2  0.0000      1.000 0.000 1.000
#> GSM121360     1  0.0000      0.982 1.000 0.000
#> GSM121362     1  0.0000      0.982 1.000 0.000
#> GSM121364     1  0.0000      0.982 1.000 0.000
#> GSM121365     2  0.0000      1.000 0.000 1.000
#> GSM121366     2  0.0000      1.000 0.000 1.000
#> GSM121367     2  0.0000      1.000 0.000 1.000
#> GSM121370     2  0.0000      1.000 0.000 1.000
#> GSM121371     2  0.0000      1.000 0.000 1.000
#> GSM121372     2  0.0000      1.000 0.000 1.000
#> GSM121373     1  0.0000      0.982 1.000 0.000
#> GSM121374     1  0.0000      0.982 1.000 0.000
#> GSM121407     2  0.0000      1.000 0.000 1.000
#> GSM74387      2  0.0000      1.000 0.000 1.000
#> GSM74388      2  0.0000      1.000 0.000 1.000
#> GSM74389      1  0.0376      0.980 0.996 0.004
#> GSM74390      2  0.0000      1.000 0.000 1.000
#> GSM74391      1  0.0000      0.982 1.000 0.000
#> GSM74392      1  0.0000      0.982 1.000 0.000
#> GSM74393      1  0.0000      0.982 1.000 0.000
#> GSM74394      2  0.0000      1.000 0.000 1.000
#> GSM74239      1  0.0000      0.982 1.000 0.000
#> GSM74364      1  0.0000      0.982 1.000 0.000
#> GSM74365      1  0.0000      0.982 1.000 0.000
#> GSM74366      2  0.0000      1.000 0.000 1.000
#> GSM74367      1  0.0000      0.982 1.000 0.000
#> GSM74377      1  0.0000      0.982 1.000 0.000
#> GSM74378      1  0.9580      0.397 0.620 0.380
#> GSM74379      1  0.0000      0.982 1.000 0.000
#> GSM74380      1  0.0000      0.982 1.000 0.000
#> GSM74381      1  0.0376      0.980 0.996 0.004
#> GSM121357     2  0.0000      1.000 0.000 1.000
#> GSM121361     2  0.0000      1.000 0.000 1.000
#> GSM121363     2  0.0000      1.000 0.000 1.000
#> GSM121368     2  0.0000      1.000 0.000 1.000
#> GSM121369     2  0.0000      1.000 0.000 1.000
#> GSM74368      1  0.0000      0.982 1.000 0.000
#> GSM74369      1  0.0000      0.982 1.000 0.000
#> GSM74370      1  0.0000      0.982 1.000 0.000
#> GSM74371      1  0.0000      0.982 1.000 0.000
#> GSM74372      1  0.0000      0.982 1.000 0.000
#> GSM74373      1  0.0000      0.982 1.000 0.000
#> GSM74374      1  0.0000      0.982 1.000 0.000
#> GSM74375      1  0.0000      0.982 1.000 0.000
#> GSM74376      1  0.0376      0.980 0.996 0.004
#> GSM74405      1  0.0000      0.982 1.000 0.000
#> GSM74351      1  0.0000      0.982 1.000 0.000
#> GSM74352      1  0.0376      0.980 0.996 0.004
#> GSM74353      1  0.0000      0.982 1.000 0.000
#> GSM74354      1  0.0000      0.982 1.000 0.000
#> GSM74355      1  0.0376      0.980 0.996 0.004
#> GSM74382      1  0.0000      0.982 1.000 0.000
#> GSM74383      1  0.0000      0.982 1.000 0.000
#> GSM74384      2  0.0000      1.000 0.000 1.000
#> GSM74385      1  0.0000      0.982 1.000 0.000
#> GSM74386      1  0.0000      0.982 1.000 0.000
#> GSM74395      1  0.0000      0.982 1.000 0.000
#> GSM74396      1  0.0000      0.982 1.000 0.000
#> GSM74397      1  0.0000      0.982 1.000 0.000
#> GSM74398      1  0.0000      0.982 1.000 0.000
#> GSM74399      1  0.0000      0.982 1.000 0.000
#> GSM74400      1  0.0000      0.982 1.000 0.000
#> GSM74401      1  0.0000      0.982 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74357      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74358      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74359      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74360      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74361      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74362      3  0.4452     0.7042 0.192 0.000 0.808
#> GSM74363      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74402      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74403      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74404      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74406      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74407      1  0.4654     0.7400 0.792 0.000 0.208
#> GSM74408      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74409      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74410      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM119936     1  0.0000     0.9787 1.000 0.000 0.000
#> GSM119937     1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74411      3  0.6180     0.3451 0.000 0.416 0.584
#> GSM74412      2  0.0747     0.9357 0.000 0.984 0.016
#> GSM74413      3  0.2165     0.8803 0.000 0.064 0.936
#> GSM74414      2  0.0000     0.9469 0.000 1.000 0.000
#> GSM74415      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM121379     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121380     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121381     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121382     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121383     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121384     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121385     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121386     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121387     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121388     2  0.1289     0.9244 0.000 0.968 0.032
#> GSM121389     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121390     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121391     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121392     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121393     2  0.4605     0.7350 0.000 0.796 0.204
#> GSM121394     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121395     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121396     3  0.6168     0.3559 0.000 0.412 0.588
#> GSM121397     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121398     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121399     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM74240      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74241      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74242      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74243      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74244      3  0.0237     0.9193 0.000 0.004 0.996
#> GSM74245      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74246      3  0.2625     0.8640 0.000 0.084 0.916
#> GSM74247      3  0.1860     0.8902 0.000 0.052 0.948
#> GSM74248      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74416      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74417      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74418      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74419      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM121358     3  0.0000     0.9214 0.000 0.000 1.000
#> GSM121359     3  0.4931     0.6921 0.000 0.232 0.768
#> GSM121360     1  0.0237     0.9770 0.996 0.000 0.004
#> GSM121362     1  0.1411     0.9539 0.964 0.000 0.036
#> GSM121364     1  0.0000     0.9787 1.000 0.000 0.000
#> GSM121365     3  0.0000     0.9214 0.000 0.000 1.000
#> GSM121366     3  0.0237     0.9193 0.000 0.004 0.996
#> GSM121367     3  0.0000     0.9214 0.000 0.000 1.000
#> GSM121370     3  0.0000     0.9214 0.000 0.000 1.000
#> GSM121371     3  0.0000     0.9214 0.000 0.000 1.000
#> GSM121372     3  0.0592     0.9149 0.000 0.012 0.988
#> GSM121373     1  0.0000     0.9787 1.000 0.000 0.000
#> GSM121374     1  0.0000     0.9787 1.000 0.000 0.000
#> GSM121407     2  0.3482     0.8245 0.000 0.872 0.128
#> GSM74387      2  0.6309    -0.1183 0.000 0.504 0.496
#> GSM74388      2  0.0000     0.9469 0.000 1.000 0.000
#> GSM74389      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74390      3  0.0000     0.9214 0.000 0.000 1.000
#> GSM74391      1  0.1643     0.9474 0.956 0.000 0.044
#> GSM74392      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74393      1  0.6305     0.0823 0.516 0.000 0.484
#> GSM74394      2  0.2356     0.8879 0.000 0.928 0.072
#> GSM74239      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74364      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74365      1  0.0237     0.9770 0.996 0.000 0.004
#> GSM74366      2  0.4750     0.7173 0.000 0.784 0.216
#> GSM74367      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74377      1  0.0237     0.9770 0.996 0.000 0.004
#> GSM74378      1  0.5036     0.8191 0.832 0.120 0.048
#> GSM74379      1  0.0237     0.9770 0.996 0.000 0.004
#> GSM74380      1  0.0237     0.9770 0.996 0.000 0.004
#> GSM74381      1  0.1643     0.9474 0.956 0.000 0.044
#> GSM121357     3  0.6244     0.1853 0.000 0.440 0.560
#> GSM121361     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121363     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121368     2  0.0000     0.9469 0.000 1.000 0.000
#> GSM121369     3  0.4931     0.6767 0.000 0.232 0.768
#> GSM74368      1  0.0237     0.9770 0.996 0.000 0.004
#> GSM74369      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74370      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74371      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74372      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74373      1  0.0237     0.9770 0.996 0.000 0.004
#> GSM74374      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74375      1  0.0237     0.9770 0.996 0.000 0.004
#> GSM74376      1  0.1753     0.9439 0.952 0.000 0.048
#> GSM74405      1  0.1753     0.9439 0.952 0.000 0.048
#> GSM74351      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74352      1  0.1753     0.9441 0.952 0.000 0.048
#> GSM74353      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74354      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74355      1  0.2261     0.9250 0.932 0.000 0.068
#> GSM74382      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74383      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74384      2  0.6811     0.6461 0.064 0.716 0.220
#> GSM74385      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74386      1  0.0237     0.9770 0.996 0.000 0.004
#> GSM74395      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74396      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74397      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74398      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74399      1  0.0237     0.9770 0.996 0.000 0.004
#> GSM74400      1  0.0000     0.9787 1.000 0.000 0.000
#> GSM74401      1  0.0000     0.9787 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM74357      3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM74358      3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM74359      4  0.3626      0.956 0.184 0.000 0.004 0.812
#> GSM74360      4  0.4382      0.841 0.296 0.000 0.000 0.704
#> GSM74361      3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM74362      3  0.1867      0.843 0.072 0.000 0.928 0.000
#> GSM74363      3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM74402      4  0.3400      0.962 0.180 0.000 0.000 0.820
#> GSM74403      4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM74404      4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM74406      4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM74407      3  0.4866      0.322 0.404 0.000 0.596 0.000
#> GSM74408      4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM74409      4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM74410      4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM119936     4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM119937     4  0.4877      0.640 0.408 0.000 0.000 0.592
#> GSM74411      3  0.5536      0.416 0.000 0.384 0.592 0.024
#> GSM74412      2  0.1004      0.940 0.000 0.972 0.004 0.024
#> GSM74413      3  0.1929      0.875 0.000 0.036 0.940 0.024
#> GSM74414      2  0.3356      0.856 0.000 0.824 0.000 0.176
#> GSM74415      3  0.0817      0.891 0.000 0.000 0.976 0.024
#> GSM121379     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121380     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121381     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121382     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121383     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121384     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121385     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121386     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121387     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121388     2  0.0592      0.945 0.000 0.984 0.016 0.000
#> GSM121389     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121390     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121391     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121392     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121393     2  0.3978      0.740 0.000 0.796 0.192 0.012
#> GSM121394     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121395     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121396     3  0.4866      0.394 0.000 0.404 0.596 0.000
#> GSM121397     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121398     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM121399     2  0.0000      0.955 0.000 1.000 0.000 0.000
#> GSM74240      3  0.0817      0.891 0.000 0.000 0.976 0.024
#> GSM74241      3  0.0817      0.891 0.000 0.000 0.976 0.024
#> GSM74242      3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM74243      3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM74244      3  0.0817      0.891 0.000 0.000 0.976 0.024
#> GSM74245      3  0.0817      0.891 0.000 0.000 0.976 0.024
#> GSM74246      3  0.2443      0.860 0.000 0.060 0.916 0.024
#> GSM74247      3  0.2021      0.873 0.000 0.040 0.936 0.024
#> GSM74248      3  0.0817      0.891 0.000 0.000 0.976 0.024
#> GSM74416      4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM74417      4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM74418      4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM74419      1  0.5000     -0.418 0.504 0.000 0.000 0.496
#> GSM121358     3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM121359     3  0.3907      0.691 0.000 0.232 0.768 0.000
#> GSM121360     1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM121362     1  0.0921      0.868 0.972 0.000 0.028 0.000
#> GSM121364     4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM121365     3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM121366     3  0.0817      0.891 0.000 0.000 0.976 0.024
#> GSM121367     3  0.0188      0.892 0.000 0.000 0.996 0.004
#> GSM121370     3  0.0817      0.891 0.000 0.000 0.976 0.024
#> GSM121371     3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM121372     3  0.0817      0.891 0.000 0.000 0.976 0.024
#> GSM121373     4  0.4008      0.905 0.244 0.000 0.000 0.756
#> GSM121374     4  0.3444      0.960 0.184 0.000 0.000 0.816
#> GSM121407     2  0.0817      0.939 0.000 0.976 0.024 0.000
#> GSM74387      3  0.5620      0.338 0.000 0.416 0.560 0.024
#> GSM74388      2  0.2973      0.875 0.000 0.856 0.000 0.144
#> GSM74389      3  0.0000      0.892 0.000 0.000 1.000 0.000
#> GSM74390      3  0.0188      0.891 0.004 0.000 0.996 0.000
#> GSM74391      1  0.3991      0.743 0.832 0.000 0.120 0.048
#> GSM74392      4  0.3444      0.960 0.184 0.000 0.000 0.816
#> GSM74393      3  0.4877      0.305 0.408 0.000 0.592 0.000
#> GSM74394      2  0.4832      0.808 0.000 0.768 0.056 0.176
#> GSM74239      1  0.0336      0.875 0.992 0.000 0.000 0.008
#> GSM74364      1  0.3266      0.665 0.832 0.000 0.000 0.168
#> GSM74365      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74366      1  0.9109      0.393 0.480 0.160 0.184 0.176
#> GSM74367      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74377      1  0.3074      0.810 0.848 0.000 0.000 0.152
#> GSM74378      1  0.4332      0.770 0.792 0.032 0.000 0.176
#> GSM74379      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74380      1  0.0188      0.880 0.996 0.000 0.000 0.004
#> GSM74381      1  0.3862      0.797 0.824 0.000 0.024 0.152
#> GSM121357     3  0.5856      0.289 0.000 0.408 0.556 0.036
#> GSM121361     2  0.3539      0.853 0.004 0.820 0.000 0.176
#> GSM121363     2  0.2973      0.875 0.000 0.856 0.000 0.144
#> GSM121368     2  0.3172      0.866 0.000 0.840 0.000 0.160
#> GSM121369     3  0.5546      0.726 0.028 0.048 0.748 0.176
#> GSM74368      1  0.0921      0.858 0.972 0.000 0.000 0.028
#> GSM74369      1  0.1118      0.851 0.964 0.000 0.000 0.036
#> GSM74370      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74371      4  0.3528      0.954 0.192 0.000 0.000 0.808
#> GSM74372      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74373      1  0.2973      0.814 0.856 0.000 0.000 0.144
#> GSM74374      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74375      1  0.0188      0.880 0.996 0.000 0.000 0.004
#> GSM74376      1  0.3356      0.794 0.824 0.000 0.000 0.176
#> GSM74405      1  0.3862      0.797 0.824 0.000 0.024 0.152
#> GSM74351      4  0.3356      0.963 0.176 0.000 0.000 0.824
#> GSM74352      1  0.3529      0.804 0.836 0.000 0.012 0.152
#> GSM74353      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74354      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74355      1  0.3356      0.794 0.824 0.000 0.000 0.176
#> GSM74382      4  0.4543      0.796 0.324 0.000 0.000 0.676
#> GSM74383      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74384      1  0.8006      0.549 0.588 0.156 0.080 0.176
#> GSM74385      4  0.3400      0.962 0.180 0.000 0.000 0.820
#> GSM74386      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74395      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74396      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74397      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74398      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74399      1  0.2973      0.814 0.856 0.000 0.000 0.144
#> GSM74400      1  0.0000      0.881 1.000 0.000 0.000 0.000
#> GSM74401      1  0.0000      0.881 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM74357      3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM74358      3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM74359      4  0.0404     0.9537 0.012 0.000 0.000 0.988 0.000
#> GSM74360      1  0.3913     0.5471 0.676 0.000 0.000 0.324 0.000
#> GSM74361      3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM74362      3  0.2471     0.7541 0.136 0.000 0.864 0.000 0.000
#> GSM74363      3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM74402      4  0.0510     0.9504 0.016 0.000 0.000 0.984 0.000
#> GSM74403      4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM74404      4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM74406      4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM74407      1  0.3730     0.6357 0.712 0.000 0.288 0.000 0.000
#> GSM74408      4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM74409      4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM74410      4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM119936     4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM119937     1  0.2329     0.8273 0.876 0.000 0.000 0.124 0.000
#> GSM74411      3  0.5740     0.6429 0.000 0.244 0.612 0.000 0.144
#> GSM74412      2  0.2561     0.7946 0.000 0.856 0.000 0.000 0.144
#> GSM74413      3  0.2719     0.8739 0.000 0.004 0.852 0.000 0.144
#> GSM74414      5  0.0290     0.7894 0.000 0.008 0.000 0.000 0.992
#> GSM74415      3  0.2561     0.8751 0.000 0.000 0.856 0.000 0.144
#> GSM121379     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.0771     0.9453 0.000 0.976 0.020 0.000 0.004
#> GSM121389     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121391     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121393     5  0.5967     0.0646 0.000 0.436 0.108 0.000 0.456
#> GSM121394     2  0.0162     0.9627 0.000 0.996 0.000 0.000 0.004
#> GSM121395     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121396     3  0.4457     0.4904 0.000 0.368 0.620 0.000 0.012
#> GSM121397     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9660 0.000 1.000 0.000 0.000 0.000
#> GSM74240      3  0.2516     0.8768 0.000 0.000 0.860 0.000 0.140
#> GSM74241      3  0.2516     0.8768 0.000 0.000 0.860 0.000 0.140
#> GSM74242      3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM74243      3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM74244      3  0.2516     0.8768 0.000 0.000 0.860 0.000 0.140
#> GSM74245      3  0.2471     0.8780 0.000 0.000 0.864 0.000 0.136
#> GSM74246      3  0.2719     0.8739 0.000 0.004 0.852 0.000 0.144
#> GSM74247      3  0.2561     0.8751 0.000 0.000 0.856 0.000 0.144
#> GSM74248      3  0.2516     0.8768 0.000 0.000 0.860 0.000 0.140
#> GSM74416      4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM74417      4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM74418      4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM74419      1  0.2280     0.8241 0.880 0.000 0.000 0.120 0.000
#> GSM121358     3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM121359     3  0.3424     0.7198 0.000 0.240 0.760 0.000 0.000
#> GSM121360     1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM121362     1  0.2179     0.8368 0.888 0.000 0.112 0.000 0.000
#> GSM121364     4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM121365     3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM121366     3  0.2471     0.8779 0.000 0.000 0.864 0.000 0.136
#> GSM121367     3  0.0510     0.8850 0.000 0.000 0.984 0.000 0.016
#> GSM121370     3  0.2424     0.8785 0.000 0.000 0.868 0.000 0.132
#> GSM121371     3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM121372     3  0.2471     0.8779 0.000 0.000 0.864 0.000 0.136
#> GSM121373     4  0.4114     0.3514 0.376 0.000 0.000 0.624 0.000
#> GSM121374     4  0.0290     0.9572 0.008 0.000 0.000 0.992 0.000
#> GSM121407     2  0.1041     0.9313 0.000 0.964 0.032 0.000 0.004
#> GSM74387      3  0.5806     0.6250 0.000 0.256 0.600 0.000 0.144
#> GSM74388      2  0.4182     0.2381 0.000 0.600 0.000 0.000 0.400
#> GSM74389      3  0.0000     0.8842 0.000 0.000 1.000 0.000 0.000
#> GSM74390      3  0.0162     0.8835 0.000 0.000 0.996 0.000 0.004
#> GSM74391      1  0.2329     0.8264 0.876 0.000 0.124 0.000 0.000
#> GSM74392      4  0.0290     0.9571 0.008 0.000 0.000 0.992 0.000
#> GSM74393      1  0.3876     0.5991 0.684 0.000 0.316 0.000 0.000
#> GSM74394      5  0.0000     0.7891 0.000 0.000 0.000 0.000 1.000
#> GSM74239      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74364      1  0.2377     0.8247 0.872 0.000 0.000 0.128 0.000
#> GSM74365      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74366      5  0.0162     0.7909 0.004 0.000 0.000 0.000 0.996
#> GSM74367      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74377      5  0.2561     0.7994 0.144 0.000 0.000 0.000 0.856
#> GSM74378      5  0.2471     0.8019 0.136 0.000 0.000 0.000 0.864
#> GSM74379      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74380      1  0.0290     0.9089 0.992 0.000 0.000 0.000 0.008
#> GSM74381      5  0.2516     0.8010 0.140 0.000 0.000 0.000 0.860
#> GSM121357     5  0.6219     0.3214 0.000 0.212 0.240 0.000 0.548
#> GSM121361     5  0.0162     0.7890 0.000 0.004 0.000 0.000 0.996
#> GSM121363     5  0.4114     0.3662 0.000 0.376 0.000 0.000 0.624
#> GSM121368     5  0.1908     0.7527 0.000 0.092 0.000 0.000 0.908
#> GSM121369     5  0.0000     0.7891 0.000 0.000 0.000 0.000 1.000
#> GSM74368      1  0.0794     0.8989 0.972 0.000 0.028 0.000 0.000
#> GSM74369      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74370      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74371      1  0.4219     0.3149 0.584 0.000 0.000 0.416 0.000
#> GSM74372      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74373      5  0.4256     0.3769 0.436 0.000 0.000 0.000 0.564
#> GSM74374      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74375      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74376      5  0.2561     0.7994 0.144 0.000 0.000 0.000 0.856
#> GSM74405      5  0.2561     0.7994 0.144 0.000 0.000 0.000 0.856
#> GSM74351      4  0.0000     0.9617 0.000 0.000 0.000 1.000 0.000
#> GSM74352      5  0.2516     0.8010 0.140 0.000 0.000 0.000 0.860
#> GSM74353      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74354      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74355      5  0.2471     0.8019 0.136 0.000 0.000 0.000 0.864
#> GSM74382      1  0.3452     0.6866 0.756 0.000 0.000 0.244 0.000
#> GSM74383      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74384      5  0.0162     0.7909 0.004 0.000 0.000 0.000 0.996
#> GSM74385      4  0.2127     0.8502 0.108 0.000 0.000 0.892 0.000
#> GSM74386      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74395      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74396      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74397      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74398      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74399      5  0.4305     0.2361 0.488 0.000 0.000 0.000 0.512
#> GSM74400      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000
#> GSM74401      1  0.0000     0.9147 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74357      3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74358      3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74359      4  0.0363      0.953 0.012 0.000 0.000 0.988 0.000 0.000
#> GSM74360      1  0.3288      0.621 0.724 0.000 0.000 0.276 0.000 0.000
#> GSM74361      3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74362      3  0.1204      0.867 0.056 0.000 0.944 0.000 0.000 0.000
#> GSM74363      3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74402      4  0.0458      0.950 0.016 0.000 0.000 0.984 0.000 0.000
#> GSM74403      4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74404      4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74406      4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74407      1  0.3409      0.592 0.700 0.000 0.300 0.000 0.000 0.000
#> GSM74408      4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74409      4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74410      4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM119936     4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM119937     1  0.0458      0.922 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM74411      5  0.0000      0.965 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74412      5  0.0000      0.965 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74413      5  0.0000      0.965 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74414      6  0.2092      0.752 0.000 0.000 0.000 0.000 0.124 0.876
#> GSM74415      5  0.0000      0.965 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM121379     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121381     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121384     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121385     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121388     2  0.0260      0.968 0.000 0.992 0.008 0.000 0.000 0.000
#> GSM121389     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121390     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121391     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121393     6  0.3961      0.132 0.000 0.440 0.004 0.000 0.000 0.556
#> GSM121394     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121395     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121396     3  0.3860      0.685 0.000 0.236 0.728 0.000 0.036 0.000
#> GSM121397     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000      0.975 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      5  0.0000      0.965 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74241      5  0.0000      0.965 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74242      3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74243      3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74244      5  0.0000      0.965 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74245      5  0.0547      0.947 0.000 0.000 0.020 0.000 0.980 0.000
#> GSM74246      5  0.0000      0.965 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74247      5  0.0000      0.965 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74248      5  0.0000      0.965 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM74416      4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74417      4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74418      4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74419      1  0.1957      0.840 0.888 0.000 0.000 0.112 0.000 0.000
#> GSM121358     3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121359     3  0.3558      0.678 0.000 0.248 0.736 0.000 0.016 0.000
#> GSM121360     1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM121362     1  0.0632      0.917 0.976 0.000 0.024 0.000 0.000 0.000
#> GSM121364     4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM121365     3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121366     3  0.3109      0.725 0.000 0.004 0.772 0.000 0.224 0.000
#> GSM121367     3  0.0547      0.908 0.000 0.000 0.980 0.000 0.020 0.000
#> GSM121370     3  0.2941      0.731 0.000 0.000 0.780 0.000 0.220 0.000
#> GSM121371     3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM121372     3  0.3221      0.671 0.000 0.000 0.736 0.000 0.264 0.000
#> GSM121373     4  0.3695      0.368 0.376 0.000 0.000 0.624 0.000 0.000
#> GSM121374     4  0.0260      0.957 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM121407     2  0.0713      0.946 0.000 0.972 0.028 0.000 0.000 0.000
#> GSM74387      5  0.0790      0.932 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM74388      2  0.3756      0.234 0.000 0.600 0.000 0.000 0.000 0.400
#> GSM74389      3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74390      3  0.0000      0.919 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74391      1  0.1444      0.880 0.928 0.000 0.072 0.000 0.000 0.000
#> GSM74392      4  0.0260      0.957 0.008 0.000 0.000 0.992 0.000 0.000
#> GSM74393      1  0.3823      0.304 0.564 0.000 0.436 0.000 0.000 0.000
#> GSM74394      6  0.3756      0.350 0.000 0.000 0.000 0.000 0.400 0.600
#> GSM74239      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74364      1  0.0865      0.908 0.964 0.000 0.000 0.036 0.000 0.000
#> GSM74365      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74366      6  0.0000      0.815 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74367      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74377      6  0.0363      0.811 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM74378      6  0.0000      0.815 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74379      1  0.0146      0.929 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM74380      1  0.0363      0.923 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM74381      6  0.0000      0.815 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM121357     5  0.5430      0.546 0.000 0.188 0.028 0.000 0.644 0.140
#> GSM121361     6  0.2491      0.716 0.000 0.000 0.000 0.000 0.164 0.836
#> GSM121363     6  0.4018      0.484 0.000 0.324 0.000 0.000 0.020 0.656
#> GSM121368     6  0.3570      0.707 0.000 0.064 0.000 0.000 0.144 0.792
#> GSM121369     6  0.1501      0.780 0.000 0.000 0.000 0.000 0.076 0.924
#> GSM74368      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74369      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74370      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74371      1  0.3782      0.305 0.588 0.000 0.000 0.412 0.000 0.000
#> GSM74372      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74373      6  0.3804      0.322 0.424 0.000 0.000 0.000 0.000 0.576
#> GSM74374      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74375      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74376      6  0.0000      0.815 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74405      6  0.0000      0.815 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74351      4  0.0000      0.961 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74352      6  0.0000      0.815 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74353      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74354      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74355      6  0.0000      0.815 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74382      1  0.3076      0.681 0.760 0.000 0.000 0.240 0.000 0.000
#> GSM74383      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74384      6  0.0000      0.815 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74385      4  0.1910      0.849 0.108 0.000 0.000 0.892 0.000 0.000
#> GSM74386      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74395      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74396      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74397      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74398      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74399      6  0.3864      0.164 0.480 0.000 0.000 0.000 0.000 0.520
#> GSM74400      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM74401      1  0.0000      0.931 1.000 0.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> ATC:pam 119         9.88e-12 2
#> ATC:pam 116         1.99e-18 3
#> ATC:pam 113         1.64e-25 4
#> ATC:pam 112         2.20e-27 5
#> ATC:pam 112         2.66e-32 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.533           0.895       0.915         0.4416 0.506   0.506
#> 3 3 0.710           0.931       0.945         0.3871 0.809   0.648
#> 4 4 0.787           0.897       0.921         0.1965 0.844   0.613
#> 5 5 0.850           0.830       0.913         0.0657 0.908   0.675
#> 6 6 0.820           0.791       0.847         0.0321 0.932   0.720

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      2  0.8081      0.858 0.248 0.752
#> GSM74357      2  0.8144      0.854 0.252 0.748
#> GSM74358      2  0.8081      0.858 0.248 0.752
#> GSM74359      1  0.2778      0.937 0.952 0.048
#> GSM74360      1  0.2603      0.940 0.956 0.044
#> GSM74361      2  0.9983      0.396 0.476 0.524
#> GSM74362      1  0.5294      0.855 0.880 0.120
#> GSM74363      2  0.8081      0.858 0.248 0.752
#> GSM74402      1  0.0000      0.968 1.000 0.000
#> GSM74403      1  0.0000      0.968 1.000 0.000
#> GSM74404      1  0.0000      0.968 1.000 0.000
#> GSM74406      1  0.0000      0.968 1.000 0.000
#> GSM74407      1  0.4562      0.870 0.904 0.096
#> GSM74408      1  0.0000      0.968 1.000 0.000
#> GSM74409      1  0.0376      0.966 0.996 0.004
#> GSM74410      1  0.0672      0.965 0.992 0.008
#> GSM119936     1  0.0000      0.968 1.000 0.000
#> GSM119937     1  0.0000      0.968 1.000 0.000
#> GSM74411      2  0.8081      0.858 0.248 0.752
#> GSM74412      2  0.8081      0.858 0.248 0.752
#> GSM74413      2  0.8081      0.858 0.248 0.752
#> GSM74414      2  0.9129      0.752 0.328 0.672
#> GSM74415      2  0.8081      0.858 0.248 0.752
#> GSM121379     2  0.0000      0.807 0.000 1.000
#> GSM121380     2  0.0000      0.807 0.000 1.000
#> GSM121381     2  0.0000      0.807 0.000 1.000
#> GSM121382     2  0.0000      0.807 0.000 1.000
#> GSM121383     2  0.0000      0.807 0.000 1.000
#> GSM121384     2  0.0000      0.807 0.000 1.000
#> GSM121385     2  0.0000      0.807 0.000 1.000
#> GSM121386     2  0.0000      0.807 0.000 1.000
#> GSM121387     2  0.0000      0.807 0.000 1.000
#> GSM121388     2  0.4298      0.827 0.088 0.912
#> GSM121389     2  0.0000      0.807 0.000 1.000
#> GSM121390     2  0.0000      0.807 0.000 1.000
#> GSM121391     2  0.0000      0.807 0.000 1.000
#> GSM121392     2  0.2603      0.798 0.044 0.956
#> GSM121393     2  0.5842      0.735 0.140 0.860
#> GSM121394     2  0.0000      0.807 0.000 1.000
#> GSM121395     2  0.0000      0.807 0.000 1.000
#> GSM121396     2  0.8081      0.858 0.248 0.752
#> GSM121397     2  0.0000      0.807 0.000 1.000
#> GSM121398     2  0.0000      0.807 0.000 1.000
#> GSM121399     2  0.0000      0.807 0.000 1.000
#> GSM74240      2  0.8081      0.858 0.248 0.752
#> GSM74241      2  0.8081      0.858 0.248 0.752
#> GSM74242      2  0.8081      0.858 0.248 0.752
#> GSM74243      2  0.8081      0.858 0.248 0.752
#> GSM74244      2  0.8081      0.858 0.248 0.752
#> GSM74245      2  0.8081      0.858 0.248 0.752
#> GSM74246      2  0.8081      0.858 0.248 0.752
#> GSM74247      2  0.8081      0.858 0.248 0.752
#> GSM74248      2  0.8081      0.858 0.248 0.752
#> GSM74416      1  0.0000      0.968 1.000 0.000
#> GSM74417      1  0.0000      0.968 1.000 0.000
#> GSM74418      1  0.0000      0.968 1.000 0.000
#> GSM74419      1  0.0376      0.967 0.996 0.004
#> GSM121358     2  0.8081      0.858 0.248 0.752
#> GSM121359     2  0.8081      0.858 0.248 0.752
#> GSM121360     1  0.2778      0.937 0.952 0.048
#> GSM121362     1  0.2778      0.937 0.952 0.048
#> GSM121364     1  0.2778      0.937 0.952 0.048
#> GSM121365     2  0.8081      0.858 0.248 0.752
#> GSM121366     2  0.8081      0.858 0.248 0.752
#> GSM121367     2  0.8081      0.858 0.248 0.752
#> GSM121370     2  0.8081      0.858 0.248 0.752
#> GSM121371     2  0.8081      0.858 0.248 0.752
#> GSM121372     2  0.8081      0.858 0.248 0.752
#> GSM121373     1  0.2778      0.937 0.952 0.048
#> GSM121374     1  0.2778      0.937 0.952 0.048
#> GSM121407     2  0.8081      0.858 0.248 0.752
#> GSM74387      2  0.8081      0.858 0.248 0.752
#> GSM74388      1  0.5737      0.842 0.864 0.136
#> GSM74389      2  0.8081      0.858 0.248 0.752
#> GSM74390      1  0.6247      0.802 0.844 0.156
#> GSM74391      1  0.0672      0.965 0.992 0.008
#> GSM74392      1  0.2778      0.937 0.952 0.048
#> GSM74393      1  0.3733      0.913 0.928 0.072
#> GSM74394      1  0.6048      0.825 0.852 0.148
#> GSM74239      1  0.0000      0.968 1.000 0.000
#> GSM74364      1  0.0000      0.968 1.000 0.000
#> GSM74365      1  0.0000      0.968 1.000 0.000
#> GSM74366      1  0.0672      0.965 0.992 0.008
#> GSM74367      1  0.0000      0.968 1.000 0.000
#> GSM74377      1  0.0672      0.965 0.992 0.008
#> GSM74378      1  0.0672      0.965 0.992 0.008
#> GSM74379      1  0.0672      0.965 0.992 0.008
#> GSM74380      1  0.0672      0.965 0.992 0.008
#> GSM74381      1  0.0672      0.965 0.992 0.008
#> GSM121357     2  0.8081      0.858 0.248 0.752
#> GSM121361     1  0.5737      0.842 0.864 0.136
#> GSM121363     1  0.5737      0.842 0.864 0.136
#> GSM121368     1  0.5737      0.842 0.864 0.136
#> GSM121369     1  0.5294      0.855 0.880 0.120
#> GSM74368      1  0.0000      0.968 1.000 0.000
#> GSM74369      1  0.0000      0.968 1.000 0.000
#> GSM74370      1  0.0000      0.968 1.000 0.000
#> GSM74371      1  0.0000      0.968 1.000 0.000
#> GSM74372      1  0.0000      0.968 1.000 0.000
#> GSM74373      1  0.0672      0.965 0.992 0.008
#> GSM74374      1  0.0000      0.968 1.000 0.000
#> GSM74375      1  0.0376      0.966 0.996 0.004
#> GSM74376      1  0.0672      0.965 0.992 0.008
#> GSM74405      1  0.0672      0.965 0.992 0.008
#> GSM74351      1  0.0000      0.968 1.000 0.000
#> GSM74352      1  0.0672      0.965 0.992 0.008
#> GSM74353      1  0.0000      0.968 1.000 0.000
#> GSM74354      1  0.0000      0.968 1.000 0.000
#> GSM74355      1  0.0672      0.965 0.992 0.008
#> GSM74382      1  0.0000      0.968 1.000 0.000
#> GSM74383      1  0.0000      0.968 1.000 0.000
#> GSM74384      1  0.0672      0.965 0.992 0.008
#> GSM74385      1  0.0000      0.968 1.000 0.000
#> GSM74386      1  0.0000      0.968 1.000 0.000
#> GSM74395      1  0.0000      0.968 1.000 0.000
#> GSM74396      1  0.0000      0.968 1.000 0.000
#> GSM74397      1  0.0000      0.968 1.000 0.000
#> GSM74398      1  0.0000      0.968 1.000 0.000
#> GSM74399      1  0.0672      0.965 0.992 0.008
#> GSM74400      1  0.0000      0.968 1.000 0.000
#> GSM74401      1  0.0000      0.968 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.0892      0.950 0.000 0.020 0.980
#> GSM74357      3  0.0892      0.950 0.000 0.020 0.980
#> GSM74358      3  0.0592      0.955 0.000 0.012 0.988
#> GSM74359      1  0.6176      0.811 0.780 0.100 0.120
#> GSM74360      1  0.3832      0.884 0.880 0.100 0.020
#> GSM74361      3  0.1170      0.950 0.008 0.016 0.976
#> GSM74362      3  0.2527      0.920 0.020 0.044 0.936
#> GSM74363      3  0.0747      0.953 0.000 0.016 0.984
#> GSM74402      1  0.2878      0.892 0.904 0.000 0.096
#> GSM74403      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74404      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74406      1  0.2878      0.892 0.904 0.000 0.096
#> GSM74407      1  0.5726      0.754 0.760 0.024 0.216
#> GSM74408      1  0.3112      0.891 0.900 0.004 0.096
#> GSM74409      1  0.3112      0.891 0.900 0.004 0.096
#> GSM74410      1  0.3112      0.891 0.900 0.004 0.096
#> GSM119936     1  0.2878      0.892 0.904 0.000 0.096
#> GSM119937     1  0.0237      0.952 0.996 0.004 0.000
#> GSM74411      3  0.0892      0.951 0.000 0.020 0.980
#> GSM74412      3  0.1411      0.943 0.000 0.036 0.964
#> GSM74413      3  0.1163      0.947 0.000 0.028 0.972
#> GSM74414      3  0.4270      0.844 0.116 0.024 0.860
#> GSM74415      3  0.0237      0.959 0.000 0.004 0.996
#> GSM121379     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121380     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121381     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121382     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121383     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121384     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121385     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121386     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121387     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121388     2  0.4002      0.920 0.000 0.840 0.160
#> GSM121389     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121390     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121391     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121392     2  0.4540      0.937 0.028 0.848 0.124
#> GSM121393     2  0.4326      0.801 0.144 0.844 0.012
#> GSM121394     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121395     2  0.3038      0.979 0.000 0.896 0.104
#> GSM121396     3  0.2448      0.902 0.000 0.076 0.924
#> GSM121397     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121398     2  0.2959      0.983 0.000 0.900 0.100
#> GSM121399     2  0.2959      0.983 0.000 0.900 0.100
#> GSM74240      3  0.0237      0.959 0.000 0.004 0.996
#> GSM74241      3  0.0000      0.958 0.000 0.000 1.000
#> GSM74242      3  0.0237      0.959 0.000 0.004 0.996
#> GSM74243      3  0.0237      0.959 0.000 0.004 0.996
#> GSM74244      3  0.0237      0.959 0.000 0.004 0.996
#> GSM74245      3  0.0237      0.959 0.000 0.004 0.996
#> GSM74246      3  0.0237      0.959 0.000 0.004 0.996
#> GSM74247      3  0.0237      0.959 0.000 0.004 0.996
#> GSM74248      3  0.0237      0.959 0.000 0.004 0.996
#> GSM74416      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74417      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74418      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74419      1  0.3112      0.891 0.900 0.004 0.096
#> GSM121358     3  0.0237      0.959 0.000 0.004 0.996
#> GSM121359     3  0.0424      0.958 0.000 0.008 0.992
#> GSM121360     1  0.3910      0.881 0.876 0.104 0.020
#> GSM121362     1  0.3966      0.881 0.876 0.100 0.024
#> GSM121364     1  0.6176      0.811 0.780 0.100 0.120
#> GSM121365     3  0.0424      0.957 0.000 0.008 0.992
#> GSM121366     3  0.0237      0.959 0.000 0.004 0.996
#> GSM121367     3  0.0237      0.959 0.000 0.004 0.996
#> GSM121370     3  0.0237      0.959 0.000 0.004 0.996
#> GSM121371     3  0.0237      0.959 0.000 0.004 0.996
#> GSM121372     3  0.0424      0.958 0.000 0.008 0.992
#> GSM121373     1  0.3690      0.887 0.884 0.100 0.016
#> GSM121374     1  0.6176      0.811 0.780 0.100 0.120
#> GSM121407     3  0.1163      0.950 0.000 0.028 0.972
#> GSM74387      3  0.0237      0.959 0.000 0.004 0.996
#> GSM74388      3  0.3846      0.859 0.108 0.016 0.876
#> GSM74389      3  0.0424      0.957 0.000 0.008 0.992
#> GSM74390      3  0.0237      0.958 0.000 0.004 0.996
#> GSM74391      1  0.4335      0.874 0.864 0.036 0.100
#> GSM74392      1  0.6176      0.811 0.780 0.100 0.120
#> GSM74393      1  0.7091      0.335 0.560 0.024 0.416
#> GSM74394      3  0.3921      0.855 0.112 0.016 0.872
#> GSM74239      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74364      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74365      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74366      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74367      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74377      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74378      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74379      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74380      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74381      1  0.0237      0.952 0.996 0.004 0.000
#> GSM121357     3  0.1636      0.943 0.020 0.016 0.964
#> GSM121361     3  0.3846      0.859 0.108 0.016 0.876
#> GSM121363     3  0.3846      0.859 0.108 0.016 0.876
#> GSM121368     3  0.3846      0.859 0.108 0.016 0.876
#> GSM121369     3  0.4196      0.848 0.112 0.024 0.864
#> GSM74368      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74369      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74370      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74371      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74372      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74373      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74374      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74375      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74376      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74405      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74351      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74352      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74353      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74354      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74355      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74382      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74383      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74384      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74385      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74386      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74395      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74396      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74397      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74398      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74399      1  0.0000      0.952 1.000 0.000 0.000
#> GSM74400      1  0.0237      0.952 0.996 0.004 0.000
#> GSM74401      1  0.0000      0.952 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.0188      0.925 0.000 0.004 0.996 0.000
#> GSM74357      3  0.0188      0.925 0.000 0.004 0.996 0.000
#> GSM74358      3  0.0188      0.925 0.000 0.004 0.996 0.000
#> GSM74359      4  0.1191      0.853 0.004 0.024 0.004 0.968
#> GSM74360      4  0.1920      0.863 0.028 0.024 0.004 0.944
#> GSM74361      3  0.2197      0.900 0.000 0.004 0.916 0.080
#> GSM74362      3  0.2976      0.881 0.000 0.008 0.872 0.120
#> GSM74363      3  0.0188      0.925 0.000 0.004 0.996 0.000
#> GSM74402      4  0.2530      0.912 0.112 0.000 0.000 0.888
#> GSM74403      4  0.2704      0.910 0.124 0.000 0.000 0.876
#> GSM74404      4  0.2760      0.909 0.128 0.000 0.000 0.872
#> GSM74406      4  0.2408      0.912 0.104 0.000 0.000 0.896
#> GSM74407      3  0.4731      0.826 0.100 0.004 0.800 0.096
#> GSM74408      4  0.2469      0.910 0.108 0.000 0.000 0.892
#> GSM74409      4  0.2197      0.895 0.080 0.004 0.000 0.916
#> GSM74410      4  0.2053      0.890 0.072 0.004 0.000 0.924
#> GSM119936     4  0.2408      0.912 0.104 0.000 0.000 0.896
#> GSM119937     4  0.2921      0.906 0.140 0.000 0.000 0.860
#> GSM74411      3  0.2281      0.890 0.000 0.096 0.904 0.000
#> GSM74412      3  0.2408      0.885 0.000 0.104 0.896 0.000
#> GSM74413      3  0.2408      0.885 0.000 0.104 0.896 0.000
#> GSM74414      3  0.4709      0.863 0.044 0.052 0.824 0.080
#> GSM74415      3  0.2011      0.899 0.000 0.080 0.920 0.000
#> GSM121379     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121380     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121381     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121382     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121383     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121384     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121385     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121386     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121387     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121388     2  0.3801      0.733 0.000 0.780 0.220 0.000
#> GSM121389     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121390     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121391     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121392     2  0.3372      0.888 0.000 0.868 0.036 0.096
#> GSM121393     2  0.3900      0.829 0.096 0.848 0.004 0.052
#> GSM121394     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121395     2  0.1022      0.972 0.000 0.968 0.032 0.000
#> GSM121396     3  0.1022      0.920 0.000 0.032 0.968 0.000
#> GSM121397     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121398     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM121399     2  0.0921      0.975 0.000 0.972 0.028 0.000
#> GSM74240      3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM74241      3  0.0592      0.923 0.000 0.016 0.984 0.000
#> GSM74242      3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM74243      3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM74244      3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM74245      3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM74246      3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM74247      3  0.0469      0.924 0.000 0.012 0.988 0.000
#> GSM74248      3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM74416      4  0.2647      0.912 0.120 0.000 0.000 0.880
#> GSM74417      4  0.2647      0.912 0.120 0.000 0.000 0.880
#> GSM74418      4  0.2647      0.912 0.120 0.000 0.000 0.880
#> GSM74419      4  0.2334      0.898 0.088 0.004 0.000 0.908
#> GSM121358     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM121359     3  0.0707      0.922 0.000 0.020 0.980 0.000
#> GSM121360     1  0.4321      0.775 0.796 0.024 0.004 0.176
#> GSM121362     1  0.5696      0.426 0.592 0.024 0.004 0.380
#> GSM121364     4  0.1191      0.853 0.004 0.024 0.004 0.968
#> GSM121365     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM121366     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM121367     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM121370     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM121371     3  0.0000      0.926 0.000 0.000 1.000 0.000
#> GSM121372     3  0.0469      0.924 0.000 0.012 0.988 0.000
#> GSM121373     4  0.1284      0.861 0.012 0.024 0.000 0.964
#> GSM121374     4  0.1191      0.853 0.004 0.024 0.004 0.968
#> GSM121407     3  0.1792      0.906 0.000 0.068 0.932 0.000
#> GSM74387      3  0.0921      0.920 0.000 0.028 0.972 0.000
#> GSM74388      3  0.6329      0.767 0.144 0.052 0.720 0.084
#> GSM74389      3  0.0188      0.925 0.000 0.004 0.996 0.000
#> GSM74390      3  0.2125      0.902 0.004 0.000 0.920 0.076
#> GSM74391      3  0.5272      0.792 0.096 0.004 0.760 0.140
#> GSM74392      4  0.1004      0.854 0.004 0.024 0.000 0.972
#> GSM74393      3  0.2976      0.879 0.000 0.008 0.872 0.120
#> GSM74394      3  0.6508      0.757 0.144 0.052 0.708 0.096
#> GSM74239      1  0.1389      0.934 0.952 0.000 0.000 0.048
#> GSM74364      4  0.2647      0.912 0.120 0.000 0.000 0.880
#> GSM74365      1  0.0469      0.954 0.988 0.000 0.000 0.012
#> GSM74366      1  0.0524      0.950 0.988 0.004 0.000 0.008
#> GSM74367      1  0.0188      0.954 0.996 0.000 0.000 0.004
#> GSM74377      1  0.0592      0.952 0.984 0.000 0.000 0.016
#> GSM74378      1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM74379      1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM74380      1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM74381      1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM121357     3  0.2676      0.890 0.000 0.092 0.896 0.012
#> GSM121361     3  0.6252      0.769 0.144 0.048 0.724 0.084
#> GSM121363     3  0.6252      0.769 0.144 0.048 0.724 0.084
#> GSM121368     3  0.6329      0.767 0.144 0.052 0.720 0.084
#> GSM121369     3  0.6269      0.752 0.156 0.024 0.708 0.112
#> GSM74368      1  0.3726      0.710 0.788 0.000 0.000 0.212
#> GSM74369      4  0.3688      0.830 0.208 0.000 0.000 0.792
#> GSM74370      1  0.0336      0.953 0.992 0.000 0.000 0.008
#> GSM74371      4  0.2647      0.912 0.120 0.000 0.000 0.880
#> GSM74372      1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM74373      1  0.0592      0.953 0.984 0.000 0.000 0.016
#> GSM74374      1  0.0817      0.949 0.976 0.000 0.000 0.024
#> GSM74375      1  0.0469      0.953 0.988 0.000 0.000 0.012
#> GSM74376      1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM74405      1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM74351      4  0.2647      0.912 0.120 0.000 0.000 0.880
#> GSM74352      1  0.0707      0.950 0.980 0.000 0.000 0.020
#> GSM74353      1  0.3311      0.776 0.828 0.000 0.000 0.172
#> GSM74354      1  0.0817      0.949 0.976 0.000 0.000 0.024
#> GSM74355      1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM74382      4  0.2760      0.909 0.128 0.000 0.000 0.872
#> GSM74383      1  0.0817      0.949 0.976 0.000 0.000 0.024
#> GSM74384      1  0.0188      0.953 0.996 0.004 0.000 0.000
#> GSM74385      4  0.2704      0.910 0.124 0.000 0.000 0.876
#> GSM74386      1  0.0000      0.955 1.000 0.000 0.000 0.000
#> GSM74395      1  0.0188      0.954 0.996 0.000 0.000 0.004
#> GSM74396      1  0.0592      0.949 0.984 0.000 0.000 0.016
#> GSM74397      1  0.1302      0.928 0.956 0.000 0.000 0.044
#> GSM74398      1  0.0188      0.955 0.996 0.000 0.000 0.004
#> GSM74399      1  0.0707      0.950 0.980 0.000 0.000 0.020
#> GSM74400      4  0.5000      0.248 0.496 0.000 0.000 0.504
#> GSM74401      4  0.4888      0.465 0.412 0.000 0.000 0.588

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      3  0.0162     0.9649 0.000 0.000 0.996 0.000 0.004
#> GSM74357      3  0.0162     0.9649 0.000 0.000 0.996 0.000 0.004
#> GSM74358      3  0.0162     0.9649 0.000 0.000 0.996 0.000 0.004
#> GSM74359      4  0.2890     0.7630 0.004 0.000 0.000 0.836 0.160
#> GSM74360      1  0.6296    -0.0815 0.440 0.000 0.000 0.408 0.152
#> GSM74361      5  0.4161     0.5146 0.000 0.000 0.392 0.000 0.608
#> GSM74362      5  0.4251     0.5376 0.000 0.000 0.372 0.004 0.624
#> GSM74363      3  0.0162     0.9649 0.000 0.000 0.996 0.000 0.004
#> GSM74402      4  0.0324     0.8400 0.004 0.000 0.000 0.992 0.004
#> GSM74403      4  0.1410     0.8466 0.060 0.000 0.000 0.940 0.000
#> GSM74404      4  0.1608     0.8418 0.072 0.000 0.000 0.928 0.000
#> GSM74406      4  0.0324     0.8400 0.004 0.000 0.000 0.992 0.004
#> GSM74407      5  0.6587     0.5273 0.008 0.000 0.236 0.236 0.520
#> GSM74408      4  0.0324     0.8400 0.004 0.000 0.000 0.992 0.004
#> GSM74409      4  0.1041     0.8375 0.004 0.000 0.000 0.964 0.032
#> GSM74410      4  0.1041     0.8332 0.004 0.000 0.000 0.964 0.032
#> GSM119936     4  0.0324     0.8400 0.004 0.000 0.000 0.992 0.004
#> GSM119937     4  0.4437     0.0411 0.464 0.000 0.000 0.532 0.004
#> GSM74411      3  0.2513     0.8628 0.000 0.116 0.876 0.000 0.008
#> GSM74412      3  0.2329     0.8547 0.000 0.124 0.876 0.000 0.000
#> GSM74413      3  0.2424     0.8443 0.000 0.132 0.868 0.000 0.000
#> GSM74414      5  0.1787     0.7765 0.012 0.032 0.016 0.000 0.940
#> GSM74415      3  0.2411     0.8722 0.000 0.108 0.884 0.000 0.008
#> GSM121379     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121380     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121381     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121384     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121385     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121388     2  0.0880     0.9435 0.000 0.968 0.032 0.000 0.000
#> GSM121389     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121390     2  0.0162     0.9762 0.000 0.996 0.000 0.000 0.004
#> GSM121391     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121392     2  0.2674     0.8160 0.004 0.856 0.000 0.000 0.140
#> GSM121393     2  0.3359     0.8185 0.072 0.844 0.000 0.000 0.084
#> GSM121394     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121395     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121396     3  0.0880     0.9480 0.000 0.032 0.968 0.000 0.000
#> GSM121397     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9800 0.000 1.000 0.000 0.000 0.000
#> GSM74240      3  0.0290     0.9652 0.000 0.000 0.992 0.000 0.008
#> GSM74241      3  0.0693     0.9610 0.000 0.012 0.980 0.000 0.008
#> GSM74242      3  0.0290     0.9652 0.000 0.000 0.992 0.000 0.008
#> GSM74243      3  0.0290     0.9652 0.000 0.000 0.992 0.000 0.008
#> GSM74244      3  0.0290     0.9652 0.000 0.000 0.992 0.000 0.008
#> GSM74245      3  0.0290     0.9652 0.000 0.000 0.992 0.000 0.008
#> GSM74246      3  0.0290     0.9652 0.000 0.000 0.992 0.000 0.008
#> GSM74247      3  0.1082     0.9498 0.000 0.028 0.964 0.000 0.008
#> GSM74248      3  0.0290     0.9652 0.000 0.000 0.992 0.000 0.008
#> GSM74416      4  0.1430     0.8480 0.052 0.000 0.000 0.944 0.004
#> GSM74417      4  0.1430     0.8480 0.052 0.000 0.000 0.944 0.004
#> GSM74418      4  0.1430     0.8480 0.052 0.000 0.000 0.944 0.004
#> GSM74419      4  0.3160     0.6834 0.004 0.000 0.000 0.808 0.188
#> GSM121358     3  0.0000     0.9656 0.000 0.000 1.000 0.000 0.000
#> GSM121359     3  0.0162     0.9653 0.000 0.004 0.996 0.000 0.000
#> GSM121360     1  0.3183     0.7809 0.828 0.000 0.000 0.016 0.156
#> GSM121362     1  0.6542    -0.0542 0.428 0.000 0.000 0.372 0.200
#> GSM121364     4  0.2848     0.7659 0.004 0.000 0.000 0.840 0.156
#> GSM121365     3  0.0162     0.9649 0.000 0.000 0.996 0.000 0.004
#> GSM121366     3  0.0000     0.9656 0.000 0.000 1.000 0.000 0.000
#> GSM121367     3  0.0162     0.9649 0.000 0.000 0.996 0.000 0.004
#> GSM121370     3  0.0000     0.9656 0.000 0.000 1.000 0.000 0.000
#> GSM121371     3  0.0162     0.9649 0.000 0.000 0.996 0.000 0.004
#> GSM121372     3  0.0000     0.9656 0.000 0.000 1.000 0.000 0.000
#> GSM121373     4  0.5526     0.6044 0.200 0.000 0.000 0.648 0.152
#> GSM121374     4  0.2848     0.7659 0.004 0.000 0.000 0.840 0.156
#> GSM121407     3  0.1608     0.9121 0.000 0.072 0.928 0.000 0.000
#> GSM74387      3  0.0992     0.9514 0.000 0.024 0.968 0.000 0.008
#> GSM74388      5  0.1626     0.7804 0.000 0.044 0.016 0.000 0.940
#> GSM74389      3  0.0404     0.9649 0.000 0.000 0.988 0.000 0.012
#> GSM74390      5  0.4126     0.5314 0.000 0.000 0.380 0.000 0.620
#> GSM74391      5  0.4801     0.2500 0.008 0.000 0.012 0.396 0.584
#> GSM74392      4  0.3266     0.7279 0.004 0.000 0.000 0.796 0.200
#> GSM74393      5  0.5589     0.5768 0.004 0.000 0.128 0.220 0.648
#> GSM74394      5  0.1682     0.7774 0.004 0.044 0.012 0.000 0.940
#> GSM74239      1  0.2068     0.8572 0.904 0.000 0.000 0.092 0.004
#> GSM74364      4  0.4415     0.1171 0.444 0.000 0.000 0.552 0.004
#> GSM74365      1  0.0324     0.8966 0.992 0.000 0.000 0.004 0.004
#> GSM74366      1  0.1952     0.8611 0.912 0.000 0.000 0.004 0.084
#> GSM74367      1  0.1124     0.8912 0.960 0.000 0.000 0.036 0.004
#> GSM74377      1  0.0162     0.8956 0.996 0.000 0.000 0.000 0.004
#> GSM74378      1  0.0290     0.8954 0.992 0.000 0.000 0.000 0.008
#> GSM74379      1  0.0162     0.8957 0.996 0.000 0.000 0.000 0.004
#> GSM74380      1  0.0162     0.8956 0.996 0.000 0.000 0.000 0.004
#> GSM74381      1  0.0290     0.8954 0.992 0.000 0.000 0.000 0.008
#> GSM121357     5  0.4583     0.7080 0.000 0.112 0.140 0.000 0.748
#> GSM121361     5  0.1626     0.7804 0.000 0.044 0.016 0.000 0.940
#> GSM121363     5  0.1626     0.7804 0.000 0.044 0.016 0.000 0.940
#> GSM121368     5  0.1626     0.7804 0.000 0.044 0.016 0.000 0.940
#> GSM121369     5  0.1756     0.7773 0.008 0.036 0.016 0.000 0.940
#> GSM74368      1  0.4430     0.4840 0.628 0.000 0.000 0.360 0.012
#> GSM74369      1  0.4138     0.4075 0.616 0.000 0.000 0.384 0.000
#> GSM74370      1  0.1041     0.8937 0.964 0.000 0.000 0.032 0.004
#> GSM74371      4  0.1638     0.8431 0.064 0.000 0.000 0.932 0.004
#> GSM74372      1  0.0671     0.8963 0.980 0.000 0.000 0.016 0.004
#> GSM74373      1  0.0162     0.8956 0.996 0.000 0.000 0.000 0.004
#> GSM74374      1  0.0566     0.8970 0.984 0.000 0.000 0.012 0.004
#> GSM74375      1  0.0693     0.8963 0.980 0.000 0.000 0.012 0.008
#> GSM74376      1  0.0162     0.8956 0.996 0.000 0.000 0.000 0.004
#> GSM74405      1  0.0609     0.8938 0.980 0.000 0.000 0.000 0.020
#> GSM74351      4  0.1430     0.8480 0.052 0.000 0.000 0.944 0.004
#> GSM74352      1  0.0798     0.8957 0.976 0.000 0.000 0.016 0.008
#> GSM74353      1  0.1197     0.8884 0.952 0.000 0.000 0.048 0.000
#> GSM74354      1  0.0671     0.8966 0.980 0.000 0.000 0.016 0.004
#> GSM74355      1  0.0290     0.8954 0.992 0.000 0.000 0.000 0.008
#> GSM74382      1  0.4249     0.2709 0.568 0.000 0.000 0.432 0.000
#> GSM74383      1  0.0955     0.8936 0.968 0.000 0.000 0.028 0.004
#> GSM74384      1  0.0510     0.8947 0.984 0.000 0.000 0.000 0.016
#> GSM74385      4  0.1638     0.8431 0.064 0.000 0.000 0.932 0.004
#> GSM74386      1  0.0771     0.8956 0.976 0.000 0.000 0.020 0.004
#> GSM74395      1  0.1549     0.8877 0.944 0.000 0.000 0.040 0.016
#> GSM74396      1  0.2286     0.8448 0.888 0.000 0.000 0.108 0.004
#> GSM74397      1  0.3461     0.7169 0.772 0.000 0.000 0.224 0.004
#> GSM74398      1  0.0162     0.8957 0.996 0.000 0.000 0.000 0.004
#> GSM74399      1  0.0451     0.8968 0.988 0.000 0.000 0.004 0.008
#> GSM74400      1  0.1205     0.8904 0.956 0.000 0.000 0.040 0.004
#> GSM74401      1  0.1282     0.8878 0.952 0.000 0.000 0.044 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.3464     0.8355 0.312 0.000 0.688 0.000 0.000 0.000
#> GSM74357      3  0.2793     0.8356 0.200 0.000 0.800 0.000 0.000 0.000
#> GSM74358      3  0.2527     0.8322 0.168 0.000 0.832 0.000 0.000 0.000
#> GSM74359      4  0.3547     0.6104 0.088 0.000 0.036 0.828 0.048 0.000
#> GSM74360      4  0.5893     0.3290 0.224 0.000 0.000 0.604 0.064 0.108
#> GSM74361      3  0.4467     0.8251 0.272 0.004 0.676 0.004 0.044 0.000
#> GSM74362      3  0.4710     0.7981 0.312 0.000 0.632 0.012 0.044 0.000
#> GSM74363      3  0.3464     0.8341 0.312 0.000 0.688 0.000 0.000 0.000
#> GSM74402      4  0.0000     0.6353 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74403      4  0.4091     0.1517 0.224 0.000 0.000 0.720 0.000 0.056
#> GSM74404      4  0.4247     0.0623 0.240 0.000 0.000 0.700 0.000 0.060
#> GSM74406      4  0.0000     0.6353 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74407      4  0.5730     0.1834 0.044 0.012 0.440 0.468 0.036 0.000
#> GSM74408      4  0.0000     0.6353 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM74409      4  0.0363     0.6361 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM74410      4  0.0000     0.6353 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM119936     4  0.0000     0.6353 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM119937     4  0.2312     0.5591 0.012 0.000 0.000 0.876 0.000 0.112
#> GSM74411      3  0.4789     0.7691 0.144 0.124 0.712 0.000 0.020 0.000
#> GSM74412      3  0.5626     0.7581 0.260 0.132 0.588 0.000 0.020 0.000
#> GSM74413      3  0.5626     0.7581 0.260 0.132 0.588 0.000 0.020 0.000
#> GSM74414      5  0.2093     0.8829 0.000 0.088 0.004 0.004 0.900 0.004
#> GSM74415      3  0.5142     0.8021 0.240 0.092 0.648 0.000 0.020 0.000
#> GSM121379     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121380     2  0.0363     0.9681 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM121381     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121382     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121383     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121384     2  0.0260     0.9705 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121385     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121386     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121387     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121388     2  0.1890     0.9004 0.044 0.924 0.024 0.000 0.008 0.000
#> GSM121389     2  0.0458     0.9652 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM121390     2  0.0458     0.9652 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM121391     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121392     2  0.2652     0.8513 0.000 0.868 0.000 0.008 0.104 0.020
#> GSM121393     2  0.3232     0.7935 0.008 0.840 0.000 0.008 0.032 0.112
#> GSM121394     2  0.0146     0.9711 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM121395     2  0.0146     0.9719 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121396     3  0.4555     0.8262 0.272 0.040 0.672 0.000 0.016 0.000
#> GSM121397     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121398     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0000     0.9742 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM74240      3  0.0603     0.8088 0.004 0.000 0.980 0.000 0.016 0.000
#> GSM74241      3  0.0806     0.8082 0.000 0.008 0.972 0.000 0.020 0.000
#> GSM74242      3  0.0632     0.8073 0.024 0.000 0.976 0.000 0.000 0.000
#> GSM74243      3  0.0713     0.8068 0.028 0.000 0.972 0.000 0.000 0.000
#> GSM74244      3  0.0458     0.8093 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM74245      3  0.0000     0.8102 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM74246      3  0.0603     0.8091 0.000 0.004 0.980 0.000 0.016 0.000
#> GSM74247      3  0.1088     0.8046 0.000 0.024 0.960 0.000 0.016 0.000
#> GSM74248      3  0.0260     0.8093 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM74416      1  0.4475     1.0000 0.556 0.000 0.000 0.412 0.000 0.032
#> GSM74417      1  0.4475     1.0000 0.556 0.000 0.000 0.412 0.000 0.032
#> GSM74418      1  0.4475     1.0000 0.556 0.000 0.000 0.412 0.000 0.032
#> GSM74419      4  0.0291     0.6369 0.000 0.000 0.004 0.992 0.004 0.000
#> GSM121358     3  0.3390     0.8373 0.296 0.000 0.704 0.000 0.000 0.000
#> GSM121359     3  0.4035     0.8350 0.272 0.012 0.700 0.000 0.016 0.000
#> GSM121360     6  0.3615     0.8040 0.080 0.000 0.000 0.032 0.064 0.824
#> GSM121362     4  0.4675     0.5684 0.092 0.000 0.000 0.748 0.064 0.096
#> GSM121364     4  0.3053     0.6198 0.080 0.000 0.016 0.856 0.048 0.000
#> GSM121365     3  0.3428     0.8359 0.304 0.000 0.696 0.000 0.000 0.000
#> GSM121366     3  0.3695     0.8372 0.272 0.000 0.712 0.000 0.016 0.000
#> GSM121367     3  0.3409     0.8368 0.300 0.000 0.700 0.000 0.000 0.000
#> GSM121370     3  0.3608     0.8379 0.272 0.000 0.716 0.000 0.012 0.000
#> GSM121371     3  0.3409     0.8368 0.300 0.000 0.700 0.000 0.000 0.000
#> GSM121372     3  0.3695     0.8372 0.272 0.000 0.712 0.000 0.016 0.000
#> GSM121373     4  0.5307     0.1293 0.332 0.000 0.000 0.580 0.060 0.028
#> GSM121374     4  0.2794     0.6181 0.080 0.000 0.000 0.860 0.060 0.000
#> GSM121407     3  0.5308     0.7895 0.272 0.100 0.612 0.000 0.016 0.000
#> GSM74387      3  0.1549     0.7957 0.000 0.044 0.936 0.000 0.020 0.000
#> GSM74388      5  0.0363     0.9476 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM74389      3  0.1349     0.8027 0.056 0.000 0.940 0.000 0.004 0.000
#> GSM74390      3  0.1588     0.7868 0.004 0.000 0.924 0.000 0.072 0.000
#> GSM74391      4  0.5080     0.4662 0.044 0.008 0.192 0.708 0.036 0.012
#> GSM74392      4  0.2893     0.6222 0.080 0.004 0.004 0.864 0.048 0.000
#> GSM74393      4  0.4714     0.5238 0.072 0.004 0.132 0.744 0.048 0.000
#> GSM74394      5  0.0622     0.9440 0.000 0.012 0.000 0.008 0.980 0.000
#> GSM74239      6  0.1779     0.8815 0.016 0.000 0.000 0.064 0.000 0.920
#> GSM74364      4  0.5962    -0.5425 0.364 0.000 0.000 0.412 0.000 0.224
#> GSM74365      6  0.0146     0.9181 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM74366      6  0.3415     0.8003 0.028 0.000 0.000 0.012 0.152 0.808
#> GSM74367      6  0.0632     0.9147 0.000 0.000 0.000 0.024 0.000 0.976
#> GSM74377      6  0.0865     0.9168 0.036 0.000 0.000 0.000 0.000 0.964
#> GSM74378      6  0.1720     0.9015 0.040 0.000 0.000 0.000 0.032 0.928
#> GSM74379      6  0.0713     0.9162 0.028 0.000 0.000 0.000 0.000 0.972
#> GSM74380      6  0.0935     0.9150 0.032 0.000 0.000 0.000 0.004 0.964
#> GSM74381      6  0.1720     0.9015 0.040 0.000 0.000 0.000 0.032 0.928
#> GSM121357     5  0.4024     0.7691 0.008 0.128 0.092 0.000 0.772 0.000
#> GSM121361     5  0.0363     0.9476 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM121363     5  0.0363     0.9476 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM121368     5  0.0363     0.9476 0.000 0.012 0.000 0.000 0.988 0.000
#> GSM121369     5  0.0622     0.9440 0.000 0.012 0.000 0.008 0.980 0.000
#> GSM74368      4  0.3586     0.3732 0.012 0.000 0.000 0.720 0.000 0.268
#> GSM74369      6  0.4249     0.3985 0.032 0.000 0.000 0.328 0.000 0.640
#> GSM74370      6  0.0777     0.9166 0.000 0.000 0.000 0.024 0.004 0.972
#> GSM74371      1  0.4475     1.0000 0.556 0.000 0.000 0.412 0.000 0.032
#> GSM74372      6  0.0603     0.9184 0.000 0.000 0.000 0.016 0.004 0.980
#> GSM74373      6  0.0767     0.9196 0.008 0.000 0.000 0.012 0.004 0.976
#> GSM74374      6  0.0603     0.9175 0.016 0.000 0.000 0.004 0.000 0.980
#> GSM74375      6  0.0547     0.9191 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM74376      6  0.1226     0.9142 0.040 0.000 0.000 0.004 0.004 0.952
#> GSM74405      6  0.1642     0.9064 0.028 0.000 0.000 0.004 0.032 0.936
#> GSM74351      1  0.4475     1.0000 0.556 0.000 0.000 0.412 0.000 0.032
#> GSM74352      6  0.0937     0.9174 0.040 0.000 0.000 0.000 0.000 0.960
#> GSM74353      6  0.0717     0.9165 0.016 0.000 0.000 0.008 0.000 0.976
#> GSM74354      6  0.0405     0.9180 0.008 0.000 0.000 0.004 0.000 0.988
#> GSM74355      6  0.1720     0.9015 0.040 0.000 0.000 0.000 0.032 0.928
#> GSM74382      4  0.4278     0.1665 0.212 0.000 0.000 0.712 0.000 0.076
#> GSM74383      6  0.0146     0.9181 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM74384      6  0.1832     0.9054 0.032 0.000 0.000 0.008 0.032 0.928
#> GSM74385      1  0.4475     1.0000 0.556 0.000 0.000 0.412 0.000 0.032
#> GSM74386      6  0.0363     0.9182 0.000 0.000 0.000 0.012 0.000 0.988
#> GSM74395      6  0.1285     0.9009 0.004 0.000 0.000 0.052 0.000 0.944
#> GSM74396      6  0.1700     0.8823 0.004 0.000 0.000 0.080 0.000 0.916
#> GSM74397      6  0.4147     0.1730 0.012 0.000 0.000 0.436 0.000 0.552
#> GSM74398      6  0.0000     0.9180 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM74399      6  0.0547     0.9188 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM74400      6  0.2730     0.7779 0.012 0.000 0.000 0.152 0.000 0.836
#> GSM74401      6  0.3102     0.7530 0.028 0.000 0.000 0.156 0.000 0.816

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)
#> Error in mat[ceiling(1:nr/h_ratio), ceiling(1:nc/w_ratio), drop = FALSE]: subscript out of bounds

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:mclust 120         1.97e-13 2
#> ATC:mclust 120         5.94e-26 3
#> ATC:mclust 118         2.68e-31 4
#> ATC:mclust 113         1.40e-34 5
#> ATC:mclust 110         2.94e-36 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 121 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.966           0.950       0.980         0.5037 0.496   0.496
#> 3 3 0.652           0.738       0.884         0.3172 0.749   0.537
#> 4 4 0.690           0.776       0.869         0.1162 0.840   0.577
#> 5 5 0.746           0.744       0.860         0.0690 0.887   0.606
#> 6 6 0.757           0.756       0.850         0.0419 0.925   0.661

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>           class entropy silhouette    p1    p2
#> GSM74356      1   0.118      0.974 0.984 0.016
#> GSM74357      1   0.000      0.989 1.000 0.000
#> GSM74358      1   0.000      0.989 1.000 0.000
#> GSM74359      1   0.000      0.989 1.000 0.000
#> GSM74360      1   0.000      0.989 1.000 0.000
#> GSM74361      1   0.987      0.195 0.568 0.432
#> GSM74362      1   0.000      0.989 1.000 0.000
#> GSM74363      1   0.373      0.915 0.928 0.072
#> GSM74402      1   0.000      0.989 1.000 0.000
#> GSM74403      1   0.000      0.989 1.000 0.000
#> GSM74404      1   0.000      0.989 1.000 0.000
#> GSM74406      1   0.000      0.989 1.000 0.000
#> GSM74407      1   0.000      0.989 1.000 0.000
#> GSM74408      1   0.000      0.989 1.000 0.000
#> GSM74409      1   0.000      0.989 1.000 0.000
#> GSM74410      1   0.000      0.989 1.000 0.000
#> GSM119936     1   0.000      0.989 1.000 0.000
#> GSM119937     1   0.000      0.989 1.000 0.000
#> GSM74411      2   0.000      0.970 0.000 1.000
#> GSM74412      2   0.000      0.970 0.000 1.000
#> GSM74413      2   0.000      0.970 0.000 1.000
#> GSM74414      2   0.000      0.970 0.000 1.000
#> GSM74415      2   0.000      0.970 0.000 1.000
#> GSM121379     2   0.000      0.970 0.000 1.000
#> GSM121380     2   0.000      0.970 0.000 1.000
#> GSM121381     2   0.000      0.970 0.000 1.000
#> GSM121382     2   0.000      0.970 0.000 1.000
#> GSM121383     2   0.000      0.970 0.000 1.000
#> GSM121384     2   0.000      0.970 0.000 1.000
#> GSM121385     2   0.000      0.970 0.000 1.000
#> GSM121386     2   0.000      0.970 0.000 1.000
#> GSM121387     2   0.000      0.970 0.000 1.000
#> GSM121388     2   0.000      0.970 0.000 1.000
#> GSM121389     2   0.000      0.970 0.000 1.000
#> GSM121390     2   0.000      0.970 0.000 1.000
#> GSM121391     2   0.000      0.970 0.000 1.000
#> GSM121392     2   0.000      0.970 0.000 1.000
#> GSM121393     2   0.000      0.970 0.000 1.000
#> GSM121394     2   0.000      0.970 0.000 1.000
#> GSM121395     2   0.000      0.970 0.000 1.000
#> GSM121396     2   0.000      0.970 0.000 1.000
#> GSM121397     2   0.000      0.970 0.000 1.000
#> GSM121398     2   0.000      0.970 0.000 1.000
#> GSM121399     2   0.000      0.970 0.000 1.000
#> GSM74240      2   0.000      0.970 0.000 1.000
#> GSM74241      2   0.000      0.970 0.000 1.000
#> GSM74242      2   0.827      0.653 0.260 0.740
#> GSM74243      2   0.963      0.387 0.388 0.612
#> GSM74244      2   0.000      0.970 0.000 1.000
#> GSM74245      2   0.000      0.970 0.000 1.000
#> GSM74246      2   0.000      0.970 0.000 1.000
#> GSM74247      2   0.000      0.970 0.000 1.000
#> GSM74248      2   0.000      0.970 0.000 1.000
#> GSM74416      1   0.000      0.989 1.000 0.000
#> GSM74417      1   0.000      0.989 1.000 0.000
#> GSM74418      1   0.000      0.989 1.000 0.000
#> GSM74419      1   0.000      0.989 1.000 0.000
#> GSM121358     2   0.000      0.970 0.000 1.000
#> GSM121359     2   0.000      0.970 0.000 1.000
#> GSM121360     1   0.000      0.989 1.000 0.000
#> GSM121362     1   0.000      0.989 1.000 0.000
#> GSM121364     1   0.000      0.989 1.000 0.000
#> GSM121365     2   0.000      0.970 0.000 1.000
#> GSM121366     2   0.000      0.970 0.000 1.000
#> GSM121367     2   0.000      0.970 0.000 1.000
#> GSM121370     2   0.000      0.970 0.000 1.000
#> GSM121371     2   0.000      0.970 0.000 1.000
#> GSM121372     2   0.000      0.970 0.000 1.000
#> GSM121373     1   0.000      0.989 1.000 0.000
#> GSM121374     1   0.000      0.989 1.000 0.000
#> GSM121407     2   0.000      0.970 0.000 1.000
#> GSM74387      2   0.000      0.970 0.000 1.000
#> GSM74388      2   0.000      0.970 0.000 1.000
#> GSM74389      1   0.494      0.871 0.892 0.108
#> GSM74390      2   0.000      0.970 0.000 1.000
#> GSM74391      1   0.000      0.989 1.000 0.000
#> GSM74392      1   0.000      0.989 1.000 0.000
#> GSM74393      1   0.000      0.989 1.000 0.000
#> GSM74394      2   0.000      0.970 0.000 1.000
#> GSM74239      1   0.000      0.989 1.000 0.000
#> GSM74364      1   0.000      0.989 1.000 0.000
#> GSM74365      1   0.000      0.989 1.000 0.000
#> GSM74366      2   0.000      0.970 0.000 1.000
#> GSM74367      1   0.000      0.989 1.000 0.000
#> GSM74377      1   0.118      0.974 0.984 0.016
#> GSM74378      2   0.000      0.970 0.000 1.000
#> GSM74379      1   0.000      0.989 1.000 0.000
#> GSM74380      1   0.000      0.989 1.000 0.000
#> GSM74381      2   0.529      0.851 0.120 0.880
#> GSM121357     2   0.000      0.970 0.000 1.000
#> GSM121361     2   0.000      0.970 0.000 1.000
#> GSM121363     2   0.000      0.970 0.000 1.000
#> GSM121368     2   0.000      0.970 0.000 1.000
#> GSM121369     2   0.000      0.970 0.000 1.000
#> GSM74368      1   0.000      0.989 1.000 0.000
#> GSM74369      1   0.000      0.989 1.000 0.000
#> GSM74370      1   0.000      0.989 1.000 0.000
#> GSM74371      1   0.000      0.989 1.000 0.000
#> GSM74372      1   0.000      0.989 1.000 0.000
#> GSM74373      1   0.000      0.989 1.000 0.000
#> GSM74374      1   0.000      0.989 1.000 0.000
#> GSM74375      1   0.000      0.989 1.000 0.000
#> GSM74376      2   0.671      0.782 0.176 0.824
#> GSM74405      2   0.969      0.370 0.396 0.604
#> GSM74351      1   0.000      0.989 1.000 0.000
#> GSM74352      2   0.990      0.246 0.440 0.560
#> GSM74353      1   0.000      0.989 1.000 0.000
#> GSM74354      1   0.000      0.989 1.000 0.000
#> GSM74355      2   0.000      0.970 0.000 1.000
#> GSM74382      1   0.000      0.989 1.000 0.000
#> GSM74383      1   0.000      0.989 1.000 0.000
#> GSM74384      2   0.000      0.970 0.000 1.000
#> GSM74385      1   0.000      0.989 1.000 0.000
#> GSM74386      1   0.000      0.989 1.000 0.000
#> GSM74395      1   0.000      0.989 1.000 0.000
#> GSM74396      1   0.000      0.989 1.000 0.000
#> GSM74397      1   0.000      0.989 1.000 0.000
#> GSM74398      1   0.000      0.989 1.000 0.000
#> GSM74399      1   0.000      0.989 1.000 0.000
#> GSM74400      1   0.000      0.989 1.000 0.000
#> GSM74401      1   0.000      0.989 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>           class entropy silhouette    p1    p2    p3
#> GSM74356      3  0.2066     0.8173 0.060 0.000 0.940
#> GSM74357      3  0.3267     0.7661 0.116 0.000 0.884
#> GSM74358      3  0.3551     0.7495 0.132 0.000 0.868
#> GSM74359      1  0.6260     0.2639 0.552 0.000 0.448
#> GSM74360      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74361      3  0.2066     0.8172 0.060 0.000 0.940
#> GSM74362      3  0.4452     0.6818 0.192 0.000 0.808
#> GSM74363      3  0.1753     0.8261 0.048 0.000 0.952
#> GSM74402      1  0.2165     0.8677 0.936 0.000 0.064
#> GSM74403      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74404      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74406      1  0.2165     0.8677 0.936 0.000 0.064
#> GSM74407      3  0.5291     0.5541 0.268 0.000 0.732
#> GSM74408      1  0.2356     0.8626 0.928 0.000 0.072
#> GSM74409      1  0.1860     0.8745 0.948 0.000 0.052
#> GSM74410      1  0.3941     0.7879 0.844 0.000 0.156
#> GSM119936     1  0.1964     0.8723 0.944 0.000 0.056
#> GSM119937     1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74411      3  0.4235     0.7337 0.000 0.176 0.824
#> GSM74412      3  0.5678     0.5234 0.000 0.316 0.684
#> GSM74413      3  0.3941     0.7546 0.000 0.156 0.844
#> GSM74414      2  0.0592     0.8092 0.000 0.988 0.012
#> GSM74415      3  0.2796     0.8071 0.000 0.092 0.908
#> GSM121379     2  0.4399     0.7292 0.000 0.812 0.188
#> GSM121380     2  0.2878     0.7889 0.000 0.904 0.096
#> GSM121381     3  0.6305     0.0284 0.000 0.484 0.516
#> GSM121382     2  0.5591     0.5762 0.000 0.696 0.304
#> GSM121383     2  0.6260     0.1938 0.000 0.552 0.448
#> GSM121384     2  0.3482     0.7742 0.000 0.872 0.128
#> GSM121385     2  0.4796     0.6979 0.000 0.780 0.220
#> GSM121386     2  0.5529     0.5906 0.000 0.704 0.296
#> GSM121387     2  0.5678     0.5527 0.000 0.684 0.316
#> GSM121388     3  0.6260     0.1707 0.000 0.448 0.552
#> GSM121389     2  0.3551     0.7715 0.000 0.868 0.132
#> GSM121390     2  0.2261     0.7992 0.000 0.932 0.068
#> GSM121391     3  0.6235     0.2109 0.000 0.436 0.564
#> GSM121392     2  0.0237     0.8085 0.000 0.996 0.004
#> GSM121393     2  0.0000     0.8076 0.000 1.000 0.000
#> GSM121394     3  0.5431     0.5815 0.000 0.284 0.716
#> GSM121395     2  0.3879     0.7589 0.000 0.848 0.152
#> GSM121396     3  0.3482     0.7791 0.000 0.128 0.872
#> GSM121397     2  0.4702     0.7065 0.000 0.788 0.212
#> GSM121398     2  0.4750     0.7025 0.000 0.784 0.216
#> GSM121399     2  0.6062     0.3942 0.000 0.616 0.384
#> GSM74240      3  0.0000     0.8511 0.000 0.000 1.000
#> GSM74241      3  0.0000     0.8511 0.000 0.000 1.000
#> GSM74242      3  0.0237     0.8501 0.004 0.000 0.996
#> GSM74243      3  0.0237     0.8501 0.004 0.000 0.996
#> GSM74244      3  0.0000     0.8511 0.000 0.000 1.000
#> GSM74245      3  0.0000     0.8511 0.000 0.000 1.000
#> GSM74246      3  0.0892     0.8457 0.000 0.020 0.980
#> GSM74247      3  0.1753     0.8339 0.000 0.048 0.952
#> GSM74248      3  0.0000     0.8511 0.000 0.000 1.000
#> GSM74416      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74417      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74418      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74419      1  0.5591     0.5749 0.696 0.000 0.304
#> GSM121358     3  0.0000     0.8511 0.000 0.000 1.000
#> GSM121359     3  0.2066     0.8260 0.000 0.060 0.940
#> GSM121360     1  0.3412     0.8133 0.876 0.124 0.000
#> GSM121362     1  0.0237     0.8953 0.996 0.000 0.004
#> GSM121364     1  0.3619     0.8092 0.864 0.000 0.136
#> GSM121365     3  0.0237     0.8501 0.004 0.000 0.996
#> GSM121366     3  0.0000     0.8511 0.000 0.000 1.000
#> GSM121367     3  0.0000     0.8511 0.000 0.000 1.000
#> GSM121370     3  0.0000     0.8511 0.000 0.000 1.000
#> GSM121371     3  0.0237     0.8501 0.004 0.000 0.996
#> GSM121372     3  0.0237     0.8503 0.000 0.004 0.996
#> GSM121373     1  0.0000     0.8964 1.000 0.000 0.000
#> GSM121374     1  0.1643     0.8786 0.956 0.000 0.044
#> GSM121407     3  0.6026     0.3658 0.000 0.376 0.624
#> GSM74387      3  0.5397     0.5875 0.000 0.280 0.720
#> GSM74388      2  0.0592     0.8093 0.000 0.988 0.012
#> GSM74389      3  0.1529     0.8312 0.040 0.000 0.960
#> GSM74390      3  0.0747     0.8471 0.000 0.016 0.984
#> GSM74391      1  0.6026     0.4320 0.624 0.000 0.376
#> GSM74392      1  0.3340     0.8232 0.880 0.000 0.120
#> GSM74393      1  0.6274     0.2402 0.544 0.000 0.456
#> GSM74394      2  0.0237     0.8085 0.000 0.996 0.004
#> GSM74239      1  0.0237     0.8955 0.996 0.004 0.000
#> GSM74364      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74365      1  0.2356     0.8583 0.928 0.072 0.000
#> GSM74366      2  0.0000     0.8076 0.000 1.000 0.000
#> GSM74367      1  0.0592     0.8935 0.988 0.012 0.000
#> GSM74377      2  0.5016     0.5773 0.240 0.760 0.000
#> GSM74378      2  0.0592     0.8038 0.012 0.988 0.000
#> GSM74379      1  0.6307     0.1368 0.512 0.488 0.000
#> GSM74380      2  0.6252     0.0623 0.444 0.556 0.000
#> GSM74381      2  0.2625     0.7637 0.084 0.916 0.000
#> GSM121357     2  0.5431     0.6158 0.000 0.716 0.284
#> GSM121361     2  0.0237     0.8085 0.000 0.996 0.004
#> GSM121363     2  0.1529     0.8063 0.000 0.960 0.040
#> GSM121368     2  0.1031     0.8085 0.000 0.976 0.024
#> GSM121369     2  0.0424     0.8091 0.000 0.992 0.008
#> GSM74368      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74369      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74370      1  0.0892     0.8906 0.980 0.020 0.000
#> GSM74371      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74372      1  0.4178     0.7634 0.828 0.172 0.000
#> GSM74373      1  0.6302     0.1627 0.520 0.480 0.000
#> GSM74374      1  0.1031     0.8888 0.976 0.024 0.000
#> GSM74375      1  0.5988     0.4514 0.632 0.368 0.000
#> GSM74376      2  0.2878     0.7553 0.096 0.904 0.000
#> GSM74405      2  0.3116     0.7463 0.108 0.892 0.000
#> GSM74351      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74352      2  0.3551     0.7249 0.132 0.868 0.000
#> GSM74353      1  0.0592     0.8934 0.988 0.012 0.000
#> GSM74354      1  0.0892     0.8906 0.980 0.020 0.000
#> GSM74355      2  0.0892     0.8006 0.020 0.980 0.000
#> GSM74382      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74383      1  0.0892     0.8906 0.980 0.020 0.000
#> GSM74384      2  0.0000     0.8076 0.000 1.000 0.000
#> GSM74385      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74386      1  0.0892     0.8906 0.980 0.020 0.000
#> GSM74395      1  0.0237     0.8955 0.996 0.004 0.000
#> GSM74396      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74397      1  0.0000     0.8964 1.000 0.000 0.000
#> GSM74398      1  0.5650     0.5635 0.688 0.312 0.000
#> GSM74399      2  0.6308    -0.1120 0.492 0.508 0.000
#> GSM74400      1  0.1964     0.8701 0.944 0.056 0.000
#> GSM74401      1  0.1529     0.8802 0.960 0.040 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>           class entropy silhouette    p1    p2    p3    p4
#> GSM74356      3  0.2552     0.8283 0.048 0.012 0.920 0.020
#> GSM74357      3  0.2262     0.8337 0.040 0.012 0.932 0.016
#> GSM74358      3  0.1575     0.8435 0.028 0.012 0.956 0.004
#> GSM74359      4  0.6454     0.5993 0.084 0.012 0.260 0.644
#> GSM74360      4  0.4752     0.7822 0.088 0.012 0.092 0.808
#> GSM74361      3  0.2684     0.8233 0.060 0.012 0.912 0.016
#> GSM74362      3  0.5401     0.6897 0.084 0.012 0.760 0.144
#> GSM74363      3  0.0804     0.8596 0.000 0.012 0.980 0.008
#> GSM74402      4  0.0672     0.8596 0.008 0.000 0.008 0.984
#> GSM74403      4  0.0376     0.8590 0.004 0.000 0.004 0.992
#> GSM74404      4  0.0672     0.8592 0.008 0.000 0.008 0.984
#> GSM74406      4  0.1635     0.8507 0.008 0.000 0.044 0.948
#> GSM74407      3  0.2255     0.8439 0.000 0.012 0.920 0.068
#> GSM74408      4  0.2830     0.8344 0.040 0.000 0.060 0.900
#> GSM74409      4  0.3938     0.8106 0.060 0.008 0.080 0.852
#> GSM74410      4  0.3689     0.8161 0.048 0.004 0.088 0.860
#> GSM119936     4  0.2596     0.8377 0.024 0.000 0.068 0.908
#> GSM119937     4  0.3077     0.8322 0.036 0.004 0.068 0.892
#> GSM74411      3  0.4175     0.7791 0.016 0.200 0.784 0.000
#> GSM74412      3  0.4343     0.7106 0.004 0.264 0.732 0.000
#> GSM74413      3  0.4252     0.7228 0.004 0.252 0.744 0.000
#> GSM74414      2  0.5168    -0.1529 0.496 0.500 0.004 0.000
#> GSM74415      3  0.3266     0.8144 0.000 0.168 0.832 0.000
#> GSM121379     2  0.0707     0.8975 0.020 0.980 0.000 0.000
#> GSM121380     2  0.1302     0.8836 0.044 0.956 0.000 0.000
#> GSM121381     2  0.1389     0.8935 0.000 0.952 0.048 0.000
#> GSM121382     2  0.1305     0.8976 0.004 0.960 0.036 0.000
#> GSM121383     2  0.1557     0.8892 0.000 0.944 0.056 0.000
#> GSM121384     2  0.1022     0.8917 0.032 0.968 0.000 0.000
#> GSM121385     2  0.0804     0.9023 0.008 0.980 0.012 0.000
#> GSM121386     2  0.0707     0.9024 0.000 0.980 0.020 0.000
#> GSM121387     2  0.0707     0.9024 0.000 0.980 0.020 0.000
#> GSM121388     2  0.1867     0.8778 0.000 0.928 0.072 0.000
#> GSM121389     2  0.1211     0.8866 0.040 0.960 0.000 0.000
#> GSM121390     2  0.1637     0.8712 0.060 0.940 0.000 0.000
#> GSM121391     2  0.1902     0.8818 0.004 0.932 0.064 0.000
#> GSM121392     2  0.2530     0.8136 0.112 0.888 0.000 0.000
#> GSM121393     2  0.1867     0.8588 0.072 0.928 0.000 0.000
#> GSM121394     2  0.2125     0.8714 0.004 0.920 0.076 0.000
#> GSM121395     2  0.0817     0.8959 0.024 0.976 0.000 0.000
#> GSM121396     2  0.4948     0.0647 0.000 0.560 0.440 0.000
#> GSM121397     2  0.0804     0.9010 0.012 0.980 0.008 0.000
#> GSM121398     2  0.0592     0.9025 0.000 0.984 0.016 0.000
#> GSM121399     2  0.1398     0.8959 0.004 0.956 0.040 0.000
#> GSM74240      3  0.1488     0.8692 0.012 0.032 0.956 0.000
#> GSM74241      3  0.2334     0.8604 0.004 0.088 0.908 0.000
#> GSM74242      3  0.0817     0.8670 0.000 0.024 0.976 0.000
#> GSM74243      3  0.0707     0.8661 0.000 0.020 0.980 0.000
#> GSM74244      3  0.2011     0.8631 0.000 0.080 0.920 0.000
#> GSM74245      3  0.1389     0.8695 0.000 0.048 0.952 0.000
#> GSM74246      3  0.2924     0.8555 0.016 0.100 0.884 0.000
#> GSM74247      3  0.2928     0.8518 0.012 0.108 0.880 0.000
#> GSM74248      3  0.1004     0.8671 0.004 0.024 0.972 0.000
#> GSM74416      4  0.0336     0.8593 0.008 0.000 0.000 0.992
#> GSM74417      4  0.0188     0.8595 0.004 0.000 0.000 0.996
#> GSM74418      4  0.0336     0.8593 0.008 0.000 0.000 0.992
#> GSM74419      4  0.1398     0.8534 0.004 0.000 0.040 0.956
#> GSM121358     3  0.1389     0.8692 0.000 0.048 0.952 0.000
#> GSM121359     3  0.3024     0.8294 0.000 0.148 0.852 0.000
#> GSM121360     1  0.5766     0.4995 0.692 0.012 0.048 0.248
#> GSM121362     4  0.5400     0.7558 0.104 0.012 0.120 0.764
#> GSM121364     4  0.5212     0.7592 0.088 0.012 0.124 0.776
#> GSM121365     3  0.1118     0.8687 0.000 0.036 0.964 0.000
#> GSM121366     3  0.2149     0.8603 0.000 0.088 0.912 0.000
#> GSM121367     3  0.1474     0.8688 0.000 0.052 0.948 0.000
#> GSM121370     3  0.1940     0.8642 0.000 0.076 0.924 0.000
#> GSM121371     3  0.1211     0.8692 0.000 0.040 0.960 0.000
#> GSM121372     3  0.2999     0.8390 0.004 0.132 0.864 0.000
#> GSM121373     4  0.4558     0.7904 0.084 0.012 0.084 0.820
#> GSM121374     4  0.4992     0.7708 0.088 0.012 0.108 0.792
#> GSM121407     3  0.4483     0.6882 0.004 0.284 0.712 0.000
#> GSM74387      3  0.3790     0.8174 0.016 0.164 0.820 0.000
#> GSM74388      1  0.4624     0.5107 0.660 0.340 0.000 0.000
#> GSM74389      3  0.2365     0.8291 0.064 0.012 0.920 0.004
#> GSM74390      3  0.2992     0.8228 0.084 0.016 0.892 0.008
#> GSM74391      3  0.4978     0.3528 0.004 0.000 0.612 0.384
#> GSM74392      4  0.5353     0.7481 0.084 0.012 0.140 0.764
#> GSM74393      3  0.6744     0.3538 0.084 0.012 0.592 0.312
#> GSM74394      1  0.3024     0.7972 0.852 0.148 0.000 0.000
#> GSM74239      4  0.1792     0.8367 0.068 0.000 0.000 0.932
#> GSM74364      4  0.0707     0.8580 0.020 0.000 0.000 0.980
#> GSM74365      1  0.4522     0.6088 0.680 0.000 0.000 0.320
#> GSM74366      1  0.2921     0.8075 0.860 0.140 0.000 0.000
#> GSM74367      4  0.4761     0.3352 0.372 0.000 0.000 0.628
#> GSM74377      1  0.3708     0.8083 0.832 0.020 0.000 0.148
#> GSM74378      1  0.2469     0.8195 0.892 0.108 0.000 0.000
#> GSM74379      1  0.3591     0.7933 0.824 0.008 0.000 0.168
#> GSM74380      1  0.3082     0.8291 0.884 0.032 0.000 0.084
#> GSM74381      1  0.2542     0.8286 0.904 0.084 0.000 0.012
#> GSM121357     3  0.6933     0.5224 0.172 0.244 0.584 0.000
#> GSM121361     1  0.2868     0.8024 0.864 0.136 0.000 0.000
#> GSM121363     1  0.3123     0.7849 0.844 0.156 0.000 0.000
#> GSM121368     1  0.2868     0.8016 0.864 0.136 0.000 0.000
#> GSM121369     1  0.2530     0.8085 0.888 0.112 0.000 0.000
#> GSM74368      4  0.1474     0.8465 0.052 0.000 0.000 0.948
#> GSM74369      4  0.0707     0.8580 0.020 0.000 0.000 0.980
#> GSM74370      4  0.5352     0.6677 0.296 0.008 0.020 0.676
#> GSM74371      4  0.0592     0.8586 0.016 0.000 0.000 0.984
#> GSM74372      1  0.3172     0.7643 0.840 0.000 0.000 0.160
#> GSM74373      1  0.2611     0.8252 0.896 0.008 0.000 0.096
#> GSM74374      4  0.4730     0.3560 0.364 0.000 0.000 0.636
#> GSM74375      1  0.4989     0.2151 0.528 0.000 0.000 0.472
#> GSM74376      1  0.3107     0.8323 0.884 0.080 0.000 0.036
#> GSM74405      1  0.2473     0.8296 0.908 0.080 0.000 0.012
#> GSM74351      4  0.0592     0.8586 0.016 0.000 0.000 0.984
#> GSM74352      1  0.4755     0.7696 0.760 0.040 0.000 0.200
#> GSM74353      4  0.1118     0.8537 0.036 0.000 0.000 0.964
#> GSM74354      4  0.3486     0.7185 0.188 0.000 0.000 0.812
#> GSM74355      1  0.2775     0.8309 0.896 0.084 0.000 0.020
#> GSM74382      4  0.0779     0.8593 0.016 0.000 0.004 0.980
#> GSM74383      4  0.3266     0.7438 0.168 0.000 0.000 0.832
#> GSM74384      1  0.2530     0.8189 0.888 0.112 0.000 0.000
#> GSM74385      4  0.0592     0.8586 0.016 0.000 0.000 0.984
#> GSM74386      4  0.5000    -0.1138 0.496 0.000 0.000 0.504
#> GSM74395      4  0.3836     0.7614 0.168 0.000 0.016 0.816
#> GSM74396      4  0.3052     0.7814 0.136 0.000 0.004 0.860
#> GSM74397      4  0.1743     0.8458 0.056 0.000 0.004 0.940
#> GSM74398      1  0.4088     0.7368 0.764 0.004 0.000 0.232
#> GSM74399      1  0.4008     0.7248 0.756 0.000 0.000 0.244
#> GSM74400      4  0.0921     0.8563 0.028 0.000 0.000 0.972
#> GSM74401      4  0.1302     0.8504 0.044 0.000 0.000 0.956

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>           class entropy silhouette    p1    p2    p3    p4    p5
#> GSM74356      4  0.4242     0.0210 0.000 0.000 0.428 0.572 0.000
#> GSM74357      4  0.4287    -0.0821 0.000 0.000 0.460 0.540 0.000
#> GSM74358      3  0.4278     0.3105 0.000 0.000 0.548 0.452 0.000
#> GSM74359      4  0.3099     0.7310 0.124 0.000 0.028 0.848 0.000
#> GSM74360      4  0.2563     0.7198 0.120 0.000 0.000 0.872 0.008
#> GSM74361      4  0.4210     0.0906 0.000 0.000 0.412 0.588 0.000
#> GSM74362      4  0.2293     0.6866 0.016 0.000 0.084 0.900 0.000
#> GSM74363      3  0.4015     0.5661 0.000 0.000 0.652 0.348 0.000
#> GSM74402      1  0.2773     0.7455 0.836 0.000 0.000 0.164 0.000
#> GSM74403      1  0.3983     0.4594 0.660 0.000 0.000 0.340 0.000
#> GSM74404      1  0.4114     0.3663 0.624 0.000 0.000 0.376 0.000
#> GSM74406      1  0.4219     0.2263 0.584 0.000 0.000 0.416 0.000
#> GSM74407      3  0.1243     0.8612 0.028 0.000 0.960 0.008 0.004
#> GSM74408      4  0.4227     0.3477 0.420 0.000 0.000 0.580 0.000
#> GSM74409      4  0.3636     0.6152 0.272 0.000 0.000 0.728 0.000
#> GSM74410      4  0.4045     0.4898 0.356 0.000 0.000 0.644 0.000
#> GSM119936     4  0.4262     0.2901 0.440 0.000 0.000 0.560 0.000
#> GSM119937     4  0.4138     0.4338 0.384 0.000 0.000 0.616 0.000
#> GSM74411      3  0.2532     0.8417 0.000 0.036 0.908 0.028 0.028
#> GSM74412      3  0.3221     0.8153 0.000 0.076 0.868 0.024 0.032
#> GSM74413      3  0.2956     0.8262 0.000 0.060 0.884 0.036 0.020
#> GSM74414      2  0.6163     0.5313 0.000 0.612 0.196 0.016 0.176
#> GSM74415      3  0.1372     0.8591 0.000 0.004 0.956 0.024 0.016
#> GSM121379     2  0.0162     0.9581 0.000 0.996 0.004 0.000 0.000
#> GSM121380     2  0.0324     0.9565 0.000 0.992 0.004 0.000 0.004
#> GSM121381     2  0.0290     0.9595 0.000 0.992 0.008 0.000 0.000
#> GSM121382     2  0.0290     0.9595 0.000 0.992 0.008 0.000 0.000
#> GSM121383     2  0.0510     0.9558 0.000 0.984 0.016 0.000 0.000
#> GSM121384     2  0.0162     0.9581 0.000 0.996 0.004 0.000 0.000
#> GSM121385     2  0.0290     0.9595 0.000 0.992 0.008 0.000 0.000
#> GSM121386     2  0.0290     0.9595 0.000 0.992 0.008 0.000 0.000
#> GSM121387     2  0.0290     0.9595 0.000 0.992 0.008 0.000 0.000
#> GSM121388     2  0.0865     0.9479 0.000 0.972 0.024 0.004 0.000
#> GSM121389     2  0.0162     0.9581 0.000 0.996 0.004 0.000 0.000
#> GSM121390     2  0.0404     0.9496 0.000 0.988 0.000 0.000 0.012
#> GSM121391     2  0.0671     0.9540 0.000 0.980 0.016 0.004 0.000
#> GSM121392     2  0.0510     0.9468 0.000 0.984 0.000 0.000 0.016
#> GSM121393     2  0.0162     0.9537 0.000 0.996 0.000 0.000 0.004
#> GSM121394     2  0.0671     0.9540 0.000 0.980 0.016 0.004 0.000
#> GSM121395     2  0.0290     0.9595 0.000 0.992 0.008 0.000 0.000
#> GSM121396     2  0.4029     0.4994 0.000 0.680 0.316 0.004 0.000
#> GSM121397     2  0.0290     0.9595 0.000 0.992 0.008 0.000 0.000
#> GSM121398     2  0.0290     0.9595 0.000 0.992 0.008 0.000 0.000
#> GSM121399     2  0.0290     0.9595 0.000 0.992 0.008 0.000 0.000
#> GSM74240      3  0.1168     0.8678 0.000 0.000 0.960 0.032 0.008
#> GSM74241      3  0.0798     0.8625 0.000 0.000 0.976 0.016 0.008
#> GSM74242      3  0.1043     0.8666 0.000 0.000 0.960 0.040 0.000
#> GSM74243      3  0.1792     0.8551 0.000 0.000 0.916 0.084 0.000
#> GSM74244      3  0.0671     0.8659 0.000 0.000 0.980 0.016 0.004
#> GSM74245      3  0.0671     0.8659 0.000 0.000 0.980 0.016 0.004
#> GSM74246      3  0.1830     0.8559 0.000 0.000 0.932 0.028 0.040
#> GSM74247      3  0.1661     0.8577 0.000 0.000 0.940 0.024 0.036
#> GSM74248      3  0.1430     0.8668 0.000 0.000 0.944 0.052 0.004
#> GSM74416      1  0.1671     0.8049 0.924 0.000 0.000 0.076 0.000
#> GSM74417      1  0.2773     0.7450 0.836 0.000 0.000 0.164 0.000
#> GSM74418      1  0.2424     0.7723 0.868 0.000 0.000 0.132 0.000
#> GSM74419      1  0.4251     0.4954 0.672 0.000 0.012 0.316 0.000
#> GSM121358     3  0.2719     0.8283 0.000 0.004 0.852 0.144 0.000
#> GSM121359     3  0.1300     0.8661 0.000 0.028 0.956 0.016 0.000
#> GSM121360     5  0.4897     0.3019 0.024 0.000 0.000 0.460 0.516
#> GSM121362     4  0.2142     0.7077 0.048 0.000 0.004 0.920 0.028
#> GSM121364     4  0.2646     0.7303 0.124 0.000 0.004 0.868 0.004
#> GSM121365     3  0.3210     0.7705 0.000 0.000 0.788 0.212 0.000
#> GSM121366     3  0.1205     0.8670 0.000 0.004 0.956 0.040 0.000
#> GSM121367     3  0.2674     0.8308 0.000 0.004 0.856 0.140 0.000
#> GSM121370     3  0.1544     0.8613 0.000 0.000 0.932 0.068 0.000
#> GSM121371     3  0.2719     0.8271 0.000 0.004 0.852 0.144 0.000
#> GSM121372     3  0.1997     0.8622 0.000 0.036 0.924 0.040 0.000
#> GSM121373     4  0.2929     0.7070 0.152 0.000 0.000 0.840 0.008
#> GSM121374     4  0.2497     0.7302 0.112 0.000 0.004 0.880 0.004
#> GSM121407     3  0.4061     0.6914 0.000 0.240 0.740 0.016 0.004
#> GSM74387      3  0.2032     0.8555 0.000 0.004 0.924 0.020 0.052
#> GSM74388      5  0.3450     0.7236 0.000 0.176 0.008 0.008 0.808
#> GSM74389      3  0.4118     0.5924 0.000 0.000 0.660 0.336 0.004
#> GSM74390      3  0.4660     0.7492 0.000 0.000 0.728 0.192 0.080
#> GSM74391      3  0.4337     0.6231 0.196 0.000 0.748 0.056 0.000
#> GSM74392      4  0.2911     0.7285 0.136 0.000 0.008 0.852 0.004
#> GSM74393      4  0.2819     0.7192 0.060 0.000 0.052 0.884 0.004
#> GSM74394      5  0.2152     0.8261 0.000 0.032 0.004 0.044 0.920
#> GSM74239      1  0.0609     0.8167 0.980 0.000 0.000 0.000 0.020
#> GSM74364      1  0.0703     0.8180 0.976 0.000 0.000 0.024 0.000
#> GSM74365      1  0.3496     0.6597 0.788 0.000 0.000 0.012 0.200
#> GSM74366      5  0.1779     0.8424 0.040 0.008 0.004 0.008 0.940
#> GSM74367      1  0.1732     0.7904 0.920 0.000 0.000 0.000 0.080
#> GSM74377      5  0.3910     0.6953 0.248 0.004 0.000 0.008 0.740
#> GSM74378      5  0.0798     0.8429 0.016 0.008 0.000 0.000 0.976
#> GSM74379      5  0.3231     0.7482 0.196 0.000 0.000 0.004 0.800
#> GSM74380      5  0.1831     0.8375 0.076 0.004 0.000 0.000 0.920
#> GSM74381      5  0.1082     0.8449 0.028 0.008 0.000 0.000 0.964
#> GSM121357     3  0.4480     0.7545 0.000 0.068 0.776 0.016 0.140
#> GSM121361     5  0.1845     0.8250 0.000 0.016 0.000 0.056 0.928
#> GSM121363     5  0.2409     0.8190 0.000 0.044 0.016 0.028 0.912
#> GSM121368     5  0.1893     0.8308 0.000 0.012 0.024 0.028 0.936
#> GSM121369     5  0.2727     0.7994 0.000 0.016 0.000 0.116 0.868
#> GSM74368      1  0.1310     0.8075 0.956 0.000 0.000 0.020 0.024
#> GSM74369      1  0.1041     0.8170 0.964 0.000 0.000 0.032 0.004
#> GSM74370      5  0.5672     0.4507 0.104 0.000 0.000 0.312 0.584
#> GSM74371      1  0.1478     0.8110 0.936 0.000 0.000 0.064 0.000
#> GSM74372      5  0.3055     0.8069 0.064 0.000 0.000 0.072 0.864
#> GSM74373      5  0.1864     0.8412 0.068 0.004 0.000 0.004 0.924
#> GSM74374      1  0.2011     0.7897 0.908 0.000 0.000 0.004 0.088
#> GSM74375      1  0.3076     0.7521 0.868 0.000 0.008 0.036 0.088
#> GSM74376      5  0.2575     0.8263 0.100 0.004 0.000 0.012 0.884
#> GSM74405      5  0.0771     0.8444 0.020 0.004 0.000 0.000 0.976
#> GSM74351      1  0.1410     0.8119 0.940 0.000 0.000 0.060 0.000
#> GSM74352      1  0.4481     0.4124 0.668 0.004 0.000 0.016 0.312
#> GSM74353      1  0.1628     0.8161 0.936 0.000 0.000 0.056 0.008
#> GSM74354      1  0.1571     0.8059 0.936 0.000 0.000 0.004 0.060
#> GSM74355      5  0.2302     0.8358 0.080 0.008 0.000 0.008 0.904
#> GSM74382      1  0.3109     0.7045 0.800 0.000 0.000 0.200 0.000
#> GSM74383      1  0.2069     0.8057 0.912 0.000 0.000 0.012 0.076
#> GSM74384      5  0.0798     0.8429 0.016 0.008 0.000 0.000 0.976
#> GSM74385      1  0.2605     0.7612 0.852 0.000 0.000 0.148 0.000
#> GSM74386      5  0.4425     0.3510 0.392 0.000 0.000 0.008 0.600
#> GSM74395      1  0.3409     0.7753 0.836 0.000 0.000 0.052 0.112
#> GSM74396      1  0.1549     0.8169 0.944 0.000 0.000 0.016 0.040
#> GSM74397      1  0.0609     0.8159 0.980 0.000 0.000 0.000 0.020
#> GSM74398      5  0.4264     0.4516 0.376 0.000 0.000 0.004 0.620
#> GSM74399      1  0.4524     0.3621 0.644 0.000 0.000 0.020 0.336
#> GSM74400      1  0.1270     0.8144 0.948 0.000 0.000 0.052 0.000
#> GSM74401      1  0.0566     0.8176 0.984 0.000 0.000 0.004 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>           class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM74356      3  0.1644     0.8029 0.000 0.000 0.920 0.076 0.004 0.000
#> GSM74357      3  0.2790     0.7739 0.000 0.000 0.844 0.132 0.024 0.000
#> GSM74358      3  0.2651     0.7933 0.000 0.000 0.860 0.112 0.028 0.000
#> GSM74359      4  0.2002     0.7403 0.012 0.000 0.076 0.908 0.004 0.000
#> GSM74360      4  0.1821     0.7376 0.024 0.000 0.008 0.928 0.040 0.000
#> GSM74361      3  0.3766     0.7018 0.000 0.000 0.748 0.212 0.040 0.000
#> GSM74362      4  0.2163     0.7092 0.000 0.000 0.092 0.892 0.016 0.000
#> GSM74363      3  0.2058     0.8051 0.000 0.000 0.908 0.056 0.036 0.000
#> GSM74402      1  0.3245     0.6741 0.764 0.000 0.000 0.228 0.008 0.000
#> GSM74403      1  0.3966     0.1260 0.552 0.000 0.000 0.444 0.004 0.000
#> GSM74404      4  0.4252     0.4309 0.372 0.000 0.000 0.604 0.024 0.000
#> GSM74406      4  0.3823     0.2924 0.436 0.000 0.000 0.564 0.000 0.000
#> GSM74407      3  0.3884     0.6908 0.052 0.000 0.760 0.004 0.184 0.000
#> GSM74408      4  0.4452     0.5804 0.288 0.000 0.040 0.664 0.008 0.000
#> GSM74409      4  0.3268     0.7126 0.144 0.000 0.044 0.812 0.000 0.000
#> GSM74410      4  0.4977     0.6417 0.212 0.000 0.108 0.668 0.012 0.000
#> GSM119936     4  0.4528     0.5407 0.316 0.000 0.044 0.636 0.004 0.000
#> GSM119937     4  0.4370     0.5363 0.324 0.000 0.032 0.640 0.004 0.000
#> GSM74411      5  0.2454     0.8431 0.000 0.016 0.104 0.000 0.876 0.004
#> GSM74412      5  0.2702     0.8307 0.000 0.036 0.092 0.000 0.868 0.004
#> GSM74413      5  0.2454     0.8431 0.000 0.016 0.104 0.000 0.876 0.004
#> GSM74414      5  0.4402     0.5668 0.000 0.244 0.008 0.000 0.696 0.052
#> GSM74415      5  0.2386     0.8457 0.000 0.004 0.112 0.004 0.876 0.004
#> GSM121379     2  0.0260     0.9775 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121380     2  0.0146     0.9775 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121381     2  0.0146     0.9772 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121382     2  0.0458     0.9755 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM121383     2  0.0260     0.9775 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121384     2  0.0146     0.9772 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121385     2  0.0458     0.9761 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM121386     2  0.0260     0.9769 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM121387     2  0.0146     0.9775 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121388     2  0.2069     0.9129 0.000 0.908 0.068 0.004 0.020 0.000
#> GSM121389     2  0.0363     0.9759 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM121390     2  0.0146     0.9772 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM121391     2  0.0547     0.9744 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM121392     2  0.0405     0.9725 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM121393     2  0.0862     0.9653 0.000 0.972 0.008 0.004 0.016 0.000
#> GSM121394     2  0.0458     0.9748 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM121395     2  0.0508     0.9717 0.000 0.984 0.004 0.000 0.012 0.000
#> GSM121396     2  0.3683     0.7533 0.000 0.784 0.160 0.004 0.052 0.000
#> GSM121397     2  0.0458     0.9761 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM121398     2  0.0000     0.9767 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM121399     2  0.0260     0.9775 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM74240      5  0.3627     0.8135 0.000 0.000 0.224 0.020 0.752 0.004
#> GSM74241      5  0.2933     0.8358 0.000 0.000 0.200 0.004 0.796 0.000
#> GSM74242      3  0.3684     0.4557 0.000 0.000 0.664 0.004 0.332 0.000
#> GSM74243      3  0.3653     0.5327 0.000 0.000 0.692 0.008 0.300 0.000
#> GSM74244      5  0.3409     0.7322 0.000 0.000 0.300 0.000 0.700 0.000
#> GSM74245      5  0.2793     0.8354 0.000 0.000 0.200 0.000 0.800 0.000
#> GSM74246      5  0.2624     0.8504 0.000 0.000 0.148 0.004 0.844 0.004
#> GSM74247      5  0.2584     0.8504 0.000 0.000 0.144 0.004 0.848 0.004
#> GSM74248      5  0.3758     0.7465 0.000 0.000 0.284 0.016 0.700 0.000
#> GSM74416      1  0.2320     0.7705 0.864 0.000 0.000 0.132 0.004 0.000
#> GSM74417      1  0.3619     0.5295 0.680 0.000 0.000 0.316 0.004 0.000
#> GSM74418      1  0.3271     0.6699 0.760 0.000 0.000 0.232 0.008 0.000
#> GSM74419      4  0.4593     0.0980 0.472 0.000 0.000 0.492 0.036 0.000
#> GSM121358     3  0.1049     0.8223 0.000 0.000 0.960 0.008 0.032 0.000
#> GSM121359     3  0.2957     0.7700 0.000 0.032 0.844 0.004 0.120 0.000
#> GSM121360     4  0.4127     0.3932 0.000 0.000 0.004 0.684 0.028 0.284
#> GSM121362     4  0.1508     0.7396 0.004 0.000 0.020 0.948 0.012 0.016
#> GSM121364     4  0.1826     0.7482 0.020 0.000 0.052 0.924 0.004 0.000
#> GSM121365     3  0.1633     0.8227 0.000 0.000 0.932 0.024 0.044 0.000
#> GSM121366     3  0.1714     0.8050 0.000 0.000 0.908 0.000 0.092 0.000
#> GSM121367     3  0.1082     0.8210 0.000 0.000 0.956 0.004 0.040 0.000
#> GSM121370     3  0.1765     0.7996 0.000 0.000 0.904 0.000 0.096 0.000
#> GSM121371     3  0.0820     0.8222 0.000 0.000 0.972 0.012 0.016 0.000
#> GSM121372     3  0.1897     0.8105 0.000 0.004 0.908 0.004 0.084 0.000
#> GSM121373     4  0.1708     0.7499 0.040 0.000 0.024 0.932 0.004 0.000
#> GSM121374     4  0.1536     0.7486 0.016 0.000 0.040 0.940 0.004 0.000
#> GSM121407     3  0.4123     0.6948 0.000 0.136 0.772 0.000 0.072 0.020
#> GSM74387      5  0.4009     0.6247 0.000 0.000 0.356 0.008 0.632 0.004
#> GSM74388      6  0.4406     0.6878 0.000 0.140 0.000 0.008 0.116 0.736
#> GSM74389      3  0.4601     0.6531 0.000 0.000 0.688 0.200 0.112 0.000
#> GSM74390      3  0.2401     0.8130 0.000 0.000 0.900 0.020 0.036 0.044
#> GSM74391      5  0.4054     0.7117 0.104 0.000 0.060 0.044 0.792 0.000
#> GSM74392      4  0.1693     0.7494 0.044 0.000 0.020 0.932 0.004 0.000
#> GSM74393      4  0.2122     0.7310 0.008 0.000 0.084 0.900 0.008 0.000
#> GSM74394      6  0.4473     0.6795 0.000 0.020 0.004 0.040 0.220 0.716
#> GSM74239      1  0.0820     0.8059 0.972 0.000 0.000 0.012 0.000 0.016
#> GSM74364      1  0.1605     0.8066 0.936 0.000 0.000 0.044 0.016 0.004
#> GSM74365      1  0.2912     0.6626 0.784 0.000 0.000 0.000 0.000 0.216
#> GSM74366      6  0.1988     0.8635 0.048 0.004 0.004 0.000 0.024 0.920
#> GSM74367      1  0.2356     0.7721 0.884 0.000 0.004 0.004 0.008 0.100
#> GSM74377      6  0.2772     0.7942 0.180 0.000 0.000 0.000 0.004 0.816
#> GSM74378      6  0.0777     0.8635 0.024 0.000 0.004 0.000 0.000 0.972
#> GSM74379      6  0.2442     0.8199 0.144 0.000 0.004 0.000 0.000 0.852
#> GSM74380      6  0.1531     0.8620 0.068 0.000 0.000 0.000 0.004 0.928
#> GSM74381      6  0.0865     0.8649 0.036 0.000 0.000 0.000 0.000 0.964
#> GSM121357     3  0.4529     0.6294 0.004 0.032 0.728 0.000 0.040 0.196
#> GSM121361     6  0.1936     0.8384 0.000 0.008 0.008 0.028 0.028 0.928
#> GSM121363     6  0.1140     0.8486 0.000 0.012 0.008 0.008 0.008 0.964
#> GSM121368     6  0.1667     0.8448 0.000 0.004 0.008 0.008 0.044 0.936
#> GSM121369     6  0.2772     0.8040 0.000 0.000 0.004 0.092 0.040 0.864
#> GSM74368      1  0.3979     0.7208 0.800 0.000 0.120 0.012 0.024 0.044
#> GSM74369      1  0.2254     0.7937 0.916 0.000 0.016 0.020 0.024 0.024
#> GSM74370      4  0.5360     0.0537 0.032 0.000 0.004 0.508 0.036 0.420
#> GSM74371      1  0.2178     0.7732 0.868 0.000 0.000 0.132 0.000 0.000
#> GSM74372      6  0.3751     0.7826 0.028 0.000 0.004 0.100 0.052 0.816
#> GSM74373      6  0.1219     0.8660 0.048 0.000 0.004 0.000 0.000 0.948
#> GSM74374      1  0.1218     0.8021 0.956 0.000 0.000 0.004 0.012 0.028
#> GSM74375      1  0.3134     0.7186 0.824 0.000 0.000 0.012 0.148 0.016
#> GSM74376      6  0.3585     0.8031 0.156 0.000 0.000 0.004 0.048 0.792
#> GSM74405      6  0.0865     0.8649 0.036 0.000 0.000 0.000 0.000 0.964
#> GSM74351      1  0.2048     0.7788 0.880 0.000 0.000 0.120 0.000 0.000
#> GSM74352      1  0.3606     0.5564 0.728 0.000 0.000 0.000 0.016 0.256
#> GSM74353      1  0.1501     0.7975 0.924 0.000 0.000 0.076 0.000 0.000
#> GSM74354      1  0.1265     0.7961 0.948 0.000 0.000 0.000 0.008 0.044
#> GSM74355      6  0.1686     0.8614 0.064 0.000 0.000 0.000 0.012 0.924
#> GSM74382      1  0.3528     0.5692 0.700 0.000 0.000 0.296 0.004 0.000
#> GSM74383      1  0.1858     0.7962 0.912 0.000 0.000 0.012 0.000 0.076
#> GSM74384      6  0.0891     0.8638 0.024 0.000 0.000 0.000 0.008 0.968
#> GSM74385      1  0.3398     0.6483 0.740 0.000 0.000 0.252 0.008 0.000
#> GSM74386      6  0.4312     0.4103 0.368 0.000 0.000 0.028 0.000 0.604
#> GSM74395      1  0.4288     0.7261 0.748 0.000 0.000 0.132 0.008 0.112
#> GSM74396      1  0.1624     0.8089 0.936 0.000 0.000 0.040 0.004 0.020
#> GSM74397      1  0.0767     0.8055 0.976 0.000 0.000 0.008 0.004 0.012
#> GSM74398      6  0.4032     0.3427 0.420 0.000 0.000 0.000 0.008 0.572
#> GSM74399      1  0.3558     0.5710 0.736 0.000 0.000 0.000 0.016 0.248
#> GSM74400      1  0.1714     0.7949 0.908 0.000 0.000 0.092 0.000 0.000
#> GSM74401      1  0.0291     0.8057 0.992 0.000 0.000 0.004 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>           n disease.state(p) k
#> ATC:NMF 117         1.51e-11 2
#> ATC:NMF 107         3.98e-15 3
#> ATC:NMF 112         7.37e-29 4
#> ATC:NMF 102         3.44e-31 5
#> ATC:NMF 112         4.38e-45 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0