cola Report for GDS1813

Date: 2019-12-25 20:17:16 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 35373    53

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:skmeans 3 1.000 0.965 0.984 ** 2
ATC:pam 2 1.000 0.992 0.996 **
ATC:skmeans 3 0.999 0.958 0.982 ** 2
CV:skmeans 3 0.971 0.933 0.974 ** 2
MAD:skmeans 3 0.971 0.933 0.973 ** 2
MAD:pam 3 0.962 0.924 0.952 ** 2
CV:NMF 2 0.958 0.941 0.975 **
CV:pam 3 0.938 0.902 0.962 * 2
SD:NMF 2 0.920 0.908 0.965 *
ATC:NMF 2 0.919 0.912 0.963 *
SD:pam 4 0.910 0.916 0.951 * 2,3
MAD:NMF 2 0.882 0.898 0.962
ATC:kmeans 4 0.857 0.908 0.936
ATC:mclust 5 0.850 0.723 0.887
MAD:kmeans 2 0.850 0.951 0.975
SD:kmeans 2 0.847 0.909 0.958
MAD:hclust 2 0.827 0.893 0.949
CV:mclust 6 0.826 0.843 0.908
MAD:mclust 5 0.782 0.856 0.900
SD:hclust 2 0.771 0.908 0.953
CV:kmeans 3 0.757 0.859 0.926
ATC:hclust 3 0.652 0.860 0.925
SD:mclust 3 0.425 0.643 0.815
CV:hclust 2 0.389 0.876 0.904

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.920           0.908       0.965          0.507 0.492   0.492
#> CV:NMF      2 0.958           0.941       0.975          0.503 0.495   0.495
#> MAD:NMF     2 0.882           0.898       0.962          0.507 0.491   0.491
#> ATC:NMF     2 0.919           0.912       0.963          0.506 0.492   0.492
#> SD:skmeans  2 0.960           0.965       0.984          0.509 0.492   0.492
#> CV:skmeans  2 0.960           0.971       0.987          0.510 0.491   0.491
#> MAD:skmeans 2 1.000           0.996       0.998          0.509 0.492   0.492
#> ATC:skmeans 2 0.922           0.956       0.980          0.509 0.491   0.491
#> SD:mclust   2 0.184           0.694       0.798          0.310 0.826   0.826
#> CV:mclust   2 0.470           0.777       0.835          0.375 0.505   0.505
#> MAD:mclust  2 0.217           0.542       0.783          0.417 0.570   0.570
#> ATC:mclust  2 0.330           0.584       0.731          0.337 0.826   0.826
#> SD:kmeans   2 0.847           0.909       0.958          0.505 0.492   0.492
#> CV:kmeans   2 0.504           0.837       0.911          0.490 0.491   0.491
#> MAD:kmeans  2 0.850           0.951       0.975          0.506 0.492   0.492
#> ATC:kmeans  2 0.742           0.796       0.924          0.491 0.499   0.499
#> SD:pam      2 0.960           0.960       0.982          0.494 0.512   0.512
#> CV:pam      2 0.920           0.913       0.965          0.508 0.491   0.491
#> MAD:pam     2 1.000           0.952       0.979          0.495 0.505   0.505
#> ATC:pam     2 1.000           0.992       0.996          0.509 0.492   0.492
#> SD:hclust   2 0.771           0.908       0.953          0.496 0.492   0.492
#> CV:hclust   2 0.389           0.876       0.904          0.463 0.495   0.495
#> MAD:hclust  2 0.827           0.893       0.949          0.495 0.495   0.495
#> ATC:hclust  2 0.376           0.701       0.752          0.397 0.495   0.495
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.802           0.852       0.937          0.318 0.730   0.503
#> CV:NMF      3 0.871           0.874       0.949          0.337 0.681   0.441
#> MAD:NMF     3 0.789           0.869       0.945          0.314 0.738   0.515
#> ATC:NMF     3 0.887           0.886       0.952          0.314 0.734   0.513
#> SD:skmeans  3 1.000           0.965       0.984          0.314 0.745   0.527
#> CV:skmeans  3 0.971           0.933       0.974          0.319 0.763   0.553
#> MAD:skmeans 3 0.971           0.933       0.973          0.311 0.745   0.527
#> ATC:skmeans 3 0.999           0.958       0.982          0.306 0.761   0.549
#> SD:mclust   3 0.425           0.643       0.815          0.746 0.589   0.502
#> CV:mclust   3 0.520           0.873       0.902          0.261 0.534   0.382
#> MAD:mclust  3 0.458           0.547       0.764          0.343 0.660   0.482
#> ATC:mclust  3 0.311           0.845       0.859          0.449 0.705   0.642
#> SD:kmeans   3 0.579           0.718       0.823          0.297 0.810   0.633
#> CV:kmeans   3 0.757           0.859       0.926          0.332 0.739   0.517
#> MAD:kmeans  3 0.596           0.692       0.817          0.291 0.792   0.602
#> ATC:kmeans  3 0.665           0.784       0.899          0.284 0.636   0.405
#> SD:pam      3 0.994           0.953       0.978          0.220 0.814   0.662
#> CV:pam      3 0.938           0.902       0.962          0.196 0.871   0.744
#> MAD:pam     3 0.962           0.924       0.952          0.228 0.835   0.689
#> ATC:pam     3 0.898           0.943       0.975          0.157 0.927   0.853
#> SD:hclust   3 0.717           0.860       0.923          0.296 0.864   0.724
#> CV:hclust   3 0.462           0.785       0.882          0.320 0.878   0.754
#> MAD:hclust  3 0.748           0.820       0.913          0.307 0.820   0.649
#> ATC:hclust  3 0.652           0.860       0.925          0.475 0.730   0.550
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.856           0.869       0.940         0.1294 0.843   0.567
#> CV:NMF      4 0.860           0.878       0.937         0.1178 0.820   0.521
#> MAD:NMF     4 0.887           0.881       0.946         0.1325 0.849   0.584
#> ATC:NMF     4 0.725           0.760       0.884         0.1221 0.858   0.608
#> SD:skmeans  4 0.810           0.760       0.887         0.1134 0.922   0.769
#> CV:skmeans  4 0.807           0.835       0.906         0.1216 0.885   0.667
#> MAD:skmeans 4 0.784           0.736       0.870         0.1185 0.878   0.649
#> ATC:skmeans 4 0.810           0.864       0.930         0.0967 0.919   0.765
#> SD:mclust   4 0.633           0.635       0.756         0.3063 0.798   0.568
#> CV:mclust   4 0.420           0.712       0.782         0.2590 0.965   0.935
#> MAD:mclust  4 0.718           0.792       0.838         0.2955 0.711   0.393
#> ATC:mclust  4 0.553           0.736       0.842         0.3879 0.737   0.512
#> SD:kmeans   4 0.605           0.751       0.838         0.1419 0.816   0.527
#> CV:kmeans   4 0.606           0.615       0.801         0.1332 0.819   0.517
#> MAD:kmeans  4 0.592           0.733       0.830         0.1449 0.819   0.527
#> ATC:kmeans  4 0.857           0.908       0.936         0.1837 0.846   0.594
#> SD:pam      4 0.910           0.916       0.951         0.1331 0.837   0.632
#> CV:pam      4 0.696           0.685       0.845         0.1765 0.867   0.667
#> MAD:pam     4 0.794           0.879       0.932         0.1306 0.846   0.645
#> ATC:pam     4 0.775           0.767       0.899         0.1845 0.834   0.626
#> SD:hclust   4 0.693           0.636       0.760         0.1311 0.888   0.700
#> CV:hclust   4 0.505           0.697       0.780         0.1353 0.929   0.809
#> MAD:hclust  4 0.645           0.654       0.789         0.1326 0.856   0.622
#> ATC:hclust  4 0.719           0.736       0.879         0.2313 0.837   0.624
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.729           0.702       0.846         0.0374 0.972   0.893
#> CV:NMF      5 0.766           0.752       0.841         0.0497 0.967   0.873
#> MAD:NMF     5 0.683           0.571       0.774         0.0439 0.936   0.763
#> ATC:NMF     5 0.693           0.630       0.835         0.0345 0.931   0.758
#> SD:skmeans  5 0.725           0.629       0.822         0.0549 0.947   0.809
#> CV:skmeans  5 0.725           0.679       0.815         0.0510 0.962   0.846
#> MAD:skmeans 5 0.744           0.640       0.806         0.0559 0.896   0.641
#> ATC:skmeans 5 0.847           0.811       0.892         0.0464 0.946   0.811
#> SD:mclust   5 0.636           0.493       0.743         0.0977 0.830   0.517
#> CV:mclust   5 0.608           0.564       0.806         0.2456 0.623   0.317
#> MAD:mclust  5 0.782           0.856       0.900         0.0906 0.913   0.680
#> ATC:mclust  5 0.850           0.723       0.887         0.1750 0.847   0.512
#> SD:kmeans   5 0.733           0.498       0.726         0.0679 0.943   0.786
#> CV:kmeans   5 0.691           0.614       0.779         0.0707 0.902   0.648
#> MAD:kmeans  5 0.776           0.714       0.815         0.0695 0.971   0.880
#> ATC:kmeans  5 0.728           0.652       0.745         0.0664 0.965   0.856
#> SD:pam      5 0.876           0.835       0.903         0.1406 0.894   0.675
#> CV:pam      5 0.764           0.788       0.891         0.0895 0.862   0.562
#> MAD:pam     5 0.859           0.824       0.892         0.1319 0.894   0.675
#> ATC:pam     5 0.744           0.797       0.845         0.1093 0.817   0.484
#> SD:hclust   5 0.751           0.712       0.854         0.0837 0.890   0.641
#> CV:hclust   5 0.551           0.749       0.766         0.1038 0.896   0.656
#> MAD:hclust  5 0.727           0.696       0.845         0.0806 0.882   0.600
#> ATC:hclust  5 0.820           0.717       0.846         0.0804 0.944   0.797
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.696           0.527       0.746        0.04029 0.858   0.508
#> CV:NMF      6 0.743           0.585       0.753        0.03461 0.910   0.651
#> MAD:NMF     6 0.664           0.546       0.771        0.03753 0.849   0.463
#> ATC:NMF     6 0.668           0.545       0.787        0.03428 0.925   0.713
#> SD:skmeans  6 0.731           0.607       0.787        0.04024 0.951   0.799
#> CV:skmeans  6 0.718           0.630       0.786        0.03627 0.961   0.820
#> MAD:skmeans 6 0.749           0.626       0.812        0.04052 0.954   0.804
#> ATC:skmeans 6 0.810           0.773       0.879        0.04041 0.958   0.833
#> SD:mclust   6 0.654           0.633       0.789        0.03296 0.843   0.420
#> CV:mclust   6 0.826           0.843       0.908        0.09575 0.906   0.626
#> MAD:mclust  6 0.740           0.484       0.733        0.00625 0.801   0.333
#> ATC:mclust  6 0.875           0.850       0.929        0.03115 0.948   0.751
#> SD:kmeans   6 0.738           0.728       0.750        0.04109 0.914   0.642
#> CV:kmeans   6 0.718           0.658       0.746        0.04255 0.908   0.619
#> MAD:kmeans  6 0.763           0.563       0.712        0.03813 0.898   0.590
#> ATC:kmeans  6 0.723           0.483       0.620        0.04101 0.864   0.483
#> SD:pam      6 0.887           0.860       0.874        0.05188 0.948   0.768
#> CV:pam      6 0.799           0.779       0.883        0.05636 0.934   0.708
#> MAD:pam     6 0.886           0.802       0.881        0.05373 0.926   0.687
#> ATC:pam     6 0.798           0.766       0.875        0.06392 0.893   0.584
#> SD:hclust   6 0.742           0.701       0.829        0.03455 0.968   0.861
#> CV:hclust   6 0.736           0.785       0.830        0.06372 0.948   0.753
#> MAD:hclust  6 0.752           0.679       0.821        0.03846 0.972   0.866
#> ATC:hclust  6 0.805           0.676       0.834        0.02990 0.960   0.830

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n disease.state(p) k
#> SD:NMF      50         5.44e-05 2
#> CV:NMF      52         1.77e-04 2
#> MAD:NMF     50         1.79e-05 2
#> ATC:NMF     50         1.79e-05 2
#> SD:skmeans  52         2.19e-06 2
#> CV:skmeans  53         1.62e-05 2
#> MAD:skmeans 53         1.45e-06 2
#> ATC:skmeans 53         5.12e-06 2
#> SD:mclust   52         5.53e-08 2
#> CV:mclust   51         1.95e-03 2
#> MAD:mclust  43         2.16e-07 2
#> ATC:mclust  37         1.37e-05 2
#> SD:kmeans   52         2.19e-06 2
#> CV:kmeans   51         3.54e-05 2
#> MAD:kmeans  53         1.45e-06 2
#> ATC:kmeans  45         1.73e-06 2
#> SD:pam      53         8.87e-08 2
#> CV:pam      50         1.30e-06 2
#> MAD:pam     52         2.51e-08 2
#> ATC:pam     53         1.45e-06 2
#> SD:hclust   53         4.66e-05 2
#> CV:hclust   52         1.77e-04 2
#> MAD:hclust  51         9.94e-05 2
#> ATC:hclust  47         1.15e-03 2
test_to_known_factors(res_list, k = 3)
#>              n disease.state(p) k
#> SD:NMF      49         1.95e-04 3
#> CV:NMF      50         3.79e-03 3
#> MAD:NMF     50         1.74e-04 3
#> ATC:NMF     49         5.46e-05 3
#> SD:skmeans  52         4.81e-06 3
#> CV:skmeans  51         1.19e-04 3
#> MAD:skmeans 50         6.90e-06 3
#> ATC:skmeans 52         1.26e-05 3
#> SD:mclust   38         2.09e-08 3
#> CV:mclust   52         5.09e-09 3
#> MAD:mclust  35         6.97e-09 3
#> ATC:mclust  52         6.50e-12 3
#> SD:kmeans   47         2.77e-07 3
#> CV:kmeans   52         7.79e-05 3
#> MAD:kmeans  48         7.61e-07 3
#> ATC:kmeans  48         2.64e-04 3
#> SD:pam      53         2.00e-09 3
#> CV:pam      51         6.73e-09 3
#> MAD:pam     52         2.42e-09 3
#> ATC:pam     53         7.07e-12 3
#> SD:hclust   53         2.75e-07 3
#> CV:hclust   51         1.74e-07 3
#> MAD:hclust  51         9.83e-07 3
#> ATC:hclust  52         5.09e-08 3
test_to_known_factors(res_list, k = 4)
#>              n disease.state(p) k
#> SD:NMF      50         5.28e-05 4
#> CV:NMF      51         1.95e-04 4
#> MAD:NMF     51         3.25e-05 4
#> ATC:NMF     46         1.62e-04 4
#> SD:skmeans  46         1.10e-04 4
#> CV:skmeans  49         5.39e-05 4
#> MAD:skmeans 44         2.79e-04 4
#> ATC:skmeans 52         3.98e-06 4
#> SD:mclust   42         7.75e-10 4
#> CV:mclust   49         2.55e-07 4
#> MAD:mclust  52         1.23e-06 4
#> ATC:mclust  49         2.04e-09 4
#> SD:kmeans   47         1.05e-06 4
#> CV:kmeans   38         1.41e-04 4
#> MAD:kmeans  44         7.11e-06 4
#> ATC:kmeans  53         1.08e-07 4
#> SD:pam      51         1.53e-12 4
#> CV:pam      45         9.11e-06 4
#> MAD:pam     51         1.53e-12 4
#> ATC:pam     47         3.07e-08 4
#> SD:hclust   43         3.07e-04 4
#> CV:hclust   49         6.26e-08 4
#> MAD:hclust  41         2.58e-08 4
#> ATC:hclust  46         6.81e-09 4
test_to_known_factors(res_list, k = 5)
#>              n disease.state(p) k
#> SD:NMF      45         8.26e-05 5
#> CV:NMF      48         2.83e-04 5
#> MAD:NMF     35         1.02e-02 5
#> ATC:NMF     43         3.92e-04 5
#> SD:skmeans  43         1.07e-05 5
#> CV:skmeans  45         3.07e-05 5
#> MAD:skmeans 41         3.35e-05 5
#> ATC:skmeans 47         4.70e-05 5
#> SD:mclust   34         1.39e-03 5
#> CV:mclust   37         2.04e-06 5
#> MAD:mclust  52         1.21e-04 5
#> ATC:mclust  42         4.16e-08 5
#> SD:kmeans   38         5.77e-05 5
#> CV:kmeans   43         5.20e-06 5
#> MAD:kmeans  47         1.96e-08 5
#> ATC:kmeans  46         4.91e-05 5
#> SD:pam      52         3.27e-11 5
#> CV:pam      47         1.24e-08 5
#> MAD:pam     50         1.82e-10 5
#> ATC:pam     50         3.11e-08 5
#> SD:hclust   46         1.56e-07 5
#> CV:hclust   50         5.75e-07 5
#> MAD:hclust  43         1.14e-05 5
#> ATC:hclust  46         1.53e-07 5
test_to_known_factors(res_list, k = 6)
#>              n disease.state(p) k
#> SD:NMF      30         8.30e-02 6
#> CV:NMF      35         1.86e-02 6
#> MAD:NMF     29         2.34e-02 6
#> ATC:NMF     32         2.85e-04 6
#> SD:skmeans  40         4.85e-05 6
#> CV:skmeans  36         5.79e-03 6
#> MAD:skmeans 41         3.05e-05 6
#> ATC:skmeans 47         3.99e-05 6
#> SD:mclust   38         3.83e-06 6
#> CV:mclust   52         1.50e-08 6
#> MAD:mclust  26         1.24e-01 6
#> ATC:mclust  50         1.88e-08 6
#> SD:kmeans   47         8.02e-08 6
#> CV:kmeans   45         2.77e-07 6
#> MAD:kmeans  37         1.38e-06 6
#> ATC:kmeans  29         7.90e-06 6
#> SD:pam      49         5.78e-09 6
#> CV:pam      46         1.59e-10 6
#> MAD:pam     48         1.25e-08 6
#> ATC:pam     47         7.83e-07 6
#> SD:hclust   46         3.85e-06 6
#> CV:hclust   50         5.34e-08 6
#> MAD:hclust  46         2.61e-05 6
#> ATC:hclust  45         3.58e-07 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.771           0.908       0.953         0.4964 0.492   0.492
#> 3 3 0.717           0.860       0.923         0.2965 0.864   0.724
#> 4 4 0.693           0.636       0.760         0.1311 0.888   0.700
#> 5 5 0.751           0.712       0.854         0.0837 0.890   0.641
#> 6 6 0.742           0.701       0.829         0.0345 0.968   0.861

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      0.964 0.000 1.000
#> GSM40667     2  0.0000      0.964 0.000 1.000
#> GSM40675     2  0.0000      0.964 0.000 1.000
#> GSM40703     2  0.0000      0.964 0.000 1.000
#> GSM40660     2  0.0672      0.967 0.008 0.992
#> GSM40668     2  0.0000      0.964 0.000 1.000
#> GSM40678     2  0.0672      0.967 0.008 0.992
#> GSM40679     2  0.0672      0.967 0.008 0.992
#> GSM40686     2  0.1843      0.959 0.028 0.972
#> GSM40687     2  0.0938      0.966 0.012 0.988
#> GSM40691     2  0.0672      0.967 0.008 0.992
#> GSM40699     2  0.0672      0.967 0.008 0.992
#> GSM40664     2  0.0672      0.967 0.008 0.992
#> GSM40682     2  0.0672      0.967 0.008 0.992
#> GSM40688     2  0.0938      0.966 0.012 0.988
#> GSM40702     2  0.0672      0.967 0.008 0.992
#> GSM40706     2  0.0938      0.966 0.012 0.988
#> GSM40711     2  0.4161      0.913 0.084 0.916
#> GSM40661     2  0.0672      0.967 0.008 0.992
#> GSM40662     1  0.9286      0.535 0.656 0.344
#> GSM40666     2  0.5178      0.883 0.116 0.884
#> GSM40669     1  0.9286      0.535 0.656 0.344
#> GSM40670     1  0.9286      0.535 0.656 0.344
#> GSM40671     1  0.0000      0.928 1.000 0.000
#> GSM40672     1  0.0000      0.928 1.000 0.000
#> GSM40673     1  0.0000      0.928 1.000 0.000
#> GSM40674     1  0.8016      0.702 0.756 0.244
#> GSM40676     2  0.5178      0.883 0.116 0.884
#> GSM40680     1  0.1633      0.920 0.976 0.024
#> GSM40681     1  0.0000      0.928 1.000 0.000
#> GSM40683     1  0.0000      0.928 1.000 0.000
#> GSM40684     2  0.5178      0.883 0.116 0.884
#> GSM40685     1  0.1414      0.922 0.980 0.020
#> GSM40689     1  0.0000      0.928 1.000 0.000
#> GSM40690     1  0.0000      0.928 1.000 0.000
#> GSM40692     1  0.1843      0.918 0.972 0.028
#> GSM40693     1  0.0000      0.928 1.000 0.000
#> GSM40694     1  0.1633      0.920 0.976 0.024
#> GSM40695     1  0.0000      0.928 1.000 0.000
#> GSM40696     1  0.0000      0.928 1.000 0.000
#> GSM40697     2  0.4298      0.907 0.088 0.912
#> GSM40704     1  0.0000      0.928 1.000 0.000
#> GSM40705     2  0.4161      0.913 0.084 0.916
#> GSM40707     1  0.0000      0.928 1.000 0.000
#> GSM40708     1  0.0000      0.928 1.000 0.000
#> GSM40709     2  0.5178      0.883 0.116 0.884
#> GSM40712     1  0.7376      0.748 0.792 0.208
#> GSM40713     1  0.1843      0.918 0.972 0.028
#> GSM40665     1  0.0376      0.927 0.996 0.004
#> GSM40677     2  0.0938      0.966 0.012 0.988
#> GSM40698     1  0.0672      0.926 0.992 0.008
#> GSM40701     2  0.0672      0.967 0.008 0.992
#> GSM40710     2  0.0938      0.966 0.012 0.988

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0424      0.906 0.000 0.008 0.992
#> GSM40667     3  0.0424      0.906 0.000 0.008 0.992
#> GSM40675     3  0.0424      0.906 0.000 0.008 0.992
#> GSM40703     3  0.0424      0.906 0.000 0.008 0.992
#> GSM40660     2  0.5859      0.573 0.000 0.656 0.344
#> GSM40668     3  0.0424      0.906 0.000 0.008 0.992
#> GSM40678     2  0.0747      0.904 0.000 0.984 0.016
#> GSM40679     2  0.0747      0.904 0.000 0.984 0.016
#> GSM40686     2  0.0747      0.896 0.016 0.984 0.000
#> GSM40687     2  0.0000      0.902 0.000 1.000 0.000
#> GSM40691     2  0.1964      0.887 0.000 0.944 0.056
#> GSM40699     2  0.0747      0.904 0.000 0.984 0.016
#> GSM40664     2  0.3879      0.809 0.000 0.848 0.152
#> GSM40682     2  0.0747      0.904 0.000 0.984 0.016
#> GSM40688     2  0.0000      0.902 0.000 1.000 0.000
#> GSM40702     2  0.1643      0.895 0.000 0.956 0.044
#> GSM40706     2  0.0237      0.902 0.000 0.996 0.004
#> GSM40711     3  0.3461      0.917 0.076 0.024 0.900
#> GSM40661     2  0.5733      0.617 0.000 0.676 0.324
#> GSM40662     1  0.7337      0.542 0.644 0.056 0.300
#> GSM40666     3  0.4121      0.906 0.108 0.024 0.868
#> GSM40669     1  0.7337      0.542 0.644 0.056 0.300
#> GSM40670     1  0.7337      0.542 0.644 0.056 0.300
#> GSM40671     1  0.0000      0.922 1.000 0.000 0.000
#> GSM40672     1  0.0000      0.922 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.922 1.000 0.000 0.000
#> GSM40674     1  0.6354      0.703 0.744 0.052 0.204
#> GSM40676     3  0.4121      0.906 0.108 0.024 0.868
#> GSM40680     1  0.1525      0.913 0.964 0.032 0.004
#> GSM40681     1  0.0661      0.921 0.988 0.008 0.004
#> GSM40683     1  0.0000      0.922 1.000 0.000 0.000
#> GSM40684     3  0.4121      0.906 0.108 0.024 0.868
#> GSM40685     1  0.1399      0.915 0.968 0.028 0.004
#> GSM40689     1  0.0424      0.921 0.992 0.000 0.008
#> GSM40690     1  0.0000      0.922 1.000 0.000 0.000
#> GSM40692     1  0.1711      0.911 0.960 0.032 0.008
#> GSM40693     1  0.0592      0.921 0.988 0.012 0.000
#> GSM40694     1  0.1525      0.913 0.964 0.032 0.004
#> GSM40695     1  0.0000      0.922 1.000 0.000 0.000
#> GSM40696     1  0.0592      0.921 0.988 0.012 0.000
#> GSM40697     2  0.3856      0.824 0.072 0.888 0.040
#> GSM40704     1  0.0000      0.922 1.000 0.000 0.000
#> GSM40705     3  0.3461      0.917 0.076 0.024 0.900
#> GSM40707     1  0.0000      0.922 1.000 0.000 0.000
#> GSM40708     1  0.0000      0.922 1.000 0.000 0.000
#> GSM40709     3  0.4371      0.901 0.108 0.032 0.860
#> GSM40712     1  0.5798      0.746 0.780 0.044 0.176
#> GSM40713     1  0.1453      0.914 0.968 0.024 0.008
#> GSM40665     1  0.0661      0.921 0.988 0.004 0.008
#> GSM40677     2  0.0000      0.902 0.000 1.000 0.000
#> GSM40698     1  0.1015      0.920 0.980 0.012 0.008
#> GSM40701     2  0.6062      0.504 0.000 0.616 0.384
#> GSM40710     2  0.0000      0.902 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.5132    -0.0440 0.000 0.004 0.448 0.548
#> GSM40667     4  0.5132    -0.0440 0.000 0.004 0.448 0.548
#> GSM40675     4  0.5132    -0.0440 0.000 0.004 0.448 0.548
#> GSM40703     4  0.5132    -0.0440 0.000 0.004 0.448 0.548
#> GSM40660     2  0.6281     0.6427 0.000 0.656 0.216 0.128
#> GSM40668     4  0.5132    -0.0440 0.000 0.004 0.448 0.548
#> GSM40678     2  0.0469     0.9076 0.000 0.988 0.012 0.000
#> GSM40679     2  0.0469     0.9076 0.000 0.988 0.012 0.000
#> GSM40686     2  0.0844     0.9028 0.004 0.980 0.004 0.012
#> GSM40687     2  0.0188     0.9060 0.000 0.996 0.000 0.004
#> GSM40691     2  0.1854     0.8900 0.000 0.940 0.048 0.012
#> GSM40699     2  0.0469     0.9076 0.000 0.988 0.012 0.000
#> GSM40664     2  0.3257     0.8196 0.000 0.844 0.152 0.004
#> GSM40682     2  0.0469     0.9076 0.000 0.988 0.012 0.000
#> GSM40688     2  0.0592     0.9045 0.000 0.984 0.000 0.016
#> GSM40702     2  0.1411     0.8996 0.000 0.960 0.020 0.020
#> GSM40706     2  0.0000     0.9063 0.000 1.000 0.000 0.000
#> GSM40711     3  0.0000     0.9469 0.000 0.000 1.000 0.000
#> GSM40661     2  0.5940     0.6593 0.000 0.672 0.240 0.088
#> GSM40662     4  0.8029     0.0693 0.220 0.012 0.328 0.440
#> GSM40666     3  0.1109     0.9705 0.004 0.000 0.968 0.028
#> GSM40669     4  0.8029     0.0693 0.220 0.012 0.328 0.440
#> GSM40670     4  0.8029     0.0693 0.220 0.012 0.328 0.440
#> GSM40671     1  0.0921     0.7544 0.972 0.000 0.000 0.028
#> GSM40672     1  0.0469     0.7497 0.988 0.000 0.000 0.012
#> GSM40673     1  0.0000     0.7452 1.000 0.000 0.000 0.000
#> GSM40674     4  0.7960    -0.1800 0.320 0.008 0.232 0.440
#> GSM40676     3  0.1109     0.9705 0.004 0.000 0.968 0.028
#> GSM40680     1  0.5668     0.5945 0.532 0.000 0.024 0.444
#> GSM40681     1  0.5193     0.6346 0.580 0.000 0.008 0.412
#> GSM40683     1  0.0000     0.7452 1.000 0.000 0.000 0.000
#> GSM40684     3  0.1109     0.9705 0.004 0.000 0.968 0.028
#> GSM40685     1  0.5483     0.5997 0.536 0.000 0.016 0.448
#> GSM40689     1  0.4297     0.7108 0.820 0.000 0.084 0.096
#> GSM40690     1  0.2281     0.7581 0.904 0.000 0.000 0.096
#> GSM40692     1  0.5755     0.5895 0.528 0.000 0.028 0.444
#> GSM40693     1  0.4193     0.6903 0.732 0.000 0.000 0.268
#> GSM40694     1  0.5668     0.5945 0.532 0.000 0.024 0.444
#> GSM40695     1  0.0469     0.7503 0.988 0.000 0.000 0.012
#> GSM40696     1  0.4193     0.6903 0.732 0.000 0.000 0.268
#> GSM40697     2  0.4108     0.8025 0.016 0.848 0.056 0.080
#> GSM40704     1  0.0000     0.7452 1.000 0.000 0.000 0.000
#> GSM40705     3  0.0000     0.9469 0.000 0.000 1.000 0.000
#> GSM40707     1  0.3024     0.7559 0.852 0.000 0.000 0.148
#> GSM40708     1  0.3024     0.7559 0.852 0.000 0.000 0.148
#> GSM40709     3  0.1443     0.9612 0.004 0.008 0.960 0.028
#> GSM40712     4  0.7584    -0.2641 0.348 0.000 0.204 0.448
#> GSM40713     1  0.4464     0.7484 0.768 0.000 0.024 0.208
#> GSM40665     1  0.5376     0.7207 0.736 0.000 0.088 0.176
#> GSM40677     2  0.0592     0.9045 0.000 0.984 0.000 0.016
#> GSM40698     1  0.6054     0.6969 0.656 0.000 0.088 0.256
#> GSM40701     2  0.6663     0.5758 0.000 0.612 0.244 0.144
#> GSM40710     2  0.0188     0.9060 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.1270      1.000 0.000 0.000 0.948 0.052 0.000
#> GSM40667     3  0.1270      1.000 0.000 0.000 0.948 0.052 0.000
#> GSM40675     3  0.1270      1.000 0.000 0.000 0.948 0.052 0.000
#> GSM40703     3  0.1270      1.000 0.000 0.000 0.948 0.052 0.000
#> GSM40660     2  0.5507      0.639 0.000 0.652 0.188 0.160 0.000
#> GSM40668     3  0.1270      1.000 0.000 0.000 0.948 0.052 0.000
#> GSM40678     2  0.0566      0.904 0.000 0.984 0.004 0.012 0.000
#> GSM40679     2  0.0566      0.904 0.000 0.984 0.004 0.012 0.000
#> GSM40686     2  0.0798      0.899 0.000 0.976 0.008 0.000 0.016
#> GSM40687     2  0.0290      0.901 0.000 0.992 0.008 0.000 0.000
#> GSM40691     2  0.1701      0.886 0.000 0.936 0.016 0.048 0.000
#> GSM40699     2  0.0566      0.904 0.000 0.984 0.004 0.012 0.000
#> GSM40664     2  0.2806      0.815 0.000 0.844 0.004 0.152 0.000
#> GSM40682     2  0.0566      0.904 0.000 0.984 0.004 0.012 0.000
#> GSM40688     2  0.0693      0.900 0.000 0.980 0.012 0.000 0.008
#> GSM40702     2  0.1300      0.896 0.000 0.956 0.028 0.016 0.000
#> GSM40706     2  0.0162      0.903 0.000 0.996 0.004 0.000 0.000
#> GSM40711     4  0.1124      0.962 0.000 0.000 0.036 0.960 0.004
#> GSM40661     2  0.5379      0.661 0.000 0.668 0.168 0.164 0.000
#> GSM40662     5  0.4387      0.561 0.000 0.012 0.000 0.348 0.640
#> GSM40666     4  0.0162      0.973 0.000 0.000 0.000 0.996 0.004
#> GSM40669     5  0.4387      0.561 0.000 0.012 0.000 0.348 0.640
#> GSM40670     5  0.4387      0.561 0.000 0.012 0.000 0.348 0.640
#> GSM40671     1  0.2179      0.679 0.896 0.000 0.004 0.000 0.100
#> GSM40672     1  0.0404      0.699 0.988 0.000 0.000 0.000 0.012
#> GSM40673     1  0.0000      0.700 1.000 0.000 0.000 0.000 0.000
#> GSM40674     5  0.3783      0.651 0.000 0.008 0.000 0.252 0.740
#> GSM40676     4  0.0510      0.974 0.000 0.000 0.000 0.984 0.016
#> GSM40680     5  0.0404      0.673 0.000 0.000 0.000 0.012 0.988
#> GSM40681     5  0.2970      0.569 0.168 0.000 0.000 0.004 0.828
#> GSM40683     1  0.0000      0.700 1.000 0.000 0.000 0.000 0.000
#> GSM40684     4  0.0510      0.974 0.000 0.000 0.000 0.984 0.016
#> GSM40685     5  0.0000      0.668 0.000 0.000 0.000 0.000 1.000
#> GSM40689     1  0.5641      0.540 0.688 0.000 0.036 0.092 0.184
#> GSM40690     1  0.3177      0.595 0.792 0.000 0.000 0.000 0.208
#> GSM40692     5  0.0510      0.673 0.000 0.000 0.000 0.016 0.984
#> GSM40693     1  0.4430      0.215 0.540 0.000 0.004 0.000 0.456
#> GSM40694     5  0.0404      0.673 0.000 0.000 0.000 0.012 0.988
#> GSM40695     1  0.0880      0.699 0.968 0.000 0.000 0.000 0.032
#> GSM40696     1  0.4430      0.215 0.540 0.000 0.004 0.000 0.456
#> GSM40697     2  0.3322      0.801 0.000 0.848 0.004 0.044 0.104
#> GSM40704     1  0.0000      0.700 1.000 0.000 0.000 0.000 0.000
#> GSM40705     4  0.1124      0.962 0.000 0.000 0.036 0.960 0.004
#> GSM40707     1  0.5521      0.226 0.496 0.000 0.040 0.012 0.452
#> GSM40708     1  0.5521      0.226 0.496 0.000 0.040 0.012 0.452
#> GSM40709     4  0.0451      0.968 0.000 0.008 0.000 0.988 0.004
#> GSM40712     5  0.3305      0.671 0.000 0.000 0.000 0.224 0.776
#> GSM40713     1  0.4849      0.382 0.548 0.000 0.004 0.016 0.432
#> GSM40665     5  0.6523     -0.334 0.428 0.000 0.036 0.084 0.452
#> GSM40677     2  0.0693      0.900 0.000 0.980 0.012 0.000 0.008
#> GSM40698     5  0.5765      0.134 0.264 0.000 0.020 0.084 0.632
#> GSM40701     2  0.5798      0.569 0.000 0.608 0.236 0.156 0.000
#> GSM40710     2  0.0290      0.901 0.000 0.992 0.008 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000     0.9986 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     2  0.5511     0.5586 0.000 0.628 0.196 0.152 0.000 0.024
#> GSM40668     3  0.0146     0.9944 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40678     2  0.0508     0.8057 0.000 0.984 0.004 0.012 0.000 0.000
#> GSM40679     2  0.0508     0.8057 0.000 0.984 0.004 0.012 0.000 0.000
#> GSM40686     2  0.3509     0.7495 0.000 0.744 0.000 0.000 0.016 0.240
#> GSM40687     2  0.3023     0.7577 0.000 0.768 0.000 0.000 0.000 0.232
#> GSM40691     2  0.3424     0.7881 0.000 0.836 0.016 0.040 0.008 0.100
#> GSM40699     2  0.0508     0.8057 0.000 0.984 0.004 0.012 0.000 0.000
#> GSM40664     2  0.3806     0.7199 0.000 0.772 0.000 0.152 0.000 0.076
#> GSM40682     2  0.0508     0.8057 0.000 0.984 0.004 0.012 0.000 0.000
#> GSM40688     2  0.3309     0.7348 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM40702     2  0.1426     0.7989 0.000 0.948 0.028 0.016 0.000 0.008
#> GSM40706     2  0.1082     0.8026 0.000 0.956 0.004 0.000 0.000 0.040
#> GSM40711     4  0.0865     0.9626 0.000 0.000 0.036 0.964 0.000 0.000
#> GSM40661     2  0.5545     0.5686 0.000 0.636 0.176 0.156 0.000 0.032
#> GSM40662     5  0.3912     0.6315 0.000 0.012 0.000 0.340 0.648 0.000
#> GSM40666     4  0.0000     0.9702 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40669     5  0.3927     0.6282 0.000 0.012 0.000 0.344 0.644 0.000
#> GSM40670     5  0.3927     0.6282 0.000 0.012 0.000 0.344 0.644 0.000
#> GSM40671     1  0.2724     0.5208 0.864 0.000 0.000 0.000 0.052 0.084
#> GSM40672     1  0.0363     0.6163 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM40673     1  0.0000     0.6160 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40674     5  0.3373     0.7044 0.000 0.008 0.000 0.248 0.744 0.000
#> GSM40676     4  0.0458     0.9722 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM40680     5  0.0146     0.7184 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM40681     5  0.3122     0.6273 0.160 0.000 0.000 0.004 0.816 0.020
#> GSM40683     1  0.0000     0.6160 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40684     4  0.0458     0.9722 0.000 0.000 0.000 0.984 0.000 0.016
#> GSM40685     5  0.0260     0.7145 0.000 0.000 0.000 0.000 0.992 0.008
#> GSM40689     1  0.5162     0.1605 0.672 0.000 0.000 0.088 0.036 0.204
#> GSM40690     1  0.2964     0.5596 0.792 0.000 0.000 0.000 0.204 0.004
#> GSM40692     5  0.0260     0.7193 0.000 0.000 0.000 0.008 0.992 0.000
#> GSM40693     1  0.4238     0.2763 0.540 0.000 0.000 0.000 0.444 0.016
#> GSM40694     5  0.0146     0.7184 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM40695     1  0.1151     0.5964 0.956 0.000 0.000 0.000 0.012 0.032
#> GSM40696     1  0.4238     0.2763 0.540 0.000 0.000 0.000 0.444 0.016
#> GSM40697     2  0.5044     0.6901 0.000 0.696 0.000 0.036 0.104 0.164
#> GSM40704     1  0.0000     0.6160 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40705     4  0.0865     0.9626 0.000 0.000 0.036 0.964 0.000 0.000
#> GSM40707     6  0.4617     1.0000 0.252 0.000 0.000 0.000 0.084 0.664
#> GSM40708     6  0.4617     1.0000 0.252 0.000 0.000 0.000 0.084 0.664
#> GSM40709     4  0.0520     0.9604 0.000 0.008 0.000 0.984 0.008 0.000
#> GSM40712     5  0.2912     0.7205 0.000 0.000 0.000 0.216 0.784 0.000
#> GSM40713     1  0.4650     0.3331 0.548 0.000 0.000 0.008 0.416 0.028
#> GSM40665     1  0.7007     0.0502 0.412 0.000 0.000 0.084 0.308 0.196
#> GSM40677     2  0.3309     0.7348 0.000 0.720 0.000 0.000 0.000 0.280
#> GSM40698     5  0.6567    -0.0799 0.248 0.000 0.000 0.084 0.520 0.148
#> GSM40701     2  0.5752     0.4868 0.000 0.584 0.244 0.148 0.000 0.024
#> GSM40710     2  0.3023     0.7577 0.000 0.768 0.000 0.000 0.000 0.232

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:hclust 53         4.66e-05 2
#> SD:hclust 53         2.75e-07 3
#> SD:hclust 43         3.07e-04 4
#> SD:hclust 46         1.56e-07 5
#> SD:hclust 46         3.85e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.847           0.909       0.958         0.5046 0.492   0.492
#> 3 3 0.579           0.718       0.823         0.2974 0.810   0.633
#> 4 4 0.605           0.751       0.838         0.1419 0.816   0.527
#> 5 5 0.733           0.498       0.726         0.0679 0.943   0.786
#> 6 6 0.738           0.728       0.750         0.0411 0.914   0.642

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2   0.000      0.990 0.000 1.000
#> GSM40667     2   0.000      0.990 0.000 1.000
#> GSM40675     2   0.000      0.990 0.000 1.000
#> GSM40703     2   0.000      0.990 0.000 1.000
#> GSM40660     2   0.000      0.990 0.000 1.000
#> GSM40668     2   0.000      0.990 0.000 1.000
#> GSM40678     2   0.000      0.990 0.000 1.000
#> GSM40679     2   0.000      0.990 0.000 1.000
#> GSM40686     2   0.775      0.675 0.228 0.772
#> GSM40687     2   0.000      0.990 0.000 1.000
#> GSM40691     2   0.000      0.990 0.000 1.000
#> GSM40699     2   0.000      0.990 0.000 1.000
#> GSM40664     2   0.000      0.990 0.000 1.000
#> GSM40682     2   0.000      0.990 0.000 1.000
#> GSM40688     2   0.000      0.990 0.000 1.000
#> GSM40702     2   0.000      0.990 0.000 1.000
#> GSM40706     2   0.000      0.990 0.000 1.000
#> GSM40711     2   0.000      0.990 0.000 1.000
#> GSM40661     2   0.000      0.990 0.000 1.000
#> GSM40662     2   0.000      0.990 0.000 1.000
#> GSM40666     1   0.913      0.588 0.672 0.328
#> GSM40669     1   0.000      0.923 1.000 0.000
#> GSM40670     1   0.909      0.595 0.676 0.324
#> GSM40671     1   0.000      0.923 1.000 0.000
#> GSM40672     1   0.000      0.923 1.000 0.000
#> GSM40673     1   0.000      0.923 1.000 0.000
#> GSM40674     1   0.949      0.513 0.632 0.368
#> GSM40676     1   0.895      0.614 0.688 0.312
#> GSM40680     1   0.000      0.923 1.000 0.000
#> GSM40681     1   0.000      0.923 1.000 0.000
#> GSM40683     1   0.000      0.923 1.000 0.000
#> GSM40684     1   0.850      0.663 0.724 0.276
#> GSM40685     1   0.000      0.923 1.000 0.000
#> GSM40689     1   0.000      0.923 1.000 0.000
#> GSM40690     1   0.000      0.923 1.000 0.000
#> GSM40692     1   0.000      0.923 1.000 0.000
#> GSM40693     1   0.000      0.923 1.000 0.000
#> GSM40694     1   0.000      0.923 1.000 0.000
#> GSM40695     1   0.000      0.923 1.000 0.000
#> GSM40696     1   0.000      0.923 1.000 0.000
#> GSM40697     2   0.000      0.990 0.000 1.000
#> GSM40704     1   0.000      0.923 1.000 0.000
#> GSM40705     2   0.000      0.990 0.000 1.000
#> GSM40707     1   0.000      0.923 1.000 0.000
#> GSM40708     1   0.000      0.923 1.000 0.000
#> GSM40709     1   0.955      0.497 0.624 0.376
#> GSM40712     1   0.000      0.923 1.000 0.000
#> GSM40713     1   0.000      0.923 1.000 0.000
#> GSM40665     1   0.000      0.923 1.000 0.000
#> GSM40677     2   0.000      0.990 0.000 1.000
#> GSM40698     1   0.000      0.923 1.000 0.000
#> GSM40701     2   0.000      0.990 0.000 1.000
#> GSM40710     2   0.000      0.990 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0237     0.8439 0.000 0.004 0.996
#> GSM40667     3  0.0237     0.8439 0.000 0.004 0.996
#> GSM40675     3  0.0237     0.8439 0.000 0.004 0.996
#> GSM40703     3  0.0237     0.8439 0.000 0.004 0.996
#> GSM40660     3  0.0424     0.8402 0.000 0.008 0.992
#> GSM40668     3  0.0237     0.8439 0.000 0.004 0.996
#> GSM40678     2  0.5810     0.7968 0.000 0.664 0.336
#> GSM40679     2  0.5810     0.7968 0.000 0.664 0.336
#> GSM40686     2  0.3028     0.6235 0.032 0.920 0.048
#> GSM40687     2  0.5810     0.7968 0.000 0.664 0.336
#> GSM40691     2  0.5810     0.7968 0.000 0.664 0.336
#> GSM40699     2  0.5968     0.7589 0.000 0.636 0.364
#> GSM40664     2  0.5760     0.7954 0.000 0.672 0.328
#> GSM40682     2  0.5785     0.7965 0.000 0.668 0.332
#> GSM40688     2  0.4808     0.7326 0.008 0.804 0.188
#> GSM40702     2  0.5810     0.7968 0.000 0.664 0.336
#> GSM40706     2  0.5810     0.7968 0.000 0.664 0.336
#> GSM40711     3  0.2448     0.7942 0.000 0.076 0.924
#> GSM40661     3  0.0237     0.8439 0.000 0.004 0.996
#> GSM40662     2  0.4002     0.4938 0.000 0.840 0.160
#> GSM40666     3  0.9284     0.3224 0.192 0.296 0.512
#> GSM40669     1  0.5733     0.7236 0.676 0.324 0.000
#> GSM40670     1  0.8665     0.5923 0.552 0.324 0.124
#> GSM40671     1  0.1529     0.8237 0.960 0.040 0.000
#> GSM40672     1  0.0000     0.8315 1.000 0.000 0.000
#> GSM40673     1  0.0000     0.8315 1.000 0.000 0.000
#> GSM40674     1  0.8665     0.5923 0.552 0.324 0.124
#> GSM40676     1  0.9896     0.0977 0.376 0.264 0.360
#> GSM40680     2  0.6215    -0.3295 0.428 0.572 0.000
#> GSM40681     1  0.0747     0.8339 0.984 0.016 0.000
#> GSM40683     1  0.0000     0.8315 1.000 0.000 0.000
#> GSM40684     1  0.9896     0.0977 0.376 0.264 0.360
#> GSM40685     1  0.4796     0.7858 0.780 0.220 0.000
#> GSM40689     1  0.1765     0.8227 0.956 0.040 0.004
#> GSM40690     1  0.0237     0.8307 0.996 0.004 0.000
#> GSM40692     1  0.5810     0.7128 0.664 0.336 0.000
#> GSM40693     1  0.2959     0.8131 0.900 0.100 0.000
#> GSM40694     1  0.4750     0.7866 0.784 0.216 0.000
#> GSM40695     1  0.0000     0.8315 1.000 0.000 0.000
#> GSM40696     1  0.2959     0.8131 0.900 0.100 0.000
#> GSM40697     2  0.1950     0.6148 0.008 0.952 0.040
#> GSM40704     1  0.0000     0.8315 1.000 0.000 0.000
#> GSM40705     3  0.2878     0.7769 0.000 0.096 0.904
#> GSM40707     1  0.1765     0.8227 0.956 0.040 0.004
#> GSM40708     1  0.3500     0.8225 0.880 0.116 0.004
#> GSM40709     3  0.9284     0.3224 0.192 0.296 0.512
#> GSM40712     1  0.5650     0.7311 0.688 0.312 0.000
#> GSM40713     1  0.3551     0.8205 0.868 0.132 0.000
#> GSM40665     1  0.1765     0.8227 0.956 0.040 0.004
#> GSM40677     2  0.4808     0.7326 0.008 0.804 0.188
#> GSM40698     1  0.4110     0.8149 0.844 0.152 0.004
#> GSM40701     3  0.0237     0.8439 0.000 0.004 0.996
#> GSM40710     2  0.5810     0.7968 0.000 0.664 0.336

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.3024      0.914 0.000 0.148 0.000 0.852
#> GSM40667     4  0.3024      0.914 0.000 0.148 0.000 0.852
#> GSM40675     4  0.3024      0.914 0.000 0.148 0.000 0.852
#> GSM40703     4  0.3024      0.914 0.000 0.148 0.000 0.852
#> GSM40660     4  0.5792      0.887 0.000 0.168 0.124 0.708
#> GSM40668     4  0.3024      0.914 0.000 0.148 0.000 0.852
#> GSM40678     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> GSM40686     2  0.3647      0.811 0.000 0.832 0.152 0.016
#> GSM40687     2  0.0592      0.937 0.000 0.984 0.016 0.000
#> GSM40691     2  0.0336      0.939 0.000 0.992 0.008 0.000
#> GSM40699     2  0.0707      0.921 0.000 0.980 0.000 0.020
#> GSM40664     2  0.0188      0.941 0.000 0.996 0.000 0.004
#> GSM40682     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> GSM40688     2  0.3271      0.825 0.000 0.856 0.132 0.012
#> GSM40702     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> GSM40706     2  0.0000      0.942 0.000 1.000 0.000 0.000
#> GSM40711     4  0.4824      0.837 0.000 0.076 0.144 0.780
#> GSM40661     4  0.5664      0.889 0.000 0.156 0.124 0.720
#> GSM40662     3  0.2888      0.705 0.000 0.124 0.872 0.004
#> GSM40666     3  0.4772      0.597 0.012 0.008 0.736 0.244
#> GSM40669     3  0.3501      0.715 0.132 0.020 0.848 0.000
#> GSM40670     3  0.2748      0.726 0.072 0.020 0.904 0.004
#> GSM40671     1  0.3894      0.755 0.844 0.000 0.088 0.068
#> GSM40672     1  0.0000      0.785 1.000 0.000 0.000 0.000
#> GSM40673     1  0.0000      0.785 1.000 0.000 0.000 0.000
#> GSM40674     3  0.2748      0.726 0.072 0.020 0.904 0.004
#> GSM40676     3  0.6417      0.512 0.104 0.008 0.656 0.232
#> GSM40680     3  0.5354      0.678 0.080 0.136 0.768 0.016
#> GSM40681     1  0.2125      0.754 0.920 0.000 0.076 0.004
#> GSM40683     1  0.0000      0.785 1.000 0.000 0.000 0.000
#> GSM40684     3  0.6417      0.512 0.104 0.008 0.656 0.232
#> GSM40685     3  0.5855      0.501 0.308 0.020 0.648 0.024
#> GSM40689     1  0.4224      0.748 0.824 0.000 0.100 0.076
#> GSM40690     1  0.0188      0.784 0.996 0.000 0.004 0.000
#> GSM40692     3  0.5308      0.679 0.168 0.056 0.760 0.016
#> GSM40693     1  0.4606      0.479 0.724 0.000 0.264 0.012
#> GSM40694     3  0.5186      0.461 0.344 0.000 0.640 0.016
#> GSM40695     1  0.0000      0.785 1.000 0.000 0.000 0.000
#> GSM40696     1  0.4606      0.479 0.724 0.000 0.264 0.012
#> GSM40697     3  0.4820      0.525 0.000 0.296 0.692 0.012
#> GSM40704     1  0.0000      0.785 1.000 0.000 0.000 0.000
#> GSM40705     4  0.4824      0.837 0.000 0.076 0.144 0.780
#> GSM40707     1  0.4163      0.749 0.828 0.000 0.096 0.076
#> GSM40708     1  0.6292      0.466 0.592 0.000 0.332 0.076
#> GSM40709     3  0.4739      0.600 0.012 0.008 0.740 0.240
#> GSM40712     3  0.4323      0.670 0.204 0.020 0.776 0.000
#> GSM40713     1  0.6521      0.246 0.512 0.000 0.412 0.076
#> GSM40665     1  0.4224      0.748 0.824 0.000 0.100 0.076
#> GSM40677     2  0.3479      0.820 0.000 0.840 0.148 0.012
#> GSM40698     1  0.6627      0.287 0.504 0.000 0.412 0.084
#> GSM40701     4  0.5141      0.904 0.000 0.160 0.084 0.756
#> GSM40710     2  0.0592      0.937 0.000 0.984 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.4746      0.602 0.000 0.016 0.504 0.480 0.000
#> GSM40667     3  0.4746      0.602 0.000 0.016 0.504 0.480 0.000
#> GSM40675     3  0.4746      0.602 0.000 0.016 0.504 0.480 0.000
#> GSM40703     3  0.4746      0.602 0.000 0.016 0.504 0.480 0.000
#> GSM40660     3  0.1597      0.591 0.000 0.048 0.940 0.000 0.012
#> GSM40668     3  0.4746      0.602 0.000 0.016 0.504 0.480 0.000
#> GSM40678     2  0.0963      0.936 0.000 0.964 0.000 0.036 0.000
#> GSM40679     2  0.1862      0.939 0.000 0.932 0.048 0.004 0.016
#> GSM40686     2  0.2595      0.915 0.000 0.888 0.000 0.080 0.032
#> GSM40687     2  0.1410      0.931 0.000 0.940 0.000 0.060 0.000
#> GSM40691     2  0.2321      0.932 0.000 0.912 0.056 0.024 0.008
#> GSM40699     2  0.2199      0.933 0.000 0.916 0.060 0.016 0.008
#> GSM40664     2  0.2745      0.936 0.000 0.896 0.052 0.028 0.024
#> GSM40682     2  0.2395      0.938 0.000 0.912 0.048 0.016 0.024
#> GSM40688     2  0.1872      0.927 0.000 0.928 0.000 0.052 0.020
#> GSM40702     2  0.2005      0.936 0.000 0.924 0.056 0.004 0.016
#> GSM40706     2  0.1278      0.943 0.000 0.960 0.020 0.016 0.004
#> GSM40711     3  0.1725      0.589 0.000 0.000 0.936 0.020 0.044
#> GSM40661     3  0.1364      0.596 0.000 0.036 0.952 0.000 0.012
#> GSM40662     5  0.3080      0.774 0.000 0.008 0.140 0.008 0.844
#> GSM40666     5  0.5382      0.168 0.004 0.000 0.476 0.044 0.476
#> GSM40669     5  0.2905      0.793 0.036 0.000 0.096 0.000 0.868
#> GSM40670     5  0.3197      0.782 0.024 0.000 0.140 0.000 0.836
#> GSM40671     1  0.5202     -0.228 0.596 0.000 0.000 0.348 0.056
#> GSM40672     1  0.0162      0.508 0.996 0.000 0.000 0.004 0.000
#> GSM40673     1  0.0162      0.508 0.996 0.000 0.000 0.004 0.000
#> GSM40674     5  0.3264      0.784 0.020 0.000 0.140 0.004 0.836
#> GSM40676     3  0.7263     -0.060 0.040 0.000 0.436 0.340 0.184
#> GSM40680     5  0.1954      0.775 0.028 0.008 0.000 0.032 0.932
#> GSM40681     1  0.4199      0.288 0.764 0.000 0.000 0.056 0.180
#> GSM40683     1  0.0162      0.508 0.996 0.000 0.000 0.004 0.000
#> GSM40684     3  0.7263     -0.060 0.040 0.000 0.436 0.340 0.184
#> GSM40685     5  0.3336      0.683 0.096 0.000 0.000 0.060 0.844
#> GSM40689     1  0.5107     -0.217 0.596 0.000 0.000 0.356 0.048
#> GSM40690     1  0.1399      0.488 0.952 0.000 0.000 0.028 0.020
#> GSM40692     5  0.1990      0.773 0.040 0.004 0.000 0.028 0.928
#> GSM40693     1  0.4419      0.256 0.668 0.000 0.000 0.020 0.312
#> GSM40694     5  0.3090      0.694 0.104 0.000 0.000 0.040 0.856
#> GSM40695     1  0.0162      0.508 0.996 0.000 0.000 0.004 0.000
#> GSM40696     1  0.4419      0.256 0.668 0.000 0.000 0.020 0.312
#> GSM40697     5  0.3993      0.672 0.000 0.160 0.024 0.020 0.796
#> GSM40704     1  0.0162      0.508 0.996 0.000 0.000 0.004 0.000
#> GSM40705     3  0.1943      0.582 0.000 0.000 0.924 0.020 0.056
#> GSM40707     1  0.5636     -0.356 0.544 0.000 0.000 0.372 0.084
#> GSM40708     1  0.6530     -0.767 0.424 0.000 0.000 0.380 0.196
#> GSM40709     3  0.5382     -0.302 0.004 0.000 0.476 0.044 0.476
#> GSM40712     5  0.1282      0.782 0.044 0.000 0.004 0.000 0.952
#> GSM40713     1  0.6784     -0.905 0.368 0.000 0.000 0.352 0.280
#> GSM40665     1  0.5429     -0.305 0.564 0.000 0.000 0.368 0.068
#> GSM40677     2  0.2654      0.914 0.000 0.884 0.000 0.084 0.032
#> GSM40698     4  0.6739      0.000 0.348 0.000 0.000 0.392 0.260
#> GSM40701     3  0.3533      0.612 0.000 0.040 0.840 0.108 0.012
#> GSM40710     2  0.1877      0.928 0.000 0.924 0.000 0.064 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     4  0.5194      0.555 0.000 0.004 0.232 0.624 0.000 0.140
#> GSM40668     3  0.1049      0.949 0.000 0.000 0.960 0.032 0.000 0.008
#> GSM40678     2  0.0717      0.853 0.000 0.976 0.000 0.008 0.000 0.016
#> GSM40679     2  0.3458      0.849 0.000 0.808 0.000 0.080 0.000 0.112
#> GSM40686     2  0.3113      0.819 0.000 0.856 0.000 0.040 0.028 0.076
#> GSM40687     2  0.1708      0.843 0.000 0.932 0.000 0.024 0.004 0.040
#> GSM40691     2  0.4527      0.813 0.000 0.712 0.000 0.088 0.008 0.192
#> GSM40699     2  0.3883      0.832 0.000 0.768 0.000 0.088 0.000 0.144
#> GSM40664     2  0.4095      0.847 0.000 0.756 0.000 0.088 0.004 0.152
#> GSM40682     2  0.3644      0.849 0.000 0.792 0.000 0.088 0.000 0.120
#> GSM40688     2  0.2525      0.832 0.000 0.876 0.000 0.012 0.012 0.100
#> GSM40702     2  0.3767      0.832 0.000 0.780 0.000 0.088 0.000 0.132
#> GSM40706     2  0.2136      0.863 0.000 0.904 0.000 0.048 0.000 0.048
#> GSM40711     4  0.4093      0.556 0.000 0.000 0.324 0.656 0.012 0.008
#> GSM40661     4  0.5368      0.539 0.000 0.004 0.260 0.592 0.000 0.144
#> GSM40662     5  0.4462      0.762 0.000 0.012 0.000 0.220 0.708 0.060
#> GSM40666     4  0.3386      0.524 0.000 0.000 0.012 0.796 0.176 0.016
#> GSM40669     5  0.3166      0.792 0.008 0.000 0.000 0.184 0.800 0.008
#> GSM40670     5  0.3323      0.760 0.000 0.000 0.000 0.240 0.752 0.008
#> GSM40671     6  0.4467      0.713 0.480 0.000 0.000 0.004 0.020 0.496
#> GSM40672     1  0.0146      0.713 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM40673     1  0.0777      0.704 0.972 0.000 0.000 0.004 0.000 0.024
#> GSM40674     5  0.3641      0.758 0.000 0.000 0.000 0.248 0.732 0.020
#> GSM40676     4  0.4667      0.493 0.000 0.000 0.012 0.652 0.048 0.288
#> GSM40680     5  0.2592      0.775 0.000 0.016 0.000 0.004 0.864 0.116
#> GSM40681     1  0.6086      0.113 0.520 0.000 0.000 0.020 0.260 0.200
#> GSM40683     1  0.0777      0.704 0.972 0.000 0.000 0.004 0.000 0.024
#> GSM40684     4  0.4667      0.493 0.000 0.000 0.012 0.652 0.048 0.288
#> GSM40685     5  0.3245      0.749 0.024 0.000 0.000 0.032 0.840 0.104
#> GSM40689     6  0.5099      0.767 0.432 0.000 0.000 0.040 0.020 0.508
#> GSM40690     1  0.2239      0.679 0.908 0.000 0.000 0.020 0.048 0.024
#> GSM40692     5  0.2689      0.777 0.004 0.016 0.000 0.004 0.864 0.112
#> GSM40693     1  0.4696      0.492 0.620 0.000 0.000 0.024 0.332 0.024
#> GSM40694     5  0.2624      0.764 0.028 0.000 0.000 0.020 0.884 0.068
#> GSM40695     1  0.0777      0.704 0.972 0.000 0.000 0.004 0.000 0.024
#> GSM40696     1  0.4696      0.492 0.620 0.000 0.000 0.024 0.332 0.024
#> GSM40697     5  0.5080      0.735 0.000 0.056 0.000 0.120 0.708 0.116
#> GSM40704     1  0.0146      0.713 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM40705     4  0.4044      0.566 0.000 0.000 0.312 0.668 0.012 0.008
#> GSM40707     6  0.4543      0.768 0.380 0.000 0.000 0.004 0.032 0.584
#> GSM40708     6  0.4754      0.751 0.236 0.000 0.000 0.004 0.092 0.668
#> GSM40709     4  0.3386      0.524 0.000 0.000 0.012 0.796 0.176 0.016
#> GSM40712     5  0.2231      0.811 0.004 0.000 0.000 0.068 0.900 0.028
#> GSM40713     6  0.6187      0.719 0.268 0.000 0.000 0.028 0.188 0.516
#> GSM40665     6  0.5115      0.781 0.400 0.000 0.000 0.044 0.020 0.536
#> GSM40677     2  0.3140      0.817 0.000 0.840 0.000 0.028 0.016 0.116
#> GSM40698     6  0.6220      0.696 0.224 0.000 0.000 0.056 0.160 0.560
#> GSM40701     4  0.6112      0.372 0.000 0.028 0.352 0.480 0.000 0.140
#> GSM40710     2  0.1793      0.842 0.000 0.928 0.000 0.032 0.004 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:kmeans 52         2.19e-06 2
#> SD:kmeans 47         2.77e-07 3
#> SD:kmeans 47         1.05e-06 4
#> SD:kmeans 38         5.77e-05 5
#> SD:kmeans 47         8.02e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.960           0.965       0.984         0.5089 0.492   0.492
#> 3 3 1.000           0.965       0.984         0.3135 0.745   0.527
#> 4 4 0.810           0.760       0.887         0.1134 0.922   0.769
#> 5 5 0.725           0.629       0.822         0.0549 0.947   0.809
#> 6 6 0.731           0.607       0.787         0.0402 0.951   0.799

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      0.995 0.000 1.000
#> GSM40667     2  0.0000      0.995 0.000 1.000
#> GSM40675     2  0.0000      0.995 0.000 1.000
#> GSM40703     2  0.0000      0.995 0.000 1.000
#> GSM40660     2  0.0000      0.995 0.000 1.000
#> GSM40668     2  0.0000      0.995 0.000 1.000
#> GSM40678     2  0.0000      0.995 0.000 1.000
#> GSM40679     2  0.0000      0.995 0.000 1.000
#> GSM40686     2  0.4815      0.880 0.104 0.896
#> GSM40687     2  0.0000      0.995 0.000 1.000
#> GSM40691     2  0.0000      0.995 0.000 1.000
#> GSM40699     2  0.0000      0.995 0.000 1.000
#> GSM40664     2  0.0000      0.995 0.000 1.000
#> GSM40682     2  0.0000      0.995 0.000 1.000
#> GSM40688     2  0.0376      0.992 0.004 0.996
#> GSM40702     2  0.0000      0.995 0.000 1.000
#> GSM40706     2  0.0000      0.995 0.000 1.000
#> GSM40711     2  0.0000      0.995 0.000 1.000
#> GSM40661     2  0.0000      0.995 0.000 1.000
#> GSM40662     2  0.0000      0.995 0.000 1.000
#> GSM40666     1  0.0376      0.970 0.996 0.004
#> GSM40669     1  0.0000      0.973 1.000 0.000
#> GSM40670     1  0.0376      0.970 0.996 0.004
#> GSM40671     1  0.0000      0.973 1.000 0.000
#> GSM40672     1  0.0000      0.973 1.000 0.000
#> GSM40673     1  0.0000      0.973 1.000 0.000
#> GSM40674     1  0.7376      0.750 0.792 0.208
#> GSM40676     1  0.6048      0.828 0.852 0.148
#> GSM40680     1  0.0000      0.973 1.000 0.000
#> GSM40681     1  0.0000      0.973 1.000 0.000
#> GSM40683     1  0.0000      0.973 1.000 0.000
#> GSM40684     1  0.0376      0.970 0.996 0.004
#> GSM40685     1  0.0000      0.973 1.000 0.000
#> GSM40689     1  0.0000      0.973 1.000 0.000
#> GSM40690     1  0.0000      0.973 1.000 0.000
#> GSM40692     1  0.0000      0.973 1.000 0.000
#> GSM40693     1  0.0000      0.973 1.000 0.000
#> GSM40694     1  0.0000      0.973 1.000 0.000
#> GSM40695     1  0.0000      0.973 1.000 0.000
#> GSM40696     1  0.0000      0.973 1.000 0.000
#> GSM40697     2  0.0000      0.995 0.000 1.000
#> GSM40704     1  0.0000      0.973 1.000 0.000
#> GSM40705     2  0.0000      0.995 0.000 1.000
#> GSM40707     1  0.0000      0.973 1.000 0.000
#> GSM40708     1  0.0000      0.973 1.000 0.000
#> GSM40709     1  0.9393      0.480 0.644 0.356
#> GSM40712     1  0.0000      0.973 1.000 0.000
#> GSM40713     1  0.0000      0.973 1.000 0.000
#> GSM40665     1  0.0000      0.973 1.000 0.000
#> GSM40677     2  0.0376      0.992 0.004 0.996
#> GSM40698     1  0.0000      0.973 1.000 0.000
#> GSM40701     2  0.0000      0.995 0.000 1.000
#> GSM40710     2  0.0000      0.995 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40667     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40675     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40703     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40660     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40668     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40678     2  0.0237      0.999 0.000 0.996 0.004
#> GSM40679     2  0.0237      0.999 0.000 0.996 0.004
#> GSM40686     2  0.0000      0.997 0.000 1.000 0.000
#> GSM40687     2  0.0237      0.999 0.000 0.996 0.004
#> GSM40691     2  0.0237      0.999 0.000 0.996 0.004
#> GSM40699     2  0.0237      0.999 0.000 0.996 0.004
#> GSM40664     2  0.0237      0.999 0.000 0.996 0.004
#> GSM40682     2  0.0237      0.999 0.000 0.996 0.004
#> GSM40688     2  0.0000      0.997 0.000 1.000 0.000
#> GSM40702     2  0.0237      0.999 0.000 0.996 0.004
#> GSM40706     2  0.0237      0.999 0.000 0.996 0.004
#> GSM40711     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40661     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40662     3  0.5882      0.472 0.000 0.348 0.652
#> GSM40666     3  0.0237      0.962 0.004 0.000 0.996
#> GSM40669     1  0.0237      0.987 0.996 0.004 0.000
#> GSM40670     3  0.3030      0.884 0.092 0.004 0.904
#> GSM40671     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40672     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40674     3  0.3112      0.880 0.096 0.004 0.900
#> GSM40676     3  0.0237      0.962 0.004 0.000 0.996
#> GSM40680     1  0.4796      0.718 0.780 0.220 0.000
#> GSM40681     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40683     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40684     3  0.0237      0.962 0.004 0.000 0.996
#> GSM40685     1  0.0237      0.987 0.996 0.004 0.000
#> GSM40689     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40690     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40692     1  0.0424      0.984 0.992 0.008 0.000
#> GSM40693     1  0.0237      0.987 0.996 0.004 0.000
#> GSM40694     1  0.0237      0.987 0.996 0.004 0.000
#> GSM40695     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40696     1  0.0237      0.987 0.996 0.004 0.000
#> GSM40697     2  0.0000      0.997 0.000 1.000 0.000
#> GSM40704     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40705     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40707     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40708     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40709     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40712     1  0.0237      0.987 0.996 0.004 0.000
#> GSM40713     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40665     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40677     2  0.0000      0.997 0.000 1.000 0.000
#> GSM40698     1  0.0000      0.988 1.000 0.000 0.000
#> GSM40701     3  0.0000      0.964 0.000 0.000 1.000
#> GSM40710     2  0.0237      0.999 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     3  0.0000     0.9099 0.000 0.000 1.000 0.000
#> GSM40667     3  0.0000     0.9099 0.000 0.000 1.000 0.000
#> GSM40675     3  0.0000     0.9099 0.000 0.000 1.000 0.000
#> GSM40703     3  0.0000     0.9099 0.000 0.000 1.000 0.000
#> GSM40660     3  0.0000     0.9099 0.000 0.000 1.000 0.000
#> GSM40668     3  0.0000     0.9099 0.000 0.000 1.000 0.000
#> GSM40678     2  0.0000     0.9452 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000     0.9452 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0000     0.9452 0.000 1.000 0.000 0.000
#> GSM40687     2  0.0000     0.9452 0.000 1.000 0.000 0.000
#> GSM40691     2  0.1978     0.9016 0.000 0.928 0.068 0.004
#> GSM40699     2  0.1867     0.8994 0.000 0.928 0.072 0.000
#> GSM40664     2  0.0188     0.9430 0.000 0.996 0.000 0.004
#> GSM40682     2  0.0000     0.9452 0.000 1.000 0.000 0.000
#> GSM40688     2  0.0188     0.9439 0.000 0.996 0.000 0.004
#> GSM40702     2  0.1557     0.9112 0.000 0.944 0.056 0.000
#> GSM40706     2  0.0000     0.9452 0.000 1.000 0.000 0.000
#> GSM40711     3  0.2011     0.8819 0.000 0.000 0.920 0.080
#> GSM40661     3  0.0188     0.9089 0.000 0.000 0.996 0.004
#> GSM40662     4  0.6398     0.3690 0.000 0.080 0.344 0.576
#> GSM40666     3  0.3726     0.7910 0.000 0.000 0.788 0.212
#> GSM40669     4  0.2589     0.7073 0.116 0.000 0.000 0.884
#> GSM40670     4  0.2773     0.7257 0.028 0.000 0.072 0.900
#> GSM40671     1  0.1557     0.8122 0.944 0.000 0.000 0.056
#> GSM40672     1  0.1022     0.8205 0.968 0.000 0.000 0.032
#> GSM40673     1  0.0921     0.8216 0.972 0.000 0.000 0.028
#> GSM40674     4  0.3047     0.6979 0.012 0.000 0.116 0.872
#> GSM40676     3  0.5807     0.7004 0.132 0.000 0.708 0.160
#> GSM40680     1  0.6498    -0.0157 0.488 0.072 0.000 0.440
#> GSM40681     1  0.1637     0.8079 0.940 0.000 0.000 0.060
#> GSM40683     1  0.0921     0.8216 0.972 0.000 0.000 0.028
#> GSM40684     3  0.5800     0.7031 0.128 0.000 0.708 0.164
#> GSM40685     4  0.4999    -0.1458 0.492 0.000 0.000 0.508
#> GSM40689     1  0.1792     0.8043 0.932 0.000 0.000 0.068
#> GSM40690     1  0.0921     0.8216 0.972 0.000 0.000 0.028
#> GSM40692     1  0.4134     0.5975 0.740 0.000 0.000 0.260
#> GSM40693     1  0.4730     0.4012 0.636 0.000 0.000 0.364
#> GSM40694     1  0.4967     0.1573 0.548 0.000 0.000 0.452
#> GSM40695     1  0.0921     0.8216 0.972 0.000 0.000 0.028
#> GSM40696     1  0.4746     0.3942 0.632 0.000 0.000 0.368
#> GSM40697     2  0.5581     0.1776 0.000 0.532 0.020 0.448
#> GSM40704     1  0.1022     0.8206 0.968 0.000 0.000 0.032
#> GSM40705     3  0.2149     0.8783 0.000 0.000 0.912 0.088
#> GSM40707     1  0.1792     0.8043 0.932 0.000 0.000 0.068
#> GSM40708     1  0.1867     0.8037 0.928 0.000 0.000 0.072
#> GSM40709     3  0.3528     0.8108 0.000 0.000 0.808 0.192
#> GSM40712     4  0.3400     0.6505 0.180 0.000 0.000 0.820
#> GSM40713     1  0.1302     0.8135 0.956 0.000 0.000 0.044
#> GSM40665     1  0.1792     0.8043 0.932 0.000 0.000 0.068
#> GSM40677     2  0.0188     0.9439 0.000 0.996 0.000 0.004
#> GSM40698     1  0.1716     0.8074 0.936 0.000 0.000 0.064
#> GSM40701     3  0.0000     0.9099 0.000 0.000 1.000 0.000
#> GSM40710     2  0.0000     0.9452 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0000     0.7987 0.000 0.000 1.000 0.000 0.000
#> GSM40667     3  0.0000     0.7987 0.000 0.000 1.000 0.000 0.000
#> GSM40675     3  0.0000     0.7987 0.000 0.000 1.000 0.000 0.000
#> GSM40703     3  0.0000     0.7987 0.000 0.000 1.000 0.000 0.000
#> GSM40660     3  0.0000     0.7987 0.000 0.000 1.000 0.000 0.000
#> GSM40668     3  0.0000     0.7987 0.000 0.000 1.000 0.000 0.000
#> GSM40678     2  0.0290     0.8907 0.000 0.992 0.000 0.008 0.000
#> GSM40679     2  0.0000     0.8902 0.000 1.000 0.000 0.000 0.000
#> GSM40686     2  0.1774     0.8552 0.000 0.932 0.000 0.052 0.016
#> GSM40687     2  0.0290     0.8907 0.000 0.992 0.000 0.008 0.000
#> GSM40691     2  0.4532     0.6183 0.000 0.672 0.304 0.020 0.004
#> GSM40699     2  0.4182     0.5541 0.000 0.644 0.352 0.004 0.000
#> GSM40664     2  0.0898     0.8800 0.000 0.972 0.008 0.020 0.000
#> GSM40682     2  0.0000     0.8902 0.000 1.000 0.000 0.000 0.000
#> GSM40688     2  0.1082     0.8827 0.000 0.964 0.000 0.028 0.008
#> GSM40702     2  0.3508     0.6893 0.000 0.748 0.252 0.000 0.000
#> GSM40706     2  0.0290     0.8905 0.000 0.992 0.000 0.008 0.000
#> GSM40711     3  0.4138    -0.0881 0.000 0.000 0.616 0.384 0.000
#> GSM40661     3  0.0000     0.7987 0.000 0.000 1.000 0.000 0.000
#> GSM40662     3  0.7470     0.0463 0.000 0.068 0.432 0.156 0.344
#> GSM40666     4  0.5874     0.5582 0.000 0.000 0.364 0.528 0.108
#> GSM40669     5  0.2069     0.6588 0.076 0.000 0.000 0.012 0.912
#> GSM40670     5  0.2989     0.6290 0.044 0.000 0.004 0.080 0.872
#> GSM40671     1  0.2513     0.7440 0.876 0.000 0.000 0.116 0.008
#> GSM40672     1  0.0609     0.7514 0.980 0.000 0.000 0.000 0.020
#> GSM40673     1  0.0290     0.7538 0.992 0.000 0.000 0.000 0.008
#> GSM40674     5  0.3835     0.5936 0.032 0.000 0.076 0.056 0.836
#> GSM40676     4  0.4179     0.6795 0.072 0.000 0.152 0.776 0.000
#> GSM40680     1  0.7680    -0.0102 0.392 0.064 0.000 0.208 0.336
#> GSM40681     1  0.2859     0.7123 0.876 0.000 0.000 0.056 0.068
#> GSM40683     1  0.0162     0.7541 0.996 0.000 0.000 0.000 0.004
#> GSM40684     4  0.4179     0.6811 0.072 0.000 0.152 0.776 0.000
#> GSM40685     5  0.5761    -0.0915 0.420 0.000 0.000 0.088 0.492
#> GSM40689     1  0.3398     0.7019 0.780 0.000 0.000 0.216 0.004
#> GSM40690     1  0.0771     0.7517 0.976 0.000 0.000 0.004 0.020
#> GSM40692     1  0.6671     0.3583 0.532 0.016 0.000 0.216 0.236
#> GSM40693     1  0.4851     0.3574 0.624 0.000 0.000 0.036 0.340
#> GSM40694     1  0.5908     0.1751 0.512 0.000 0.000 0.108 0.380
#> GSM40695     1  0.0162     0.7546 0.996 0.000 0.000 0.004 0.000
#> GSM40696     1  0.4905     0.3573 0.624 0.000 0.000 0.040 0.336
#> GSM40697     5  0.6244     0.0987 0.000 0.396 0.024 0.080 0.500
#> GSM40704     1  0.0510     0.7523 0.984 0.000 0.000 0.000 0.016
#> GSM40705     3  0.4161    -0.1178 0.000 0.000 0.608 0.392 0.000
#> GSM40707     1  0.3863     0.6863 0.740 0.000 0.000 0.248 0.012
#> GSM40708     1  0.4206     0.6692 0.708 0.000 0.000 0.272 0.020
#> GSM40709     4  0.5794     0.5376 0.000 0.000 0.384 0.520 0.096
#> GSM40712     5  0.3464     0.6362 0.096 0.000 0.000 0.068 0.836
#> GSM40713     1  0.2563     0.7428 0.872 0.000 0.000 0.120 0.008
#> GSM40665     1  0.3521     0.6957 0.764 0.000 0.000 0.232 0.004
#> GSM40677     2  0.0794     0.8847 0.000 0.972 0.000 0.028 0.000
#> GSM40698     1  0.3343     0.7272 0.812 0.000 0.000 0.172 0.016
#> GSM40701     3  0.0000     0.7987 0.000 0.000 1.000 0.000 0.000
#> GSM40710     2  0.0290     0.8900 0.000 0.992 0.000 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     3  0.0790      0.889 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM40668     3  0.0000      0.909 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40678     2  0.0405      0.835 0.000 0.988 0.000 0.004 0.000 0.008
#> GSM40679     2  0.0520      0.834 0.000 0.984 0.000 0.008 0.000 0.008
#> GSM40686     2  0.2631      0.779 0.000 0.840 0.000 0.008 0.000 0.152
#> GSM40687     2  0.1007      0.834 0.000 0.956 0.000 0.000 0.000 0.044
#> GSM40691     2  0.5855      0.552 0.000 0.608 0.256 0.028 0.024 0.084
#> GSM40699     2  0.4530      0.370 0.000 0.552 0.420 0.012 0.000 0.016
#> GSM40664     2  0.2961      0.805 0.000 0.872 0.016 0.044 0.008 0.060
#> GSM40682     2  0.1370      0.832 0.000 0.948 0.000 0.012 0.004 0.036
#> GSM40688     2  0.2615      0.804 0.000 0.876 0.000 0.028 0.008 0.088
#> GSM40702     2  0.4152      0.623 0.000 0.700 0.264 0.012 0.000 0.024
#> GSM40706     2  0.0837      0.837 0.000 0.972 0.004 0.004 0.000 0.020
#> GSM40711     3  0.3862     -0.364 0.000 0.000 0.524 0.476 0.000 0.000
#> GSM40661     3  0.0458      0.898 0.000 0.000 0.984 0.016 0.000 0.000
#> GSM40662     6  0.7666     -0.117 0.000 0.056 0.284 0.040 0.300 0.320
#> GSM40666     4  0.4842      0.697 0.000 0.000 0.212 0.676 0.104 0.008
#> GSM40669     5  0.1970      0.652 0.060 0.000 0.000 0.000 0.912 0.028
#> GSM40670     5  0.1176      0.672 0.024 0.000 0.000 0.020 0.956 0.000
#> GSM40671     1  0.3798      0.673 0.796 0.000 0.000 0.116 0.012 0.076
#> GSM40672     1  0.1148      0.684 0.960 0.000 0.000 0.004 0.016 0.020
#> GSM40673     1  0.0146      0.697 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM40674     5  0.2238      0.660 0.020 0.000 0.016 0.032 0.916 0.016
#> GSM40676     4  0.2022      0.640 0.024 0.000 0.052 0.916 0.000 0.008
#> GSM40680     6  0.4087      0.350 0.092 0.036 0.000 0.008 0.064 0.800
#> GSM40681     1  0.3450      0.553 0.772 0.000 0.000 0.012 0.008 0.208
#> GSM40683     1  0.0146      0.697 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM40684     4  0.2022      0.640 0.024 0.000 0.052 0.916 0.000 0.008
#> GSM40685     6  0.6350      0.222 0.332 0.000 0.000 0.012 0.264 0.392
#> GSM40689     1  0.4473      0.630 0.708 0.000 0.000 0.212 0.008 0.072
#> GSM40690     1  0.0922      0.694 0.968 0.000 0.000 0.004 0.004 0.024
#> GSM40692     6  0.5487      0.380 0.276 0.012 0.000 0.016 0.084 0.612
#> GSM40693     1  0.4741      0.350 0.688 0.000 0.000 0.012 0.216 0.084
#> GSM40694     1  0.6153     -0.277 0.444 0.000 0.000 0.012 0.200 0.344
#> GSM40695     1  0.0725      0.699 0.976 0.000 0.000 0.012 0.000 0.012
#> GSM40696     1  0.4765      0.324 0.672 0.000 0.000 0.012 0.244 0.072
#> GSM40697     5  0.6848      0.124 0.000 0.272 0.016 0.024 0.420 0.268
#> GSM40704     1  0.0820      0.690 0.972 0.000 0.000 0.000 0.016 0.012
#> GSM40705     4  0.3999      0.227 0.000 0.000 0.496 0.500 0.004 0.000
#> GSM40707     1  0.5275      0.572 0.624 0.000 0.000 0.228 0.008 0.140
#> GSM40708     1  0.5884      0.485 0.540 0.000 0.000 0.244 0.012 0.204
#> GSM40709     4  0.5068      0.682 0.000 0.000 0.236 0.644 0.112 0.008
#> GSM40712     5  0.4640      0.427 0.064 0.000 0.000 0.012 0.684 0.240
#> GSM40713     1  0.4589      0.651 0.732 0.000 0.000 0.140 0.020 0.108
#> GSM40665     1  0.4857      0.614 0.676 0.000 0.000 0.208 0.008 0.108
#> GSM40677     2  0.2890      0.795 0.000 0.844 0.000 0.024 0.004 0.128
#> GSM40698     1  0.5038      0.591 0.664 0.000 0.000 0.152 0.008 0.176
#> GSM40701     3  0.0146      0.905 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40710     2  0.1267      0.830 0.000 0.940 0.000 0.000 0.000 0.060

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> SD:skmeans 52         2.19e-06 2
#> SD:skmeans 52         4.81e-06 3
#> SD:skmeans 46         1.10e-04 4
#> SD:skmeans 43         1.07e-05 5
#> SD:skmeans 40         4.85e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.960           0.960       0.982         0.4940 0.512   0.512
#> 3 3 0.994           0.953       0.978         0.2202 0.814   0.662
#> 4 4 0.910           0.916       0.951         0.1331 0.837   0.632
#> 5 5 0.876           0.835       0.903         0.1406 0.894   0.675
#> 6 6 0.887           0.860       0.874         0.0519 0.948   0.768

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2 3

There is also optional best \(k\) = 2 3 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      1.000 0.000 1.000
#> GSM40667     2  0.0000      1.000 0.000 1.000
#> GSM40675     2  0.0000      1.000 0.000 1.000
#> GSM40703     2  0.0000      1.000 0.000 1.000
#> GSM40660     2  0.0000      1.000 0.000 1.000
#> GSM40668     2  0.0000      1.000 0.000 1.000
#> GSM40678     2  0.0000      1.000 0.000 1.000
#> GSM40679     2  0.0000      1.000 0.000 1.000
#> GSM40686     1  0.8955      0.583 0.688 0.312
#> GSM40687     2  0.0000      1.000 0.000 1.000
#> GSM40691     2  0.0000      1.000 0.000 1.000
#> GSM40699     2  0.0000      1.000 0.000 1.000
#> GSM40664     2  0.0000      1.000 0.000 1.000
#> GSM40682     2  0.0000      1.000 0.000 1.000
#> GSM40688     2  0.0000      1.000 0.000 1.000
#> GSM40702     2  0.0000      1.000 0.000 1.000
#> GSM40706     2  0.0000      1.000 0.000 1.000
#> GSM40711     2  0.0000      1.000 0.000 1.000
#> GSM40661     2  0.0000      1.000 0.000 1.000
#> GSM40662     1  0.7376      0.749 0.792 0.208
#> GSM40666     1  0.0672      0.964 0.992 0.008
#> GSM40669     1  0.0000      0.968 1.000 0.000
#> GSM40670     1  0.0000      0.968 1.000 0.000
#> GSM40671     1  0.0000      0.968 1.000 0.000
#> GSM40672     1  0.0000      0.968 1.000 0.000
#> GSM40673     1  0.0000      0.968 1.000 0.000
#> GSM40674     1  0.0672      0.964 0.992 0.008
#> GSM40676     1  0.0672      0.964 0.992 0.008
#> GSM40680     1  0.0376      0.966 0.996 0.004
#> GSM40681     1  0.0000      0.968 1.000 0.000
#> GSM40683     1  0.0000      0.968 1.000 0.000
#> GSM40684     1  0.0000      0.968 1.000 0.000
#> GSM40685     1  0.0000      0.968 1.000 0.000
#> GSM40689     1  0.0000      0.968 1.000 0.000
#> GSM40690     1  0.0000      0.968 1.000 0.000
#> GSM40692     1  0.0000      0.968 1.000 0.000
#> GSM40693     1  0.0000      0.968 1.000 0.000
#> GSM40694     1  0.0000      0.968 1.000 0.000
#> GSM40695     1  0.0000      0.968 1.000 0.000
#> GSM40696     1  0.0000      0.968 1.000 0.000
#> GSM40697     1  0.5059      0.866 0.888 0.112
#> GSM40704     1  0.0000      0.968 1.000 0.000
#> GSM40705     1  0.8861      0.596 0.696 0.304
#> GSM40707     1  0.0000      0.968 1.000 0.000
#> GSM40708     1  0.0000      0.968 1.000 0.000
#> GSM40709     1  0.0672      0.964 0.992 0.008
#> GSM40712     1  0.0000      0.968 1.000 0.000
#> GSM40713     1  0.0000      0.968 1.000 0.000
#> GSM40665     1  0.0000      0.968 1.000 0.000
#> GSM40677     2  0.0000      1.000 0.000 1.000
#> GSM40698     1  0.0000      0.968 1.000 0.000
#> GSM40701     2  0.0000      1.000 0.000 1.000
#> GSM40710     2  0.0000      1.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000      0.979 0.000 0.000 1.000
#> GSM40667     3  0.0000      0.979 0.000 0.000 1.000
#> GSM40675     3  0.0000      0.979 0.000 0.000 1.000
#> GSM40703     3  0.0000      0.979 0.000 0.000 1.000
#> GSM40660     2  0.2537      0.897 0.000 0.920 0.080
#> GSM40668     3  0.0000      0.979 0.000 0.000 1.000
#> GSM40678     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40679     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40686     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40687     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40691     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40699     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40664     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40682     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40688     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40702     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40706     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40711     3  0.0747      0.970 0.000 0.016 0.984
#> GSM40661     2  0.2537      0.897 0.000 0.920 0.080
#> GSM40662     2  0.1411      0.926 0.036 0.964 0.000
#> GSM40666     1  0.2537      0.918 0.920 0.000 0.080
#> GSM40669     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40670     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40671     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40672     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40674     1  0.2625      0.896 0.916 0.084 0.000
#> GSM40676     1  0.2537      0.918 0.920 0.000 0.080
#> GSM40680     1  0.0592      0.973 0.988 0.012 0.000
#> GSM40681     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40683     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40684     1  0.2537      0.918 0.920 0.000 0.080
#> GSM40685     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40689     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40690     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40692     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40693     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40694     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40695     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40696     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40697     2  0.4796      0.671 0.220 0.780 0.000
#> GSM40704     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40705     3  0.3038      0.881 0.000 0.104 0.896
#> GSM40707     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40708     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40709     1  0.2537      0.918 0.920 0.000 0.080
#> GSM40712     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40713     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40665     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40677     2  0.0000      0.958 0.000 1.000 0.000
#> GSM40698     1  0.0000      0.983 1.000 0.000 0.000
#> GSM40701     2  0.4399      0.776 0.000 0.812 0.188
#> GSM40710     2  0.0000      0.958 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40667     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40675     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40703     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40660     3  0.2647      0.867 0.000 0.120 0.880 0.000
#> GSM40668     3  0.2704      0.857 0.000 0.000 0.876 0.124
#> GSM40678     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40687     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40691     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40699     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40664     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40682     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40688     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40702     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40706     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40711     3  0.1940      0.887 0.000 0.000 0.924 0.076
#> GSM40661     3  0.2469      0.876 0.000 0.108 0.892 0.000
#> GSM40662     2  0.5830      0.395 0.332 0.620 0.048 0.000
#> GSM40666     3  0.1940      0.902 0.076 0.000 0.924 0.000
#> GSM40669     1  0.1389      0.920 0.952 0.000 0.048 0.000
#> GSM40670     1  0.1389      0.920 0.952 0.000 0.048 0.000
#> GSM40671     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> GSM40672     1  0.1940      0.926 0.924 0.000 0.076 0.000
#> GSM40673     1  0.1940      0.926 0.924 0.000 0.076 0.000
#> GSM40674     1  0.3156      0.876 0.884 0.068 0.048 0.000
#> GSM40676     3  0.1940      0.902 0.076 0.000 0.924 0.000
#> GSM40680     1  0.0336      0.944 0.992 0.008 0.000 0.000
#> GSM40681     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> GSM40683     1  0.1940      0.926 0.924 0.000 0.076 0.000
#> GSM40684     3  0.1940      0.902 0.076 0.000 0.924 0.000
#> GSM40685     1  0.0188      0.945 0.996 0.004 0.000 0.000
#> GSM40689     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> GSM40690     1  0.1940      0.926 0.924 0.000 0.076 0.000
#> GSM40692     1  0.0336      0.944 0.992 0.008 0.000 0.000
#> GSM40693     1  0.1940      0.926 0.924 0.000 0.076 0.000
#> GSM40694     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> GSM40695     1  0.1940      0.926 0.924 0.000 0.076 0.000
#> GSM40696     1  0.1940      0.926 0.924 0.000 0.076 0.000
#> GSM40697     1  0.4790      0.403 0.620 0.380 0.000 0.000
#> GSM40704     1  0.1940      0.926 0.924 0.000 0.076 0.000
#> GSM40705     3  0.2319      0.901 0.000 0.036 0.924 0.040
#> GSM40707     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> GSM40708     1  0.0336      0.943 0.992 0.000 0.008 0.000
#> GSM40709     3  0.1940      0.902 0.076 0.000 0.924 0.000
#> GSM40712     1  0.0817      0.936 0.976 0.000 0.024 0.000
#> GSM40713     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> GSM40665     1  0.0000      0.945 1.000 0.000 0.000 0.000
#> GSM40677     2  0.0000      0.960 0.000 1.000 0.000 0.000
#> GSM40698     1  0.0336      0.944 0.992 0.008 0.000 0.000
#> GSM40701     3  0.2918      0.869 0.000 0.116 0.876 0.008
#> GSM40710     2  0.0000      0.960 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM40667     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM40675     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM40703     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM40660     3  0.1732     0.9053 0.000 0.080 0.920 0.000 0.000
#> GSM40668     3  0.1792     0.9011 0.000 0.000 0.916 0.084 0.000
#> GSM40678     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40679     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40686     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40687     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40691     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40699     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40664     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40682     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40688     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40702     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40706     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40711     3  0.0000     0.9575 0.000 0.000 1.000 0.000 0.000
#> GSM40661     3  0.1197     0.9346 0.000 0.048 0.952 0.000 0.000
#> GSM40662     5  0.5355     0.5113 0.000 0.292 0.084 0.000 0.624
#> GSM40666     3  0.0000     0.9575 0.000 0.000 1.000 0.000 0.000
#> GSM40669     5  0.1792     0.7289 0.000 0.000 0.084 0.000 0.916
#> GSM40670     5  0.1792     0.7289 0.000 0.000 0.084 0.000 0.916
#> GSM40671     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40672     1  0.0000     0.5917 1.000 0.000 0.000 0.000 0.000
#> GSM40673     1  0.0000     0.5917 1.000 0.000 0.000 0.000 0.000
#> GSM40674     5  0.2889     0.7329 0.000 0.044 0.084 0.000 0.872
#> GSM40676     3  0.0000     0.9575 0.000 0.000 1.000 0.000 0.000
#> GSM40680     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40681     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40683     1  0.0000     0.5917 1.000 0.000 0.000 0.000 0.000
#> GSM40684     3  0.0000     0.9575 0.000 0.000 1.000 0.000 0.000
#> GSM40685     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40689     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40690     1  0.3561     0.0604 0.740 0.000 0.000 0.000 0.260
#> GSM40692     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40693     5  0.4138     0.5365 0.384 0.000 0.000 0.000 0.616
#> GSM40694     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40695     1  0.0000     0.5917 1.000 0.000 0.000 0.000 0.000
#> GSM40696     5  0.4138     0.5365 0.384 0.000 0.000 0.000 0.616
#> GSM40697     5  0.2732     0.6831 0.000 0.160 0.000 0.000 0.840
#> GSM40704     1  0.0000     0.5917 1.000 0.000 0.000 0.000 0.000
#> GSM40705     3  0.0000     0.9575 0.000 0.000 1.000 0.000 0.000
#> GSM40707     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40708     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40709     3  0.0000     0.9575 0.000 0.000 1.000 0.000 0.000
#> GSM40712     5  0.0609     0.6701 0.000 0.000 0.020 0.000 0.980
#> GSM40713     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40665     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40677     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM40698     1  0.4138     0.8090 0.616 0.000 0.000 0.000 0.384
#> GSM40701     3  0.1792     0.9009 0.000 0.084 0.916 0.000 0.000
#> GSM40710     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2   p3    p4    p5    p6
#> GSM40663     3  0.0000      1.000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM40667     3  0.0000      1.000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM40675     3  0.0000      1.000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM40703     3  0.0000      1.000 0.000 0.000 1.00 0.000 0.000 0.000
#> GSM40660     4  0.0363      0.933 0.000 0.012 0.00 0.988 0.000 0.000
#> GSM40668     4  0.0547      0.929 0.000 0.000 0.02 0.980 0.000 0.000
#> GSM40678     2  0.3843      0.717 0.000 0.548 0.00 0.000 0.000 0.452
#> GSM40679     2  0.0000      0.804 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM40686     2  0.0000      0.804 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM40687     2  0.3843      0.717 0.000 0.548 0.00 0.000 0.000 0.452
#> GSM40691     2  0.4165      0.708 0.000 0.536 0.00 0.000 0.012 0.452
#> GSM40699     2  0.3843      0.717 0.000 0.548 0.00 0.000 0.000 0.452
#> GSM40664     2  0.0000      0.804 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM40682     2  0.0000      0.804 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM40688     2  0.1910      0.800 0.000 0.892 0.00 0.000 0.000 0.108
#> GSM40702     2  0.2092      0.798 0.000 0.876 0.00 0.000 0.000 0.124
#> GSM40706     2  0.0000      0.804 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM40711     4  0.0000      0.936 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM40661     4  0.0547      0.927 0.000 0.020 0.00 0.980 0.000 0.000
#> GSM40662     5  0.0000      0.861 0.000 0.000 0.00 0.000 1.000 0.000
#> GSM40666     4  0.1610      0.878 0.000 0.000 0.00 0.916 0.084 0.000
#> GSM40669     5  0.0000      0.861 0.000 0.000 0.00 0.000 1.000 0.000
#> GSM40670     5  0.0000      0.861 0.000 0.000 0.00 0.000 1.000 0.000
#> GSM40671     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40672     1  0.0000      0.875 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM40673     1  0.0000      0.875 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM40674     5  0.0000      0.861 0.000 0.000 0.00 0.000 1.000 0.000
#> GSM40676     4  0.0000      0.936 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM40680     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40681     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40683     1  0.0000      0.875 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM40684     4  0.0000      0.936 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM40685     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40689     6  0.3851      0.986 0.460 0.000 0.00 0.000 0.000 0.540
#> GSM40690     1  0.3076      0.484 0.760 0.000 0.00 0.000 0.240 0.000
#> GSM40692     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40693     5  0.3782      0.443 0.412 0.000 0.00 0.000 0.588 0.000
#> GSM40694     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40695     1  0.1267      0.777 0.940 0.000 0.00 0.000 0.000 0.060
#> GSM40696     5  0.3804      0.423 0.424 0.000 0.00 0.000 0.576 0.000
#> GSM40697     5  0.0000      0.861 0.000 0.000 0.00 0.000 1.000 0.000
#> GSM40704     1  0.0000      0.875 1.000 0.000 0.00 0.000 0.000 0.000
#> GSM40705     4  0.0000      0.936 0.000 0.000 0.00 1.000 0.000 0.000
#> GSM40707     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40708     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40709     4  0.3695      0.473 0.000 0.000 0.00 0.624 0.376 0.000
#> GSM40712     5  0.0000      0.861 0.000 0.000 0.00 0.000 1.000 0.000
#> GSM40713     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40665     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40677     2  0.0000      0.804 0.000 1.000 0.00 0.000 0.000 0.000
#> GSM40698     6  0.3843      0.999 0.452 0.000 0.00 0.000 0.000 0.548
#> GSM40701     4  0.0547      0.928 0.000 0.020 0.00 0.980 0.000 0.000
#> GSM40710     2  0.3843      0.717 0.000 0.548 0.00 0.000 0.000 0.452

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> SD:pam 53         8.87e-08 2
#> SD:pam 53         2.00e-09 3
#> SD:pam 51         1.53e-12 4
#> SD:pam 52         3.27e-11 5
#> SD:pam 49         5.78e-09 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.184           0.694       0.798         0.3103 0.826   0.826
#> 3 3 0.425           0.643       0.815         0.7460 0.589   0.502
#> 4 4 0.633           0.635       0.756         0.3063 0.798   0.568
#> 5 5 0.636           0.493       0.743         0.0977 0.830   0.517
#> 6 6 0.654           0.633       0.789         0.0330 0.843   0.420

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.6801      0.972 0.180 0.820
#> GSM40667     2  0.6801      0.972 0.180 0.820
#> GSM40675     2  0.6801      0.972 0.180 0.820
#> GSM40703     2  0.6887      0.969 0.184 0.816
#> GSM40660     1  0.9635      0.510 0.612 0.388
#> GSM40668     2  0.7883      0.885 0.236 0.764
#> GSM40678     1  0.8608      0.588 0.716 0.284
#> GSM40679     1  0.8661      0.588 0.712 0.288
#> GSM40686     1  0.8555      0.593 0.720 0.280
#> GSM40687     1  0.8608      0.588 0.716 0.284
#> GSM40691     1  0.6801      0.696 0.820 0.180
#> GSM40699     1  0.9775      0.490 0.588 0.412
#> GSM40664     1  0.8555      0.617 0.720 0.280
#> GSM40682     1  0.8327      0.617 0.736 0.264
#> GSM40688     1  0.3431      0.726 0.936 0.064
#> GSM40702     1  0.8267      0.621 0.740 0.260
#> GSM40706     1  0.8661      0.588 0.712 0.288
#> GSM40711     1  0.9635      0.510 0.612 0.388
#> GSM40661     1  0.9686      0.512 0.604 0.396
#> GSM40662     1  0.6801      0.696 0.820 0.180
#> GSM40666     1  0.7453      0.685 0.788 0.212
#> GSM40669     1  0.6801      0.696 0.820 0.180
#> GSM40670     1  0.6801      0.696 0.820 0.180
#> GSM40671     1  0.2603      0.754 0.956 0.044
#> GSM40672     1  0.4298      0.742 0.912 0.088
#> GSM40673     1  0.5178      0.689 0.884 0.116
#> GSM40674     1  0.6801      0.696 0.820 0.180
#> GSM40676     1  0.8763      0.608 0.704 0.296
#> GSM40680     1  0.1184      0.749 0.984 0.016
#> GSM40681     1  0.1184      0.749 0.984 0.016
#> GSM40683     1  0.5059      0.678 0.888 0.112
#> GSM40684     1  0.9710      0.508 0.600 0.400
#> GSM40685     1  0.0672      0.749 0.992 0.008
#> GSM40689     1  0.3431      0.755 0.936 0.064
#> GSM40690     1  0.3431      0.749 0.936 0.064
#> GSM40692     1  0.0938      0.753 0.988 0.012
#> GSM40693     1  0.6247      0.720 0.844 0.156
#> GSM40694     1  0.3114      0.752 0.944 0.056
#> GSM40695     1  0.3114      0.730 0.944 0.056
#> GSM40696     1  0.5842      0.724 0.860 0.140
#> GSM40697     1  0.6801      0.696 0.820 0.180
#> GSM40704     1  0.5408      0.690 0.876 0.124
#> GSM40705     1  0.9686      0.512 0.604 0.396
#> GSM40707     1  0.2778      0.751 0.952 0.048
#> GSM40708     1  0.2778      0.751 0.952 0.048
#> GSM40709     1  0.7376      0.686 0.792 0.208
#> GSM40712     1  0.5737      0.723 0.864 0.136
#> GSM40713     1  0.5178      0.741 0.884 0.116
#> GSM40665     1  0.4161      0.758 0.916 0.084
#> GSM40677     1  0.3431      0.726 0.936 0.064
#> GSM40698     1  0.2236      0.751 0.964 0.036
#> GSM40701     1  0.9635      0.510 0.612 0.388
#> GSM40710     1  0.8608      0.588 0.716 0.284

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0661      0.956 0.004 0.008 0.988
#> GSM40667     3  0.0661      0.956 0.004 0.008 0.988
#> GSM40675     3  0.0661      0.956 0.004 0.008 0.988
#> GSM40703     3  0.0661      0.956 0.004 0.008 0.988
#> GSM40660     2  0.9914      0.380 0.272 0.380 0.348
#> GSM40668     3  0.4413      0.797 0.036 0.104 0.860
#> GSM40678     2  0.0661      0.676 0.004 0.988 0.008
#> GSM40679     2  0.0661      0.676 0.004 0.988 0.008
#> GSM40686     2  0.1129      0.680 0.020 0.976 0.004
#> GSM40687     2  0.0661      0.676 0.004 0.988 0.008
#> GSM40691     2  0.6322      0.576 0.276 0.700 0.024
#> GSM40699     2  0.3377      0.711 0.092 0.896 0.012
#> GSM40664     2  0.5831      0.578 0.284 0.708 0.008
#> GSM40682     2  0.1170      0.682 0.016 0.976 0.008
#> GSM40688     2  0.3267      0.703 0.116 0.884 0.000
#> GSM40702     2  0.2680      0.703 0.068 0.924 0.008
#> GSM40706     2  0.1015      0.681 0.012 0.980 0.008
#> GSM40711     2  0.9906      0.388 0.272 0.388 0.340
#> GSM40661     2  0.9897      0.388 0.268 0.388 0.344
#> GSM40662     2  0.6475      0.565 0.280 0.692 0.028
#> GSM40666     1  0.7001      0.387 0.588 0.388 0.024
#> GSM40669     1  0.6721      0.412 0.604 0.380 0.016
#> GSM40670     1  0.6721      0.412 0.604 0.380 0.016
#> GSM40671     1  0.1267      0.773 0.972 0.024 0.004
#> GSM40672     1  0.0237      0.763 0.996 0.004 0.000
#> GSM40673     1  0.0000      0.760 1.000 0.000 0.000
#> GSM40674     1  0.6737      0.403 0.600 0.384 0.016
#> GSM40676     1  0.7222      0.367 0.580 0.388 0.032
#> GSM40680     2  0.6701      0.289 0.412 0.576 0.012
#> GSM40681     1  0.2280      0.780 0.940 0.052 0.008
#> GSM40683     1  0.0000      0.760 1.000 0.000 0.000
#> GSM40684     1  0.7222      0.367 0.580 0.388 0.032
#> GSM40685     1  0.4963      0.660 0.792 0.200 0.008
#> GSM40689     1  0.1399      0.775 0.968 0.028 0.004
#> GSM40690     1  0.0747      0.771 0.984 0.016 0.000
#> GSM40692     1  0.6529      0.430 0.620 0.368 0.012
#> GSM40693     1  0.1753      0.781 0.952 0.048 0.000
#> GSM40694     1  0.1753      0.781 0.952 0.048 0.000
#> GSM40695     1  0.0000      0.760 1.000 0.000 0.000
#> GSM40696     1  0.1753      0.781 0.952 0.048 0.000
#> GSM40697     2  0.6420      0.560 0.288 0.688 0.024
#> GSM40704     1  0.0000      0.760 1.000 0.000 0.000
#> GSM40705     2  0.9906      0.388 0.272 0.388 0.340
#> GSM40707     1  0.2280      0.780 0.940 0.052 0.008
#> GSM40708     1  0.2446      0.779 0.936 0.052 0.012
#> GSM40709     1  0.7001      0.387 0.588 0.388 0.024
#> GSM40712     1  0.6704      0.420 0.608 0.376 0.016
#> GSM40713     1  0.1860      0.780 0.948 0.052 0.000
#> GSM40665     1  0.1999      0.778 0.952 0.036 0.012
#> GSM40677     2  0.3267      0.703 0.116 0.884 0.000
#> GSM40698     1  0.2446      0.779 0.936 0.052 0.012
#> GSM40701     2  0.9906      0.386 0.272 0.388 0.340
#> GSM40710     2  0.0661      0.676 0.004 0.988 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.5352     1.0000 0.000 0.016 0.388 0.596
#> GSM40667     4  0.5352     1.0000 0.000 0.016 0.388 0.596
#> GSM40675     4  0.5352     1.0000 0.000 0.016 0.388 0.596
#> GSM40703     4  0.5352     1.0000 0.000 0.016 0.388 0.596
#> GSM40660     3  0.3463     0.6823 0.096 0.040 0.864 0.000
#> GSM40668     3  0.5503    -0.7185 0.000 0.016 0.516 0.468
#> GSM40678     2  0.0000     0.8836 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000     0.8836 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0657     0.8870 0.012 0.984 0.000 0.004
#> GSM40687     2  0.0469     0.8875 0.012 0.988 0.000 0.000
#> GSM40691     2  0.6539     0.3981 0.336 0.580 0.080 0.004
#> GSM40699     2  0.1867     0.8596 0.072 0.928 0.000 0.000
#> GSM40664     2  0.3004     0.8435 0.048 0.892 0.060 0.000
#> GSM40682     2  0.0336     0.8869 0.008 0.992 0.000 0.000
#> GSM40688     2  0.2480     0.8548 0.088 0.904 0.000 0.008
#> GSM40702     2  0.0000     0.8836 0.000 1.000 0.000 0.000
#> GSM40706     2  0.0592     0.8851 0.016 0.984 0.000 0.000
#> GSM40711     3  0.2861     0.6913 0.096 0.016 0.888 0.000
#> GSM40661     3  0.3239     0.6746 0.068 0.052 0.880 0.000
#> GSM40662     1  0.8030    -0.0694 0.388 0.296 0.312 0.004
#> GSM40666     3  0.4218     0.6833 0.116 0.012 0.832 0.040
#> GSM40669     1  0.4582     0.5039 0.748 0.008 0.236 0.008
#> GSM40670     1  0.5985    -0.0436 0.504 0.008 0.464 0.024
#> GSM40671     1  0.5599     0.5885 0.672 0.000 0.052 0.276
#> GSM40672     1  0.0336     0.7308 0.992 0.000 0.008 0.000
#> GSM40673     1  0.0592     0.7292 0.984 0.000 0.016 0.000
#> GSM40674     1  0.6297    -0.0711 0.492 0.020 0.464 0.024
#> GSM40676     3  0.5626     0.4540 0.020 0.012 0.644 0.324
#> GSM40680     2  0.6722     0.4424 0.296 0.604 0.088 0.012
#> GSM40681     1  0.5034     0.6582 0.768 0.008 0.052 0.172
#> GSM40683     1  0.0779     0.7300 0.980 0.000 0.016 0.004
#> GSM40684     3  0.5626     0.4540 0.020 0.012 0.644 0.324
#> GSM40685     1  0.3174     0.6996 0.888 0.076 0.028 0.008
#> GSM40689     1  0.6422     0.5522 0.616 0.000 0.104 0.280
#> GSM40690     1  0.0336     0.7320 0.992 0.000 0.008 0.000
#> GSM40692     1  0.3387     0.7178 0.888 0.032 0.052 0.028
#> GSM40693     1  0.0469     0.7313 0.988 0.000 0.012 0.000
#> GSM40694     1  0.0804     0.7292 0.980 0.008 0.012 0.000
#> GSM40695     1  0.0804     0.7315 0.980 0.000 0.012 0.008
#> GSM40696     1  0.0469     0.7313 0.988 0.000 0.012 0.000
#> GSM40697     1  0.7960    -0.0768 0.376 0.372 0.248 0.004
#> GSM40704     1  0.0592     0.7292 0.984 0.000 0.016 0.000
#> GSM40705     3  0.2522     0.6869 0.076 0.016 0.908 0.000
#> GSM40707     1  0.7207     0.4669 0.496 0.008 0.112 0.384
#> GSM40708     1  0.7214     0.4634 0.492 0.008 0.112 0.388
#> GSM40709     3  0.4102     0.6890 0.108 0.012 0.840 0.040
#> GSM40712     1  0.2269     0.7182 0.932 0.008 0.032 0.028
#> GSM40713     1  0.2463     0.7244 0.924 0.008 0.036 0.032
#> GSM40665     1  0.6499     0.5501 0.612 0.000 0.112 0.276
#> GSM40677     2  0.2611     0.8485 0.096 0.896 0.000 0.008
#> GSM40698     1  0.6815     0.5493 0.592 0.008 0.104 0.296
#> GSM40701     3  0.6192     0.5202 0.084 0.092 0.740 0.084
#> GSM40710     2  0.0469     0.8875 0.012 0.988 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0290     0.6967 0.000 0.008 0.992 0.000 0.000
#> GSM40667     3  0.0290     0.6967 0.000 0.008 0.992 0.000 0.000
#> GSM40675     3  0.0290     0.6967 0.000 0.008 0.992 0.000 0.000
#> GSM40703     3  0.0290     0.6967 0.000 0.008 0.992 0.000 0.000
#> GSM40660     3  0.6628     0.5257 0.008 0.132 0.540 0.016 0.304
#> GSM40668     3  0.1568     0.6963 0.000 0.020 0.944 0.000 0.036
#> GSM40678     2  0.0404     0.8903 0.000 0.988 0.000 0.000 0.012
#> GSM40679     2  0.0162     0.8944 0.004 0.996 0.000 0.000 0.000
#> GSM40686     2  0.1018     0.8912 0.016 0.968 0.000 0.016 0.000
#> GSM40687     2  0.1012     0.8861 0.000 0.968 0.000 0.012 0.020
#> GSM40691     2  0.6377     0.0126 0.380 0.452 0.000 0.000 0.168
#> GSM40699     2  0.2173     0.8702 0.012 0.920 0.016 0.000 0.052
#> GSM40664     2  0.2629     0.8326 0.008 0.896 0.000 0.032 0.064
#> GSM40682     2  0.0451     0.8938 0.004 0.988 0.000 0.008 0.000
#> GSM40688     2  0.2520     0.8483 0.096 0.888 0.000 0.004 0.012
#> GSM40702     2  0.0613     0.8941 0.004 0.984 0.004 0.008 0.000
#> GSM40706     2  0.0727     0.8942 0.004 0.980 0.004 0.000 0.012
#> GSM40711     3  0.6359     0.5642 0.008 0.088 0.588 0.028 0.288
#> GSM40661     3  0.6495     0.5552 0.004 0.124 0.572 0.024 0.276
#> GSM40662     1  0.6918    -0.2770 0.380 0.284 0.000 0.004 0.332
#> GSM40666     5  0.6596    -0.2969 0.024 0.080 0.396 0.012 0.488
#> GSM40669     1  0.5247    -0.1308 0.560 0.028 0.000 0.012 0.400
#> GSM40670     5  0.5572     0.2497 0.396 0.048 0.000 0.012 0.544
#> GSM40671     5  0.7223    -0.4309 0.312 0.016 0.000 0.332 0.340
#> GSM40672     1  0.4482     0.5394 0.636 0.000 0.000 0.016 0.348
#> GSM40673     1  0.4551     0.5377 0.616 0.000 0.000 0.016 0.368
#> GSM40674     5  0.5572     0.2497 0.396 0.048 0.000 0.012 0.544
#> GSM40676     4  0.6034     0.4338 0.000 0.092 0.020 0.588 0.300
#> GSM40680     2  0.4255     0.7519 0.020 0.800 0.000 0.112 0.068
#> GSM40681     1  0.6738     0.3721 0.452 0.004 0.000 0.236 0.308
#> GSM40683     1  0.4551     0.5377 0.616 0.000 0.000 0.016 0.368
#> GSM40684     4  0.6069     0.4333 0.000 0.088 0.024 0.588 0.300
#> GSM40685     1  0.5508     0.4305 0.692 0.052 0.000 0.052 0.204
#> GSM40689     4  0.4063     0.6554 0.204 0.016 0.004 0.768 0.008
#> GSM40690     1  0.4599     0.5387 0.624 0.000 0.000 0.020 0.356
#> GSM40692     5  0.8157    -0.0518 0.216 0.292 0.000 0.120 0.372
#> GSM40693     1  0.0794     0.4081 0.972 0.000 0.000 0.000 0.028
#> GSM40694     1  0.1267     0.4072 0.960 0.004 0.000 0.024 0.012
#> GSM40695     1  0.4613     0.5389 0.620 0.000 0.000 0.020 0.360
#> GSM40696     1  0.0794     0.4081 0.972 0.000 0.000 0.000 0.028
#> GSM40697     1  0.6758    -0.2709 0.392 0.272 0.000 0.000 0.336
#> GSM40704     1  0.4551     0.5377 0.616 0.000 0.000 0.016 0.368
#> GSM40705     3  0.6369     0.5557 0.004 0.088 0.576 0.032 0.300
#> GSM40707     4  0.0324     0.6787 0.004 0.004 0.000 0.992 0.000
#> GSM40708     4  0.0324     0.6787 0.004 0.004 0.000 0.992 0.000
#> GSM40709     5  0.6673    -0.2877 0.024 0.088 0.388 0.012 0.488
#> GSM40712     1  0.5299    -0.0380 0.612 0.016 0.000 0.036 0.336
#> GSM40713     1  0.7220     0.3547 0.384 0.028 0.000 0.208 0.380
#> GSM40665     4  0.3907     0.6559 0.204 0.016 0.000 0.772 0.008
#> GSM40677     2  0.1934     0.8781 0.052 0.928 0.000 0.004 0.016
#> GSM40698     4  0.4620     0.6684 0.168 0.024 0.000 0.760 0.048
#> GSM40701     3  0.5832     0.6047 0.012 0.136 0.676 0.012 0.164
#> GSM40710     2  0.1012     0.8861 0.000 0.968 0.000 0.012 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0260     0.9069 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM40667     3  0.0260     0.9069 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM40675     3  0.0260     0.9069 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM40703     3  0.0260     0.9069 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM40660     4  0.5238     0.6829 0.000 0.168 0.120 0.676 0.036 0.000
#> GSM40668     3  0.3710     0.4645 0.000 0.012 0.696 0.292 0.000 0.000
#> GSM40678     2  0.0862     0.8547 0.004 0.972 0.000 0.016 0.008 0.000
#> GSM40679     2  0.0146     0.8597 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM40686     2  0.1477     0.8493 0.000 0.940 0.000 0.008 0.048 0.004
#> GSM40687     2  0.0820     0.8495 0.000 0.972 0.000 0.016 0.012 0.000
#> GSM40691     2  0.3633     0.7845 0.000 0.800 0.000 0.076 0.120 0.004
#> GSM40699     2  0.3387     0.8111 0.000 0.836 0.028 0.092 0.044 0.000
#> GSM40664     2  0.3441     0.7825 0.004 0.832 0.000 0.060 0.092 0.012
#> GSM40682     2  0.0951     0.8616 0.004 0.968 0.000 0.008 0.020 0.000
#> GSM40688     2  0.2380     0.8491 0.004 0.900 0.004 0.064 0.024 0.004
#> GSM40702     2  0.1092     0.8616 0.000 0.960 0.000 0.020 0.020 0.000
#> GSM40706     2  0.0806     0.8628 0.000 0.972 0.000 0.020 0.008 0.000
#> GSM40711     4  0.2618     0.7381 0.000 0.024 0.116 0.860 0.000 0.000
#> GSM40661     4  0.5178     0.6879 0.000 0.164 0.124 0.680 0.032 0.000
#> GSM40662     2  0.6119     0.2286 0.000 0.464 0.004 0.220 0.308 0.004
#> GSM40666     4  0.2382     0.7427 0.000 0.020 0.024 0.904 0.048 0.004
#> GSM40669     5  0.3677     0.5031 0.068 0.008 0.000 0.124 0.800 0.000
#> GSM40670     5  0.3512     0.4571 0.000 0.008 0.000 0.272 0.720 0.000
#> GSM40671     6  0.3390     0.7033 0.296 0.000 0.000 0.000 0.000 0.704
#> GSM40672     1  0.3714     0.5423 0.656 0.000 0.000 0.004 0.340 0.000
#> GSM40673     1  0.0363     0.6660 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM40674     5  0.3564     0.4602 0.000 0.012 0.000 0.264 0.724 0.000
#> GSM40676     4  0.3780     0.6424 0.000 0.020 0.000 0.728 0.004 0.248
#> GSM40680     5  0.5676     0.0657 0.000 0.436 0.000 0.044 0.464 0.056
#> GSM40681     5  0.6091     0.2221 0.224 0.004 0.000 0.008 0.504 0.260
#> GSM40683     1  0.0146     0.6584 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM40684     4  0.3780     0.6424 0.000 0.020 0.000 0.728 0.004 0.248
#> GSM40685     5  0.5666     0.4383 0.172 0.108 0.000 0.028 0.664 0.028
#> GSM40689     6  0.3126     0.7516 0.248 0.000 0.000 0.000 0.000 0.752
#> GSM40690     1  0.4264     0.4808 0.604 0.000 0.000 0.008 0.376 0.012
#> GSM40692     5  0.5925     0.5027 0.032 0.204 0.000 0.048 0.640 0.076
#> GSM40693     1  0.4509     0.4226 0.524 0.000 0.004 0.016 0.452 0.004
#> GSM40694     5  0.4572     0.0697 0.348 0.004 0.000 0.020 0.616 0.012
#> GSM40695     1  0.0260     0.6576 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM40696     1  0.4512     0.4133 0.520 0.000 0.004 0.016 0.456 0.004
#> GSM40697     2  0.5457     0.3500 0.000 0.544 0.000 0.124 0.328 0.004
#> GSM40704     1  0.0547     0.6650 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM40705     4  0.2715     0.7410 0.000 0.024 0.112 0.860 0.004 0.000
#> GSM40707     6  0.0405     0.7376 0.008 0.000 0.000 0.000 0.004 0.988
#> GSM40708     6  0.0551     0.7366 0.008 0.000 0.000 0.004 0.004 0.984
#> GSM40709     4  0.2382     0.7427 0.000 0.020 0.024 0.904 0.048 0.004
#> GSM40712     5  0.3361     0.5328 0.052 0.016 0.000 0.072 0.848 0.012
#> GSM40713     5  0.6593     0.0239 0.316 0.012 0.000 0.012 0.412 0.248
#> GSM40665     6  0.3329     0.7627 0.220 0.000 0.000 0.004 0.008 0.768
#> GSM40677     2  0.2237     0.8495 0.000 0.904 0.004 0.064 0.024 0.004
#> GSM40698     6  0.4839     0.4314 0.028 0.016 0.000 0.012 0.304 0.640
#> GSM40701     4  0.6389     0.4433 0.000 0.240 0.256 0.476 0.028 0.000
#> GSM40710     2  0.0914     0.8492 0.000 0.968 0.000 0.016 0.016 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> SD:mclust 52         5.53e-08 2
#> SD:mclust 38         2.09e-08 3
#> SD:mclust 42         7.75e-10 4
#> SD:mclust 34         1.39e-03 5
#> SD:mclust 38         3.83e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.920           0.908       0.965         0.5066 0.492   0.492
#> 3 3 0.802           0.852       0.937         0.3176 0.730   0.503
#> 4 4 0.856           0.869       0.940         0.1294 0.843   0.567
#> 5 5 0.729           0.702       0.846         0.0374 0.972   0.893
#> 6 6 0.696           0.527       0.746         0.0403 0.858   0.508

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000     0.9552 0.000 1.000
#> GSM40667     2  0.0000     0.9552 0.000 1.000
#> GSM40675     2  0.0000     0.9552 0.000 1.000
#> GSM40703     2  0.0000     0.9552 0.000 1.000
#> GSM40660     2  0.0000     0.9552 0.000 1.000
#> GSM40668     2  0.0000     0.9552 0.000 1.000
#> GSM40678     2  0.0000     0.9552 0.000 1.000
#> GSM40679     2  0.0000     0.9552 0.000 1.000
#> GSM40686     2  0.9993     0.0628 0.484 0.516
#> GSM40687     2  0.0000     0.9552 0.000 1.000
#> GSM40691     2  0.0000     0.9552 0.000 1.000
#> GSM40699     2  0.0000     0.9552 0.000 1.000
#> GSM40664     2  0.0000     0.9552 0.000 1.000
#> GSM40682     2  0.0000     0.9552 0.000 1.000
#> GSM40688     2  0.0000     0.9552 0.000 1.000
#> GSM40702     2  0.0000     0.9552 0.000 1.000
#> GSM40706     2  0.0000     0.9552 0.000 1.000
#> GSM40711     2  0.0000     0.9552 0.000 1.000
#> GSM40661     2  0.0000     0.9552 0.000 1.000
#> GSM40662     2  0.0000     0.9552 0.000 1.000
#> GSM40666     2  0.9710     0.3363 0.400 0.600
#> GSM40669     1  0.0376     0.9642 0.996 0.004
#> GSM40670     1  0.9286     0.4572 0.656 0.344
#> GSM40671     1  0.0000     0.9675 1.000 0.000
#> GSM40672     1  0.0000     0.9675 1.000 0.000
#> GSM40673     1  0.0000     0.9675 1.000 0.000
#> GSM40674     2  0.6973     0.7509 0.188 0.812
#> GSM40676     1  0.9129     0.5000 0.672 0.328
#> GSM40680     1  0.0000     0.9675 1.000 0.000
#> GSM40681     1  0.0000     0.9675 1.000 0.000
#> GSM40683     1  0.0000     0.9675 1.000 0.000
#> GSM40684     1  0.3114     0.9147 0.944 0.056
#> GSM40685     1  0.0000     0.9675 1.000 0.000
#> GSM40689     1  0.0000     0.9675 1.000 0.000
#> GSM40690     1  0.0000     0.9675 1.000 0.000
#> GSM40692     1  0.0000     0.9675 1.000 0.000
#> GSM40693     1  0.0000     0.9675 1.000 0.000
#> GSM40694     1  0.0000     0.9675 1.000 0.000
#> GSM40695     1  0.0000     0.9675 1.000 0.000
#> GSM40696     1  0.0000     0.9675 1.000 0.000
#> GSM40697     2  0.0000     0.9552 0.000 1.000
#> GSM40704     1  0.0000     0.9675 1.000 0.000
#> GSM40705     2  0.0000     0.9552 0.000 1.000
#> GSM40707     1  0.0000     0.9675 1.000 0.000
#> GSM40708     1  0.0000     0.9675 1.000 0.000
#> GSM40709     2  0.3879     0.8857 0.076 0.924
#> GSM40712     1  0.0000     0.9675 1.000 0.000
#> GSM40713     1  0.0000     0.9675 1.000 0.000
#> GSM40665     1  0.0000     0.9675 1.000 0.000
#> GSM40677     2  0.0000     0.9552 0.000 1.000
#> GSM40698     1  0.0000     0.9675 1.000 0.000
#> GSM40701     2  0.0000     0.9552 0.000 1.000
#> GSM40710     2  0.0000     0.9552 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000      0.907 0.000 0.000 1.000
#> GSM40667     3  0.0000      0.907 0.000 0.000 1.000
#> GSM40675     3  0.0000      0.907 0.000 0.000 1.000
#> GSM40703     3  0.0000      0.907 0.000 0.000 1.000
#> GSM40660     3  0.0000      0.907 0.000 0.000 1.000
#> GSM40668     3  0.0000      0.907 0.000 0.000 1.000
#> GSM40678     2  0.0000      0.884 0.000 1.000 0.000
#> GSM40679     2  0.0000      0.884 0.000 1.000 0.000
#> GSM40686     2  0.0000      0.884 0.000 1.000 0.000
#> GSM40687     2  0.0000      0.884 0.000 1.000 0.000
#> GSM40691     2  0.2448      0.844 0.000 0.924 0.076
#> GSM40699     2  0.6045      0.412 0.000 0.620 0.380
#> GSM40664     2  0.5678      0.545 0.000 0.684 0.316
#> GSM40682     2  0.0000      0.884 0.000 1.000 0.000
#> GSM40688     2  0.0000      0.884 0.000 1.000 0.000
#> GSM40702     2  0.1031      0.875 0.000 0.976 0.024
#> GSM40706     2  0.0000      0.884 0.000 1.000 0.000
#> GSM40711     3  0.0000      0.907 0.000 0.000 1.000
#> GSM40661     3  0.0000      0.907 0.000 0.000 1.000
#> GSM40662     3  0.6126      0.239 0.000 0.400 0.600
#> GSM40666     3  0.3619      0.819 0.136 0.000 0.864
#> GSM40669     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40670     1  0.6140      0.221 0.596 0.000 0.404
#> GSM40671     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40672     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40674     3  0.3412      0.830 0.124 0.000 0.876
#> GSM40676     3  0.5058      0.701 0.244 0.000 0.756
#> GSM40680     2  0.1289      0.870 0.032 0.968 0.000
#> GSM40681     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40683     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40684     3  0.5465      0.630 0.288 0.000 0.712
#> GSM40685     2  0.6154      0.357 0.408 0.592 0.000
#> GSM40689     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40690     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40692     2  0.5760      0.547 0.328 0.672 0.000
#> GSM40693     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40694     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40695     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40696     1  0.1031      0.951 0.976 0.024 0.000
#> GSM40697     2  0.3966      0.817 0.024 0.876 0.100
#> GSM40704     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40705     3  0.0000      0.907 0.000 0.000 1.000
#> GSM40707     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40708     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40709     3  0.0424      0.903 0.008 0.000 0.992
#> GSM40712     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40713     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40665     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40677     2  0.0000      0.884 0.000 1.000 0.000
#> GSM40698     1  0.0000      0.975 1.000 0.000 0.000
#> GSM40701     3  0.0000      0.907 0.000 0.000 1.000
#> GSM40710     2  0.0000      0.884 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40667     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40675     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40703     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40660     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40668     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40678     2  0.0000      0.923 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000      0.923 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0000      0.923 0.000 1.000 0.000 0.000
#> GSM40687     2  0.0000      0.923 0.000 1.000 0.000 0.000
#> GSM40691     2  0.5535      0.552 0.040 0.656 0.304 0.000
#> GSM40699     2  0.3907      0.704 0.000 0.768 0.232 0.000
#> GSM40664     2  0.4990      0.498 0.008 0.640 0.000 0.352
#> GSM40682     2  0.0000      0.923 0.000 1.000 0.000 0.000
#> GSM40688     2  0.0592      0.914 0.016 0.984 0.000 0.000
#> GSM40702     2  0.0000      0.923 0.000 1.000 0.000 0.000
#> GSM40706     2  0.0000      0.923 0.000 1.000 0.000 0.000
#> GSM40711     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40661     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40662     3  0.2611      0.881 0.096 0.008 0.896 0.000
#> GSM40666     3  0.0469      0.978 0.012 0.000 0.988 0.000
#> GSM40669     1  0.0000      0.892 1.000 0.000 0.000 0.000
#> GSM40670     1  0.2408      0.828 0.896 0.000 0.104 0.000
#> GSM40671     4  0.1022      0.914 0.032 0.000 0.000 0.968
#> GSM40672     1  0.0188      0.893 0.996 0.000 0.000 0.004
#> GSM40673     1  0.1637      0.873 0.940 0.000 0.000 0.060
#> GSM40674     1  0.4761      0.422 0.628 0.000 0.372 0.000
#> GSM40676     4  0.0592      0.915 0.000 0.000 0.016 0.984
#> GSM40680     2  0.0188      0.921 0.000 0.996 0.000 0.004
#> GSM40681     4  0.5833      0.106 0.440 0.032 0.000 0.528
#> GSM40683     1  0.2216      0.852 0.908 0.000 0.000 0.092
#> GSM40684     4  0.0592      0.915 0.000 0.000 0.016 0.984
#> GSM40685     1  0.3219      0.766 0.836 0.164 0.000 0.000
#> GSM40689     4  0.1302      0.905 0.044 0.000 0.000 0.956
#> GSM40690     1  0.0817      0.889 0.976 0.000 0.000 0.024
#> GSM40692     2  0.1940      0.870 0.000 0.924 0.000 0.076
#> GSM40693     1  0.0188      0.893 0.996 0.000 0.000 0.004
#> GSM40694     1  0.0336      0.893 0.992 0.000 0.000 0.008
#> GSM40695     1  0.3356      0.771 0.824 0.000 0.000 0.176
#> GSM40696     1  0.0336      0.890 0.992 0.000 0.000 0.008
#> GSM40697     1  0.2773      0.840 0.900 0.028 0.072 0.000
#> GSM40704     1  0.0336      0.893 0.992 0.000 0.000 0.008
#> GSM40705     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40707     4  0.0336      0.922 0.008 0.000 0.000 0.992
#> GSM40708     4  0.0336      0.922 0.008 0.000 0.000 0.992
#> GSM40709     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40712     1  0.0524      0.893 0.988 0.004 0.000 0.008
#> GSM40713     1  0.4250      0.626 0.724 0.000 0.000 0.276
#> GSM40665     4  0.0336      0.922 0.008 0.000 0.000 0.992
#> GSM40677     2  0.0000      0.923 0.000 1.000 0.000 0.000
#> GSM40698     4  0.1059      0.916 0.012 0.016 0.000 0.972
#> GSM40701     3  0.0000      0.989 0.000 0.000 1.000 0.000
#> GSM40710     2  0.0000      0.923 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0000     0.9376 0.000 0.000 1.000 0.000 0.000
#> GSM40667     3  0.0000     0.9376 0.000 0.000 1.000 0.000 0.000
#> GSM40675     3  0.0000     0.9376 0.000 0.000 1.000 0.000 0.000
#> GSM40703     3  0.0000     0.9376 0.000 0.000 1.000 0.000 0.000
#> GSM40660     3  0.2338     0.8550 0.000 0.004 0.884 0.112 0.000
#> GSM40668     3  0.0000     0.9376 0.000 0.000 1.000 0.000 0.000
#> GSM40678     2  0.0162     0.7793 0.000 0.996 0.000 0.004 0.000
#> GSM40679     2  0.1732     0.7591 0.000 0.920 0.000 0.080 0.000
#> GSM40686     2  0.0880     0.7744 0.000 0.968 0.000 0.032 0.000
#> GSM40687     2  0.0880     0.7744 0.000 0.968 0.000 0.032 0.000
#> GSM40691     2  0.6672     0.2179 0.000 0.552 0.288 0.116 0.044
#> GSM40699     2  0.6067     0.2179 0.000 0.560 0.276 0.164 0.000
#> GSM40664     4  0.5608     0.0000 0.172 0.188 0.000 0.640 0.000
#> GSM40682     2  0.3563     0.6347 0.012 0.780 0.000 0.208 0.000
#> GSM40688     2  0.3264     0.6906 0.000 0.820 0.000 0.164 0.016
#> GSM40702     2  0.0404     0.7796 0.000 0.988 0.000 0.012 0.000
#> GSM40706     2  0.0404     0.7784 0.000 0.988 0.000 0.012 0.000
#> GSM40711     3  0.0162     0.9361 0.000 0.000 0.996 0.004 0.000
#> GSM40661     3  0.2770     0.8309 0.008 0.004 0.864 0.124 0.000
#> GSM40662     3  0.5584     0.3794 0.000 0.012 0.592 0.060 0.336
#> GSM40666     3  0.0162     0.9347 0.000 0.000 0.996 0.000 0.004
#> GSM40669     5  0.0932     0.7510 0.004 0.000 0.004 0.020 0.972
#> GSM40670     5  0.3160     0.6394 0.000 0.000 0.188 0.004 0.808
#> GSM40671     1  0.3760     0.7833 0.784 0.000 0.000 0.188 0.028
#> GSM40672     5  0.1628     0.7547 0.056 0.000 0.000 0.008 0.936
#> GSM40673     5  0.3934     0.6779 0.276 0.000 0.000 0.008 0.716
#> GSM40674     5  0.4305     0.0897 0.000 0.000 0.488 0.000 0.512
#> GSM40676     1  0.2966     0.7903 0.816 0.000 0.000 0.184 0.000
#> GSM40680     2  0.4780     0.3705 0.016 0.660 0.000 0.308 0.016
#> GSM40681     5  0.7008     0.4536 0.292 0.104 0.000 0.076 0.528
#> GSM40683     5  0.3809     0.6918 0.256 0.000 0.000 0.008 0.736
#> GSM40684     1  0.1300     0.7930 0.956 0.000 0.028 0.016 0.000
#> GSM40685     5  0.5753     0.2350 0.004 0.360 0.000 0.084 0.552
#> GSM40689     1  0.1357     0.7588 0.948 0.000 0.000 0.004 0.048
#> GSM40690     5  0.4972     0.6486 0.260 0.000 0.000 0.068 0.672
#> GSM40692     2  0.2757     0.7230 0.072 0.888 0.000 0.032 0.008
#> GSM40693     5  0.0880     0.7487 0.000 0.000 0.000 0.032 0.968
#> GSM40694     5  0.1251     0.7514 0.008 0.000 0.000 0.036 0.956
#> GSM40695     5  0.3530     0.7170 0.204 0.000 0.000 0.012 0.784
#> GSM40696     5  0.1270     0.7441 0.000 0.000 0.000 0.052 0.948
#> GSM40697     5  0.3947     0.6860 0.000 0.068 0.052 0.048 0.832
#> GSM40704     5  0.2583     0.7437 0.132 0.000 0.000 0.004 0.864
#> GSM40705     3  0.0000     0.9376 0.000 0.000 1.000 0.000 0.000
#> GSM40707     1  0.3720     0.7659 0.760 0.000 0.000 0.228 0.012
#> GSM40708     1  0.3783     0.7458 0.740 0.000 0.000 0.252 0.008
#> GSM40709     3  0.0000     0.9376 0.000 0.000 1.000 0.000 0.000
#> GSM40712     5  0.1809     0.7472 0.012 0.000 0.000 0.060 0.928
#> GSM40713     5  0.5543     0.5367 0.224 0.000 0.000 0.136 0.640
#> GSM40665     1  0.1043     0.7867 0.960 0.000 0.000 0.040 0.000
#> GSM40677     2  0.3163     0.6994 0.000 0.824 0.000 0.164 0.012
#> GSM40698     1  0.2381     0.7611 0.908 0.052 0.000 0.036 0.004
#> GSM40701     3  0.0404     0.9320 0.000 0.000 0.988 0.012 0.000
#> GSM40710     2  0.0880     0.7744 0.000 0.968 0.000 0.032 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000     0.8938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000     0.8938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000     0.8938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000     0.8938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     3  0.1838     0.8460 0.000 0.000 0.916 0.068 0.016 0.000
#> GSM40668     3  0.0000     0.8938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40678     2  0.1720     0.6687 0.000 0.928 0.000 0.040 0.032 0.000
#> GSM40679     2  0.2703     0.6359 0.000 0.824 0.000 0.172 0.004 0.000
#> GSM40686     2  0.0146     0.6687 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM40687     2  0.1074     0.6665 0.000 0.960 0.000 0.012 0.028 0.000
#> GSM40691     3  0.7672    -0.2589 0.000 0.244 0.308 0.248 0.200 0.000
#> GSM40699     2  0.5961     0.2897 0.000 0.524 0.284 0.176 0.016 0.000
#> GSM40664     4  0.4452     0.0000 0.032 0.024 0.000 0.696 0.000 0.248
#> GSM40682     2  0.3925     0.5355 0.004 0.700 0.000 0.280 0.004 0.012
#> GSM40688     2  0.5418     0.3705 0.000 0.508 0.000 0.368 0.124 0.000
#> GSM40702     2  0.1285     0.6703 0.000 0.944 0.000 0.052 0.004 0.000
#> GSM40706     2  0.1723     0.6653 0.004 0.932 0.004 0.048 0.012 0.000
#> GSM40711     3  0.0000     0.8938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40661     3  0.2870     0.7852 0.004 0.004 0.860 0.100 0.000 0.032
#> GSM40662     5  0.5144     0.4527 0.040 0.008 0.236 0.032 0.676 0.008
#> GSM40666     3  0.1387     0.8426 0.068 0.000 0.932 0.000 0.000 0.000
#> GSM40669     5  0.3578     0.6520 0.340 0.000 0.000 0.000 0.660 0.000
#> GSM40670     5  0.5851     0.4527 0.220 0.000 0.304 0.000 0.476 0.000
#> GSM40671     6  0.3490     0.4850 0.268 0.000 0.000 0.000 0.008 0.724
#> GSM40672     1  0.3737    -0.0569 0.608 0.000 0.000 0.000 0.392 0.000
#> GSM40673     1  0.0458     0.6121 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM40674     3  0.4270     0.5810 0.156 0.000 0.740 0.004 0.100 0.000
#> GSM40676     6  0.2910     0.4971 0.080 0.000 0.000 0.068 0.000 0.852
#> GSM40680     2  0.6916     0.0182 0.008 0.392 0.000 0.036 0.288 0.276
#> GSM40681     1  0.5461     0.4386 0.692 0.108 0.000 0.048 0.136 0.016
#> GSM40683     1  0.1584     0.6051 0.928 0.000 0.000 0.000 0.064 0.008
#> GSM40684     6  0.5069     0.4389 0.376 0.000 0.020 0.044 0.000 0.560
#> GSM40685     2  0.5945     0.3077 0.036 0.532 0.000 0.072 0.348 0.012
#> GSM40689     1  0.4151     0.0749 0.684 0.000 0.000 0.040 0.000 0.276
#> GSM40690     1  0.3019     0.5646 0.860 0.000 0.000 0.080 0.036 0.024
#> GSM40692     2  0.7241     0.1913 0.008 0.412 0.000 0.096 0.308 0.176
#> GSM40693     5  0.3482     0.6713 0.316 0.000 0.000 0.000 0.684 0.000
#> GSM40694     5  0.4271     0.6615 0.304 0.000 0.000 0.020 0.664 0.012
#> GSM40695     1  0.3794     0.4609 0.744 0.000 0.000 0.000 0.216 0.040
#> GSM40696     5  0.3756     0.6741 0.268 0.000 0.000 0.020 0.712 0.000
#> GSM40697     5  0.6602     0.3447 0.064 0.156 0.052 0.124 0.604 0.000
#> GSM40704     1  0.3050     0.4173 0.764 0.000 0.000 0.000 0.236 0.000
#> GSM40705     3  0.0000     0.8938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40707     6  0.1812     0.5249 0.080 0.000 0.000 0.008 0.000 0.912
#> GSM40708     6  0.0725     0.4683 0.012 0.000 0.000 0.012 0.000 0.976
#> GSM40709     3  0.0000     0.8938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40712     5  0.3766     0.6372 0.304 0.000 0.000 0.000 0.684 0.012
#> GSM40713     6  0.6143     0.1264 0.308 0.000 0.000 0.016 0.196 0.480
#> GSM40665     6  0.5240     0.4022 0.348 0.000 0.000 0.108 0.000 0.544
#> GSM40677     2  0.5997     0.2901 0.004 0.468 0.000 0.224 0.304 0.000
#> GSM40698     1  0.6539    -0.1498 0.528 0.032 0.000 0.112 0.036 0.292
#> GSM40701     3  0.0000     0.8938 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40710     2  0.1442     0.6553 0.004 0.944 0.000 0.040 0.012 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> SD:NMF 50         5.44e-05 2
#> SD:NMF 49         1.95e-04 3
#> SD:NMF 50         5.28e-05 4
#> SD:NMF 45         8.26e-05 5
#> SD:NMF 30         8.30e-02 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.389           0.876       0.904         0.4634 0.495   0.495
#> 3 3 0.462           0.785       0.882         0.3201 0.878   0.754
#> 4 4 0.505           0.697       0.780         0.1353 0.929   0.809
#> 5 5 0.551           0.749       0.766         0.1038 0.896   0.656
#> 6 6 0.736           0.785       0.830         0.0637 0.948   0.753

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      0.889 0.000 1.000
#> GSM40667     2  0.0000      0.889 0.000 1.000
#> GSM40675     2  0.0000      0.889 0.000 1.000
#> GSM40703     2  0.0000      0.889 0.000 1.000
#> GSM40660     2  0.2778      0.919 0.048 0.952
#> GSM40668     2  0.0000      0.889 0.000 1.000
#> GSM40678     2  0.4690      0.937 0.100 0.900
#> GSM40679     2  0.4815      0.935 0.104 0.896
#> GSM40686     2  0.4690      0.937 0.100 0.900
#> GSM40687     2  0.4690      0.937 0.100 0.900
#> GSM40691     2  0.4690      0.937 0.100 0.900
#> GSM40699     2  0.4690      0.937 0.100 0.900
#> GSM40664     2  0.4939      0.932 0.108 0.892
#> GSM40682     2  0.4815      0.935 0.104 0.896
#> GSM40688     2  0.4939      0.934 0.108 0.892
#> GSM40702     2  0.4690      0.937 0.100 0.900
#> GSM40706     2  0.2778      0.918 0.048 0.952
#> GSM40711     2  0.3114      0.921 0.056 0.944
#> GSM40661     2  0.4690      0.934 0.100 0.900
#> GSM40662     2  0.8763      0.652 0.296 0.704
#> GSM40666     2  0.5178      0.925 0.116 0.884
#> GSM40669     1  0.7528      0.794 0.784 0.216
#> GSM40670     1  0.7528      0.794 0.784 0.216
#> GSM40671     1  0.0000      0.890 1.000 0.000
#> GSM40672     1  0.0000      0.890 1.000 0.000
#> GSM40673     1  0.0000      0.890 1.000 0.000
#> GSM40674     1  0.7453      0.799 0.788 0.212
#> GSM40676     2  0.8443      0.751 0.272 0.728
#> GSM40680     1  0.8207      0.735 0.744 0.256
#> GSM40681     1  0.5519      0.865 0.872 0.128
#> GSM40683     1  0.0000      0.890 1.000 0.000
#> GSM40684     2  0.8443      0.751 0.272 0.728
#> GSM40685     1  0.6247      0.850 0.844 0.156
#> GSM40689     1  0.0000      0.890 1.000 0.000
#> GSM40690     1  0.1184      0.891 0.984 0.016
#> GSM40692     1  0.9522      0.481 0.628 0.372
#> GSM40693     1  0.2948      0.889 0.948 0.052
#> GSM40694     1  0.7219      0.809 0.800 0.200
#> GSM40695     1  0.0000      0.890 1.000 0.000
#> GSM40696     1  0.2948      0.889 0.948 0.052
#> GSM40697     2  0.5059      0.932 0.112 0.888
#> GSM40704     1  0.0000      0.890 1.000 0.000
#> GSM40705     2  0.4562      0.933 0.096 0.904
#> GSM40707     1  0.0000      0.890 1.000 0.000
#> GSM40708     1  0.0376      0.890 0.996 0.004
#> GSM40709     2  0.5294      0.923 0.120 0.880
#> GSM40712     1  0.6801      0.830 0.820 0.180
#> GSM40713     1  0.0000      0.890 1.000 0.000
#> GSM40665     1  0.4298      0.881 0.912 0.088
#> GSM40677     2  0.4690      0.937 0.100 0.900
#> GSM40698     1  0.5294      0.869 0.880 0.120
#> GSM40701     2  0.2603      0.917 0.044 0.956
#> GSM40710     2  0.4690      0.937 0.100 0.900

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000     0.8748 0.000 0.000 1.000
#> GSM40667     3  0.0000     0.8748 0.000 0.000 1.000
#> GSM40675     3  0.0000     0.8748 0.000 0.000 1.000
#> GSM40703     3  0.0000     0.8748 0.000 0.000 1.000
#> GSM40660     3  0.3826     0.7930 0.008 0.124 0.868
#> GSM40668     3  0.0000     0.8748 0.000 0.000 1.000
#> GSM40678     2  0.0000     0.8835 0.000 1.000 0.000
#> GSM40679     2  0.0237     0.8829 0.004 0.996 0.000
#> GSM40686     2  0.0000     0.8835 0.000 1.000 0.000
#> GSM40687     2  0.0000     0.8835 0.000 1.000 0.000
#> GSM40691     2  0.0000     0.8835 0.000 1.000 0.000
#> GSM40699     2  0.0000     0.8835 0.000 1.000 0.000
#> GSM40664     2  0.4209     0.8240 0.020 0.860 0.120
#> GSM40682     2  0.0237     0.8829 0.004 0.996 0.000
#> GSM40688     2  0.0424     0.8817 0.008 0.992 0.000
#> GSM40702     2  0.0000     0.8835 0.000 1.000 0.000
#> GSM40706     2  0.3755     0.8162 0.008 0.872 0.120
#> GSM40711     3  0.6819    -0.0903 0.012 0.476 0.512
#> GSM40661     2  0.4195     0.8147 0.012 0.852 0.136
#> GSM40662     2  0.5891     0.6576 0.200 0.764 0.036
#> GSM40666     2  0.5467     0.7710 0.032 0.792 0.176
#> GSM40669     1  0.5873     0.7072 0.684 0.312 0.004
#> GSM40670     1  0.5873     0.7072 0.684 0.312 0.004
#> GSM40671     1  0.0237     0.8313 0.996 0.004 0.000
#> GSM40672     1  0.0000     0.8303 1.000 0.000 0.000
#> GSM40673     1  0.0000     0.8303 1.000 0.000 0.000
#> GSM40674     1  0.5845     0.7125 0.688 0.308 0.004
#> GSM40676     2  0.7816     0.6406 0.200 0.668 0.132
#> GSM40680     1  0.5882     0.6545 0.652 0.348 0.000
#> GSM40681     1  0.4002     0.8217 0.840 0.160 0.000
#> GSM40683     1  0.0000     0.8303 1.000 0.000 0.000
#> GSM40684     2  0.7816     0.6406 0.200 0.668 0.132
#> GSM40685     1  0.5178     0.7704 0.744 0.256 0.000
#> GSM40689     1  0.0000     0.8303 1.000 0.000 0.000
#> GSM40690     1  0.1163     0.8343 0.972 0.028 0.000
#> GSM40692     1  0.6295     0.3909 0.528 0.472 0.000
#> GSM40693     1  0.3879     0.8251 0.848 0.152 0.000
#> GSM40694     1  0.5560     0.7225 0.700 0.300 0.000
#> GSM40695     1  0.0000     0.8303 1.000 0.000 0.000
#> GSM40696     1  0.3879     0.8251 0.848 0.152 0.000
#> GSM40697     2  0.0592     0.8797 0.012 0.988 0.000
#> GSM40704     1  0.0000     0.8303 1.000 0.000 0.000
#> GSM40705     2  0.6473     0.5363 0.016 0.652 0.332
#> GSM40707     1  0.0000     0.8303 1.000 0.000 0.000
#> GSM40708     1  0.0237     0.8315 0.996 0.004 0.000
#> GSM40709     2  0.5412     0.7751 0.032 0.796 0.172
#> GSM40712     1  0.5588     0.7460 0.720 0.276 0.004
#> GSM40713     1  0.0237     0.8313 0.996 0.004 0.000
#> GSM40665     1  0.3267     0.8337 0.884 0.116 0.000
#> GSM40677     2  0.0000     0.8835 0.000 1.000 0.000
#> GSM40698     1  0.3941     0.8244 0.844 0.156 0.000
#> GSM40701     3  0.3851     0.7990 0.004 0.136 0.860
#> GSM40710     2  0.0000     0.8835 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.0000     0.8552 0.000 0.000 0.000 1.000
#> GSM40667     4  0.0000     0.8552 0.000 0.000 0.000 1.000
#> GSM40675     4  0.0000     0.8552 0.000 0.000 0.000 1.000
#> GSM40703     4  0.0000     0.8552 0.000 0.000 0.000 1.000
#> GSM40660     4  0.3966     0.7352 0.000 0.072 0.088 0.840
#> GSM40668     4  0.0000     0.8552 0.000 0.000 0.000 1.000
#> GSM40678     2  0.0188     0.7616 0.000 0.996 0.004 0.000
#> GSM40679     2  0.0188     0.7610 0.004 0.996 0.000 0.000
#> GSM40686     2  0.4304     0.6459 0.000 0.716 0.284 0.000
#> GSM40687     2  0.4277     0.6466 0.000 0.720 0.280 0.000
#> GSM40691     2  0.0188     0.7616 0.000 0.996 0.004 0.000
#> GSM40699     2  0.0188     0.7616 0.000 0.996 0.004 0.000
#> GSM40664     3  0.6278     0.7544 0.004 0.424 0.524 0.048
#> GSM40682     2  0.0188     0.7610 0.004 0.996 0.000 0.000
#> GSM40688     2  0.1022     0.7484 0.000 0.968 0.032 0.000
#> GSM40702     2  0.0000     0.7619 0.000 1.000 0.000 0.000
#> GSM40706     2  0.4857     0.1812 0.000 0.668 0.324 0.008
#> GSM40711     4  0.7566    -0.2459 0.000 0.212 0.320 0.468
#> GSM40661     3  0.6354     0.7711 0.000 0.416 0.520 0.064
#> GSM40662     2  0.7473    -0.0633 0.180 0.580 0.220 0.020
#> GSM40666     3  0.6982     0.8070 0.004 0.380 0.512 0.104
#> GSM40669     1  0.7282     0.6496 0.560 0.200 0.236 0.004
#> GSM40670     1  0.7282     0.6496 0.560 0.200 0.236 0.004
#> GSM40671     1  0.0707     0.7815 0.980 0.000 0.020 0.000
#> GSM40672     1  0.0000     0.7799 1.000 0.000 0.000 0.000
#> GSM40673     1  0.0000     0.7799 1.000 0.000 0.000 0.000
#> GSM40674     1  0.7200     0.6538 0.572 0.196 0.228 0.004
#> GSM40676     3  0.8480     0.7335 0.160 0.300 0.480 0.060
#> GSM40680     1  0.7269     0.6118 0.536 0.264 0.200 0.000
#> GSM40681     1  0.5599     0.7531 0.700 0.072 0.228 0.000
#> GSM40683     1  0.0000     0.7799 1.000 0.000 0.000 0.000
#> GSM40684     3  0.8480     0.7335 0.160 0.300 0.480 0.060
#> GSM40685     1  0.6886     0.7007 0.596 0.200 0.204 0.000
#> GSM40689     1  0.0188     0.7799 0.996 0.000 0.004 0.000
#> GSM40690     1  0.2060     0.7852 0.932 0.016 0.052 0.000
#> GSM40692     1  0.6831     0.3998 0.480 0.420 0.100 0.000
#> GSM40693     1  0.5361     0.7635 0.744 0.108 0.148 0.000
#> GSM40694     1  0.7135     0.6662 0.560 0.200 0.240 0.000
#> GSM40695     1  0.0000     0.7799 1.000 0.000 0.000 0.000
#> GSM40696     1  0.5361     0.7635 0.744 0.108 0.148 0.000
#> GSM40697     2  0.1305     0.7417 0.004 0.960 0.036 0.000
#> GSM40704     1  0.0592     0.7825 0.984 0.000 0.016 0.000
#> GSM40705     3  0.7782     0.6680 0.000 0.312 0.424 0.264
#> GSM40707     1  0.0592     0.7778 0.984 0.000 0.016 0.000
#> GSM40708     1  0.0817     0.7792 0.976 0.000 0.024 0.000
#> GSM40709     3  0.6944     0.8058 0.004 0.384 0.512 0.100
#> GSM40712     1  0.7119     0.6808 0.576 0.168 0.252 0.004
#> GSM40713     1  0.0707     0.7815 0.980 0.000 0.020 0.000
#> GSM40665     1  0.5031     0.7638 0.740 0.048 0.212 0.000
#> GSM40677     2  0.4304     0.6459 0.000 0.716 0.284 0.000
#> GSM40698     1  0.5528     0.7528 0.700 0.064 0.236 0.000
#> GSM40701     4  0.3441     0.7532 0.000 0.120 0.024 0.856
#> GSM40710     2  0.4304     0.6459 0.000 0.716 0.284 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0000     0.8576 0.000 0.000 1.000 0.000 0.000
#> GSM40667     3  0.0000     0.8576 0.000 0.000 1.000 0.000 0.000
#> GSM40675     3  0.0000     0.8576 0.000 0.000 1.000 0.000 0.000
#> GSM40703     3  0.0000     0.8576 0.000 0.000 1.000 0.000 0.000
#> GSM40660     3  0.3720     0.7397 0.000 0.020 0.836 0.096 0.048
#> GSM40668     3  0.0000     0.8576 0.000 0.000 1.000 0.000 0.000
#> GSM40678     2  0.1357     0.7757 0.000 0.948 0.000 0.004 0.048
#> GSM40679     2  0.1341     0.7755 0.000 0.944 0.000 0.000 0.056
#> GSM40686     2  0.4820     0.6459 0.000 0.696 0.000 0.236 0.068
#> GSM40687     2  0.4589     0.6574 0.000 0.724 0.000 0.212 0.064
#> GSM40691     2  0.1357     0.7757 0.000 0.948 0.000 0.004 0.048
#> GSM40699     2  0.1357     0.7757 0.000 0.948 0.000 0.004 0.048
#> GSM40664     4  0.5703     0.8337 0.000 0.244 0.000 0.616 0.140
#> GSM40682     2  0.1341     0.7755 0.000 0.944 0.000 0.000 0.056
#> GSM40688     2  0.2233     0.7607 0.000 0.904 0.000 0.016 0.080
#> GSM40702     2  0.1270     0.7761 0.000 0.948 0.000 0.000 0.052
#> GSM40706     2  0.5841     0.4056 0.000 0.608 0.000 0.212 0.180
#> GSM40711     3  0.7407    -0.3036 0.000 0.100 0.424 0.376 0.100
#> GSM40661     4  0.5910     0.8440 0.000 0.236 0.012 0.624 0.128
#> GSM40662     2  0.7549    -0.0928 0.024 0.440 0.020 0.200 0.316
#> GSM40666     4  0.6744     0.8565 0.000 0.204 0.052 0.584 0.160
#> GSM40669     5  0.5627     0.8027 0.160 0.072 0.000 0.064 0.704
#> GSM40670     5  0.5627     0.8027 0.160 0.072 0.000 0.064 0.704
#> GSM40671     1  0.1753     0.9171 0.936 0.000 0.000 0.032 0.032
#> GSM40672     1  0.0000     0.9207 1.000 0.000 0.000 0.000 0.000
#> GSM40673     1  0.0000     0.9207 1.000 0.000 0.000 0.000 0.000
#> GSM40674     5  0.5722     0.7996 0.164 0.068 0.000 0.072 0.696
#> GSM40676     4  0.7032     0.8042 0.096 0.172 0.008 0.600 0.124
#> GSM40680     5  0.5492     0.7642 0.136 0.168 0.000 0.012 0.684
#> GSM40681     5  0.4839     0.7398 0.304 0.012 0.000 0.024 0.660
#> GSM40683     1  0.0000     0.9207 1.000 0.000 0.000 0.000 0.000
#> GSM40684     4  0.7032     0.8042 0.096 0.172 0.008 0.600 0.124
#> GSM40685     5  0.4979     0.8034 0.152 0.112 0.000 0.008 0.728
#> GSM40689     1  0.1117     0.9217 0.964 0.000 0.000 0.020 0.016
#> GSM40690     1  0.3074     0.6622 0.804 0.000 0.000 0.000 0.196
#> GSM40692     5  0.5819     0.5145 0.096 0.336 0.000 0.004 0.564
#> GSM40693     5  0.4944     0.7201 0.344 0.032 0.000 0.004 0.620
#> GSM40694     5  0.4883     0.8114 0.152 0.104 0.000 0.008 0.736
#> GSM40695     1  0.0404     0.9196 0.988 0.000 0.000 0.000 0.012
#> GSM40696     5  0.4944     0.7201 0.344 0.032 0.000 0.004 0.620
#> GSM40697     2  0.2452     0.7549 0.004 0.896 0.000 0.016 0.084
#> GSM40704     1  0.1851     0.8548 0.912 0.000 0.000 0.000 0.088
#> GSM40705     4  0.7728     0.6842 0.000 0.160 0.220 0.488 0.132
#> GSM40707     1  0.2588     0.8770 0.892 0.000 0.000 0.060 0.048
#> GSM40708     1  0.2729     0.8715 0.884 0.000 0.000 0.060 0.056
#> GSM40709     4  0.6714     0.8561 0.000 0.204 0.048 0.584 0.164
#> GSM40712     5  0.5154     0.8192 0.164 0.064 0.000 0.040 0.732
#> GSM40713     1  0.1753     0.9171 0.936 0.000 0.000 0.032 0.032
#> GSM40665     5  0.4677     0.6971 0.300 0.000 0.000 0.036 0.664
#> GSM40677     2  0.4847     0.6435 0.000 0.692 0.000 0.240 0.068
#> GSM40698     5  0.4527     0.7490 0.272 0.004 0.000 0.028 0.696
#> GSM40701     3  0.3424     0.7634 0.000 0.096 0.852 0.028 0.024
#> GSM40710     2  0.4847     0.6435 0.000 0.692 0.000 0.240 0.068

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000     0.9406 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000     0.9406 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000     0.9406 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000     0.9406 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     3  0.2669     0.7827 0.000 0.008 0.836 0.156 0.000 0.000
#> GSM40668     3  0.0000     0.9406 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40678     2  0.1536     0.8388 0.000 0.940 0.000 0.004 0.040 0.016
#> GSM40679     2  0.1429     0.8465 0.000 0.940 0.000 0.004 0.052 0.004
#> GSM40686     6  0.4569     0.9470 0.000 0.456 0.000 0.016 0.012 0.516
#> GSM40687     6  0.4126     0.9339 0.000 0.480 0.000 0.004 0.004 0.512
#> GSM40691     2  0.1536     0.8388 0.000 0.940 0.000 0.004 0.040 0.016
#> GSM40699     2  0.1536     0.8388 0.000 0.940 0.000 0.004 0.040 0.016
#> GSM40664     4  0.2816     0.7607 0.000 0.028 0.000 0.876 0.036 0.060
#> GSM40682     2  0.1429     0.8465 0.000 0.940 0.000 0.004 0.052 0.004
#> GSM40688     2  0.1838     0.8247 0.000 0.916 0.000 0.000 0.068 0.016
#> GSM40702     2  0.1398     0.8438 0.000 0.940 0.000 0.000 0.052 0.008
#> GSM40706     2  0.4321     0.2296 0.000 0.580 0.000 0.012 0.008 0.400
#> GSM40711     4  0.4774     0.2695 0.000 0.000 0.420 0.528 0.052 0.000
#> GSM40661     4  0.2862     0.7678 0.000 0.020 0.012 0.880 0.028 0.060
#> GSM40662     4  0.6742     0.0709 0.000 0.284 0.016 0.376 0.312 0.012
#> GSM40666     4  0.2796     0.7748 0.000 0.012 0.048 0.872 0.068 0.000
#> GSM40669     5  0.2100     0.7994 0.000 0.004 0.000 0.112 0.884 0.000
#> GSM40670     5  0.2100     0.7994 0.000 0.004 0.000 0.112 0.884 0.000
#> GSM40671     1  0.2918     0.8720 0.864 0.000 0.000 0.032 0.084 0.020
#> GSM40672     1  0.0914     0.8805 0.968 0.000 0.000 0.000 0.016 0.016
#> GSM40673     1  0.0914     0.8805 0.968 0.000 0.000 0.000 0.016 0.016
#> GSM40674     5  0.2048     0.7954 0.000 0.000 0.000 0.120 0.880 0.000
#> GSM40676     4  0.2733     0.7381 0.024 0.008 0.004 0.892 0.028 0.044
#> GSM40680     5  0.3414     0.7765 0.012 0.116 0.000 0.024 0.832 0.016
#> GSM40681     5  0.3867     0.7338 0.192 0.000 0.000 0.040 0.760 0.008
#> GSM40683     1  0.0914     0.8805 0.968 0.000 0.000 0.000 0.016 0.016
#> GSM40684     4  0.2733     0.7381 0.024 0.008 0.004 0.892 0.028 0.044
#> GSM40685     5  0.2157     0.8015 0.004 0.076 0.000 0.008 0.904 0.008
#> GSM40689     1  0.2071     0.8822 0.916 0.000 0.000 0.028 0.044 0.012
#> GSM40690     1  0.3852     0.6426 0.720 0.000 0.000 0.008 0.256 0.016
#> GSM40692     5  0.4185     0.5663 0.004 0.292 0.000 0.012 0.680 0.012
#> GSM40693     5  0.3203     0.7587 0.160 0.004 0.000 0.000 0.812 0.024
#> GSM40694     5  0.2319     0.8108 0.008 0.060 0.000 0.020 0.904 0.008
#> GSM40695     1  0.0937     0.8823 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM40696     5  0.3203     0.7587 0.160 0.004 0.000 0.000 0.812 0.024
#> GSM40697     2  0.1951     0.8142 0.000 0.908 0.000 0.000 0.076 0.016
#> GSM40704     1  0.2932     0.7962 0.820 0.000 0.000 0.000 0.164 0.016
#> GSM40705     4  0.4226     0.6549 0.000 0.008 0.216 0.724 0.052 0.000
#> GSM40707     1  0.3849     0.7983 0.804 0.000 0.000 0.104 0.032 0.060
#> GSM40708     1  0.3942     0.7955 0.800 0.000 0.000 0.100 0.040 0.060
#> GSM40709     4  0.2731     0.7753 0.000 0.012 0.044 0.876 0.068 0.000
#> GSM40712     5  0.1826     0.8135 0.000 0.020 0.000 0.052 0.924 0.004
#> GSM40713     1  0.2969     0.8703 0.860 0.000 0.000 0.032 0.088 0.020
#> GSM40665     5  0.4108     0.6795 0.184 0.000 0.000 0.060 0.748 0.008
#> GSM40677     6  0.4475     0.9615 0.000 0.448 0.000 0.016 0.008 0.528
#> GSM40698     5  0.3874     0.7239 0.156 0.000 0.000 0.060 0.776 0.008
#> GSM40701     3  0.3092     0.8240 0.000 0.088 0.852 0.044 0.016 0.000
#> GSM40710     6  0.4374     0.9618 0.000 0.448 0.000 0.016 0.004 0.532

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:hclust 52         1.77e-04 2
#> CV:hclust 51         1.74e-07 3
#> CV:hclust 49         6.26e-08 4
#> CV:hclust 50         5.75e-07 5
#> CV:hclust 50         5.34e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.504           0.837       0.911         0.4904 0.491   0.491
#> 3 3 0.757           0.859       0.926         0.3323 0.739   0.517
#> 4 4 0.606           0.615       0.801         0.1332 0.819   0.517
#> 5 5 0.691           0.614       0.779         0.0707 0.902   0.648
#> 6 6 0.718           0.658       0.746         0.0425 0.908   0.619

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.2423      0.891 0.040 0.960
#> GSM40667     2  0.2423      0.891 0.040 0.960
#> GSM40675     2  0.2423      0.891 0.040 0.960
#> GSM40703     2  0.2423      0.891 0.040 0.960
#> GSM40660     2  0.2423      0.891 0.040 0.960
#> GSM40668     2  0.2423      0.891 0.040 0.960
#> GSM40678     2  0.4298      0.889 0.088 0.912
#> GSM40679     2  0.4815      0.884 0.104 0.896
#> GSM40686     2  0.7219      0.813 0.200 0.800
#> GSM40687     2  0.4298      0.889 0.088 0.912
#> GSM40691     2  0.4298      0.889 0.088 0.912
#> GSM40699     2  0.0000      0.887 0.000 1.000
#> GSM40664     2  0.7139      0.817 0.196 0.804
#> GSM40682     2  0.4815      0.884 0.104 0.896
#> GSM40688     2  0.7674      0.782 0.224 0.776
#> GSM40702     2  0.0000      0.887 0.000 1.000
#> GSM40706     2  0.5737      0.866 0.136 0.864
#> GSM40711     2  0.2423      0.891 0.040 0.960
#> GSM40661     2  0.2423      0.891 0.040 0.960
#> GSM40662     2  0.7056      0.821 0.192 0.808
#> GSM40666     2  0.3584      0.887 0.068 0.932
#> GSM40669     1  0.0938      0.897 0.988 0.012
#> GSM40670     1  0.8955      0.508 0.688 0.312
#> GSM40671     1  0.0000      0.901 1.000 0.000
#> GSM40672     1  0.0376      0.901 0.996 0.004
#> GSM40673     1  0.0000      0.901 1.000 0.000
#> GSM40674     1  0.8955      0.508 0.688 0.312
#> GSM40676     1  0.9833      0.270 0.576 0.424
#> GSM40680     1  0.7883      0.699 0.764 0.236
#> GSM40681     1  0.1843      0.893 0.972 0.028
#> GSM40683     1  0.0000      0.901 1.000 0.000
#> GSM40684     1  0.9833      0.270 0.576 0.424
#> GSM40685     1  0.2423      0.887 0.960 0.040
#> GSM40689     1  0.0000      0.901 1.000 0.000
#> GSM40690     1  0.0376      0.901 0.996 0.004
#> GSM40692     1  0.2423      0.887 0.960 0.040
#> GSM40693     1  0.2423      0.887 0.960 0.040
#> GSM40694     1  0.2423      0.887 0.960 0.040
#> GSM40695     1  0.0000      0.901 1.000 0.000
#> GSM40696     1  0.2423      0.887 0.960 0.040
#> GSM40697     2  0.7883      0.764 0.236 0.764
#> GSM40704     1  0.0000      0.901 1.000 0.000
#> GSM40705     2  0.2423      0.891 0.040 0.960
#> GSM40707     1  0.0000      0.901 1.000 0.000
#> GSM40708     1  0.0000      0.901 1.000 0.000
#> GSM40709     2  0.6801      0.834 0.180 0.820
#> GSM40712     1  0.7139      0.752 0.804 0.196
#> GSM40713     1  0.0000      0.901 1.000 0.000
#> GSM40665     1  0.0000      0.901 1.000 0.000
#> GSM40677     2  0.7139      0.817 0.196 0.804
#> GSM40698     1  0.0376      0.901 0.996 0.004
#> GSM40701     2  0.0000      0.887 0.000 1.000
#> GSM40710     2  0.4298      0.889 0.088 0.912

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.1289     0.8657 0.000 0.032 0.968
#> GSM40667     3  0.1289     0.8657 0.000 0.032 0.968
#> GSM40675     3  0.1289     0.8657 0.000 0.032 0.968
#> GSM40703     3  0.1289     0.8657 0.000 0.032 0.968
#> GSM40660     3  0.4291     0.8087 0.000 0.180 0.820
#> GSM40668     3  0.1289     0.8657 0.000 0.032 0.968
#> GSM40678     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40679     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40686     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40687     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40691     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40699     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40664     2  0.0424     0.9546 0.000 0.992 0.008
#> GSM40682     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40688     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40702     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40706     2  0.0237     0.9572 0.000 0.996 0.004
#> GSM40711     3  0.1163     0.8650 0.000 0.028 0.972
#> GSM40661     3  0.4452     0.7982 0.000 0.192 0.808
#> GSM40662     2  0.0237     0.9568 0.000 0.996 0.004
#> GSM40666     3  0.6063     0.8098 0.084 0.132 0.784
#> GSM40669     1  0.4172     0.7908 0.840 0.156 0.004
#> GSM40670     1  0.5873     0.5861 0.684 0.312 0.004
#> GSM40671     1  0.0747     0.9208 0.984 0.000 0.016
#> GSM40672     1  0.0000     0.9227 1.000 0.000 0.000
#> GSM40673     1  0.0000     0.9227 1.000 0.000 0.000
#> GSM40674     1  0.5929     0.5707 0.676 0.320 0.004
#> GSM40676     3  0.7037     0.5374 0.328 0.036 0.636
#> GSM40680     2  0.1337     0.9373 0.016 0.972 0.012
#> GSM40681     1  0.0000     0.9227 1.000 0.000 0.000
#> GSM40683     1  0.0000     0.9227 1.000 0.000 0.000
#> GSM40684     3  0.7037     0.5374 0.328 0.036 0.636
#> GSM40685     2  0.6483     0.0558 0.452 0.544 0.004
#> GSM40689     1  0.1031     0.9181 0.976 0.000 0.024
#> GSM40690     1  0.0000     0.9227 1.000 0.000 0.000
#> GSM40692     2  0.1989     0.9105 0.048 0.948 0.004
#> GSM40693     1  0.0000     0.9227 1.000 0.000 0.000
#> GSM40694     1  0.0747     0.9163 0.984 0.016 0.000
#> GSM40695     1  0.0424     0.9217 0.992 0.000 0.008
#> GSM40696     1  0.0237     0.9216 0.996 0.004 0.000
#> GSM40697     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40704     1  0.0000     0.9227 1.000 0.000 0.000
#> GSM40705     3  0.1163     0.8650 0.000 0.028 0.972
#> GSM40707     1  0.1031     0.9181 0.976 0.000 0.024
#> GSM40708     1  0.1031     0.9181 0.976 0.000 0.024
#> GSM40709     3  0.7462     0.7261 0.180 0.124 0.696
#> GSM40712     1  0.5902     0.5764 0.680 0.316 0.004
#> GSM40713     1  0.0747     0.9208 0.984 0.000 0.016
#> GSM40665     1  0.1031     0.9181 0.976 0.000 0.024
#> GSM40677     2  0.0000     0.9594 0.000 1.000 0.000
#> GSM40698     1  0.2187     0.9061 0.948 0.024 0.028
#> GSM40701     3  0.4504     0.7968 0.000 0.196 0.804
#> GSM40710     2  0.0000     0.9594 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.0188     0.8455 0.000 0.004 0.000 0.996
#> GSM40667     4  0.0188     0.8455 0.000 0.004 0.000 0.996
#> GSM40675     4  0.0188     0.8455 0.000 0.004 0.000 0.996
#> GSM40703     4  0.0188     0.8455 0.000 0.004 0.000 0.996
#> GSM40660     4  0.6075     0.7364 0.000 0.148 0.168 0.684
#> GSM40668     4  0.0188     0.8455 0.000 0.004 0.000 0.996
#> GSM40678     2  0.0469     0.9227 0.000 0.988 0.012 0.000
#> GSM40679     2  0.0000     0.9242 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0336     0.9242 0.000 0.992 0.008 0.000
#> GSM40687     2  0.0469     0.9227 0.000 0.988 0.012 0.000
#> GSM40691     2  0.0336     0.9218 0.000 0.992 0.008 0.000
#> GSM40699     2  0.0336     0.9236 0.000 0.992 0.008 0.000
#> GSM40664     2  0.3610     0.6920 0.000 0.800 0.200 0.000
#> GSM40682     2  0.0188     0.9239 0.000 0.996 0.004 0.000
#> GSM40688     2  0.0469     0.9199 0.000 0.988 0.012 0.000
#> GSM40702     2  0.0000     0.9242 0.000 1.000 0.000 0.000
#> GSM40706     2  0.2401     0.8600 0.000 0.904 0.092 0.004
#> GSM40711     4  0.3355     0.8119 0.000 0.004 0.160 0.836
#> GSM40661     4  0.6449     0.6878 0.000 0.140 0.220 0.640
#> GSM40662     3  0.4661     0.3802 0.000 0.348 0.652 0.000
#> GSM40666     3  0.6190    -0.1720 0.024 0.016 0.512 0.448
#> GSM40669     3  0.4636     0.4970 0.140 0.068 0.792 0.000
#> GSM40670     3  0.4591     0.5182 0.116 0.084 0.800 0.000
#> GSM40671     1  0.3400     0.6913 0.820 0.000 0.180 0.000
#> GSM40672     1  0.2530     0.7346 0.888 0.000 0.112 0.000
#> GSM40673     1  0.2469     0.7362 0.892 0.000 0.108 0.000
#> GSM40674     3  0.4591     0.5182 0.116 0.084 0.800 0.000
#> GSM40676     3  0.7407     0.2060 0.288 0.000 0.508 0.204
#> GSM40680     3  0.4992     0.1259 0.000 0.476 0.524 0.000
#> GSM40681     1  0.4898     0.4180 0.584 0.000 0.416 0.000
#> GSM40683     1  0.2469     0.7362 0.892 0.000 0.108 0.000
#> GSM40684     3  0.7407     0.2060 0.288 0.000 0.508 0.204
#> GSM40685     3  0.5903     0.4165 0.052 0.332 0.616 0.000
#> GSM40689     1  0.1867     0.7105 0.928 0.000 0.072 0.000
#> GSM40690     1  0.3123     0.7248 0.844 0.000 0.156 0.000
#> GSM40692     3  0.5143     0.1792 0.004 0.456 0.540 0.000
#> GSM40693     1  0.4996     0.2276 0.516 0.000 0.484 0.000
#> GSM40694     3  0.5364     0.1753 0.320 0.028 0.652 0.000
#> GSM40695     1  0.0592     0.7334 0.984 0.000 0.016 0.000
#> GSM40696     1  0.4996     0.2276 0.516 0.000 0.484 0.000
#> GSM40697     2  0.4941     0.0437 0.000 0.564 0.436 0.000
#> GSM40704     1  0.2469     0.7362 0.892 0.000 0.108 0.000
#> GSM40705     4  0.3355     0.8119 0.000 0.004 0.160 0.836
#> GSM40707     1  0.2921     0.6886 0.860 0.000 0.140 0.000
#> GSM40708     1  0.4382     0.5671 0.704 0.000 0.296 0.000
#> GSM40709     3  0.6488     0.2005 0.080 0.008 0.616 0.296
#> GSM40712     3  0.4764     0.5122 0.124 0.088 0.788 0.000
#> GSM40713     1  0.3400     0.6913 0.820 0.000 0.180 0.000
#> GSM40665     1  0.3649     0.6754 0.796 0.000 0.204 0.000
#> GSM40677     2  0.0336     0.9242 0.000 0.992 0.008 0.000
#> GSM40698     3  0.4996    -0.2119 0.484 0.000 0.516 0.000
#> GSM40701     4  0.6400     0.7057 0.000 0.180 0.168 0.652
#> GSM40710     2  0.0592     0.9225 0.000 0.984 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.4067     0.5843 0.000 0.000 0.692 0.300 0.008
#> GSM40667     3  0.4067     0.5843 0.000 0.000 0.692 0.300 0.008
#> GSM40675     3  0.4067     0.5843 0.000 0.000 0.692 0.300 0.008
#> GSM40703     3  0.4088     0.5837 0.000 0.000 0.688 0.304 0.008
#> GSM40660     3  0.3980     0.4352 0.000 0.092 0.816 0.012 0.080
#> GSM40668     3  0.4067     0.5843 0.000 0.000 0.692 0.300 0.008
#> GSM40678     2  0.1430     0.9070 0.000 0.944 0.000 0.052 0.004
#> GSM40679     2  0.0798     0.9142 0.000 0.976 0.000 0.008 0.016
#> GSM40686     2  0.1568     0.9133 0.000 0.944 0.000 0.036 0.020
#> GSM40687     2  0.1430     0.9070 0.000 0.944 0.000 0.052 0.004
#> GSM40691     2  0.1915     0.8950 0.000 0.928 0.000 0.040 0.032
#> GSM40699     2  0.1502     0.9075 0.000 0.940 0.000 0.056 0.004
#> GSM40664     2  0.6174     0.5810 0.000 0.660 0.100 0.168 0.072
#> GSM40682     2  0.1485     0.9121 0.000 0.948 0.000 0.032 0.020
#> GSM40688     2  0.2153     0.8863 0.000 0.916 0.000 0.044 0.040
#> GSM40702     2  0.0579     0.9144 0.000 0.984 0.000 0.008 0.008
#> GSM40706     2  0.4973     0.7705 0.000 0.744 0.024 0.148 0.084
#> GSM40711     3  0.1341     0.5049 0.000 0.000 0.944 0.000 0.056
#> GSM40661     3  0.5560     0.2648 0.000 0.060 0.716 0.132 0.092
#> GSM40662     5  0.4054     0.6549 0.000 0.120 0.028 0.040 0.812
#> GSM40666     3  0.5996    -0.2624 0.000 0.000 0.512 0.120 0.368
#> GSM40669     5  0.2367     0.7130 0.072 0.000 0.020 0.004 0.904
#> GSM40670     5  0.2396     0.7120 0.068 0.000 0.024 0.004 0.904
#> GSM40671     1  0.5235     0.5741 0.620 0.000 0.000 0.312 0.068
#> GSM40672     1  0.0671     0.7097 0.980 0.000 0.000 0.004 0.016
#> GSM40673     1  0.0404     0.7125 0.988 0.000 0.000 0.000 0.012
#> GSM40674     5  0.2396     0.7120 0.068 0.000 0.024 0.004 0.904
#> GSM40676     4  0.6994     1.0000 0.044 0.000 0.368 0.460 0.128
#> GSM40680     5  0.4303     0.6495 0.000 0.192 0.000 0.056 0.752
#> GSM40681     1  0.5143    -0.0482 0.532 0.000 0.000 0.040 0.428
#> GSM40683     1  0.0404     0.7125 0.988 0.000 0.000 0.000 0.012
#> GSM40684     4  0.6994     1.0000 0.044 0.000 0.368 0.460 0.128
#> GSM40685     5  0.3452     0.6941 0.000 0.148 0.000 0.032 0.820
#> GSM40689     1  0.3242     0.6517 0.784 0.000 0.000 0.216 0.000
#> GSM40690     1  0.2077     0.6835 0.908 0.000 0.000 0.008 0.084
#> GSM40692     5  0.3722     0.6824 0.004 0.176 0.000 0.024 0.796
#> GSM40693     5  0.4310     0.4556 0.392 0.000 0.000 0.004 0.604
#> GSM40694     5  0.2690     0.7002 0.156 0.000 0.000 0.000 0.844
#> GSM40695     1  0.0510     0.7106 0.984 0.000 0.000 0.016 0.000
#> GSM40696     5  0.4310     0.4556 0.392 0.000 0.000 0.004 0.604
#> GSM40697     5  0.4295     0.6479 0.000 0.216 0.000 0.044 0.740
#> GSM40704     1  0.0510     0.7112 0.984 0.000 0.000 0.000 0.016
#> GSM40705     3  0.1341     0.5049 0.000 0.000 0.944 0.000 0.056
#> GSM40707     1  0.4371     0.5655 0.644 0.000 0.000 0.344 0.012
#> GSM40708     1  0.5967     0.3087 0.456 0.000 0.000 0.436 0.108
#> GSM40709     3  0.6842    -0.4726 0.008 0.000 0.408 0.212 0.372
#> GSM40712     5  0.1990     0.7166 0.068 0.000 0.008 0.004 0.920
#> GSM40713     1  0.5289     0.5694 0.616 0.000 0.000 0.312 0.072
#> GSM40665     1  0.5535     0.5115 0.568 0.000 0.000 0.352 0.080
#> GSM40677     2  0.1597     0.9101 0.000 0.940 0.000 0.048 0.012
#> GSM40698     5  0.7110    -0.2569 0.240 0.000 0.016 0.372 0.372
#> GSM40701     3  0.4121     0.4317 0.000 0.104 0.808 0.016 0.072
#> GSM40710     2  0.2293     0.9003 0.000 0.900 0.000 0.084 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3   0.000      0.981 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     4   0.528      0.532 0.008 0.068 0.344 0.572 0.008 0.000
#> GSM40668     3   0.114      0.922 0.000 0.000 0.948 0.052 0.000 0.000
#> GSM40678     2   0.160      0.834 0.028 0.940 0.000 0.024 0.008 0.000
#> GSM40679     2   0.162      0.842 0.016 0.940 0.000 0.028 0.016 0.000
#> GSM40686     2   0.296      0.828 0.056 0.864 0.000 0.064 0.016 0.000
#> GSM40687     2   0.176      0.833 0.032 0.932 0.000 0.028 0.008 0.000
#> GSM40691     2   0.412      0.773 0.096 0.788 0.000 0.076 0.040 0.000
#> GSM40699     2   0.183      0.832 0.032 0.928 0.000 0.032 0.008 0.000
#> GSM40664     2   0.673      0.432 0.076 0.492 0.000 0.328 0.028 0.076
#> GSM40682     2   0.304      0.833 0.052 0.860 0.000 0.068 0.020 0.000
#> GSM40688     2   0.461      0.746 0.108 0.752 0.000 0.076 0.064 0.000
#> GSM40702     2   0.153      0.841 0.016 0.944 0.000 0.028 0.012 0.000
#> GSM40706     2   0.670      0.524 0.256 0.488 0.000 0.184 0.072 0.000
#> GSM40711     4   0.398      0.425 0.000 0.000 0.460 0.536 0.004 0.000
#> GSM40661     4   0.470      0.584 0.008 0.040 0.244 0.692 0.012 0.004
#> GSM40662     5   0.558      0.646 0.080 0.064 0.000 0.220 0.636 0.000
#> GSM40666     4   0.502      0.571 0.000 0.000 0.132 0.696 0.144 0.028
#> GSM40669     5   0.200      0.737 0.012 0.000 0.000 0.068 0.912 0.008
#> GSM40670     5   0.212      0.732 0.008 0.000 0.000 0.084 0.900 0.008
#> GSM40671     6   0.161      0.666 0.044 0.000 0.000 0.004 0.016 0.936
#> GSM40672     1   0.444      0.879 0.620 0.000 0.000 0.004 0.032 0.344
#> GSM40673     1   0.422      0.891 0.616 0.000 0.000 0.000 0.024 0.360
#> GSM40674     5   0.223      0.731 0.008 0.000 0.000 0.092 0.892 0.008
#> GSM40676     4   0.450      0.152 0.000 0.000 0.012 0.492 0.012 0.484
#> GSM40680     5   0.638      0.624 0.108 0.120 0.000 0.136 0.616 0.020
#> GSM40681     5   0.719     -0.168 0.324 0.000 0.000 0.084 0.336 0.256
#> GSM40683     1   0.422      0.891 0.616 0.000 0.000 0.000 0.024 0.360
#> GSM40684     4   0.450      0.152 0.000 0.000 0.012 0.492 0.012 0.484
#> GSM40685     5   0.397      0.713 0.080 0.060 0.000 0.048 0.808 0.004
#> GSM40689     6   0.390     -0.447 0.404 0.000 0.000 0.000 0.004 0.592
#> GSM40690     1   0.571      0.618 0.456 0.000 0.000 0.016 0.104 0.424
#> GSM40692     5   0.527      0.687 0.104 0.084 0.000 0.084 0.716 0.012
#> GSM40693     5   0.432      0.562 0.240 0.000 0.000 0.008 0.704 0.048
#> GSM40694     5   0.225      0.737 0.060 0.000 0.000 0.012 0.904 0.024
#> GSM40695     1   0.404      0.830 0.568 0.000 0.000 0.000 0.008 0.424
#> GSM40696     5   0.432      0.562 0.240 0.000 0.000 0.008 0.704 0.048
#> GSM40697     5   0.522      0.653 0.104 0.120 0.000 0.076 0.700 0.000
#> GSM40704     1   0.443      0.881 0.584 0.000 0.000 0.004 0.024 0.388
#> GSM40705     4   0.398      0.425 0.000 0.000 0.460 0.536 0.004 0.000
#> GSM40707     6   0.282      0.582 0.108 0.000 0.000 0.032 0.004 0.856
#> GSM40708     6   0.304      0.638 0.024 0.000 0.000 0.076 0.040 0.860
#> GSM40709     4   0.475      0.552 0.000 0.000 0.024 0.720 0.140 0.116
#> GSM40712     5   0.280      0.729 0.016 0.000 0.000 0.108 0.860 0.016
#> GSM40713     6   0.163      0.664 0.044 0.000 0.000 0.000 0.024 0.932
#> GSM40665     6   0.126      0.678 0.008 0.000 0.000 0.020 0.016 0.956
#> GSM40677     2   0.286      0.828 0.056 0.868 0.000 0.064 0.012 0.000
#> GSM40698     6   0.596      0.410 0.048 0.000 0.000 0.168 0.188 0.596
#> GSM40701     4   0.544      0.527 0.008 0.084 0.336 0.564 0.008 0.000
#> GSM40710     2   0.294      0.821 0.068 0.856 0.000 0.072 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:kmeans 51         3.54e-05 2
#> CV:kmeans 52         7.79e-05 3
#> CV:kmeans 38         1.41e-04 4
#> CV:kmeans 43         5.20e-06 5
#> CV:kmeans 45         2.77e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.960           0.971       0.987         0.5099 0.491   0.491
#> 3 3 0.971           0.933       0.974         0.3185 0.763   0.553
#> 4 4 0.807           0.835       0.906         0.1216 0.885   0.667
#> 5 5 0.725           0.679       0.815         0.0510 0.962   0.846
#> 6 6 0.718           0.630       0.786         0.0363 0.961   0.820

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      0.986 0.000 1.000
#> GSM40667     2  0.0000      0.986 0.000 1.000
#> GSM40675     2  0.0000      0.986 0.000 1.000
#> GSM40703     2  0.0000      0.986 0.000 1.000
#> GSM40660     2  0.0000      0.986 0.000 1.000
#> GSM40668     2  0.0000      0.986 0.000 1.000
#> GSM40678     2  0.0000      0.986 0.000 1.000
#> GSM40679     2  0.0000      0.986 0.000 1.000
#> GSM40686     2  0.0000      0.986 0.000 1.000
#> GSM40687     2  0.0000      0.986 0.000 1.000
#> GSM40691     2  0.0000      0.986 0.000 1.000
#> GSM40699     2  0.0000      0.986 0.000 1.000
#> GSM40664     2  0.0000      0.986 0.000 1.000
#> GSM40682     2  0.0000      0.986 0.000 1.000
#> GSM40688     2  0.6148      0.824 0.152 0.848
#> GSM40702     2  0.0000      0.986 0.000 1.000
#> GSM40706     2  0.0000      0.986 0.000 1.000
#> GSM40711     2  0.0000      0.986 0.000 1.000
#> GSM40661     2  0.0000      0.986 0.000 1.000
#> GSM40662     2  0.0000      0.986 0.000 1.000
#> GSM40666     2  0.0376      0.983 0.004 0.996
#> GSM40669     1  0.0000      0.985 1.000 0.000
#> GSM40670     1  0.0000      0.985 1.000 0.000
#> GSM40671     1  0.0000      0.985 1.000 0.000
#> GSM40672     1  0.0000      0.985 1.000 0.000
#> GSM40673     1  0.0000      0.985 1.000 0.000
#> GSM40674     1  0.0000      0.985 1.000 0.000
#> GSM40676     1  0.6801      0.788 0.820 0.180
#> GSM40680     1  0.0000      0.985 1.000 0.000
#> GSM40681     1  0.0000      0.985 1.000 0.000
#> GSM40683     1  0.0000      0.985 1.000 0.000
#> GSM40684     1  0.6801      0.788 0.820 0.180
#> GSM40685     1  0.0000      0.985 1.000 0.000
#> GSM40689     1  0.0000      0.985 1.000 0.000
#> GSM40690     1  0.0000      0.985 1.000 0.000
#> GSM40692     1  0.0000      0.985 1.000 0.000
#> GSM40693     1  0.0000      0.985 1.000 0.000
#> GSM40694     1  0.0000      0.985 1.000 0.000
#> GSM40695     1  0.0000      0.985 1.000 0.000
#> GSM40696     1  0.0000      0.985 1.000 0.000
#> GSM40697     2  0.6801      0.786 0.180 0.820
#> GSM40704     1  0.0000      0.985 1.000 0.000
#> GSM40705     2  0.0000      0.986 0.000 1.000
#> GSM40707     1  0.0000      0.985 1.000 0.000
#> GSM40708     1  0.0000      0.985 1.000 0.000
#> GSM40709     2  0.0938      0.976 0.012 0.988
#> GSM40712     1  0.0000      0.985 1.000 0.000
#> GSM40713     1  0.0000      0.985 1.000 0.000
#> GSM40665     1  0.0000      0.985 1.000 0.000
#> GSM40677     2  0.0000      0.986 0.000 1.000
#> GSM40698     1  0.0000      0.985 1.000 0.000
#> GSM40701     2  0.0000      0.986 0.000 1.000
#> GSM40710     2  0.0000      0.986 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3   0.000      1.000 0.000 0.000 1.000
#> GSM40667     3   0.000      1.000 0.000 0.000 1.000
#> GSM40675     3   0.000      1.000 0.000 0.000 1.000
#> GSM40703     3   0.000      1.000 0.000 0.000 1.000
#> GSM40660     3   0.000      1.000 0.000 0.000 1.000
#> GSM40668     3   0.000      1.000 0.000 0.000 1.000
#> GSM40678     2   0.000      0.986 0.000 1.000 0.000
#> GSM40679     2   0.000      0.986 0.000 1.000 0.000
#> GSM40686     2   0.000      0.986 0.000 1.000 0.000
#> GSM40687     2   0.000      0.986 0.000 1.000 0.000
#> GSM40691     2   0.000      0.986 0.000 1.000 0.000
#> GSM40699     2   0.000      0.986 0.000 1.000 0.000
#> GSM40664     2   0.000      0.986 0.000 1.000 0.000
#> GSM40682     2   0.000      0.986 0.000 1.000 0.000
#> GSM40688     2   0.000      0.986 0.000 1.000 0.000
#> GSM40702     2   0.000      0.986 0.000 1.000 0.000
#> GSM40706     2   0.116      0.963 0.000 0.972 0.028
#> GSM40711     3   0.000      1.000 0.000 0.000 1.000
#> GSM40661     3   0.000      1.000 0.000 0.000 1.000
#> GSM40662     2   0.103      0.967 0.000 0.976 0.024
#> GSM40666     3   0.000      1.000 0.000 0.000 1.000
#> GSM40669     1   0.000      0.943 1.000 0.000 0.000
#> GSM40670     1   0.630      0.143 0.528 0.000 0.472
#> GSM40671     1   0.000      0.943 1.000 0.000 0.000
#> GSM40672     1   0.000      0.943 1.000 0.000 0.000
#> GSM40673     1   0.000      0.943 1.000 0.000 0.000
#> GSM40674     1   0.630      0.117 0.520 0.000 0.480
#> GSM40676     3   0.000      1.000 0.000 0.000 1.000
#> GSM40680     2   0.000      0.986 0.000 1.000 0.000
#> GSM40681     1   0.000      0.943 1.000 0.000 0.000
#> GSM40683     1   0.000      0.943 1.000 0.000 0.000
#> GSM40684     3   0.000      1.000 0.000 0.000 1.000
#> GSM40685     1   0.450      0.721 0.804 0.196 0.000
#> GSM40689     1   0.000      0.943 1.000 0.000 0.000
#> GSM40690     1   0.000      0.943 1.000 0.000 0.000
#> GSM40692     2   0.406      0.801 0.164 0.836 0.000
#> GSM40693     1   0.000      0.943 1.000 0.000 0.000
#> GSM40694     1   0.000      0.943 1.000 0.000 0.000
#> GSM40695     1   0.000      0.943 1.000 0.000 0.000
#> GSM40696     1   0.000      0.943 1.000 0.000 0.000
#> GSM40697     2   0.000      0.986 0.000 1.000 0.000
#> GSM40704     1   0.000      0.943 1.000 0.000 0.000
#> GSM40705     3   0.000      1.000 0.000 0.000 1.000
#> GSM40707     1   0.000      0.943 1.000 0.000 0.000
#> GSM40708     1   0.000      0.943 1.000 0.000 0.000
#> GSM40709     3   0.000      1.000 0.000 0.000 1.000
#> GSM40712     1   0.000      0.943 1.000 0.000 0.000
#> GSM40713     1   0.000      0.943 1.000 0.000 0.000
#> GSM40665     1   0.000      0.943 1.000 0.000 0.000
#> GSM40677     2   0.000      0.986 0.000 1.000 0.000
#> GSM40698     1   0.000      0.943 1.000 0.000 0.000
#> GSM40701     3   0.000      1.000 0.000 0.000 1.000
#> GSM40710     2   0.000      0.986 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     3  0.0000      0.932 0.000 0.000 1.000 0.000
#> GSM40667     3  0.0000      0.932 0.000 0.000 1.000 0.000
#> GSM40675     3  0.0000      0.932 0.000 0.000 1.000 0.000
#> GSM40703     3  0.0000      0.932 0.000 0.000 1.000 0.000
#> GSM40660     3  0.0000      0.932 0.000 0.000 1.000 0.000
#> GSM40668     3  0.0000      0.932 0.000 0.000 1.000 0.000
#> GSM40678     2  0.0000      0.945 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000      0.945 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0188      0.945 0.000 0.996 0.000 0.004
#> GSM40687     2  0.0000      0.945 0.000 1.000 0.000 0.000
#> GSM40691     2  0.0376      0.944 0.000 0.992 0.004 0.004
#> GSM40699     2  0.0336      0.943 0.000 0.992 0.008 0.000
#> GSM40664     2  0.3052      0.852 0.104 0.880 0.004 0.012
#> GSM40682     2  0.0188      0.945 0.000 0.996 0.000 0.004
#> GSM40688     2  0.0188      0.944 0.000 0.996 0.000 0.004
#> GSM40702     2  0.0336      0.943 0.000 0.992 0.008 0.000
#> GSM40706     2  0.2673      0.872 0.008 0.904 0.080 0.008
#> GSM40711     3  0.0000      0.932 0.000 0.000 1.000 0.000
#> GSM40661     3  0.0336      0.928 0.000 0.000 0.992 0.008
#> GSM40662     2  0.6893      0.496 0.008 0.624 0.176 0.192
#> GSM40666     3  0.0000      0.932 0.000 0.000 1.000 0.000
#> GSM40669     4  0.0817      0.818 0.024 0.000 0.000 0.976
#> GSM40670     4  0.2089      0.806 0.020 0.000 0.048 0.932
#> GSM40671     1  0.1474      0.861 0.948 0.000 0.000 0.052
#> GSM40672     1  0.4431      0.743 0.696 0.000 0.000 0.304
#> GSM40673     1  0.3907      0.828 0.768 0.000 0.000 0.232
#> GSM40674     4  0.2179      0.797 0.012 0.000 0.064 0.924
#> GSM40676     3  0.5229      0.420 0.428 0.000 0.564 0.008
#> GSM40680     2  0.2965      0.873 0.036 0.892 0.000 0.072
#> GSM40681     1  0.4103      0.813 0.744 0.000 0.000 0.256
#> GSM40683     1  0.3873      0.831 0.772 0.000 0.000 0.228
#> GSM40684     3  0.5099      0.515 0.380 0.000 0.612 0.008
#> GSM40685     4  0.5066      0.722 0.112 0.120 0.000 0.768
#> GSM40689     1  0.1211      0.858 0.960 0.000 0.000 0.040
#> GSM40690     1  0.3873      0.831 0.772 0.000 0.000 0.228
#> GSM40692     4  0.7069      0.444 0.144 0.324 0.000 0.532
#> GSM40693     4  0.1940      0.797 0.076 0.000 0.000 0.924
#> GSM40694     4  0.1302      0.815 0.044 0.000 0.000 0.956
#> GSM40695     1  0.2973      0.857 0.856 0.000 0.000 0.144
#> GSM40696     4  0.1716      0.806 0.064 0.000 0.000 0.936
#> GSM40697     4  0.5143      0.197 0.004 0.456 0.000 0.540
#> GSM40704     1  0.4072      0.811 0.748 0.000 0.000 0.252
#> GSM40705     3  0.0000      0.932 0.000 0.000 1.000 0.000
#> GSM40707     1  0.0188      0.841 0.996 0.000 0.000 0.004
#> GSM40708     1  0.0188      0.837 0.996 0.000 0.000 0.004
#> GSM40709     3  0.1174      0.914 0.020 0.000 0.968 0.012
#> GSM40712     4  0.1042      0.819 0.020 0.008 0.000 0.972
#> GSM40713     1  0.1792      0.863 0.932 0.000 0.000 0.068
#> GSM40665     1  0.0592      0.848 0.984 0.000 0.000 0.016
#> GSM40677     2  0.0188      0.945 0.000 0.996 0.000 0.004
#> GSM40698     1  0.1118      0.847 0.964 0.000 0.000 0.036
#> GSM40701     3  0.0000      0.932 0.000 0.000 1.000 0.000
#> GSM40710     2  0.0188      0.945 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM40667     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM40675     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM40703     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM40660     3  0.0162      0.956 0.000 0.000 0.996 0.000 0.004
#> GSM40668     3  0.0000      0.958 0.000 0.000 1.000 0.000 0.000
#> GSM40678     2  0.0290      0.829 0.000 0.992 0.000 0.008 0.000
#> GSM40679     2  0.0609      0.831 0.000 0.980 0.000 0.020 0.000
#> GSM40686     2  0.2722      0.803 0.000 0.872 0.000 0.108 0.020
#> GSM40687     2  0.0451      0.829 0.000 0.988 0.000 0.008 0.004
#> GSM40691     2  0.2696      0.791 0.000 0.892 0.012 0.072 0.024
#> GSM40699     2  0.0693      0.828 0.000 0.980 0.012 0.008 0.000
#> GSM40664     2  0.4538      0.511 0.004 0.636 0.000 0.348 0.012
#> GSM40682     2  0.1282      0.826 0.000 0.952 0.000 0.044 0.004
#> GSM40688     2  0.3681      0.724 0.000 0.808 0.000 0.148 0.044
#> GSM40702     2  0.0566      0.831 0.000 0.984 0.004 0.012 0.000
#> GSM40706     2  0.5776      0.593 0.004 0.700 0.112 0.140 0.044
#> GSM40711     3  0.0404      0.954 0.000 0.000 0.988 0.012 0.000
#> GSM40661     3  0.1704      0.913 0.000 0.000 0.928 0.068 0.004
#> GSM40662     2  0.8334     -0.167 0.000 0.312 0.132 0.296 0.260
#> GSM40666     3  0.1638      0.921 0.000 0.000 0.932 0.064 0.004
#> GSM40669     5  0.2677      0.676 0.112 0.000 0.000 0.016 0.872
#> GSM40670     5  0.3129      0.660 0.076 0.000 0.032 0.020 0.872
#> GSM40671     1  0.2124      0.779 0.900 0.000 0.000 0.096 0.004
#> GSM40672     1  0.3011      0.687 0.844 0.000 0.000 0.016 0.140
#> GSM40673     1  0.1341      0.781 0.944 0.000 0.000 0.000 0.056
#> GSM40674     5  0.3743      0.647 0.080 0.000 0.052 0.028 0.840
#> GSM40676     4  0.6342      0.298 0.208 0.000 0.272 0.520 0.000
#> GSM40680     4  0.6972     -0.194 0.044 0.376 0.000 0.456 0.124
#> GSM40681     1  0.4357      0.659 0.768 0.000 0.000 0.128 0.104
#> GSM40683     1  0.1341      0.781 0.944 0.000 0.000 0.000 0.056
#> GSM40684     4  0.6337      0.276 0.180 0.000 0.320 0.500 0.000
#> GSM40685     5  0.7543      0.386 0.148 0.112 0.000 0.236 0.504
#> GSM40689     1  0.2074      0.771 0.896 0.000 0.000 0.104 0.000
#> GSM40690     1  0.2416      0.751 0.888 0.000 0.000 0.012 0.100
#> GSM40692     4  0.8453     -0.221 0.248 0.176 0.000 0.336 0.240
#> GSM40693     5  0.5107      0.563 0.356 0.000 0.000 0.048 0.596
#> GSM40694     5  0.5861      0.602 0.260 0.000 0.000 0.148 0.592
#> GSM40695     1  0.0912      0.790 0.972 0.000 0.000 0.012 0.016
#> GSM40696     5  0.4989      0.626 0.296 0.000 0.000 0.056 0.648
#> GSM40697     5  0.6889      0.181 0.016 0.296 0.000 0.212 0.476
#> GSM40704     1  0.1792      0.765 0.916 0.000 0.000 0.000 0.084
#> GSM40705     3  0.0510      0.953 0.000 0.000 0.984 0.016 0.000
#> GSM40707     1  0.3534      0.661 0.744 0.000 0.000 0.256 0.000
#> GSM40708     1  0.4150      0.504 0.612 0.000 0.000 0.388 0.000
#> GSM40709     3  0.4281      0.710 0.012 0.000 0.756 0.204 0.028
#> GSM40712     5  0.4120      0.629 0.072 0.012 0.000 0.112 0.804
#> GSM40713     1  0.1956      0.784 0.916 0.000 0.000 0.076 0.008
#> GSM40665     1  0.3607      0.679 0.752 0.000 0.000 0.244 0.004
#> GSM40677     2  0.2361      0.808 0.000 0.892 0.000 0.096 0.012
#> GSM40698     1  0.4866      0.482 0.580 0.000 0.000 0.392 0.028
#> GSM40701     3  0.0703      0.939 0.000 0.024 0.976 0.000 0.000
#> GSM40710     2  0.2006      0.815 0.000 0.916 0.000 0.072 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000    0.92111 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000    0.92111 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000    0.92111 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000    0.92111 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     3  0.0665    0.91368 0.000 0.008 0.980 0.008 0.000 0.004
#> GSM40668     3  0.0000    0.92111 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40678     2  0.0260    0.77140 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM40679     2  0.2001    0.77248 0.000 0.912 0.000 0.040 0.000 0.048
#> GSM40686     2  0.3728    0.72000 0.000 0.788 0.000 0.068 0.004 0.140
#> GSM40687     2  0.0547    0.77219 0.000 0.980 0.000 0.000 0.000 0.020
#> GSM40691     2  0.3743    0.67154 0.000 0.812 0.028 0.024 0.012 0.124
#> GSM40699     2  0.1719    0.75949 0.000 0.932 0.032 0.004 0.000 0.032
#> GSM40664     2  0.6043    0.30239 0.000 0.500 0.004 0.320 0.012 0.164
#> GSM40682     2  0.2801    0.75878 0.000 0.860 0.000 0.068 0.000 0.072
#> GSM40688     2  0.4760    0.46279 0.000 0.644 0.000 0.036 0.024 0.296
#> GSM40702     2  0.1636    0.76512 0.000 0.936 0.024 0.004 0.000 0.036
#> GSM40706     2  0.6589    0.25241 0.004 0.520 0.084 0.060 0.020 0.312
#> GSM40711     3  0.0632    0.91511 0.000 0.000 0.976 0.024 0.000 0.000
#> GSM40661     3  0.2998    0.83496 0.000 0.008 0.852 0.112 0.008 0.020
#> GSM40662     6  0.8170    0.35531 0.000 0.184 0.100 0.096 0.216 0.404
#> GSM40666     3  0.3111    0.82696 0.000 0.000 0.840 0.120 0.020 0.020
#> GSM40669     5  0.1700    0.58540 0.080 0.000 0.000 0.004 0.916 0.000
#> GSM40670     5  0.2595    0.56197 0.048 0.000 0.024 0.012 0.896 0.020
#> GSM40671     1  0.2783    0.70083 0.836 0.000 0.000 0.148 0.000 0.016
#> GSM40672     1  0.2554    0.69461 0.876 0.000 0.000 0.004 0.092 0.028
#> GSM40673     1  0.0508    0.75631 0.984 0.000 0.000 0.000 0.012 0.004
#> GSM40674     5  0.4293    0.51751 0.072 0.000 0.052 0.032 0.800 0.044
#> GSM40676     4  0.3595    0.68112 0.084 0.000 0.120 0.796 0.000 0.000
#> GSM40680     6  0.6712    0.44181 0.024 0.220 0.000 0.096 0.100 0.560
#> GSM40681     1  0.4889    0.55893 0.708 0.000 0.000 0.056 0.056 0.180
#> GSM40683     1  0.0622    0.75598 0.980 0.000 0.000 0.000 0.012 0.008
#> GSM40684     4  0.3728    0.66542 0.068 0.000 0.140 0.788 0.000 0.004
#> GSM40685     6  0.7671    0.23519 0.112 0.120 0.000 0.056 0.268 0.444
#> GSM40689     1  0.2219    0.71202 0.864 0.000 0.000 0.136 0.000 0.000
#> GSM40690     1  0.2366    0.73238 0.900 0.000 0.000 0.020 0.024 0.056
#> GSM40692     6  0.6316    0.37514 0.108 0.096 0.000 0.012 0.180 0.604
#> GSM40693     5  0.5645    0.46304 0.372 0.000 0.000 0.012 0.504 0.112
#> GSM40694     5  0.6005    0.41990 0.232 0.000 0.000 0.012 0.516 0.240
#> GSM40695     1  0.0632    0.75477 0.976 0.000 0.000 0.024 0.000 0.000
#> GSM40696     5  0.5714    0.49629 0.308 0.000 0.000 0.012 0.540 0.140
#> GSM40697     6  0.6818    0.40848 0.020 0.256 0.000 0.032 0.216 0.476
#> GSM40704     1  0.0993    0.75127 0.964 0.000 0.000 0.000 0.024 0.012
#> GSM40705     3  0.1007    0.90669 0.000 0.000 0.956 0.044 0.000 0.000
#> GSM40707     1  0.3578    0.40470 0.660 0.000 0.000 0.340 0.000 0.000
#> GSM40708     4  0.4212    0.07696 0.424 0.000 0.000 0.560 0.000 0.016
#> GSM40709     3  0.6056    0.35655 0.004 0.000 0.540 0.320 0.068 0.068
#> GSM40712     5  0.4736    0.41466 0.044 0.000 0.000 0.044 0.704 0.208
#> GSM40713     1  0.2593    0.70036 0.844 0.000 0.000 0.148 0.008 0.000
#> GSM40665     1  0.4185    0.40947 0.644 0.000 0.000 0.332 0.004 0.020
#> GSM40677     2  0.3576    0.73039 0.000 0.800 0.000 0.060 0.004 0.136
#> GSM40698     1  0.6264   -0.00256 0.456 0.000 0.000 0.360 0.032 0.152
#> GSM40701     3  0.0951    0.90698 0.000 0.020 0.968 0.000 0.004 0.008
#> GSM40710     2  0.3039    0.74871 0.000 0.848 0.000 0.060 0.004 0.088

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> CV:skmeans 53         1.62e-05 2
#> CV:skmeans 51         1.19e-04 3
#> CV:skmeans 49         5.39e-05 4
#> CV:skmeans 45         3.07e-05 5
#> CV:skmeans 36         5.79e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.920           0.913       0.965         0.5078 0.491   0.491
#> 3 3 0.938           0.902       0.962         0.1965 0.871   0.744
#> 4 4 0.696           0.685       0.845         0.1765 0.867   0.667
#> 5 5 0.764           0.788       0.891         0.0895 0.862   0.562
#> 6 6 0.799           0.779       0.883         0.0564 0.934   0.708

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      0.958 0.000 1.000
#> GSM40667     2  0.0000      0.958 0.000 1.000
#> GSM40675     2  0.0000      0.958 0.000 1.000
#> GSM40703     2  0.0000      0.958 0.000 1.000
#> GSM40660     2  0.0000      0.958 0.000 1.000
#> GSM40668     2  0.0000      0.958 0.000 1.000
#> GSM40678     2  0.0672      0.957 0.008 0.992
#> GSM40679     2  0.0672      0.957 0.008 0.992
#> GSM40686     2  0.0672      0.957 0.008 0.992
#> GSM40687     2  0.0672      0.957 0.008 0.992
#> GSM40691     2  0.0672      0.957 0.008 0.992
#> GSM40699     2  0.0000      0.958 0.000 1.000
#> GSM40664     2  0.1843      0.943 0.028 0.972
#> GSM40682     2  0.0672      0.957 0.008 0.992
#> GSM40688     2  0.0672      0.957 0.008 0.992
#> GSM40702     2  0.0000      0.958 0.000 1.000
#> GSM40706     2  0.1414      0.950 0.020 0.980
#> GSM40711     2  0.0000      0.958 0.000 1.000
#> GSM40661     2  0.0000      0.958 0.000 1.000
#> GSM40662     2  0.4298      0.883 0.088 0.912
#> GSM40666     1  0.8555      0.611 0.720 0.280
#> GSM40669     1  0.0000      0.965 1.000 0.000
#> GSM40670     1  0.0000      0.965 1.000 0.000
#> GSM40671     1  0.0000      0.965 1.000 0.000
#> GSM40672     1  0.0000      0.965 1.000 0.000
#> GSM40673     1  0.0000      0.965 1.000 0.000
#> GSM40674     1  0.0000      0.965 1.000 0.000
#> GSM40676     1  0.0672      0.959 0.992 0.008
#> GSM40680     2  0.9580      0.374 0.380 0.620
#> GSM40681     1  0.0000      0.965 1.000 0.000
#> GSM40683     1  0.0000      0.965 1.000 0.000
#> GSM40684     1  0.0672      0.959 0.992 0.008
#> GSM40685     1  0.3431      0.909 0.936 0.064
#> GSM40689     1  0.0000      0.965 1.000 0.000
#> GSM40690     1  0.0000      0.965 1.000 0.000
#> GSM40692     1  0.0000      0.965 1.000 0.000
#> GSM40693     1  0.0000      0.965 1.000 0.000
#> GSM40694     1  0.0000      0.965 1.000 0.000
#> GSM40695     1  0.0000      0.965 1.000 0.000
#> GSM40696     1  0.0000      0.965 1.000 0.000
#> GSM40697     2  0.9833      0.257 0.424 0.576
#> GSM40704     1  0.0000      0.965 1.000 0.000
#> GSM40705     2  0.0000      0.958 0.000 1.000
#> GSM40707     1  0.0000      0.965 1.000 0.000
#> GSM40708     1  0.0000      0.965 1.000 0.000
#> GSM40709     1  0.4939      0.868 0.892 0.108
#> GSM40712     1  0.9686      0.319 0.604 0.396
#> GSM40713     1  0.0000      0.965 1.000 0.000
#> GSM40665     1  0.0000      0.965 1.000 0.000
#> GSM40677     2  0.0672      0.957 0.008 0.992
#> GSM40698     1  0.0000      0.965 1.000 0.000
#> GSM40701     2  0.0000      0.958 0.000 1.000
#> GSM40710     2  0.0672      0.957 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000      0.965 0.000 0.000 1.000
#> GSM40667     3  0.0000      0.965 0.000 0.000 1.000
#> GSM40675     3  0.0000      0.965 0.000 0.000 1.000
#> GSM40703     3  0.0000      0.965 0.000 0.000 1.000
#> GSM40660     2  0.0892      0.913 0.000 0.980 0.020
#> GSM40668     3  0.0000      0.965 0.000 0.000 1.000
#> GSM40678     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40679     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40686     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40687     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40691     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40699     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40664     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40682     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40688     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40702     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40706     2  0.0424      0.921 0.008 0.992 0.000
#> GSM40711     3  0.4062      0.806 0.000 0.164 0.836
#> GSM40661     2  0.0592      0.919 0.000 0.988 0.012
#> GSM40662     2  0.0747      0.915 0.016 0.984 0.000
#> GSM40666     1  0.6416      0.523 0.676 0.304 0.020
#> GSM40669     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40670     1  0.0237      0.965 0.996 0.000 0.004
#> GSM40671     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40672     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40674     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40676     1  0.0892      0.955 0.980 0.000 0.020
#> GSM40680     2  0.2165      0.862 0.064 0.936 0.000
#> GSM40681     1  0.1289      0.946 0.968 0.032 0.000
#> GSM40683     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40684     1  0.0892      0.955 0.980 0.000 0.020
#> GSM40685     1  0.2878      0.881 0.904 0.096 0.000
#> GSM40689     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40690     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40692     1  0.1289      0.947 0.968 0.032 0.000
#> GSM40693     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40694     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40695     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40696     1  0.0237      0.965 0.996 0.004 0.000
#> GSM40697     2  0.6260      0.167 0.448 0.552 0.000
#> GSM40704     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40705     3  0.1411      0.944 0.000 0.036 0.964
#> GSM40707     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40708     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40709     1  0.4349      0.826 0.852 0.128 0.020
#> GSM40712     2  0.6286      0.145 0.464 0.536 0.000
#> GSM40713     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40665     1  0.0000      0.967 1.000 0.000 0.000
#> GSM40677     2  0.0000      0.925 0.000 1.000 0.000
#> GSM40698     1  0.2066      0.920 0.940 0.060 0.000
#> GSM40701     2  0.0892      0.913 0.000 0.980 0.020
#> GSM40710     2  0.0000      0.925 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.0000      0.830 0.000 0.000 0.000 1.000
#> GSM40667     4  0.0000      0.830 0.000 0.000 0.000 1.000
#> GSM40675     4  0.0000      0.830 0.000 0.000 0.000 1.000
#> GSM40703     4  0.0000      0.830 0.000 0.000 0.000 1.000
#> GSM40660     2  0.4941      0.419 0.000 0.564 0.436 0.000
#> GSM40668     4  0.3764      0.777 0.000 0.000 0.216 0.784
#> GSM40678     2  0.0000      0.906 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0188      0.906 0.000 0.996 0.004 0.000
#> GSM40686     2  0.1389      0.892 0.000 0.952 0.048 0.000
#> GSM40687     2  0.0000      0.906 0.000 1.000 0.000 0.000
#> GSM40691     2  0.0000      0.906 0.000 1.000 0.000 0.000
#> GSM40699     2  0.0000      0.906 0.000 1.000 0.000 0.000
#> GSM40664     2  0.2376      0.879 0.016 0.916 0.068 0.000
#> GSM40682     2  0.0000      0.906 0.000 1.000 0.000 0.000
#> GSM40688     2  0.0817      0.903 0.000 0.976 0.024 0.000
#> GSM40702     2  0.0592      0.904 0.000 0.984 0.016 0.000
#> GSM40706     2  0.2149      0.876 0.000 0.912 0.088 0.000
#> GSM40711     4  0.6278      0.634 0.000 0.060 0.408 0.532
#> GSM40661     2  0.3486      0.775 0.000 0.812 0.188 0.000
#> GSM40662     2  0.4244      0.774 0.036 0.804 0.160 0.000
#> GSM40666     3  0.0188      0.299 0.004 0.000 0.996 0.000
#> GSM40669     3  0.4981      0.581 0.464 0.000 0.536 0.000
#> GSM40670     3  0.4967      0.592 0.452 0.000 0.548 0.000
#> GSM40671     1  0.0000      0.792 1.000 0.000 0.000 0.000
#> GSM40672     1  0.0469      0.782 0.988 0.000 0.012 0.000
#> GSM40673     1  0.0000      0.792 1.000 0.000 0.000 0.000
#> GSM40674     3  0.4981      0.581 0.464 0.000 0.536 0.000
#> GSM40676     1  0.4888      0.294 0.588 0.000 0.412 0.000
#> GSM40680     2  0.3474      0.840 0.064 0.868 0.068 0.000
#> GSM40681     1  0.4055      0.642 0.832 0.060 0.108 0.000
#> GSM40683     1  0.0000      0.792 1.000 0.000 0.000 0.000
#> GSM40684     1  0.4866      0.301 0.596 0.000 0.404 0.000
#> GSM40685     1  0.3308      0.685 0.872 0.092 0.036 0.000
#> GSM40689     1  0.0000      0.792 1.000 0.000 0.000 0.000
#> GSM40690     1  0.4830     -0.256 0.608 0.000 0.392 0.000
#> GSM40692     1  0.4804      0.557 0.780 0.148 0.072 0.000
#> GSM40693     3  0.4948      0.594 0.440 0.000 0.560 0.000
#> GSM40694     1  0.4843     -0.121 0.604 0.000 0.396 0.000
#> GSM40695     1  0.0000      0.792 1.000 0.000 0.000 0.000
#> GSM40696     3  0.5097      0.598 0.428 0.004 0.568 0.000
#> GSM40697     3  0.7358      0.266 0.160 0.392 0.448 0.000
#> GSM40704     1  0.0000      0.792 1.000 0.000 0.000 0.000
#> GSM40705     4  0.5398      0.669 0.000 0.016 0.404 0.580
#> GSM40707     1  0.0000      0.792 1.000 0.000 0.000 0.000
#> GSM40708     1  0.0000      0.792 1.000 0.000 0.000 0.000
#> GSM40709     3  0.1743      0.306 0.056 0.004 0.940 0.000
#> GSM40712     3  0.6613      0.578 0.288 0.116 0.596 0.000
#> GSM40713     1  0.0000      0.792 1.000 0.000 0.000 0.000
#> GSM40665     1  0.0000      0.792 1.000 0.000 0.000 0.000
#> GSM40677     2  0.0336      0.906 0.000 0.992 0.008 0.000
#> GSM40698     1  0.3984      0.628 0.828 0.132 0.040 0.000
#> GSM40701     2  0.4543      0.579 0.000 0.676 0.324 0.000
#> GSM40710     2  0.0000      0.906 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM40667     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM40675     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM40703     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM40660     3  0.0510      0.861 0.000 0.016 0.984 0.000 0.000
#> GSM40668     3  0.4256      0.272 0.000 0.000 0.564 0.436 0.000
#> GSM40678     2  0.1082      0.905 0.000 0.964 0.028 0.000 0.008
#> GSM40679     2  0.0404      0.909 0.000 0.988 0.000 0.000 0.012
#> GSM40686     2  0.1270      0.894 0.000 0.948 0.000 0.000 0.052
#> GSM40687     2  0.1082      0.905 0.000 0.964 0.028 0.000 0.008
#> GSM40691     2  0.1082      0.905 0.000 0.964 0.028 0.000 0.008
#> GSM40699     2  0.1082      0.905 0.000 0.964 0.028 0.000 0.008
#> GSM40664     2  0.4300      0.781 0.048 0.776 0.012 0.000 0.164
#> GSM40682     2  0.0290      0.909 0.000 0.992 0.000 0.000 0.008
#> GSM40688     2  0.1628      0.901 0.000 0.936 0.008 0.000 0.056
#> GSM40702     2  0.2124      0.898 0.000 0.916 0.028 0.000 0.056
#> GSM40706     2  0.2605      0.842 0.000 0.852 0.000 0.000 0.148
#> GSM40711     3  0.0609      0.869 0.000 0.000 0.980 0.020 0.000
#> GSM40661     2  0.5005      0.595 0.000 0.660 0.276 0.000 0.064
#> GSM40662     5  0.4196      0.266 0.004 0.356 0.000 0.000 0.640
#> GSM40666     3  0.1043      0.862 0.000 0.000 0.960 0.000 0.040
#> GSM40669     5  0.2690      0.738 0.156 0.000 0.000 0.000 0.844
#> GSM40670     5  0.2648      0.741 0.152 0.000 0.000 0.000 0.848
#> GSM40671     1  0.0510      0.883 0.984 0.000 0.016 0.000 0.000
#> GSM40672     1  0.0609      0.874 0.980 0.000 0.000 0.000 0.020
#> GSM40673     1  0.0000      0.885 1.000 0.000 0.000 0.000 0.000
#> GSM40674     5  0.2648      0.742 0.152 0.000 0.000 0.000 0.848
#> GSM40676     3  0.0794      0.865 0.028 0.000 0.972 0.000 0.000
#> GSM40680     2  0.4258      0.767 0.072 0.768 0.000 0.000 0.160
#> GSM40681     1  0.5307      0.558 0.676 0.168 0.000 0.000 0.156
#> GSM40683     1  0.0000      0.885 1.000 0.000 0.000 0.000 0.000
#> GSM40684     3  0.0794      0.865 0.028 0.000 0.972 0.000 0.000
#> GSM40685     1  0.3593      0.756 0.828 0.088 0.000 0.000 0.084
#> GSM40689     1  0.0000      0.885 1.000 0.000 0.000 0.000 0.000
#> GSM40690     5  0.4278      0.335 0.452 0.000 0.000 0.000 0.548
#> GSM40692     1  0.5125      0.575 0.696 0.148 0.000 0.000 0.156
#> GSM40693     5  0.1965      0.743 0.096 0.000 0.000 0.000 0.904
#> GSM40694     5  0.3949      0.433 0.332 0.000 0.000 0.000 0.668
#> GSM40695     1  0.0000      0.885 1.000 0.000 0.000 0.000 0.000
#> GSM40696     5  0.1792      0.740 0.084 0.000 0.000 0.000 0.916
#> GSM40697     5  0.4291      0.487 0.016 0.276 0.004 0.000 0.704
#> GSM40704     1  0.0162      0.883 0.996 0.000 0.000 0.000 0.004
#> GSM40705     3  0.0794      0.866 0.000 0.000 0.972 0.028 0.000
#> GSM40707     1  0.0510      0.883 0.984 0.000 0.016 0.000 0.000
#> GSM40708     1  0.0510      0.883 0.984 0.000 0.016 0.000 0.000
#> GSM40709     3  0.2563      0.814 0.008 0.000 0.872 0.000 0.120
#> GSM40712     5  0.0510      0.702 0.016 0.000 0.000 0.000 0.984
#> GSM40713     1  0.0000      0.885 1.000 0.000 0.000 0.000 0.000
#> GSM40665     1  0.0510      0.883 0.984 0.000 0.016 0.000 0.000
#> GSM40677     2  0.0404      0.910 0.000 0.988 0.000 0.000 0.012
#> GSM40698     1  0.5877      0.382 0.576 0.332 0.016 0.000 0.076
#> GSM40701     3  0.3519      0.648 0.000 0.216 0.776 0.000 0.008
#> GSM40710     2  0.0162      0.909 0.000 0.996 0.000 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     4  0.0000      0.921 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40668     4  0.3782      0.316 0.000 0.000 0.412 0.588 0.000 0.000
#> GSM40678     6  0.0865      0.766 0.000 0.036 0.000 0.000 0.000 0.964
#> GSM40679     2  0.2048      0.838 0.000 0.880 0.000 0.000 0.000 0.120
#> GSM40686     2  0.2118      0.838 0.000 0.888 0.000 0.000 0.008 0.104
#> GSM40687     6  0.0865      0.766 0.000 0.036 0.000 0.000 0.000 0.964
#> GSM40691     6  0.1075      0.762 0.000 0.048 0.000 0.000 0.000 0.952
#> GSM40699     6  0.0865      0.766 0.000 0.036 0.000 0.000 0.000 0.964
#> GSM40664     2  0.0622      0.809 0.000 0.980 0.000 0.000 0.012 0.008
#> GSM40682     2  0.2092      0.836 0.000 0.876 0.000 0.000 0.000 0.124
#> GSM40688     2  0.3221      0.653 0.000 0.736 0.000 0.000 0.000 0.264
#> GSM40702     6  0.3810      0.365 0.000 0.428 0.000 0.000 0.000 0.572
#> GSM40706     2  0.2257      0.776 0.000 0.876 0.000 0.000 0.008 0.116
#> GSM40711     4  0.0000      0.921 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40661     6  0.4823      0.452 0.000 0.388 0.000 0.060 0.000 0.552
#> GSM40662     5  0.3409      0.632 0.000 0.300 0.000 0.000 0.700 0.000
#> GSM40666     4  0.0000      0.921 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40669     5  0.1074      0.789 0.012 0.028 0.000 0.000 0.960 0.000
#> GSM40670     5  0.1921      0.789 0.052 0.032 0.000 0.000 0.916 0.000
#> GSM40671     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40672     1  0.2060      0.884 0.900 0.000 0.000 0.000 0.084 0.016
#> GSM40673     1  0.1168      0.917 0.956 0.000 0.000 0.000 0.028 0.016
#> GSM40674     5  0.1890      0.786 0.060 0.024 0.000 0.000 0.916 0.000
#> GSM40676     4  0.0000      0.921 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40680     2  0.0363      0.803 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM40681     1  0.4566      0.540 0.652 0.280 0.000 0.000 0.068 0.000
#> GSM40683     1  0.1168      0.917 0.956 0.000 0.000 0.000 0.028 0.016
#> GSM40684     4  0.0000      0.921 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40685     1  0.2606      0.854 0.888 0.044 0.000 0.000 0.020 0.048
#> GSM40689     1  0.1168      0.917 0.956 0.000 0.000 0.000 0.028 0.016
#> GSM40690     5  0.4076      0.373 0.364 0.000 0.000 0.000 0.620 0.016
#> GSM40692     1  0.3457      0.705 0.752 0.232 0.000 0.000 0.016 0.000
#> GSM40693     5  0.0000      0.786 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM40694     5  0.5012      0.424 0.336 0.088 0.000 0.000 0.576 0.000
#> GSM40695     1  0.0622      0.920 0.980 0.000 0.000 0.000 0.012 0.008
#> GSM40696     5  0.0000      0.786 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM40697     5  0.5932      0.517 0.052 0.240 0.000 0.000 0.588 0.120
#> GSM40704     1  0.1245      0.916 0.952 0.000 0.000 0.000 0.032 0.016
#> GSM40705     4  0.0000      0.921 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40707     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40708     1  0.0146      0.919 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM40709     4  0.2349      0.828 0.008 0.080 0.000 0.892 0.020 0.000
#> GSM40712     5  0.1075      0.784 0.000 0.048 0.000 0.000 0.952 0.000
#> GSM40713     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40665     1  0.0000      0.920 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40677     2  0.1957      0.840 0.000 0.888 0.000 0.000 0.000 0.112
#> GSM40698     2  0.3741      0.447 0.320 0.672 0.000 0.000 0.008 0.000
#> GSM40701     6  0.4355      0.283 0.000 0.024 0.000 0.420 0.000 0.556
#> GSM40710     2  0.2664      0.792 0.000 0.816 0.000 0.000 0.000 0.184

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:pam 50         1.30e-06 2
#> CV:pam 51         6.73e-09 3
#> CV:pam 45         9.11e-06 4
#> CV:pam 47         1.24e-08 5
#> CV:pam 46         1.59e-10 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.470           0.777       0.835         0.3747 0.505   0.505
#> 3 3 0.520           0.873       0.902         0.2606 0.534   0.382
#> 4 4 0.420           0.712       0.782         0.2590 0.965   0.935
#> 5 5 0.608           0.564       0.806         0.2456 0.623   0.317
#> 6 6 0.826           0.843       0.908         0.0957 0.906   0.626

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.1414      0.588 0.020 0.980
#> GSM40667     2  0.1414      0.588 0.020 0.980
#> GSM40675     2  0.1414      0.588 0.020 0.980
#> GSM40703     2  0.1414      0.588 0.020 0.980
#> GSM40660     2  0.9775      0.756 0.412 0.588
#> GSM40668     2  0.9000      0.771 0.316 0.684
#> GSM40678     2  0.9815      0.742 0.420 0.580
#> GSM40679     1  0.9732     -0.329 0.596 0.404
#> GSM40686     2  0.9732      0.763 0.404 0.596
#> GSM40687     2  0.9686      0.763 0.396 0.604
#> GSM40691     1  0.0000      0.929 1.000 0.000
#> GSM40699     2  0.9795      0.762 0.416 0.584
#> GSM40664     1  1.0000     -0.680 0.500 0.500
#> GSM40682     2  0.9896      0.736 0.440 0.560
#> GSM40688     1  0.0000      0.929 1.000 0.000
#> GSM40702     2  0.9850      0.756 0.428 0.572
#> GSM40706     1  0.0000      0.929 1.000 0.000
#> GSM40711     2  0.9044      0.772 0.320 0.680
#> GSM40661     2  0.9815      0.756 0.420 0.580
#> GSM40662     1  0.2948      0.866 0.948 0.052
#> GSM40666     2  1.0000      0.586 0.496 0.504
#> GSM40669     1  0.0000      0.929 1.000 0.000
#> GSM40670     1  0.0000      0.929 1.000 0.000
#> GSM40671     1  0.1184      0.922 0.984 0.016
#> GSM40672     1  0.0000      0.929 1.000 0.000
#> GSM40673     1  0.1184      0.922 0.984 0.016
#> GSM40674     1  0.0000      0.929 1.000 0.000
#> GSM40676     2  0.9815      0.728 0.420 0.580
#> GSM40680     1  0.3274      0.852 0.940 0.060
#> GSM40681     1  0.0672      0.924 0.992 0.008
#> GSM40683     1  0.1184      0.922 0.984 0.016
#> GSM40684     2  0.9754      0.742 0.408 0.592
#> GSM40685     1  0.0000      0.929 1.000 0.000
#> GSM40689     1  0.1184      0.922 0.984 0.016
#> GSM40690     1  0.0000      0.929 1.000 0.000
#> GSM40692     1  0.0000      0.929 1.000 0.000
#> GSM40693     1  0.0000      0.929 1.000 0.000
#> GSM40694     1  0.0000      0.929 1.000 0.000
#> GSM40695     1  0.1184      0.922 0.984 0.016
#> GSM40696     1  0.0000      0.929 1.000 0.000
#> GSM40697     1  0.0000      0.929 1.000 0.000
#> GSM40704     1  0.1184      0.922 0.984 0.016
#> GSM40705     2  0.9286      0.775 0.344 0.656
#> GSM40707     1  0.2778      0.884 0.952 0.048
#> GSM40708     1  0.4431      0.813 0.908 0.092
#> GSM40709     2  0.9998      0.597 0.492 0.508
#> GSM40712     1  0.0000      0.929 1.000 0.000
#> GSM40713     1  0.1184      0.922 0.984 0.016
#> GSM40665     1  0.1414      0.919 0.980 0.020
#> GSM40677     2  0.9686      0.765 0.396 0.604
#> GSM40698     1  0.1184      0.918 0.984 0.016
#> GSM40701     2  0.9358      0.779 0.352 0.648
#> GSM40710     2  0.9963      0.704 0.464 0.536

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM40667     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM40675     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM40703     3  0.0000     1.0000 0.000 0.000 1.000
#> GSM40660     2  0.2711     0.8974 0.088 0.912 0.000
#> GSM40668     2  0.5435     0.8489 0.048 0.808 0.144
#> GSM40678     2  0.0747     0.8566 0.016 0.984 0.000
#> GSM40679     2  0.0747     0.8566 0.016 0.984 0.000
#> GSM40686     2  0.0747     0.8566 0.016 0.984 0.000
#> GSM40687     2  0.0747     0.8566 0.016 0.984 0.000
#> GSM40691     2  0.2261     0.8826 0.068 0.932 0.000
#> GSM40699     2  0.0592     0.8590 0.012 0.988 0.000
#> GSM40664     2  0.3192     0.8988 0.112 0.888 0.000
#> GSM40682     2  0.0747     0.8566 0.016 0.984 0.000
#> GSM40688     2  0.2261     0.8827 0.068 0.932 0.000
#> GSM40702     2  0.0000     0.8656 0.000 1.000 0.000
#> GSM40706     2  0.3116     0.8961 0.108 0.892 0.000
#> GSM40711     2  0.5588     0.8827 0.124 0.808 0.068
#> GSM40661     2  0.2711     0.8975 0.088 0.912 0.000
#> GSM40662     2  0.2959     0.8987 0.100 0.900 0.000
#> GSM40666     2  0.4002     0.8903 0.160 0.840 0.000
#> GSM40669     2  0.4842     0.8627 0.224 0.776 0.000
#> GSM40670     2  0.4702     0.8725 0.212 0.788 0.000
#> GSM40671     1  0.1529     0.9204 0.960 0.040 0.000
#> GSM40672     1  0.0892     0.9170 0.980 0.020 0.000
#> GSM40673     1  0.0892     0.9170 0.980 0.020 0.000
#> GSM40674     2  0.4605     0.8775 0.204 0.796 0.000
#> GSM40676     2  0.4452     0.8742 0.192 0.808 0.000
#> GSM40680     2  0.3340     0.8981 0.120 0.880 0.000
#> GSM40681     2  0.5291     0.7952 0.268 0.732 0.000
#> GSM40683     1  0.1163     0.9225 0.972 0.028 0.000
#> GSM40684     2  0.4452     0.8742 0.192 0.808 0.000
#> GSM40685     2  0.3752     0.8962 0.144 0.856 0.000
#> GSM40689     1  0.1289     0.9235 0.968 0.032 0.000
#> GSM40690     1  0.1411     0.9230 0.964 0.036 0.000
#> GSM40692     2  0.3686     0.8966 0.140 0.860 0.000
#> GSM40693     1  0.6204    -0.0123 0.576 0.424 0.000
#> GSM40694     2  0.5431     0.7884 0.284 0.716 0.000
#> GSM40695     1  0.1289     0.9235 0.968 0.032 0.000
#> GSM40696     2  0.5363     0.8027 0.276 0.724 0.000
#> GSM40697     2  0.3879     0.8950 0.152 0.848 0.000
#> GSM40704     1  0.0892     0.9170 0.980 0.020 0.000
#> GSM40705     2  0.5588     0.8827 0.124 0.808 0.068
#> GSM40707     1  0.1529     0.9206 0.960 0.040 0.000
#> GSM40708     2  0.4796     0.8520 0.220 0.780 0.000
#> GSM40709     2  0.4178     0.8852 0.172 0.828 0.000
#> GSM40712     2  0.4002     0.8931 0.160 0.840 0.000
#> GSM40713     1  0.1289     0.9235 0.968 0.032 0.000
#> GSM40665     1  0.2066     0.8970 0.940 0.060 0.000
#> GSM40677     2  0.0747     0.8566 0.016 0.984 0.000
#> GSM40698     2  0.4452     0.8742 0.192 0.808 0.000
#> GSM40701     2  0.1411     0.8820 0.036 0.964 0.000
#> GSM40710     2  0.0747     0.8566 0.016 0.984 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40667     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40675     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40703     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40660     2  0.4625      0.726 0.140 0.804 0.044 0.012
#> GSM40668     2  0.4887      0.716 0.184 0.772 0.028 0.016
#> GSM40678     2  0.3764      0.632 0.000 0.784 0.216 0.000
#> GSM40679     2  0.3610      0.639 0.000 0.800 0.200 0.000
#> GSM40686     2  0.3764      0.632 0.000 0.784 0.216 0.000
#> GSM40687     2  0.3764      0.632 0.000 0.784 0.216 0.000
#> GSM40691     2  0.4277      0.638 0.000 0.720 0.280 0.000
#> GSM40699     2  0.2704      0.678 0.000 0.876 0.124 0.000
#> GSM40664     2  0.2999      0.728 0.132 0.864 0.004 0.000
#> GSM40682     2  0.2760      0.669 0.000 0.872 0.128 0.000
#> GSM40688     2  0.4564      0.643 0.000 0.672 0.328 0.000
#> GSM40702     2  0.2149      0.685 0.000 0.912 0.088 0.000
#> GSM40706     2  0.4883      0.643 0.016 0.696 0.288 0.000
#> GSM40711     2  0.5022      0.714 0.188 0.764 0.032 0.016
#> GSM40661     2  0.4365      0.718 0.188 0.784 0.028 0.000
#> GSM40662     2  0.3778      0.715 0.052 0.848 0.100 0.000
#> GSM40666     2  0.4716      0.715 0.196 0.764 0.040 0.000
#> GSM40669     2  0.6638      0.280 0.084 0.496 0.420 0.000
#> GSM40670     2  0.6862      0.498 0.128 0.560 0.312 0.000
#> GSM40671     1  0.1824      0.864 0.936 0.060 0.004 0.000
#> GSM40672     1  0.3497      0.735 0.860 0.036 0.104 0.000
#> GSM40673     1  0.2053      0.848 0.924 0.004 0.072 0.000
#> GSM40674     2  0.6907      0.436 0.120 0.532 0.348 0.000
#> GSM40676     2  0.4692      0.708 0.212 0.756 0.032 0.000
#> GSM40680     2  0.4568      0.726 0.124 0.800 0.076 0.000
#> GSM40681     2  0.4677      0.569 0.316 0.680 0.004 0.000
#> GSM40683     1  0.1807      0.875 0.940 0.008 0.052 0.000
#> GSM40684     2  0.4692      0.708 0.212 0.756 0.032 0.000
#> GSM40685     2  0.5093      0.546 0.012 0.640 0.348 0.000
#> GSM40689     1  0.0921      0.887 0.972 0.028 0.000 0.000
#> GSM40690     1  0.3182      0.828 0.876 0.096 0.028 0.000
#> GSM40692     2  0.5062      0.606 0.020 0.680 0.300 0.000
#> GSM40693     3  0.6426      0.858 0.272 0.108 0.620 0.000
#> GSM40694     2  0.7181      0.138 0.152 0.512 0.336 0.000
#> GSM40695     1  0.1256      0.890 0.964 0.028 0.008 0.000
#> GSM40696     3  0.6664      0.868 0.216 0.164 0.620 0.000
#> GSM40697     2  0.4819      0.558 0.004 0.652 0.344 0.000
#> GSM40704     1  0.2053      0.848 0.924 0.004 0.072 0.000
#> GSM40705     2  0.5022      0.714 0.188 0.764 0.032 0.016
#> GSM40707     1  0.1305      0.885 0.960 0.036 0.004 0.000
#> GSM40708     2  0.4741      0.623 0.328 0.668 0.004 0.000
#> GSM40709     2  0.4716      0.715 0.196 0.764 0.040 0.000
#> GSM40712     2  0.5036      0.573 0.024 0.696 0.280 0.000
#> GSM40713     1  0.2500      0.870 0.916 0.040 0.044 0.000
#> GSM40665     1  0.1661      0.875 0.944 0.052 0.004 0.000
#> GSM40677     2  0.3764      0.632 0.000 0.784 0.216 0.000
#> GSM40698     2  0.4283      0.689 0.256 0.740 0.004 0.000
#> GSM40701     2  0.3552      0.728 0.128 0.848 0.024 0.000
#> GSM40710     2  0.3764      0.632 0.000 0.784 0.216 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM40667     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM40675     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM40703     4  0.0000     1.0000 0.000 0.000 0.000 1.000 0.000
#> GSM40660     3  0.4562     0.5023 0.000 0.032 0.676 0.000 0.292
#> GSM40668     3  0.1914     0.6410 0.000 0.032 0.932 0.004 0.032
#> GSM40678     2  0.0566     0.8311 0.000 0.984 0.004 0.000 0.012
#> GSM40679     2  0.0566     0.8311 0.000 0.984 0.004 0.000 0.012
#> GSM40686     2  0.0566     0.8300 0.004 0.984 0.000 0.000 0.012
#> GSM40687     2  0.0566     0.8311 0.000 0.984 0.004 0.000 0.012
#> GSM40691     5  0.2927     0.7466 0.000 0.092 0.040 0.000 0.868
#> GSM40699     2  0.3445     0.7427 0.000 0.824 0.036 0.000 0.140
#> GSM40664     3  0.6056     0.3229 0.012 0.088 0.520 0.000 0.380
#> GSM40682     2  0.4507     0.4422 0.004 0.644 0.012 0.000 0.340
#> GSM40688     5  0.4367     0.1518 0.004 0.416 0.000 0.000 0.580
#> GSM40702     2  0.5274     0.3071 0.000 0.572 0.056 0.000 0.372
#> GSM40706     5  0.1661     0.7862 0.000 0.036 0.024 0.000 0.940
#> GSM40711     3  0.1493     0.6391 0.000 0.028 0.948 0.000 0.024
#> GSM40661     3  0.3567     0.6200 0.004 0.032 0.820 0.000 0.144
#> GSM40662     5  0.4284     0.5773 0.000 0.040 0.224 0.000 0.736
#> GSM40666     3  0.1828     0.6435 0.004 0.028 0.936 0.000 0.032
#> GSM40669     5  0.1732     0.7594 0.000 0.000 0.080 0.000 0.920
#> GSM40670     5  0.2286     0.7370 0.000 0.004 0.108 0.000 0.888
#> GSM40671     1  0.4972     0.3481 0.536 0.008 0.440 0.000 0.016
#> GSM40672     1  0.4450    -0.1340 0.508 0.004 0.000 0.000 0.488
#> GSM40673     1  0.1502     0.5478 0.940 0.004 0.000 0.000 0.056
#> GSM40674     5  0.2886     0.7212 0.000 0.008 0.148 0.000 0.844
#> GSM40676     3  0.2006     0.6316 0.024 0.020 0.932 0.000 0.024
#> GSM40680     5  0.6406    -0.1776 0.008 0.132 0.412 0.000 0.448
#> GSM40681     3  0.6795     0.2961 0.152 0.020 0.436 0.000 0.392
#> GSM40683     1  0.0566     0.5417 0.984 0.004 0.000 0.000 0.012
#> GSM40684     3  0.2006     0.6316 0.024 0.020 0.932 0.000 0.024
#> GSM40685     5  0.0854     0.7931 0.008 0.012 0.004 0.000 0.976
#> GSM40689     1  0.4911     0.2694 0.504 0.008 0.476 0.000 0.012
#> GSM40690     5  0.6773    -0.2381 0.300 0.000 0.304 0.000 0.396
#> GSM40692     5  0.1372     0.7925 0.004 0.024 0.016 0.000 0.956
#> GSM40693     5  0.1124     0.7782 0.036 0.004 0.000 0.000 0.960
#> GSM40694     5  0.0968     0.7917 0.012 0.012 0.004 0.000 0.972
#> GSM40695     1  0.3942     0.5106 0.728 0.000 0.260 0.000 0.012
#> GSM40696     5  0.0771     0.7826 0.020 0.004 0.000 0.000 0.976
#> GSM40697     5  0.0865     0.7874 0.000 0.024 0.004 0.000 0.972
#> GSM40704     1  0.1357     0.5485 0.948 0.004 0.000 0.000 0.048
#> GSM40705     3  0.1399     0.6385 0.000 0.028 0.952 0.000 0.020
#> GSM40707     3  0.4735    -0.0456 0.372 0.008 0.608 0.000 0.012
#> GSM40708     3  0.4853     0.2304 0.312 0.008 0.652 0.000 0.028
#> GSM40709     3  0.2036     0.6431 0.008 0.028 0.928 0.000 0.036
#> GSM40712     5  0.2452     0.7593 0.004 0.016 0.084 0.000 0.896
#> GSM40713     1  0.5352     0.3305 0.524 0.004 0.428 0.000 0.044
#> GSM40665     3  0.5072    -0.2758 0.456 0.008 0.516 0.000 0.020
#> GSM40677     2  0.0404     0.8306 0.000 0.988 0.000 0.000 0.012
#> GSM40698     3  0.6679     0.3149 0.136 0.020 0.456 0.000 0.388
#> GSM40701     3  0.4642     0.4857 0.000 0.032 0.660 0.000 0.308
#> GSM40710     2  0.0566     0.8300 0.004 0.984 0.000 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     4  0.1845      0.877 0.000 0.008 0.000 0.916 0.072 0.004
#> GSM40668     4  0.2009      0.837 0.000 0.008 0.084 0.904 0.004 0.000
#> GSM40678     2  0.0363      0.959 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM40679     2  0.0458      0.958 0.000 0.984 0.000 0.000 0.016 0.000
#> GSM40686     2  0.0260      0.958 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM40687     2  0.0363      0.959 0.000 0.988 0.000 0.000 0.012 0.000
#> GSM40691     5  0.2402      0.840 0.000 0.140 0.000 0.004 0.856 0.000
#> GSM40699     2  0.1398      0.933 0.000 0.940 0.000 0.008 0.052 0.000
#> GSM40664     6  0.6770      0.244 0.004 0.328 0.000 0.076 0.136 0.456
#> GSM40682     2  0.1663      0.903 0.000 0.912 0.000 0.000 0.088 0.000
#> GSM40688     5  0.2513      0.833 0.008 0.140 0.000 0.000 0.852 0.000
#> GSM40702     2  0.1967      0.898 0.000 0.904 0.000 0.012 0.084 0.000
#> GSM40706     5  0.0146      0.924 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM40711     4  0.0000      0.885 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40661     4  0.2555      0.872 0.000 0.016 0.000 0.888 0.064 0.032
#> GSM40662     5  0.3327      0.824 0.000 0.092 0.000 0.088 0.820 0.000
#> GSM40666     4  0.0858      0.884 0.000 0.004 0.000 0.968 0.000 0.028
#> GSM40669     5  0.0146      0.922 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM40670     5  0.0146      0.922 0.000 0.000 0.000 0.000 0.996 0.004
#> GSM40671     6  0.2300      0.714 0.144 0.000 0.000 0.000 0.000 0.856
#> GSM40672     1  0.1812      0.831 0.912 0.000 0.000 0.000 0.080 0.008
#> GSM40673     1  0.0405      0.902 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM40674     5  0.1296      0.902 0.000 0.004 0.000 0.044 0.948 0.004
#> GSM40676     6  0.3230      0.695 0.008 0.008 0.000 0.192 0.000 0.792
#> GSM40680     5  0.5495      0.646 0.000 0.188 0.000 0.060 0.656 0.096
#> GSM40681     6  0.3674      0.712 0.004 0.016 0.000 0.060 0.104 0.816
#> GSM40683     1  0.0458      0.899 0.984 0.000 0.000 0.000 0.000 0.016
#> GSM40684     6  0.3043      0.691 0.008 0.000 0.000 0.200 0.000 0.792
#> GSM40685     5  0.0260      0.925 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM40689     6  0.2996      0.658 0.228 0.000 0.000 0.000 0.000 0.772
#> GSM40690     6  0.4520      0.630 0.220 0.000 0.000 0.000 0.092 0.688
#> GSM40692     5  0.0260      0.925 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM40693     5  0.0767      0.922 0.012 0.008 0.000 0.000 0.976 0.004
#> GSM40694     5  0.0260      0.925 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM40695     1  0.2854      0.711 0.792 0.000 0.000 0.000 0.000 0.208
#> GSM40696     5  0.0767      0.922 0.012 0.008 0.000 0.000 0.976 0.004
#> GSM40697     5  0.0260      0.925 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM40704     1  0.0405      0.902 0.988 0.000 0.000 0.000 0.004 0.008
#> GSM40705     4  0.0000      0.885 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40707     6  0.2234      0.727 0.124 0.000 0.000 0.004 0.000 0.872
#> GSM40708     6  0.1462      0.748 0.000 0.008 0.000 0.056 0.000 0.936
#> GSM40709     4  0.3376      0.664 0.000 0.000 0.000 0.764 0.016 0.220
#> GSM40712     5  0.2803      0.861 0.000 0.012 0.000 0.052 0.872 0.064
#> GSM40713     6  0.3349      0.648 0.244 0.000 0.000 0.000 0.008 0.748
#> GSM40665     6  0.1010      0.749 0.036 0.000 0.000 0.004 0.000 0.960
#> GSM40677     2  0.0260      0.958 0.000 0.992 0.000 0.000 0.008 0.000
#> GSM40698     6  0.3346      0.727 0.004 0.012 0.000 0.064 0.080 0.840
#> GSM40701     4  0.2149      0.866 0.000 0.016 0.000 0.900 0.080 0.004
#> GSM40710     2  0.0260      0.958 0.000 0.992 0.000 0.000 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) k
#> CV:mclust 51         1.95e-03 2
#> CV:mclust 52         5.09e-09 3
#> CV:mclust 49         2.55e-07 4
#> CV:mclust 37         2.04e-06 5
#> CV:mclust 52         1.50e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.958           0.941       0.975         0.5034 0.495   0.495
#> 3 3 0.871           0.874       0.949         0.3367 0.681   0.441
#> 4 4 0.860           0.878       0.937         0.1178 0.820   0.521
#> 5 5 0.766           0.752       0.841         0.0497 0.967   0.873
#> 6 6 0.743           0.585       0.753         0.0346 0.910   0.651

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2   0.000      0.976 0.000 1.000
#> GSM40667     2   0.000      0.976 0.000 1.000
#> GSM40675     2   0.000      0.976 0.000 1.000
#> GSM40703     2   0.000      0.976 0.000 1.000
#> GSM40660     2   0.000      0.976 0.000 1.000
#> GSM40668     2   0.000      0.976 0.000 1.000
#> GSM40678     2   0.000      0.976 0.000 1.000
#> GSM40679     2   0.000      0.976 0.000 1.000
#> GSM40686     2   0.753      0.737 0.216 0.784
#> GSM40687     2   0.000      0.976 0.000 1.000
#> GSM40691     2   0.000      0.976 0.000 1.000
#> GSM40699     2   0.000      0.976 0.000 1.000
#> GSM40664     2   0.402      0.911 0.080 0.920
#> GSM40682     2   0.000      0.976 0.000 1.000
#> GSM40688     2   0.000      0.976 0.000 1.000
#> GSM40702     2   0.000      0.976 0.000 1.000
#> GSM40706     2   0.000      0.976 0.000 1.000
#> GSM40711     2   0.000      0.976 0.000 1.000
#> GSM40661     2   0.000      0.976 0.000 1.000
#> GSM40662     2   0.000      0.976 0.000 1.000
#> GSM40666     2   0.118      0.967 0.016 0.984
#> GSM40669     1   0.242      0.936 0.960 0.040
#> GSM40670     2   0.163      0.961 0.024 0.976
#> GSM40671     1   0.000      0.969 1.000 0.000
#> GSM40672     1   0.000      0.969 1.000 0.000
#> GSM40673     1   0.000      0.969 1.000 0.000
#> GSM40674     2   0.767      0.722 0.224 0.776
#> GSM40676     1   0.615      0.806 0.848 0.152
#> GSM40680     1   0.141      0.954 0.980 0.020
#> GSM40681     1   0.000      0.969 1.000 0.000
#> GSM40683     1   0.000      0.969 1.000 0.000
#> GSM40684     1   0.995      0.120 0.540 0.460
#> GSM40685     1   0.000      0.969 1.000 0.000
#> GSM40689     1   0.000      0.969 1.000 0.000
#> GSM40690     1   0.000      0.969 1.000 0.000
#> GSM40692     1   0.000      0.969 1.000 0.000
#> GSM40693     1   0.000      0.969 1.000 0.000
#> GSM40694     1   0.000      0.969 1.000 0.000
#> GSM40695     1   0.000      0.969 1.000 0.000
#> GSM40696     1   0.000      0.969 1.000 0.000
#> GSM40697     2   0.000      0.976 0.000 1.000
#> GSM40704     1   0.000      0.969 1.000 0.000
#> GSM40705     2   0.000      0.976 0.000 1.000
#> GSM40707     1   0.000      0.969 1.000 0.000
#> GSM40708     1   0.000      0.969 1.000 0.000
#> GSM40709     2   0.343      0.927 0.064 0.936
#> GSM40712     1   0.000      0.969 1.000 0.000
#> GSM40713     1   0.000      0.969 1.000 0.000
#> GSM40665     1   0.000      0.969 1.000 0.000
#> GSM40677     2   0.184      0.958 0.028 0.972
#> GSM40698     1   0.000      0.969 1.000 0.000
#> GSM40701     2   0.000      0.976 0.000 1.000
#> GSM40710     2   0.000      0.976 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000     0.9672 0.000 0.000 1.000
#> GSM40667     3  0.0000     0.9672 0.000 0.000 1.000
#> GSM40675     3  0.0000     0.9672 0.000 0.000 1.000
#> GSM40703     3  0.0000     0.9672 0.000 0.000 1.000
#> GSM40660     3  0.0000     0.9672 0.000 0.000 1.000
#> GSM40668     3  0.0000     0.9672 0.000 0.000 1.000
#> GSM40678     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40679     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40686     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40687     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40691     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40699     2  0.0237     0.9249 0.000 0.996 0.004
#> GSM40664     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40682     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40688     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40702     2  0.0747     0.9178 0.000 0.984 0.016
#> GSM40706     2  0.4796     0.7141 0.000 0.780 0.220
#> GSM40711     3  0.0000     0.9672 0.000 0.000 1.000
#> GSM40661     3  0.0000     0.9672 0.000 0.000 1.000
#> GSM40662     2  0.5397     0.6017 0.000 0.720 0.280
#> GSM40666     3  0.0424     0.9637 0.008 0.000 0.992
#> GSM40669     1  0.1315     0.9214 0.972 0.008 0.020
#> GSM40670     3  0.1411     0.9453 0.036 0.000 0.964
#> GSM40671     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40672     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40673     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40674     3  0.4452     0.7686 0.192 0.000 0.808
#> GSM40676     1  0.6260     0.1351 0.552 0.000 0.448
#> GSM40680     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40681     1  0.1860     0.8964 0.948 0.052 0.000
#> GSM40683     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40684     3  0.4121     0.8055 0.168 0.000 0.832
#> GSM40685     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40689     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40690     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40692     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40693     2  0.6299     0.0951 0.476 0.524 0.000
#> GSM40694     1  0.5926     0.3923 0.644 0.356 0.000
#> GSM40695     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40696     2  0.2356     0.8707 0.072 0.928 0.000
#> GSM40697     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40704     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40705     3  0.0000     0.9672 0.000 0.000 1.000
#> GSM40707     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40708     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40709     3  0.1163     0.9513 0.028 0.000 0.972
#> GSM40712     2  0.5706     0.5240 0.320 0.680 0.000
#> GSM40713     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40665     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40677     2  0.0000     0.9272 0.000 1.000 0.000
#> GSM40698     1  0.0000     0.9399 1.000 0.000 0.000
#> GSM40701     3  0.0000     0.9672 0.000 0.000 1.000
#> GSM40710     2  0.0000     0.9272 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM40667     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM40675     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM40703     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM40660     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM40668     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM40678     2  0.0000      0.964 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000      0.964 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0000      0.964 0.000 1.000 0.000 0.000
#> GSM40687     2  0.0000      0.964 0.000 1.000 0.000 0.000
#> GSM40691     2  0.0817      0.954 0.024 0.976 0.000 0.000
#> GSM40699     2  0.0000      0.964 0.000 1.000 0.000 0.000
#> GSM40664     2  0.2546      0.899 0.008 0.900 0.000 0.092
#> GSM40682     2  0.0524      0.961 0.008 0.988 0.000 0.004
#> GSM40688     2  0.0469      0.960 0.012 0.988 0.000 0.000
#> GSM40702     2  0.0672      0.959 0.008 0.984 0.000 0.008
#> GSM40706     2  0.3564      0.851 0.012 0.860 0.112 0.016
#> GSM40711     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM40661     3  0.1624      0.918 0.000 0.028 0.952 0.020
#> GSM40662     3  0.5716      0.217 0.028 0.420 0.552 0.000
#> GSM40666     3  0.0336      0.945 0.008 0.000 0.992 0.000
#> GSM40669     1  0.0992      0.872 0.976 0.004 0.012 0.008
#> GSM40670     1  0.4697      0.462 0.644 0.000 0.356 0.000
#> GSM40671     4  0.2281      0.885 0.096 0.000 0.000 0.904
#> GSM40672     1  0.0707      0.870 0.980 0.000 0.000 0.020
#> GSM40673     1  0.2647      0.822 0.880 0.000 0.000 0.120
#> GSM40674     1  0.3024      0.778 0.852 0.000 0.148 0.000
#> GSM40676     4  0.0188      0.907 0.004 0.000 0.000 0.996
#> GSM40680     2  0.0927      0.956 0.008 0.976 0.000 0.016
#> GSM40681     1  0.5812      0.658 0.708 0.136 0.000 0.156
#> GSM40683     1  0.2814      0.812 0.868 0.000 0.000 0.132
#> GSM40684     4  0.1356      0.891 0.008 0.000 0.032 0.960
#> GSM40685     2  0.1211      0.943 0.040 0.960 0.000 0.000
#> GSM40689     4  0.2081      0.892 0.084 0.000 0.000 0.916
#> GSM40690     1  0.2814      0.814 0.868 0.000 0.000 0.132
#> GSM40692     2  0.0188      0.963 0.004 0.996 0.000 0.000
#> GSM40693     1  0.1109      0.871 0.968 0.028 0.000 0.004
#> GSM40694     1  0.0817      0.872 0.976 0.024 0.000 0.000
#> GSM40695     4  0.4331      0.662 0.288 0.000 0.000 0.712
#> GSM40696     1  0.1211      0.864 0.960 0.040 0.000 0.000
#> GSM40697     2  0.4540      0.735 0.196 0.772 0.032 0.000
#> GSM40704     1  0.1211      0.866 0.960 0.000 0.000 0.040
#> GSM40705     3  0.0188      0.949 0.000 0.000 0.996 0.004
#> GSM40707     4  0.0592      0.910 0.016 0.000 0.000 0.984
#> GSM40708     4  0.0000      0.905 0.000 0.000 0.000 1.000
#> GSM40709     3  0.0524      0.945 0.004 0.000 0.988 0.008
#> GSM40712     1  0.0921      0.871 0.972 0.028 0.000 0.000
#> GSM40713     4  0.4072      0.719 0.252 0.000 0.000 0.748
#> GSM40665     4  0.0921      0.910 0.028 0.000 0.000 0.972
#> GSM40677     2  0.0000      0.964 0.000 1.000 0.000 0.000
#> GSM40698     4  0.0895      0.910 0.020 0.004 0.000 0.976
#> GSM40701     3  0.0000      0.951 0.000 0.000 1.000 0.000
#> GSM40710     2  0.0524      0.961 0.008 0.988 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3 p4    p5
#> GSM40663     3  0.0000     0.8835 0.000 0.000 1.000 NA 0.000
#> GSM40667     3  0.0000     0.8835 0.000 0.000 1.000 NA 0.000
#> GSM40675     3  0.0000     0.8835 0.000 0.000 1.000 NA 0.000
#> GSM40703     3  0.0000     0.8835 0.000 0.000 1.000 NA 0.000
#> GSM40660     3  0.0404     0.8794 0.000 0.000 0.988 NA 0.000
#> GSM40668     3  0.0000     0.8835 0.000 0.000 1.000 NA 0.000
#> GSM40678     2  0.0609     0.8436 0.000 0.980 0.000 NA 0.000
#> GSM40679     2  0.0290     0.8441 0.000 0.992 0.000 NA 0.000
#> GSM40686     2  0.1270     0.8390 0.000 0.948 0.000 NA 0.000
#> GSM40687     2  0.0703     0.8430 0.000 0.976 0.000 NA 0.000
#> GSM40691     2  0.3911     0.7612 0.000 0.796 0.000 NA 0.060
#> GSM40699     2  0.0671     0.8446 0.000 0.980 0.004 NA 0.000
#> GSM40664     2  0.6289     0.3582 0.152 0.452 0.000 NA 0.000
#> GSM40682     2  0.3143     0.7829 0.000 0.796 0.000 NA 0.000
#> GSM40688     2  0.2628     0.8106 0.000 0.884 0.000 NA 0.028
#> GSM40702     2  0.0880     0.8440 0.000 0.968 0.000 NA 0.000
#> GSM40706     2  0.4989     0.5777 0.000 0.552 0.032 NA 0.000
#> GSM40711     3  0.0162     0.8824 0.000 0.000 0.996 NA 0.000
#> GSM40661     3  0.6587     0.4471 0.048 0.100 0.560 NA 0.000
#> GSM40662     3  0.7061     0.2316 0.000 0.312 0.504 NA 0.124
#> GSM40666     3  0.0000     0.8835 0.000 0.000 1.000 NA 0.000
#> GSM40669     5  0.1965     0.7768 0.000 0.000 0.000 NA 0.904
#> GSM40670     3  0.5175     0.0344 0.000 0.000 0.496 NA 0.464
#> GSM40671     1  0.1750     0.8771 0.936 0.000 0.000 NA 0.036
#> GSM40672     5  0.2806     0.7800 0.004 0.000 0.000 NA 0.844
#> GSM40673     5  0.3760     0.7599 0.028 0.000 0.000 NA 0.784
#> GSM40674     5  0.4206     0.5578 0.000 0.000 0.272 NA 0.708
#> GSM40676     1  0.0771     0.8857 0.976 0.000 0.004 NA 0.000
#> GSM40680     2  0.3260     0.8171 0.056 0.856 0.000 NA 0.004
#> GSM40681     5  0.4467     0.7360 0.016 0.016 0.000 NA 0.716
#> GSM40683     5  0.4170     0.7486 0.048 0.000 0.000 NA 0.760
#> GSM40684     1  0.0671     0.8859 0.980 0.000 0.004 NA 0.000
#> GSM40685     2  0.4751     0.7062 0.000 0.732 0.000 NA 0.116
#> GSM40689     1  0.4094     0.7739 0.788 0.000 0.000 NA 0.084
#> GSM40690     5  0.5010     0.6129 0.036 0.000 0.000 NA 0.572
#> GSM40692     2  0.0865     0.8434 0.000 0.972 0.000 NA 0.004
#> GSM40693     5  0.2179     0.7719 0.000 0.000 0.000 NA 0.888
#> GSM40694     5  0.3323     0.7379 0.000 0.056 0.000 NA 0.844
#> GSM40695     5  0.6392     0.2296 0.356 0.000 0.000 NA 0.468
#> GSM40696     5  0.2763     0.7566 0.000 0.004 0.000 NA 0.848
#> GSM40697     2  0.5359     0.6655 0.000 0.692 0.008 NA 0.148
#> GSM40704     5  0.2189     0.7877 0.012 0.000 0.000 NA 0.904
#> GSM40705     3  0.0000     0.8835 0.000 0.000 1.000 NA 0.000
#> GSM40707     1  0.0510     0.8857 0.984 0.000 0.000 NA 0.000
#> GSM40708     1  0.0290     0.8854 0.992 0.000 0.000 NA 0.000
#> GSM40709     3  0.0955     0.8675 0.000 0.000 0.968 NA 0.004
#> GSM40712     5  0.1197     0.7890 0.000 0.000 0.000 NA 0.952
#> GSM40713     1  0.3386     0.7954 0.832 0.000 0.000 NA 0.128
#> GSM40665     1  0.2377     0.8542 0.872 0.000 0.000 NA 0.000
#> GSM40677     2  0.3521     0.7689 0.000 0.764 0.000 NA 0.004
#> GSM40698     1  0.5665     0.6356 0.620 0.108 0.000 NA 0.004
#> GSM40701     3  0.0162     0.8824 0.000 0.000 0.996 NA 0.000
#> GSM40710     2  0.3003     0.7972 0.000 0.812 0.000 NA 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0260     0.9207 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM40667     3  0.0260     0.9207 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM40675     3  0.0260     0.9207 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM40703     3  0.0260     0.9207 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM40660     3  0.0914     0.9081 0.000 0.000 0.968 0.016 0.016 0.000
#> GSM40668     3  0.0000     0.9206 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40678     2  0.0717     0.7643 0.000 0.976 0.000 0.016 0.008 0.000
#> GSM40679     2  0.1082     0.7637 0.000 0.956 0.000 0.040 0.004 0.000
#> GSM40686     2  0.1895     0.7458 0.000 0.912 0.000 0.072 0.016 0.000
#> GSM40687     2  0.1257     0.7641 0.000 0.952 0.000 0.028 0.020 0.000
#> GSM40691     2  0.3670     0.6846 0.000 0.788 0.004 0.056 0.152 0.000
#> GSM40699     2  0.1007     0.7632 0.000 0.956 0.000 0.044 0.000 0.000
#> GSM40664     4  0.4909     0.4541 0.000 0.216 0.000 0.668 0.008 0.108
#> GSM40682     2  0.4456     0.1648 0.000 0.524 0.000 0.448 0.028 0.000
#> GSM40688     2  0.2706     0.7314 0.000 0.860 0.000 0.036 0.104 0.000
#> GSM40702     2  0.1320     0.7617 0.000 0.948 0.000 0.036 0.016 0.000
#> GSM40706     4  0.6373    -0.0542 0.004 0.332 0.004 0.336 0.324 0.000
#> GSM40711     3  0.0508     0.9167 0.000 0.000 0.984 0.012 0.004 0.000
#> GSM40661     4  0.5293     0.4294 0.000 0.064 0.280 0.620 0.000 0.036
#> GSM40662     5  0.6440     0.1764 0.008 0.232 0.340 0.004 0.412 0.004
#> GSM40666     3  0.0260     0.9188 0.008 0.000 0.992 0.000 0.000 0.000
#> GSM40669     5  0.3991     0.3482 0.472 0.000 0.004 0.000 0.524 0.000
#> GSM40670     3  0.5850    -0.3677 0.164 0.000 0.424 0.004 0.408 0.000
#> GSM40671     6  0.1906     0.8128 0.036 0.000 0.000 0.032 0.008 0.924
#> GSM40672     1  0.2558     0.5149 0.840 0.000 0.000 0.004 0.156 0.000
#> GSM40673     1  0.0260     0.6437 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM40674     5  0.6232     0.2637 0.348 0.000 0.292 0.004 0.356 0.000
#> GSM40676     6  0.1391     0.8215 0.016 0.000 0.000 0.040 0.000 0.944
#> GSM40680     2  0.4505     0.6712 0.000 0.760 0.000 0.072 0.108 0.060
#> GSM40681     1  0.2989     0.5881 0.868 0.020 0.000 0.080 0.016 0.016
#> GSM40683     1  0.0508     0.6439 0.984 0.000 0.000 0.004 0.000 0.012
#> GSM40684     6  0.1760     0.8237 0.048 0.000 0.004 0.020 0.000 0.928
#> GSM40685     2  0.4502     0.5936 0.000 0.696 0.000 0.048 0.240 0.016
#> GSM40689     6  0.5037     0.4398 0.380 0.000 0.000 0.080 0.000 0.540
#> GSM40690     4  0.6122     0.2002 0.280 0.000 0.000 0.528 0.160 0.032
#> GSM40692     2  0.1765     0.7635 0.000 0.924 0.000 0.024 0.052 0.000
#> GSM40693     5  0.4067     0.3930 0.444 0.000 0.000 0.008 0.548 0.000
#> GSM40694     5  0.5398     0.3730 0.364 0.096 0.000 0.008 0.532 0.000
#> GSM40695     1  0.2527     0.5198 0.832 0.000 0.000 0.000 0.000 0.168
#> GSM40696     5  0.4731     0.4284 0.400 0.020 0.000 0.020 0.560 0.000
#> GSM40697     2  0.4743     0.4037 0.000 0.564 0.004 0.044 0.388 0.000
#> GSM40704     1  0.3921     0.1648 0.676 0.000 0.000 0.004 0.308 0.012
#> GSM40705     3  0.0000     0.9206 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40707     6  0.0993     0.8220 0.024 0.000 0.000 0.012 0.000 0.964
#> GSM40708     6  0.0748     0.8150 0.004 0.000 0.000 0.016 0.004 0.976
#> GSM40709     3  0.2245     0.8606 0.016 0.000 0.908 0.036 0.040 0.000
#> GSM40712     1  0.4452    -0.3003 0.548 0.008 0.000 0.016 0.428 0.000
#> GSM40713     6  0.3018     0.7599 0.168 0.000 0.000 0.004 0.012 0.816
#> GSM40665     6  0.4443     0.6219 0.068 0.000 0.000 0.232 0.004 0.696
#> GSM40677     2  0.4838     0.2671 0.000 0.544 0.000 0.396 0.060 0.000
#> GSM40698     4  0.6123     0.1993 0.080 0.072 0.000 0.520 0.000 0.328
#> GSM40701     3  0.0508     0.9167 0.000 0.000 0.984 0.012 0.004 0.000
#> GSM40710     2  0.4349     0.5659 0.000 0.708 0.000 0.208 0.084 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) k
#> CV:NMF 52         0.000177 2
#> CV:NMF 50         0.003788 3
#> CV:NMF 51         0.000195 4
#> CV:NMF 48         0.000283 5
#> CV:NMF 35         0.018579 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.827           0.893       0.949         0.4953 0.495   0.495
#> 3 3 0.748           0.820       0.913         0.3072 0.820   0.649
#> 4 4 0.645           0.654       0.789         0.1326 0.856   0.622
#> 5 5 0.727           0.696       0.845         0.0806 0.882   0.600
#> 6 6 0.752           0.679       0.821         0.0385 0.972   0.866

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      0.954 0.000 1.000
#> GSM40667     2  0.0000      0.954 0.000 1.000
#> GSM40675     2  0.0000      0.954 0.000 1.000
#> GSM40703     2  0.0000      0.954 0.000 1.000
#> GSM40660     2  0.0376      0.956 0.004 0.996
#> GSM40668     2  0.0000      0.954 0.000 1.000
#> GSM40678     2  0.0672      0.957 0.008 0.992
#> GSM40679     2  0.0672      0.957 0.008 0.992
#> GSM40686     2  0.6247      0.814 0.156 0.844
#> GSM40687     2  0.0672      0.957 0.008 0.992
#> GSM40691     2  0.0672      0.957 0.008 0.992
#> GSM40699     2  0.0672      0.957 0.008 0.992
#> GSM40664     2  0.1414      0.953 0.020 0.980
#> GSM40682     2  0.0672      0.957 0.008 0.992
#> GSM40688     2  0.0672      0.957 0.008 0.992
#> GSM40702     2  0.0672      0.957 0.008 0.992
#> GSM40706     2  0.0672      0.957 0.008 0.992
#> GSM40711     2  0.3274      0.927 0.060 0.940
#> GSM40661     2  0.0938      0.956 0.012 0.988
#> GSM40662     2  0.9850      0.197 0.428 0.572
#> GSM40666     2  0.3879      0.915 0.076 0.924
#> GSM40669     1  0.9170      0.537 0.668 0.332
#> GSM40670     1  0.9170      0.537 0.668 0.332
#> GSM40671     1  0.0000      0.930 1.000 0.000
#> GSM40672     1  0.0000      0.930 1.000 0.000
#> GSM40673     1  0.0000      0.930 1.000 0.000
#> GSM40674     1  0.9460      0.467 0.636 0.364
#> GSM40676     2  0.4022      0.912 0.080 0.920
#> GSM40680     1  0.3733      0.890 0.928 0.072
#> GSM40681     1  0.0672      0.928 0.992 0.008
#> GSM40683     1  0.0000      0.930 1.000 0.000
#> GSM40684     2  0.4022      0.912 0.080 0.920
#> GSM40685     1  0.1633      0.922 0.976 0.024
#> GSM40689     1  0.0000      0.930 1.000 0.000
#> GSM40690     1  0.0000      0.930 1.000 0.000
#> GSM40692     1  0.3733      0.890 0.928 0.072
#> GSM40693     1  0.0000      0.930 1.000 0.000
#> GSM40694     1  0.1633      0.922 0.976 0.024
#> GSM40695     1  0.0000      0.930 1.000 0.000
#> GSM40696     1  0.0000      0.930 1.000 0.000
#> GSM40697     2  0.2778      0.934 0.048 0.952
#> GSM40704     1  0.0000      0.930 1.000 0.000
#> GSM40705     2  0.3274      0.927 0.060 0.940
#> GSM40707     1  0.0000      0.930 1.000 0.000
#> GSM40708     1  0.0000      0.930 1.000 0.000
#> GSM40709     2  0.4022      0.912 0.080 0.920
#> GSM40712     1  0.7674      0.716 0.776 0.224
#> GSM40713     1  0.0376      0.929 0.996 0.004
#> GSM40665     1  0.1184      0.926 0.984 0.016
#> GSM40677     2  0.0672      0.957 0.008 0.992
#> GSM40698     1  0.1184      0.926 0.984 0.016
#> GSM40701     2  0.0376      0.956 0.004 0.996
#> GSM40710     2  0.0672      0.957 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0237     0.8525 0.000 0.004 0.996
#> GSM40667     3  0.0237     0.8525 0.000 0.004 0.996
#> GSM40675     3  0.0237     0.8525 0.000 0.004 0.996
#> GSM40703     3  0.0237     0.8525 0.000 0.004 0.996
#> GSM40660     3  0.5591     0.5766 0.000 0.304 0.696
#> GSM40668     3  0.0237     0.8525 0.000 0.004 0.996
#> GSM40678     2  0.0000     0.9333 0.000 1.000 0.000
#> GSM40679     2  0.0000     0.9333 0.000 1.000 0.000
#> GSM40686     2  0.4047     0.7787 0.148 0.848 0.004
#> GSM40687     2  0.0000     0.9333 0.000 1.000 0.000
#> GSM40691     2  0.2959     0.8617 0.000 0.900 0.100
#> GSM40699     2  0.0000     0.9333 0.000 1.000 0.000
#> GSM40664     2  0.4755     0.7310 0.008 0.808 0.184
#> GSM40682     2  0.0000     0.9333 0.000 1.000 0.000
#> GSM40688     2  0.0000     0.9333 0.000 1.000 0.000
#> GSM40702     2  0.3941     0.7921 0.000 0.844 0.156
#> GSM40706     2  0.0000     0.9333 0.000 1.000 0.000
#> GSM40711     3  0.3694     0.8577 0.052 0.052 0.896
#> GSM40661     3  0.6302     0.1108 0.000 0.480 0.520
#> GSM40662     1  0.9370    -0.0456 0.420 0.168 0.412
#> GSM40666     3  0.4087     0.8526 0.068 0.052 0.880
#> GSM40669     1  0.7384     0.5606 0.660 0.068 0.272
#> GSM40670     1  0.7384     0.5606 0.660 0.068 0.272
#> GSM40671     1  0.0000     0.9063 1.000 0.000 0.000
#> GSM40672     1  0.0000     0.9063 1.000 0.000 0.000
#> GSM40673     1  0.0000     0.9063 1.000 0.000 0.000
#> GSM40674     1  0.7671     0.5032 0.628 0.072 0.300
#> GSM40676     3  0.4179     0.8509 0.072 0.052 0.876
#> GSM40680     1  0.2682     0.8663 0.920 0.076 0.004
#> GSM40681     1  0.0592     0.9040 0.988 0.012 0.000
#> GSM40683     1  0.0000     0.9063 1.000 0.000 0.000
#> GSM40684     3  0.4179     0.8509 0.072 0.052 0.876
#> GSM40685     1  0.1289     0.8965 0.968 0.032 0.000
#> GSM40689     1  0.0000     0.9063 1.000 0.000 0.000
#> GSM40690     1  0.0000     0.9063 1.000 0.000 0.000
#> GSM40692     1  0.2682     0.8663 0.920 0.076 0.004
#> GSM40693     1  0.0237     0.9061 0.996 0.004 0.000
#> GSM40694     1  0.1289     0.8962 0.968 0.032 0.000
#> GSM40695     1  0.0000     0.9063 1.000 0.000 0.000
#> GSM40696     1  0.0237     0.9061 0.996 0.004 0.000
#> GSM40697     2  0.3764     0.8677 0.040 0.892 0.068
#> GSM40704     1  0.0000     0.9063 1.000 0.000 0.000
#> GSM40705     3  0.3694     0.8577 0.052 0.052 0.896
#> GSM40707     1  0.0000     0.9063 1.000 0.000 0.000
#> GSM40708     1  0.0000     0.9063 1.000 0.000 0.000
#> GSM40709     3  0.4179     0.8504 0.072 0.052 0.876
#> GSM40712     1  0.6174     0.7141 0.768 0.064 0.168
#> GSM40713     1  0.0237     0.9061 0.996 0.004 0.000
#> GSM40665     1  0.1129     0.8997 0.976 0.020 0.004
#> GSM40677     2  0.0000     0.9333 0.000 1.000 0.000
#> GSM40698     1  0.1129     0.8997 0.976 0.020 0.004
#> GSM40701     3  0.5098     0.6555 0.000 0.248 0.752
#> GSM40710     2  0.0000     0.9333 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.0000    0.84253 0.000 0.000 0.000 1.000
#> GSM40667     4  0.0000    0.84253 0.000 0.000 0.000 1.000
#> GSM40675     4  0.0000    0.84253 0.000 0.000 0.000 1.000
#> GSM40703     4  0.0000    0.84253 0.000 0.000 0.000 1.000
#> GSM40660     4  0.5883    0.53494 0.000 0.288 0.064 0.648
#> GSM40668     4  0.0000    0.84253 0.000 0.000 0.000 1.000
#> GSM40678     2  0.0000    0.89559 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000    0.89559 0.000 1.000 0.000 0.000
#> GSM40686     2  0.4083    0.76854 0.068 0.832 0.100 0.000
#> GSM40687     2  0.0000    0.89559 0.000 1.000 0.000 0.000
#> GSM40691     2  0.2987    0.83184 0.000 0.880 0.104 0.016
#> GSM40699     2  0.0000    0.89559 0.000 1.000 0.000 0.000
#> GSM40664     2  0.4049    0.71360 0.000 0.780 0.212 0.008
#> GSM40682     2  0.0000    0.89559 0.000 1.000 0.000 0.000
#> GSM40688     2  0.0336    0.89234 0.000 0.992 0.008 0.000
#> GSM40702     2  0.4037    0.78382 0.000 0.832 0.056 0.112
#> GSM40706     2  0.0000    0.89559 0.000 1.000 0.000 0.000
#> GSM40711     3  0.4961    0.30250 0.000 0.000 0.552 0.448
#> GSM40661     2  0.7486   -0.00815 0.000 0.464 0.188 0.348
#> GSM40662     3  0.6993    0.41938 0.100 0.120 0.684 0.096
#> GSM40666     3  0.5097    0.33554 0.004 0.000 0.568 0.428
#> GSM40669     3  0.4504    0.21532 0.204 0.020 0.772 0.004
#> GSM40670     3  0.4504    0.21532 0.204 0.020 0.772 0.004
#> GSM40671     1  0.0188    0.76965 0.996 0.000 0.004 0.000
#> GSM40672     1  0.0592    0.77135 0.984 0.000 0.016 0.000
#> GSM40673     1  0.0000    0.76791 1.000 0.000 0.000 0.000
#> GSM40674     3  0.5438    0.25835 0.200 0.024 0.740 0.036
#> GSM40676     3  0.4916    0.33785 0.000 0.000 0.576 0.424
#> GSM40680     1  0.6204    0.58151 0.500 0.052 0.448 0.000
#> GSM40681     1  0.4331    0.73556 0.712 0.000 0.288 0.000
#> GSM40683     1  0.0000    0.76791 1.000 0.000 0.000 0.000
#> GSM40684     3  0.4916    0.33785 0.000 0.000 0.576 0.424
#> GSM40685     1  0.5290    0.59654 0.516 0.008 0.476 0.000
#> GSM40689     1  0.3219    0.76691 0.836 0.000 0.164 0.000
#> GSM40690     1  0.1637    0.77660 0.940 0.000 0.060 0.000
#> GSM40692     1  0.6204    0.58151 0.500 0.052 0.448 0.000
#> GSM40693     1  0.2469    0.77285 0.892 0.000 0.108 0.000
#> GSM40694     1  0.5273    0.61694 0.536 0.008 0.456 0.000
#> GSM40695     1  0.0188    0.76965 0.996 0.000 0.004 0.000
#> GSM40696     1  0.2469    0.77285 0.892 0.000 0.108 0.000
#> GSM40697     2  0.3224    0.82395 0.016 0.864 0.120 0.000
#> GSM40704     1  0.0000    0.76791 1.000 0.000 0.000 0.000
#> GSM40705     3  0.4961    0.30250 0.000 0.000 0.552 0.448
#> GSM40707     1  0.4406    0.71492 0.700 0.000 0.300 0.000
#> GSM40708     1  0.4406    0.71492 0.700 0.000 0.300 0.000
#> GSM40709     3  0.5088    0.33934 0.004 0.000 0.572 0.424
#> GSM40712     3  0.5047   -0.15723 0.316 0.016 0.668 0.000
#> GSM40713     1  0.3024    0.78310 0.852 0.000 0.148 0.000
#> GSM40665     1  0.4522    0.72975 0.680 0.000 0.320 0.000
#> GSM40677     2  0.0000    0.89559 0.000 1.000 0.000 0.000
#> GSM40698     1  0.4888    0.67322 0.588 0.000 0.412 0.000
#> GSM40701     4  0.4840    0.62211 0.000 0.240 0.028 0.732
#> GSM40710     2  0.0000    0.89559 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.1121     0.8676 0.000 0.000 0.956 0.044 0.000
#> GSM40667     3  0.1121     0.8676 0.000 0.000 0.956 0.044 0.000
#> GSM40675     3  0.1121     0.8676 0.000 0.000 0.956 0.044 0.000
#> GSM40703     3  0.1121     0.8676 0.000 0.000 0.956 0.044 0.000
#> GSM40660     3  0.6104     0.5521 0.000 0.268 0.604 0.104 0.024
#> GSM40668     3  0.1121     0.8676 0.000 0.000 0.956 0.044 0.000
#> GSM40678     2  0.0000     0.8905 0.000 1.000 0.000 0.000 0.000
#> GSM40679     2  0.0000     0.8905 0.000 1.000 0.000 0.000 0.000
#> GSM40686     2  0.3333     0.7667 0.008 0.820 0.000 0.008 0.164
#> GSM40687     2  0.0000     0.8905 0.000 1.000 0.000 0.000 0.000
#> GSM40691     2  0.2856     0.8259 0.000 0.872 0.008 0.104 0.016
#> GSM40699     2  0.0000     0.8905 0.000 1.000 0.000 0.000 0.000
#> GSM40664     2  0.3961     0.6974 0.000 0.760 0.000 0.212 0.028
#> GSM40682     2  0.0000     0.8905 0.000 1.000 0.000 0.000 0.000
#> GSM40688     2  0.0510     0.8852 0.000 0.984 0.000 0.000 0.016
#> GSM40702     2  0.4131     0.7675 0.000 0.812 0.100 0.064 0.024
#> GSM40706     2  0.0000     0.8905 0.000 1.000 0.000 0.000 0.000
#> GSM40711     4  0.0963     0.8702 0.000 0.000 0.036 0.964 0.000
#> GSM40661     2  0.7140     0.0388 0.000 0.444 0.304 0.228 0.024
#> GSM40662     4  0.6072    -0.0901 0.000 0.104 0.004 0.460 0.432
#> GSM40666     4  0.0324     0.8802 0.004 0.000 0.004 0.992 0.000
#> GSM40669     5  0.4557     0.4482 0.008 0.012 0.000 0.324 0.656
#> GSM40670     5  0.4557     0.4482 0.008 0.012 0.000 0.324 0.656
#> GSM40671     1  0.0771     0.8060 0.976 0.000 0.004 0.000 0.020
#> GSM40672     1  0.0880     0.8034 0.968 0.000 0.000 0.000 0.032
#> GSM40673     1  0.0000     0.8094 1.000 0.000 0.000 0.000 0.000
#> GSM40674     5  0.4633     0.4018 0.004 0.016 0.000 0.348 0.632
#> GSM40676     4  0.0451     0.8810 0.000 0.000 0.004 0.988 0.008
#> GSM40680     5  0.3216     0.6675 0.068 0.048 0.000 0.016 0.868
#> GSM40681     5  0.4283     0.3226 0.348 0.000 0.000 0.008 0.644
#> GSM40683     1  0.0000     0.8094 1.000 0.000 0.000 0.000 0.000
#> GSM40684     4  0.0451     0.8810 0.000 0.000 0.004 0.988 0.008
#> GSM40685     5  0.1430     0.6676 0.052 0.000 0.000 0.004 0.944
#> GSM40689     1  0.4879     0.5088 0.728 0.000 0.032 0.036 0.204
#> GSM40690     1  0.3003     0.7177 0.812 0.000 0.000 0.000 0.188
#> GSM40692     5  0.3216     0.6675 0.068 0.048 0.000 0.016 0.868
#> GSM40693     1  0.3730     0.6130 0.712 0.000 0.000 0.000 0.288
#> GSM40694     5  0.2520     0.6612 0.096 0.004 0.000 0.012 0.888
#> GSM40695     1  0.0671     0.8074 0.980 0.000 0.004 0.000 0.016
#> GSM40696     1  0.3730     0.6130 0.712 0.000 0.000 0.000 0.288
#> GSM40697     2  0.3301     0.8161 0.000 0.848 0.000 0.072 0.080
#> GSM40704     1  0.0000     0.8094 1.000 0.000 0.000 0.000 0.000
#> GSM40705     4  0.0963     0.8702 0.000 0.000 0.036 0.964 0.000
#> GSM40707     5  0.5331     0.3945 0.364 0.000 0.044 0.008 0.584
#> GSM40708     5  0.5331     0.3945 0.364 0.000 0.044 0.008 0.584
#> GSM40709     4  0.0324     0.8785 0.004 0.000 0.000 0.992 0.004
#> GSM40712     5  0.3840     0.5774 0.012 0.008 0.000 0.208 0.772
#> GSM40713     1  0.4196     0.4337 0.640 0.000 0.004 0.000 0.356
#> GSM40665     5  0.6316     0.2742 0.344 0.000 0.040 0.072 0.544
#> GSM40677     2  0.0162     0.8892 0.000 0.996 0.000 0.000 0.004
#> GSM40698     5  0.5275     0.5728 0.188 0.000 0.032 0.068 0.712
#> GSM40701     3  0.5303     0.6559 0.000 0.224 0.688 0.068 0.020
#> GSM40710     2  0.0000     0.8905 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0146     0.8742 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40667     3  0.0146     0.8742 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40675     3  0.0146     0.8742 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40703     3  0.0146     0.8742 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40660     3  0.5855     0.6132 0.000 0.208 0.624 0.064 0.004 0.100
#> GSM40668     3  0.0146     0.8742 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40678     2  0.0000     0.8292 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40679     2  0.0000     0.8292 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40686     2  0.4464     0.7067 0.000 0.712 0.000 0.000 0.148 0.140
#> GSM40687     2  0.1204     0.8254 0.000 0.944 0.000 0.000 0.000 0.056
#> GSM40691     2  0.4273     0.7604 0.000 0.768 0.008 0.068 0.016 0.140
#> GSM40699     2  0.0000     0.8292 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40664     2  0.5055     0.5930 0.000 0.652 0.000 0.184 0.004 0.160
#> GSM40682     2  0.0000     0.8292 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40688     2  0.2884     0.7878 0.000 0.824 0.004 0.000 0.008 0.164
#> GSM40702     2  0.4657     0.6846 0.000 0.752 0.100 0.044 0.004 0.100
#> GSM40706     2  0.1141     0.8224 0.000 0.948 0.000 0.000 0.000 0.052
#> GSM40711     4  0.0790     0.9641 0.000 0.000 0.032 0.968 0.000 0.000
#> GSM40661     2  0.7465    -0.1298 0.000 0.352 0.324 0.184 0.004 0.136
#> GSM40662     5  0.6361     0.2029 0.000 0.064 0.004 0.412 0.432 0.088
#> GSM40666     4  0.0405     0.9685 0.000 0.000 0.000 0.988 0.008 0.004
#> GSM40669     5  0.4146     0.5426 0.000 0.000 0.000 0.288 0.676 0.036
#> GSM40670     5  0.4146     0.5426 0.000 0.000 0.000 0.288 0.676 0.036
#> GSM40671     1  0.0820     0.7446 0.972 0.000 0.000 0.000 0.012 0.016
#> GSM40672     1  0.0790     0.7480 0.968 0.000 0.000 0.000 0.032 0.000
#> GSM40673     1  0.0000     0.7541 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40674     5  0.4361     0.5133 0.000 0.000 0.000 0.308 0.648 0.044
#> GSM40676     4  0.0363     0.9730 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM40680     5  0.1498     0.6045 0.000 0.028 0.000 0.000 0.940 0.032
#> GSM40681     5  0.3650     0.3462 0.280 0.000 0.000 0.000 0.708 0.012
#> GSM40683     1  0.0000     0.7541 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40684     4  0.0363     0.9730 0.000 0.000 0.000 0.988 0.000 0.012
#> GSM40685     5  0.0993     0.6059 0.012 0.000 0.000 0.000 0.964 0.024
#> GSM40689     1  0.3930     0.3132 0.728 0.000 0.000 0.032 0.004 0.236
#> GSM40690     1  0.2902     0.6714 0.800 0.000 0.000 0.000 0.196 0.004
#> GSM40692     5  0.1498     0.6045 0.000 0.028 0.000 0.000 0.940 0.032
#> GSM40693     1  0.3528     0.5992 0.700 0.000 0.000 0.000 0.296 0.004
#> GSM40694     5  0.1257     0.5998 0.028 0.000 0.000 0.000 0.952 0.020
#> GSM40695     1  0.0717     0.7466 0.976 0.000 0.000 0.000 0.008 0.016
#> GSM40696     1  0.3528     0.5992 0.700 0.000 0.000 0.000 0.296 0.004
#> GSM40697     2  0.5157     0.7143 0.000 0.676 0.004 0.044 0.060 0.216
#> GSM40704     1  0.0000     0.7541 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40705     4  0.0790     0.9641 0.000 0.000 0.032 0.968 0.000 0.000
#> GSM40707     6  0.4931     1.0000 0.248 0.000 0.000 0.000 0.116 0.636
#> GSM40708     6  0.4931     1.0000 0.248 0.000 0.000 0.000 0.116 0.636
#> GSM40709     4  0.0622     0.9641 0.000 0.000 0.000 0.980 0.012 0.008
#> GSM40712     5  0.3236     0.6164 0.000 0.000 0.000 0.180 0.796 0.024
#> GSM40713     1  0.4379     0.3142 0.576 0.000 0.000 0.000 0.396 0.028
#> GSM40665     5  0.7031    -0.3666 0.284 0.000 0.000 0.064 0.364 0.288
#> GSM40677     2  0.2520     0.7939 0.000 0.844 0.004 0.000 0.000 0.152
#> GSM40698     5  0.6195     0.0132 0.124 0.000 0.000 0.064 0.556 0.256
#> GSM40701     3  0.4847     0.6845 0.000 0.176 0.708 0.032 0.000 0.084
#> GSM40710     2  0.1204     0.8254 0.000 0.944 0.000 0.000 0.000 0.056

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:hclust 51         9.94e-05 2
#> MAD:hclust 51         9.83e-07 3
#> MAD:hclust 41         2.58e-08 4
#> MAD:hclust 43         1.14e-05 5
#> MAD:hclust 46         2.61e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.850           0.951       0.975         0.5058 0.492   0.492
#> 3 3 0.596           0.692       0.817         0.2906 0.792   0.602
#> 4 4 0.592           0.733       0.830         0.1449 0.819   0.527
#> 5 5 0.776           0.714       0.815         0.0695 0.971   0.880
#> 6 6 0.763           0.563       0.712         0.0381 0.898   0.590

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2   0.000      0.990 0.000 1.000
#> GSM40667     2   0.000      0.990 0.000 1.000
#> GSM40675     2   0.000      0.990 0.000 1.000
#> GSM40703     2   0.000      0.990 0.000 1.000
#> GSM40660     2   0.000      0.990 0.000 1.000
#> GSM40668     2   0.000      0.990 0.000 1.000
#> GSM40678     2   0.000      0.990 0.000 1.000
#> GSM40679     2   0.000      0.990 0.000 1.000
#> GSM40686     2   0.781      0.682 0.232 0.768
#> GSM40687     2   0.000      0.990 0.000 1.000
#> GSM40691     2   0.000      0.990 0.000 1.000
#> GSM40699     2   0.000      0.990 0.000 1.000
#> GSM40664     2   0.000      0.990 0.000 1.000
#> GSM40682     2   0.000      0.990 0.000 1.000
#> GSM40688     2   0.000      0.990 0.000 1.000
#> GSM40702     2   0.000      0.990 0.000 1.000
#> GSM40706     2   0.000      0.990 0.000 1.000
#> GSM40711     2   0.000      0.990 0.000 1.000
#> GSM40661     2   0.000      0.990 0.000 1.000
#> GSM40662     2   0.000      0.990 0.000 1.000
#> GSM40666     1   0.680      0.818 0.820 0.180
#> GSM40669     1   0.000      0.958 1.000 0.000
#> GSM40670     1   0.680      0.818 0.820 0.180
#> GSM40671     1   0.000      0.958 1.000 0.000
#> GSM40672     1   0.000      0.958 1.000 0.000
#> GSM40673     1   0.000      0.958 1.000 0.000
#> GSM40674     1   0.706      0.804 0.808 0.192
#> GSM40676     1   0.671      0.822 0.824 0.176
#> GSM40680     1   0.000      0.958 1.000 0.000
#> GSM40681     1   0.000      0.958 1.000 0.000
#> GSM40683     1   0.000      0.958 1.000 0.000
#> GSM40684     1   0.671      0.822 0.824 0.176
#> GSM40685     1   0.000      0.958 1.000 0.000
#> GSM40689     1   0.000      0.958 1.000 0.000
#> GSM40690     1   0.000      0.958 1.000 0.000
#> GSM40692     1   0.000      0.958 1.000 0.000
#> GSM40693     1   0.000      0.958 1.000 0.000
#> GSM40694     1   0.000      0.958 1.000 0.000
#> GSM40695     1   0.000      0.958 1.000 0.000
#> GSM40696     1   0.000      0.958 1.000 0.000
#> GSM40697     2   0.000      0.990 0.000 1.000
#> GSM40704     1   0.000      0.958 1.000 0.000
#> GSM40705     2   0.000      0.990 0.000 1.000
#> GSM40707     1   0.000      0.958 1.000 0.000
#> GSM40708     1   0.000      0.958 1.000 0.000
#> GSM40709     1   0.706      0.804 0.808 0.192
#> GSM40712     1   0.000      0.958 1.000 0.000
#> GSM40713     1   0.000      0.958 1.000 0.000
#> GSM40665     1   0.000      0.958 1.000 0.000
#> GSM40677     2   0.000      0.990 0.000 1.000
#> GSM40698     1   0.000      0.958 1.000 0.000
#> GSM40701     2   0.000      0.990 0.000 1.000
#> GSM40710     2   0.000      0.990 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.5968      0.674 0.000 0.364 0.636
#> GSM40667     3  0.5968      0.674 0.000 0.364 0.636
#> GSM40675     3  0.5968      0.674 0.000 0.364 0.636
#> GSM40703     3  0.5968      0.674 0.000 0.364 0.636
#> GSM40660     3  0.6095      0.644 0.000 0.392 0.608
#> GSM40668     3  0.5968      0.674 0.000 0.364 0.636
#> GSM40678     2  0.0000      0.846 0.000 1.000 0.000
#> GSM40679     2  0.0237      0.847 0.000 0.996 0.004
#> GSM40686     2  0.5881      0.659 0.016 0.728 0.256
#> GSM40687     2  0.0000      0.846 0.000 1.000 0.000
#> GSM40691     2  0.0237      0.847 0.000 0.996 0.004
#> GSM40699     2  0.1964      0.766 0.000 0.944 0.056
#> GSM40664     2  0.0237      0.847 0.000 0.996 0.004
#> GSM40682     2  0.0237      0.847 0.000 0.996 0.004
#> GSM40688     2  0.4465      0.742 0.004 0.820 0.176
#> GSM40702     2  0.0000      0.846 0.000 1.000 0.000
#> GSM40706     2  0.0000      0.846 0.000 1.000 0.000
#> GSM40711     3  0.5216      0.645 0.000 0.260 0.740
#> GSM40661     3  0.5988      0.672 0.000 0.368 0.632
#> GSM40662     2  0.6079      0.528 0.000 0.612 0.388
#> GSM40666     3  0.7642      0.228 0.248 0.092 0.660
#> GSM40669     1  0.7536      0.644 0.632 0.064 0.304
#> GSM40670     1  0.8056      0.512 0.532 0.068 0.400
#> GSM40671     1  0.1753      0.820 0.952 0.000 0.048
#> GSM40672     1  0.0000      0.830 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.830 1.000 0.000 0.000
#> GSM40674     1  0.8056      0.512 0.532 0.068 0.400
#> GSM40676     3  0.8426      0.052 0.384 0.092 0.524
#> GSM40680     1  0.9936      0.163 0.380 0.336 0.284
#> GSM40681     1  0.0592      0.830 0.988 0.000 0.012
#> GSM40683     1  0.0000      0.830 1.000 0.000 0.000
#> GSM40684     3  0.8426      0.052 0.384 0.092 0.524
#> GSM40685     1  0.4605      0.770 0.796 0.000 0.204
#> GSM40689     1  0.1860      0.818 0.948 0.000 0.052
#> GSM40690     1  0.0000      0.830 1.000 0.000 0.000
#> GSM40692     1  0.8132      0.623 0.612 0.104 0.284
#> GSM40693     1  0.3686      0.792 0.860 0.000 0.140
#> GSM40694     1  0.4555      0.772 0.800 0.000 0.200
#> GSM40695     1  0.0000      0.830 1.000 0.000 0.000
#> GSM40696     1  0.3686      0.792 0.860 0.000 0.140
#> GSM40697     2  0.5690      0.636 0.004 0.708 0.288
#> GSM40704     1  0.0000      0.830 1.000 0.000 0.000
#> GSM40705     3  0.5216      0.645 0.000 0.260 0.740
#> GSM40707     1  0.1860      0.818 0.948 0.000 0.052
#> GSM40708     1  0.2448      0.820 0.924 0.000 0.076
#> GSM40709     3  0.7642      0.228 0.248 0.092 0.660
#> GSM40712     1  0.7159      0.670 0.660 0.052 0.288
#> GSM40713     1  0.2537      0.821 0.920 0.000 0.080
#> GSM40665     1  0.1860      0.818 0.948 0.000 0.052
#> GSM40677     2  0.4465      0.742 0.004 0.820 0.176
#> GSM40698     1  0.2537      0.820 0.920 0.000 0.080
#> GSM40701     3  0.6008      0.670 0.000 0.372 0.628
#> GSM40710     2  0.0000      0.846 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.3024      0.895 0.000 0.148 0.000 0.852
#> GSM40667     4  0.3024      0.895 0.000 0.148 0.000 0.852
#> GSM40675     4  0.3024      0.895 0.000 0.148 0.000 0.852
#> GSM40703     4  0.3024      0.895 0.000 0.148 0.000 0.852
#> GSM40660     4  0.6121      0.856 0.000 0.156 0.164 0.680
#> GSM40668     4  0.3024      0.895 0.000 0.148 0.000 0.852
#> GSM40678     2  0.0000      0.943 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0188      0.944 0.000 0.996 0.004 0.000
#> GSM40686     2  0.3172      0.812 0.000 0.840 0.160 0.000
#> GSM40687     2  0.0000      0.943 0.000 1.000 0.000 0.000
#> GSM40691     2  0.0921      0.929 0.000 0.972 0.028 0.000
#> GSM40699     2  0.0336      0.939 0.000 0.992 0.000 0.008
#> GSM40664     2  0.0188      0.944 0.000 0.996 0.004 0.000
#> GSM40682     2  0.0188      0.944 0.000 0.996 0.004 0.000
#> GSM40688     2  0.2973      0.828 0.000 0.856 0.144 0.000
#> GSM40702     2  0.0188      0.944 0.000 0.996 0.004 0.000
#> GSM40706     2  0.0000      0.943 0.000 1.000 0.000 0.000
#> GSM40711     4  0.5118      0.793 0.000 0.072 0.176 0.752
#> GSM40661     4  0.5905      0.868 0.000 0.156 0.144 0.700
#> GSM40662     3  0.3161      0.637 0.000 0.124 0.864 0.012
#> GSM40666     3  0.4825      0.459 0.004 0.008 0.700 0.288
#> GSM40669     3  0.3837      0.615 0.224 0.000 0.776 0.000
#> GSM40670     3  0.2926      0.665 0.096 0.004 0.888 0.012
#> GSM40671     1  0.4458      0.772 0.808 0.000 0.116 0.076
#> GSM40672     1  0.0000      0.800 1.000 0.000 0.000 0.000
#> GSM40673     1  0.0000      0.800 1.000 0.000 0.000 0.000
#> GSM40674     3  0.2926      0.665 0.096 0.004 0.888 0.012
#> GSM40676     3  0.6704      0.433 0.120 0.008 0.628 0.244
#> GSM40680     3  0.5272      0.629 0.112 0.136 0.752 0.000
#> GSM40681     1  0.2408      0.722 0.896 0.000 0.104 0.000
#> GSM40683     1  0.0000      0.800 1.000 0.000 0.000 0.000
#> GSM40684     3  0.6704      0.433 0.120 0.008 0.628 0.244
#> GSM40685     3  0.5158      0.155 0.472 0.000 0.524 0.004
#> GSM40689     1  0.4513      0.771 0.804 0.000 0.120 0.076
#> GSM40690     1  0.0000      0.800 1.000 0.000 0.000 0.000
#> GSM40692     3  0.5143      0.627 0.172 0.076 0.752 0.000
#> GSM40693     1  0.4500      0.347 0.684 0.000 0.316 0.000
#> GSM40694     3  0.4998      0.128 0.488 0.000 0.512 0.000
#> GSM40695     1  0.0000      0.800 1.000 0.000 0.000 0.000
#> GSM40696     1  0.4500      0.347 0.684 0.000 0.316 0.000
#> GSM40697     3  0.4564      0.402 0.000 0.328 0.672 0.000
#> GSM40704     1  0.0000      0.800 1.000 0.000 0.000 0.000
#> GSM40705     4  0.5118      0.793 0.000 0.072 0.176 0.752
#> GSM40707     1  0.4513      0.771 0.804 0.000 0.120 0.076
#> GSM40708     1  0.4872      0.756 0.776 0.000 0.148 0.076
#> GSM40709     3  0.4799      0.462 0.004 0.008 0.704 0.284
#> GSM40712     3  0.4008      0.596 0.244 0.000 0.756 0.000
#> GSM40713     1  0.5845      0.625 0.672 0.000 0.252 0.076
#> GSM40665     1  0.4513      0.771 0.804 0.000 0.120 0.076
#> GSM40677     2  0.3024      0.827 0.000 0.852 0.148 0.000
#> GSM40698     1  0.5631      0.684 0.700 0.000 0.224 0.076
#> GSM40701     4  0.5234      0.885 0.000 0.152 0.096 0.752
#> GSM40710     2  0.0188      0.944 0.000 0.996 0.004 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0510      0.715 0.000 0.016 0.984 0.000 0.000
#> GSM40667     3  0.0510      0.715 0.000 0.016 0.984 0.000 0.000
#> GSM40675     3  0.0510      0.715 0.000 0.016 0.984 0.000 0.000
#> GSM40703     3  0.0510      0.715 0.000 0.016 0.984 0.000 0.000
#> GSM40660     3  0.5696      0.455 0.000 0.040 0.472 0.468 0.020
#> GSM40668     3  0.1018      0.714 0.000 0.016 0.968 0.016 0.000
#> GSM40678     2  0.0510      0.956 0.000 0.984 0.000 0.016 0.000
#> GSM40679     2  0.1012      0.958 0.000 0.968 0.000 0.020 0.012
#> GSM40686     2  0.2473      0.932 0.000 0.896 0.000 0.072 0.032
#> GSM40687     2  0.0609      0.955 0.000 0.980 0.000 0.020 0.000
#> GSM40691     2  0.2046      0.947 0.000 0.916 0.000 0.068 0.016
#> GSM40699     2  0.1082      0.953 0.000 0.964 0.000 0.028 0.008
#> GSM40664     2  0.1626      0.956 0.000 0.940 0.000 0.044 0.016
#> GSM40682     2  0.1522      0.956 0.000 0.944 0.000 0.044 0.012
#> GSM40688     2  0.2450      0.926 0.000 0.896 0.000 0.076 0.028
#> GSM40702     2  0.1300      0.953 0.000 0.956 0.000 0.028 0.016
#> GSM40706     2  0.0324      0.957 0.000 0.992 0.000 0.004 0.004
#> GSM40711     3  0.4968      0.457 0.000 0.000 0.516 0.456 0.028
#> GSM40661     3  0.5421      0.490 0.000 0.024 0.500 0.456 0.020
#> GSM40662     5  0.2338      0.819 0.000 0.004 0.000 0.112 0.884
#> GSM40666     4  0.5261      0.657 0.004 0.000 0.044 0.572 0.380
#> GSM40669     5  0.2260      0.853 0.028 0.000 0.000 0.064 0.908
#> GSM40670     5  0.2193      0.829 0.008 0.000 0.000 0.092 0.900
#> GSM40671     1  0.5194      0.619 0.632 0.000 0.012 0.316 0.040
#> GSM40672     1  0.0162      0.685 0.996 0.000 0.000 0.000 0.004
#> GSM40673     1  0.0451      0.686 0.988 0.000 0.000 0.008 0.004
#> GSM40674     5  0.2249      0.829 0.008 0.000 0.000 0.096 0.896
#> GSM40676     4  0.3760      0.682 0.016 0.000 0.044 0.828 0.112
#> GSM40680     5  0.1948      0.856 0.024 0.008 0.000 0.036 0.932
#> GSM40681     1  0.3241      0.627 0.832 0.000 0.000 0.024 0.144
#> GSM40683     1  0.0451      0.686 0.988 0.000 0.000 0.008 0.004
#> GSM40684     4  0.3760      0.682 0.016 0.000 0.044 0.828 0.112
#> GSM40685     5  0.2873      0.785 0.120 0.000 0.000 0.020 0.860
#> GSM40689     1  0.4919      0.624 0.656 0.000 0.012 0.304 0.028
#> GSM40690     1  0.0451      0.682 0.988 0.000 0.000 0.004 0.008
#> GSM40692     5  0.1996      0.857 0.032 0.004 0.000 0.036 0.928
#> GSM40693     1  0.4446     -0.128 0.520 0.000 0.000 0.004 0.476
#> GSM40694     5  0.2997      0.764 0.148 0.000 0.000 0.012 0.840
#> GSM40695     1  0.0451      0.686 0.988 0.000 0.000 0.008 0.004
#> GSM40696     1  0.4446     -0.128 0.520 0.000 0.000 0.004 0.476
#> GSM40697     5  0.3410      0.755 0.000 0.092 0.000 0.068 0.840
#> GSM40704     1  0.0162      0.685 0.996 0.000 0.000 0.000 0.004
#> GSM40705     3  0.4968      0.457 0.000 0.000 0.516 0.456 0.028
#> GSM40707     1  0.5557      0.587 0.564 0.000 0.016 0.376 0.044
#> GSM40708     1  0.5925      0.558 0.528 0.000 0.016 0.388 0.068
#> GSM40709     4  0.5261      0.657 0.004 0.000 0.044 0.572 0.380
#> GSM40712     5  0.1485      0.860 0.032 0.000 0.000 0.020 0.948
#> GSM40713     1  0.6064      0.549 0.516 0.000 0.012 0.384 0.088
#> GSM40665     1  0.5400      0.590 0.572 0.000 0.012 0.376 0.040
#> GSM40677     2  0.2740      0.920 0.000 0.876 0.000 0.096 0.028
#> GSM40698     1  0.6126      0.545 0.500 0.000 0.012 0.396 0.092
#> GSM40701     3  0.4684      0.642 0.000 0.024 0.712 0.244 0.020
#> GSM40710     2  0.0703      0.955 0.000 0.976 0.000 0.024 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0363     0.8516 0.000 0.012 0.988 0.000 0.000 0.000
#> GSM40667     3  0.0363     0.8516 0.000 0.012 0.988 0.000 0.000 0.000
#> GSM40675     3  0.0363     0.8516 0.000 0.012 0.988 0.000 0.000 0.000
#> GSM40703     3  0.0363     0.8516 0.000 0.012 0.988 0.000 0.000 0.000
#> GSM40660     6  0.6649     0.8937 0.000 0.032 0.244 0.168 0.028 0.528
#> GSM40668     3  0.1624     0.8090 0.000 0.012 0.936 0.008 0.000 0.044
#> GSM40678     2  0.1462     0.8396 0.000 0.936 0.000 0.008 0.000 0.056
#> GSM40679     2  0.2006     0.8442 0.000 0.892 0.000 0.004 0.000 0.104
#> GSM40686     2  0.3359     0.7719 0.000 0.784 0.000 0.008 0.012 0.196
#> GSM40687     2  0.1462     0.8396 0.000 0.936 0.000 0.008 0.000 0.056
#> GSM40691     2  0.3789     0.7617 0.000 0.668 0.000 0.004 0.004 0.324
#> GSM40699     2  0.2912     0.8017 0.000 0.784 0.000 0.000 0.000 0.216
#> GSM40664     2  0.2980     0.8260 0.000 0.808 0.000 0.012 0.000 0.180
#> GSM40682     2  0.2482     0.8363 0.000 0.848 0.000 0.004 0.000 0.148
#> GSM40688     2  0.3764     0.7342 0.000 0.724 0.000 0.008 0.012 0.256
#> GSM40702     2  0.2793     0.8047 0.000 0.800 0.000 0.000 0.000 0.200
#> GSM40706     2  0.1471     0.8478 0.000 0.932 0.000 0.004 0.000 0.064
#> GSM40711     4  0.7058    -0.6804 0.000 0.000 0.320 0.328 0.064 0.288
#> GSM40661     6  0.6683     0.8887 0.000 0.024 0.296 0.176 0.024 0.480
#> GSM40662     5  0.3023     0.8020 0.000 0.000 0.000 0.032 0.828 0.140
#> GSM40666     4  0.6409    -0.3178 0.000 0.000 0.012 0.356 0.304 0.328
#> GSM40669     5  0.1584     0.8276 0.008 0.000 0.000 0.000 0.928 0.064
#> GSM40670     5  0.2145     0.8083 0.000 0.000 0.000 0.028 0.900 0.072
#> GSM40671     4  0.3823     0.2660 0.436 0.000 0.000 0.564 0.000 0.000
#> GSM40672     1  0.0000     0.7766 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40673     1  0.0363     0.7739 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM40674     5  0.2201     0.8077 0.000 0.000 0.000 0.028 0.896 0.076
#> GSM40676     4  0.4596    -0.0484 0.000 0.000 0.004 0.696 0.096 0.204
#> GSM40680     5  0.4084     0.8130 0.016 0.008 0.000 0.060 0.784 0.132
#> GSM40681     1  0.5180     0.5891 0.692 0.000 0.000 0.060 0.164 0.084
#> GSM40683     1  0.0363     0.7739 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM40684     4  0.4596    -0.0484 0.000 0.000 0.004 0.696 0.096 0.204
#> GSM40685     5  0.4484     0.7572 0.040 0.000 0.000 0.056 0.744 0.160
#> GSM40689     4  0.3986     0.2310 0.464 0.000 0.004 0.532 0.000 0.000
#> GSM40690     1  0.1116     0.7653 0.960 0.000 0.000 0.008 0.004 0.028
#> GSM40692     5  0.4084     0.8130 0.016 0.008 0.000 0.060 0.784 0.132
#> GSM40693     1  0.4868     0.3024 0.548 0.000 0.000 0.004 0.396 0.052
#> GSM40694     5  0.4359     0.7477 0.084 0.000 0.000 0.052 0.772 0.092
#> GSM40695     1  0.0363     0.7739 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM40696     1  0.4868     0.3024 0.548 0.000 0.000 0.004 0.396 0.052
#> GSM40697     5  0.4180     0.7525 0.000 0.024 0.000 0.008 0.680 0.288
#> GSM40704     1  0.0000     0.7766 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40705     4  0.7055    -0.6772 0.000 0.000 0.320 0.332 0.064 0.284
#> GSM40707     4  0.4212     0.2997 0.392 0.000 0.008 0.592 0.000 0.008
#> GSM40708     4  0.4469     0.3099 0.364 0.000 0.008 0.608 0.012 0.008
#> GSM40709     4  0.6409    -0.3178 0.000 0.000 0.012 0.356 0.304 0.328
#> GSM40712     5  0.1577     0.8333 0.016 0.000 0.000 0.036 0.940 0.008
#> GSM40713     4  0.4301     0.3002 0.392 0.000 0.000 0.584 0.024 0.000
#> GSM40665     4  0.4056     0.2862 0.416 0.000 0.004 0.576 0.000 0.004
#> GSM40677     2  0.3852     0.7367 0.000 0.732 0.000 0.016 0.012 0.240
#> GSM40698     4  0.5188     0.2772 0.364 0.000 0.004 0.568 0.024 0.040
#> GSM40701     3  0.5891    -0.3412 0.000 0.048 0.508 0.064 0.004 0.376
#> GSM40710     2  0.1124     0.8386 0.000 0.956 0.000 0.008 0.000 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:kmeans 53         1.45e-06 2
#> MAD:kmeans 48         7.61e-07 3
#> MAD:kmeans 44         7.11e-06 4
#> MAD:kmeans 47         1.96e-08 5
#> MAD:kmeans 37         1.38e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.996       0.998         0.5085 0.492   0.492
#> 3 3 0.971           0.933       0.973         0.3108 0.745   0.527
#> 4 4 0.784           0.736       0.870         0.1185 0.878   0.649
#> 5 5 0.744           0.640       0.806         0.0559 0.896   0.641
#> 6 6 0.749           0.626       0.812         0.0405 0.954   0.804

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      0.999 0.000 1.000
#> GSM40667     2  0.0000      0.999 0.000 1.000
#> GSM40675     2  0.0000      0.999 0.000 1.000
#> GSM40703     2  0.0000      0.999 0.000 1.000
#> GSM40660     2  0.0000      0.999 0.000 1.000
#> GSM40668     2  0.0000      0.999 0.000 1.000
#> GSM40678     2  0.0000      0.999 0.000 1.000
#> GSM40679     2  0.0000      0.999 0.000 1.000
#> GSM40686     2  0.1633      0.976 0.024 0.976
#> GSM40687     2  0.0000      0.999 0.000 1.000
#> GSM40691     2  0.0000      0.999 0.000 1.000
#> GSM40699     2  0.0000      0.999 0.000 1.000
#> GSM40664     2  0.0000      0.999 0.000 1.000
#> GSM40682     2  0.0000      0.999 0.000 1.000
#> GSM40688     2  0.0000      0.999 0.000 1.000
#> GSM40702     2  0.0000      0.999 0.000 1.000
#> GSM40706     2  0.0000      0.999 0.000 1.000
#> GSM40711     2  0.0000      0.999 0.000 1.000
#> GSM40661     2  0.0000      0.999 0.000 1.000
#> GSM40662     2  0.0000      0.999 0.000 1.000
#> GSM40666     1  0.0000      0.997 1.000 0.000
#> GSM40669     1  0.0000      0.997 1.000 0.000
#> GSM40670     1  0.0000      0.997 1.000 0.000
#> GSM40671     1  0.0000      0.997 1.000 0.000
#> GSM40672     1  0.0000      0.997 1.000 0.000
#> GSM40673     1  0.0000      0.997 1.000 0.000
#> GSM40674     1  0.1843      0.972 0.972 0.028
#> GSM40676     1  0.0672      0.990 0.992 0.008
#> GSM40680     1  0.0000      0.997 1.000 0.000
#> GSM40681     1  0.0000      0.997 1.000 0.000
#> GSM40683     1  0.0000      0.997 1.000 0.000
#> GSM40684     1  0.0000      0.997 1.000 0.000
#> GSM40685     1  0.0000      0.997 1.000 0.000
#> GSM40689     1  0.0000      0.997 1.000 0.000
#> GSM40690     1  0.0000      0.997 1.000 0.000
#> GSM40692     1  0.0000      0.997 1.000 0.000
#> GSM40693     1  0.0000      0.997 1.000 0.000
#> GSM40694     1  0.0000      0.997 1.000 0.000
#> GSM40695     1  0.0000      0.997 1.000 0.000
#> GSM40696     1  0.0000      0.997 1.000 0.000
#> GSM40697     2  0.0000      0.999 0.000 1.000
#> GSM40704     1  0.0000      0.997 1.000 0.000
#> GSM40705     2  0.0000      0.999 0.000 1.000
#> GSM40707     1  0.0000      0.997 1.000 0.000
#> GSM40708     1  0.0000      0.997 1.000 0.000
#> GSM40709     1  0.2778      0.952 0.952 0.048
#> GSM40712     1  0.0000      0.997 1.000 0.000
#> GSM40713     1  0.0000      0.997 1.000 0.000
#> GSM40665     1  0.0000      0.997 1.000 0.000
#> GSM40677     2  0.0000      0.999 0.000 1.000
#> GSM40698     1  0.0000      0.997 1.000 0.000
#> GSM40701     2  0.0000      0.999 0.000 1.000
#> GSM40710     2  0.0000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40667     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40675     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40703     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40660     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40668     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40678     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40679     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40686     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40687     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40691     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40699     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40664     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40682     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40688     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40702     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40706     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40711     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40661     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40662     3  0.5988      0.418 0.000 0.368 0.632
#> GSM40666     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40669     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40670     3  0.5948      0.480 0.360 0.000 0.640
#> GSM40671     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40672     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40674     3  0.5785      0.535 0.332 0.000 0.668
#> GSM40676     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40680     1  0.5905      0.440 0.648 0.352 0.000
#> GSM40681     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40683     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40684     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40685     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40689     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40690     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40692     1  0.0424      0.974 0.992 0.008 0.000
#> GSM40693     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40694     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40695     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40696     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40697     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40704     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40705     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40707     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40708     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40709     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40712     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40713     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40665     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40677     2  0.0000      1.000 0.000 1.000 0.000
#> GSM40698     1  0.0000      0.981 1.000 0.000 0.000
#> GSM40701     3  0.0000      0.928 0.000 0.000 1.000
#> GSM40710     2  0.0000      1.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     3  0.0000     0.8809 0.000 0.000 1.000 0.000
#> GSM40667     3  0.0000     0.8809 0.000 0.000 1.000 0.000
#> GSM40675     3  0.0000     0.8809 0.000 0.000 1.000 0.000
#> GSM40703     3  0.0000     0.8809 0.000 0.000 1.000 0.000
#> GSM40660     3  0.0000     0.8809 0.000 0.000 1.000 0.000
#> GSM40668     3  0.0000     0.8809 0.000 0.000 1.000 0.000
#> GSM40678     2  0.0000     0.9531 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000     0.9531 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0000     0.9531 0.000 1.000 0.000 0.000
#> GSM40687     2  0.0000     0.9531 0.000 1.000 0.000 0.000
#> GSM40691     2  0.1576     0.9242 0.000 0.948 0.048 0.004
#> GSM40699     2  0.1389     0.9251 0.000 0.952 0.048 0.000
#> GSM40664     2  0.0000     0.9531 0.000 1.000 0.000 0.000
#> GSM40682     2  0.0000     0.9531 0.000 1.000 0.000 0.000
#> GSM40688     2  0.0188     0.9518 0.000 0.996 0.000 0.004
#> GSM40702     2  0.1302     0.9280 0.000 0.956 0.044 0.000
#> GSM40706     2  0.0000     0.9531 0.000 1.000 0.000 0.000
#> GSM40711     3  0.1716     0.8578 0.000 0.000 0.936 0.064
#> GSM40661     3  0.0000     0.8809 0.000 0.000 1.000 0.000
#> GSM40662     4  0.7052    -0.0574 0.000 0.128 0.372 0.500
#> GSM40666     3  0.4356     0.6918 0.000 0.000 0.708 0.292
#> GSM40669     4  0.1716     0.5828 0.064 0.000 0.000 0.936
#> GSM40670     4  0.1151     0.5606 0.008 0.000 0.024 0.968
#> GSM40671     1  0.0000     0.8518 1.000 0.000 0.000 0.000
#> GSM40672     1  0.2704     0.8458 0.876 0.000 0.000 0.124
#> GSM40673     1  0.2589     0.8534 0.884 0.000 0.000 0.116
#> GSM40674     4  0.2988     0.4772 0.012 0.000 0.112 0.876
#> GSM40676     3  0.6584     0.5013 0.336 0.000 0.568 0.096
#> GSM40680     4  0.6607     0.3555 0.400 0.084 0.000 0.516
#> GSM40681     1  0.3123     0.8121 0.844 0.000 0.000 0.156
#> GSM40683     1  0.2589     0.8534 0.884 0.000 0.000 0.116
#> GSM40684     3  0.6552     0.5135 0.328 0.000 0.576 0.096
#> GSM40685     4  0.4941     0.3481 0.436 0.000 0.000 0.564
#> GSM40689     1  0.0000     0.8518 1.000 0.000 0.000 0.000
#> GSM40690     1  0.2530     0.8551 0.888 0.000 0.000 0.112
#> GSM40692     1  0.5695    -0.2871 0.500 0.024 0.000 0.476
#> GSM40693     4  0.4999     0.2395 0.492 0.000 0.000 0.508
#> GSM40694     4  0.4967     0.3207 0.452 0.000 0.000 0.548
#> GSM40695     1  0.2530     0.8551 0.888 0.000 0.000 0.112
#> GSM40696     4  0.5000     0.2281 0.496 0.000 0.000 0.504
#> GSM40697     2  0.5250     0.2889 0.000 0.552 0.008 0.440
#> GSM40704     1  0.2589     0.8534 0.884 0.000 0.000 0.116
#> GSM40705     3  0.1716     0.8578 0.000 0.000 0.936 0.064
#> GSM40707     1  0.0188     0.8510 0.996 0.000 0.000 0.004
#> GSM40708     1  0.0188     0.8510 0.996 0.000 0.000 0.004
#> GSM40709     3  0.4382     0.6874 0.000 0.000 0.704 0.296
#> GSM40712     4  0.2530     0.5795 0.112 0.000 0.000 0.888
#> GSM40713     1  0.0921     0.8572 0.972 0.000 0.000 0.028
#> GSM40665     1  0.0000     0.8518 1.000 0.000 0.000 0.000
#> GSM40677     2  0.0188     0.9518 0.000 0.996 0.000 0.004
#> GSM40698     1  0.0469     0.8468 0.988 0.000 0.000 0.012
#> GSM40701     3  0.0000     0.8809 0.000 0.000 1.000 0.000
#> GSM40710     2  0.0000     0.9531 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> GSM40667     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> GSM40675     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> GSM40703     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> GSM40660     3  0.0162     0.8773 0.000 0.000 0.996 0.004 0.000
#> GSM40668     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> GSM40678     2  0.0000     0.9265 0.000 1.000 0.000 0.000 0.000
#> GSM40679     2  0.0000     0.9265 0.000 1.000 0.000 0.000 0.000
#> GSM40686     2  0.0671     0.9194 0.000 0.980 0.000 0.016 0.004
#> GSM40687     2  0.0000     0.9265 0.000 1.000 0.000 0.000 0.000
#> GSM40691     2  0.3353     0.7695 0.000 0.796 0.196 0.008 0.000
#> GSM40699     2  0.3534     0.7044 0.000 0.744 0.256 0.000 0.000
#> GSM40664     2  0.1012     0.9113 0.000 0.968 0.020 0.012 0.000
#> GSM40682     2  0.0000     0.9265 0.000 1.000 0.000 0.000 0.000
#> GSM40688     2  0.0510     0.9218 0.000 0.984 0.000 0.016 0.000
#> GSM40702     2  0.3300     0.7639 0.000 0.792 0.204 0.004 0.000
#> GSM40706     2  0.0000     0.9265 0.000 1.000 0.000 0.000 0.000
#> GSM40711     3  0.4045     0.2165 0.000 0.000 0.644 0.356 0.000
#> GSM40661     3  0.0290     0.8745 0.000 0.000 0.992 0.008 0.000
#> GSM40662     5  0.7620     0.0934 0.000 0.064 0.344 0.192 0.400
#> GSM40666     4  0.6075     0.4749 0.000 0.000 0.356 0.512 0.132
#> GSM40669     5  0.2300     0.6030 0.072 0.000 0.000 0.024 0.904
#> GSM40670     5  0.2740     0.5782 0.028 0.000 0.000 0.096 0.876
#> GSM40671     1  0.3318     0.6828 0.808 0.000 0.000 0.180 0.012
#> GSM40672     1  0.0865     0.7047 0.972 0.000 0.000 0.004 0.024
#> GSM40673     1  0.0290     0.7119 0.992 0.000 0.000 0.000 0.008
#> GSM40674     5  0.3696     0.5559 0.028 0.000 0.040 0.092 0.840
#> GSM40676     4  0.4262     0.6194 0.124 0.000 0.100 0.776 0.000
#> GSM40680     1  0.7577    -0.0278 0.388 0.048 0.000 0.236 0.328
#> GSM40681     1  0.3043     0.6507 0.864 0.000 0.000 0.080 0.056
#> GSM40683     1  0.0290     0.7119 0.992 0.000 0.000 0.000 0.008
#> GSM40684     4  0.4266     0.6235 0.120 0.000 0.104 0.776 0.000
#> GSM40685     5  0.5648    -0.1142 0.448 0.000 0.000 0.076 0.476
#> GSM40689     1  0.3550     0.6531 0.760 0.000 0.000 0.236 0.004
#> GSM40690     1  0.0404     0.7110 0.988 0.000 0.000 0.000 0.012
#> GSM40692     1  0.6919     0.1750 0.488 0.020 0.000 0.212 0.280
#> GSM40693     1  0.5195     0.1847 0.564 0.000 0.000 0.048 0.388
#> GSM40694     1  0.5922     0.1614 0.532 0.000 0.000 0.116 0.352
#> GSM40695     1  0.0162     0.7121 0.996 0.000 0.000 0.000 0.004
#> GSM40696     1  0.5133     0.1906 0.568 0.000 0.000 0.044 0.388
#> GSM40697     5  0.5756     0.3363 0.000 0.324 0.012 0.076 0.588
#> GSM40704     1  0.0510     0.7100 0.984 0.000 0.000 0.000 0.016
#> GSM40705     3  0.4074     0.1888 0.000 0.000 0.636 0.364 0.000
#> GSM40707     1  0.4040     0.6261 0.712 0.000 0.000 0.276 0.012
#> GSM40708     1  0.4138     0.6246 0.708 0.000 0.000 0.276 0.016
#> GSM40709     4  0.6041     0.4714 0.000 0.000 0.356 0.516 0.128
#> GSM40712     5  0.3953     0.5662 0.148 0.000 0.000 0.060 0.792
#> GSM40713     1  0.3462     0.6803 0.792 0.000 0.000 0.196 0.012
#> GSM40665     1  0.3890     0.6411 0.736 0.000 0.000 0.252 0.012
#> GSM40677     2  0.0510     0.9218 0.000 0.984 0.000 0.016 0.000
#> GSM40698     1  0.3530     0.6773 0.784 0.000 0.000 0.204 0.012
#> GSM40701     3  0.0000     0.8799 0.000 0.000 1.000 0.000 0.000
#> GSM40710     2  0.0000     0.9265 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000     0.8669 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000     0.8669 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000     0.8669 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000     0.8669 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     3  0.0582     0.8591 0.000 0.004 0.984 0.004 0.004 0.004
#> GSM40668     3  0.0146     0.8660 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM40678     2  0.0436     0.8789 0.000 0.988 0.000 0.004 0.004 0.004
#> GSM40679     2  0.0405     0.8788 0.000 0.988 0.000 0.004 0.008 0.000
#> GSM40686     2  0.2573     0.8273 0.000 0.872 0.000 0.012 0.104 0.012
#> GSM40687     2  0.0405     0.8788 0.000 0.988 0.000 0.004 0.000 0.008
#> GSM40691     2  0.4901     0.6812 0.000 0.700 0.192 0.000 0.040 0.068
#> GSM40699     2  0.3690     0.6163 0.000 0.684 0.308 0.000 0.008 0.000
#> GSM40664     2  0.2379     0.8504 0.000 0.904 0.024 0.052 0.012 0.008
#> GSM40682     2  0.0291     0.8789 0.000 0.992 0.000 0.004 0.004 0.000
#> GSM40688     2  0.2176     0.8487 0.000 0.896 0.000 0.000 0.080 0.024
#> GSM40702     2  0.3593     0.7145 0.000 0.756 0.224 0.004 0.012 0.004
#> GSM40706     2  0.0520     0.8784 0.000 0.984 0.000 0.000 0.008 0.008
#> GSM40711     3  0.3966     0.0435 0.000 0.000 0.552 0.444 0.004 0.000
#> GSM40661     3  0.0260     0.8628 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM40662     5  0.7536    -0.0755 0.000 0.052 0.228 0.048 0.416 0.256
#> GSM40666     4  0.4745     0.7191 0.000 0.000 0.192 0.704 0.020 0.084
#> GSM40669     6  0.2933     0.6147 0.056 0.000 0.000 0.008 0.076 0.860
#> GSM40670     6  0.2018     0.6394 0.016 0.000 0.004 0.028 0.028 0.924
#> GSM40671     1  0.3767     0.6909 0.780 0.000 0.000 0.132 0.088 0.000
#> GSM40672     1  0.1151     0.6867 0.956 0.000 0.000 0.000 0.012 0.032
#> GSM40673     1  0.0405     0.7064 0.988 0.000 0.000 0.004 0.000 0.008
#> GSM40674     6  0.3095     0.6236 0.016 0.000 0.028 0.064 0.024 0.868
#> GSM40676     4  0.1148     0.7458 0.016 0.000 0.020 0.960 0.004 0.000
#> GSM40680     5  0.2736     0.4050 0.072 0.004 0.000 0.016 0.880 0.028
#> GSM40681     1  0.3627     0.4677 0.752 0.000 0.000 0.004 0.224 0.020
#> GSM40683     1  0.0291     0.7072 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM40684     4  0.1003     0.7474 0.016 0.000 0.020 0.964 0.000 0.000
#> GSM40685     5  0.6441     0.2460 0.300 0.000 0.000 0.020 0.420 0.260
#> GSM40689     1  0.3763     0.6875 0.768 0.000 0.000 0.172 0.060 0.000
#> GSM40690     1  0.0909     0.6963 0.968 0.000 0.000 0.000 0.012 0.020
#> GSM40692     5  0.3036     0.4369 0.124 0.000 0.000 0.008 0.840 0.028
#> GSM40693     1  0.5843    -0.1622 0.516 0.000 0.000 0.004 0.220 0.260
#> GSM40694     5  0.5779     0.3057 0.400 0.000 0.000 0.004 0.444 0.152
#> GSM40695     1  0.0551     0.7066 0.984 0.000 0.000 0.004 0.004 0.008
#> GSM40696     1  0.5776    -0.1361 0.520 0.000 0.000 0.004 0.188 0.288
#> GSM40697     6  0.6239     0.1700 0.000 0.212 0.008 0.008 0.292 0.480
#> GSM40704     1  0.0717     0.6990 0.976 0.000 0.000 0.000 0.008 0.016
#> GSM40705     3  0.3857    -0.0332 0.000 0.000 0.532 0.468 0.000 0.000
#> GSM40707     1  0.4989     0.6140 0.640 0.000 0.000 0.248 0.108 0.004
#> GSM40708     1  0.5231     0.5913 0.612 0.000 0.000 0.252 0.132 0.004
#> GSM40709     4  0.5000     0.7246 0.000 0.000 0.180 0.688 0.024 0.108
#> GSM40712     6  0.4871     0.3156 0.088 0.000 0.000 0.000 0.296 0.616
#> GSM40713     1  0.4057     0.6846 0.764 0.000 0.000 0.124 0.108 0.004
#> GSM40665     1  0.4719     0.6459 0.680 0.000 0.000 0.216 0.100 0.004
#> GSM40677     2  0.2456     0.8490 0.000 0.888 0.000 0.008 0.076 0.028
#> GSM40698     1  0.4358     0.6630 0.712 0.000 0.000 0.196 0.092 0.000
#> GSM40701     3  0.0291     0.8636 0.000 0.004 0.992 0.000 0.004 0.000
#> GSM40710     2  0.0779     0.8761 0.000 0.976 0.000 0.008 0.008 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> MAD:skmeans 53         1.45e-06 2
#> MAD:skmeans 50         6.90e-06 3
#> MAD:skmeans 44         2.79e-04 4
#> MAD:skmeans 41         3.35e-05 5
#> MAD:skmeans 41         3.05e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.952       0.979         0.4947 0.505   0.505
#> 3 3 0.962           0.924       0.952         0.2284 0.835   0.689
#> 4 4 0.794           0.879       0.932         0.1306 0.846   0.645
#> 5 5 0.859           0.824       0.892         0.1319 0.894   0.675
#> 6 6 0.886           0.802       0.881         0.0537 0.926   0.687

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      0.976 0.000 1.000
#> GSM40667     2  0.0000      0.976 0.000 1.000
#> GSM40675     2  0.0000      0.976 0.000 1.000
#> GSM40703     2  0.0000      0.976 0.000 1.000
#> GSM40660     2  0.0000      0.976 0.000 1.000
#> GSM40668     2  0.0000      0.976 0.000 1.000
#> GSM40678     2  0.0672      0.977 0.008 0.992
#> GSM40679     2  0.0672      0.977 0.008 0.992
#> GSM40686     2  0.9552      0.379 0.376 0.624
#> GSM40687     2  0.0672      0.977 0.008 0.992
#> GSM40691     2  0.0672      0.977 0.008 0.992
#> GSM40699     2  0.0000      0.976 0.000 1.000
#> GSM40664     2  0.0672      0.977 0.008 0.992
#> GSM40682     2  0.0672      0.977 0.008 0.992
#> GSM40688     2  0.0672      0.977 0.008 0.992
#> GSM40702     2  0.0672      0.977 0.008 0.992
#> GSM40706     2  0.0672      0.977 0.008 0.992
#> GSM40711     2  0.1843      0.954 0.028 0.972
#> GSM40661     2  0.0000      0.976 0.000 1.000
#> GSM40662     1  0.8144      0.662 0.748 0.252
#> GSM40666     1  0.0938      0.973 0.988 0.012
#> GSM40669     1  0.0376      0.977 0.996 0.004
#> GSM40670     1  0.0376      0.977 0.996 0.004
#> GSM40671     1  0.0000      0.978 1.000 0.000
#> GSM40672     1  0.0000      0.978 1.000 0.000
#> GSM40673     1  0.0000      0.978 1.000 0.000
#> GSM40674     1  0.0376      0.977 0.996 0.004
#> GSM40676     1  0.0938      0.973 0.988 0.012
#> GSM40680     1  0.0376      0.977 0.996 0.004
#> GSM40681     1  0.0000      0.978 1.000 0.000
#> GSM40683     1  0.0000      0.978 1.000 0.000
#> GSM40684     1  0.0938      0.973 0.988 0.012
#> GSM40685     1  0.0000      0.978 1.000 0.000
#> GSM40689     1  0.0000      0.978 1.000 0.000
#> GSM40690     1  0.0000      0.978 1.000 0.000
#> GSM40692     1  0.0376      0.977 0.996 0.004
#> GSM40693     1  0.0000      0.978 1.000 0.000
#> GSM40694     1  0.0000      0.978 1.000 0.000
#> GSM40695     1  0.0000      0.978 1.000 0.000
#> GSM40696     1  0.0000      0.978 1.000 0.000
#> GSM40697     1  0.1843      0.957 0.972 0.028
#> GSM40704     1  0.0000      0.978 1.000 0.000
#> GSM40705     1  0.8661      0.606 0.712 0.288
#> GSM40707     1  0.0000      0.978 1.000 0.000
#> GSM40708     1  0.0000      0.978 1.000 0.000
#> GSM40709     1  0.0938      0.973 0.988 0.012
#> GSM40712     1  0.0000      0.978 1.000 0.000
#> GSM40713     1  0.0000      0.978 1.000 0.000
#> GSM40665     1  0.0000      0.978 1.000 0.000
#> GSM40677     2  0.0672      0.977 0.008 0.992
#> GSM40698     1  0.0000      0.978 1.000 0.000
#> GSM40701     2  0.0000      0.976 0.000 1.000
#> GSM40710     2  0.0672      0.977 0.008 0.992

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.1964      0.935 0.000 0.056 0.944
#> GSM40667     3  0.1964      0.935 0.000 0.056 0.944
#> GSM40675     3  0.1964      0.935 0.000 0.056 0.944
#> GSM40703     3  0.1964      0.935 0.000 0.056 0.944
#> GSM40660     2  0.1031      0.919 0.000 0.976 0.024
#> GSM40668     3  0.1964      0.935 0.000 0.056 0.944
#> GSM40678     2  0.0000      0.938 0.000 1.000 0.000
#> GSM40679     2  0.1529      0.934 0.040 0.960 0.000
#> GSM40686     2  0.1964      0.928 0.056 0.944 0.000
#> GSM40687     2  0.0000      0.938 0.000 1.000 0.000
#> GSM40691     2  0.0000      0.938 0.000 1.000 0.000
#> GSM40699     2  0.0000      0.938 0.000 1.000 0.000
#> GSM40664     2  0.1860      0.930 0.052 0.948 0.000
#> GSM40682     2  0.1411      0.936 0.036 0.964 0.000
#> GSM40688     2  0.1860      0.930 0.052 0.948 0.000
#> GSM40702     2  0.0000      0.938 0.000 1.000 0.000
#> GSM40706     2  0.0000      0.938 0.000 1.000 0.000
#> GSM40711     3  0.1860      0.932 0.000 0.052 0.948
#> GSM40661     2  0.3619      0.798 0.000 0.864 0.136
#> GSM40662     2  0.2590      0.911 0.072 0.924 0.004
#> GSM40666     1  0.1751      0.954 0.960 0.012 0.028
#> GSM40669     1  0.1267      0.954 0.972 0.024 0.004
#> GSM40670     1  0.1163      0.956 0.972 0.000 0.028
#> GSM40671     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40672     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40673     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40674     1  0.3644      0.854 0.872 0.124 0.004
#> GSM40676     1  0.1751      0.954 0.960 0.012 0.028
#> GSM40680     1  0.1267      0.954 0.972 0.024 0.004
#> GSM40681     1  0.0000      0.964 1.000 0.000 0.000
#> GSM40683     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40684     1  0.1751      0.954 0.960 0.012 0.028
#> GSM40685     1  0.0000      0.964 1.000 0.000 0.000
#> GSM40689     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40690     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40692     1  0.1267      0.954 0.972 0.024 0.004
#> GSM40693     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40694     1  0.0000      0.964 1.000 0.000 0.000
#> GSM40695     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40696     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40697     2  0.4978      0.705 0.216 0.780 0.004
#> GSM40704     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40705     3  0.1860      0.932 0.000 0.052 0.948
#> GSM40707     1  0.1860      0.959 0.948 0.000 0.052
#> GSM40708     1  0.0000      0.964 1.000 0.000 0.000
#> GSM40709     1  0.1751      0.954 0.960 0.012 0.028
#> GSM40712     1  0.0237      0.963 0.996 0.000 0.004
#> GSM40713     1  0.0000      0.964 1.000 0.000 0.000
#> GSM40665     1  0.0000      0.964 1.000 0.000 0.000
#> GSM40677     2  0.1860      0.930 0.052 0.948 0.000
#> GSM40698     1  0.0747      0.959 0.984 0.016 0.000
#> GSM40701     3  0.6280      0.230 0.000 0.460 0.540
#> GSM40710     2  0.0000      0.938 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.1302     1.0000 0.000 0.000 0.044 0.956
#> GSM40667     4  0.1302     1.0000 0.000 0.000 0.044 0.956
#> GSM40675     4  0.1302     1.0000 0.000 0.000 0.044 0.956
#> GSM40703     4  0.1302     1.0000 0.000 0.000 0.044 0.956
#> GSM40660     3  0.3311     0.7665 0.000 0.172 0.828 0.000
#> GSM40668     3  0.2973     0.7719 0.000 0.000 0.856 0.144
#> GSM40678     2  0.0000     0.9607 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000     0.9607 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0336     0.9535 0.008 0.992 0.000 0.000
#> GSM40687     2  0.0000     0.9607 0.000 1.000 0.000 0.000
#> GSM40691     2  0.0000     0.9607 0.000 1.000 0.000 0.000
#> GSM40699     2  0.0000     0.9607 0.000 1.000 0.000 0.000
#> GSM40664     2  0.0188     0.9574 0.004 0.996 0.000 0.000
#> GSM40682     2  0.0000     0.9607 0.000 1.000 0.000 0.000
#> GSM40688     2  0.0000     0.9607 0.000 1.000 0.000 0.000
#> GSM40702     2  0.0000     0.9607 0.000 1.000 0.000 0.000
#> GSM40706     2  0.0000     0.9607 0.000 1.000 0.000 0.000
#> GSM40711     3  0.0188     0.8621 0.000 0.000 0.996 0.004
#> GSM40661     3  0.3764     0.7201 0.000 0.216 0.784 0.000
#> GSM40662     2  0.6708     0.4048 0.272 0.596 0.132 0.000
#> GSM40666     3  0.1211     0.8666 0.040 0.000 0.960 0.000
#> GSM40669     1  0.2814     0.8478 0.868 0.000 0.132 0.000
#> GSM40670     1  0.2814     0.8478 0.868 0.000 0.132 0.000
#> GSM40671     1  0.0336     0.9172 0.992 0.000 0.000 0.008
#> GSM40672     1  0.1489     0.9130 0.952 0.000 0.004 0.044
#> GSM40673     1  0.1489     0.9130 0.952 0.000 0.004 0.044
#> GSM40674     1  0.4224     0.8224 0.812 0.044 0.144 0.000
#> GSM40676     3  0.1211     0.8666 0.040 0.000 0.960 0.000
#> GSM40680     1  0.2814     0.8347 0.868 0.132 0.000 0.000
#> GSM40681     1  0.0469     0.9176 0.988 0.000 0.000 0.012
#> GSM40683     1  0.1489     0.9130 0.952 0.000 0.004 0.044
#> GSM40684     3  0.1211     0.8666 0.040 0.000 0.960 0.000
#> GSM40685     1  0.0336     0.9162 0.992 0.008 0.000 0.000
#> GSM40689     1  0.0336     0.9172 0.992 0.000 0.000 0.008
#> GSM40690     1  0.1489     0.9130 0.952 0.000 0.004 0.044
#> GSM40692     1  0.2814     0.8347 0.868 0.132 0.000 0.000
#> GSM40693     1  0.1489     0.9130 0.952 0.000 0.004 0.044
#> GSM40694     1  0.0000     0.9166 1.000 0.000 0.000 0.000
#> GSM40695     1  0.1489     0.9130 0.952 0.000 0.004 0.044
#> GSM40696     1  0.1489     0.9130 0.952 0.000 0.004 0.044
#> GSM40697     1  0.5000     0.0657 0.500 0.500 0.000 0.000
#> GSM40704     1  0.1489     0.9130 0.952 0.000 0.004 0.044
#> GSM40705     3  0.0188     0.8621 0.000 0.000 0.996 0.004
#> GSM40707     1  0.0336     0.9172 0.992 0.000 0.000 0.008
#> GSM40708     1  0.0336     0.9159 0.992 0.000 0.008 0.000
#> GSM40709     3  0.2530     0.7909 0.112 0.000 0.888 0.000
#> GSM40712     1  0.2814     0.8478 0.868 0.000 0.132 0.000
#> GSM40713     1  0.0469     0.9148 0.988 0.000 0.012 0.000
#> GSM40665     1  0.0000     0.9166 1.000 0.000 0.000 0.000
#> GSM40677     2  0.0000     0.9607 0.000 1.000 0.000 0.000
#> GSM40698     1  0.2530     0.8610 0.896 0.100 0.004 0.000
#> GSM40701     3  0.3667     0.7998 0.000 0.056 0.856 0.088
#> GSM40710     2  0.0000     0.9607 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM40667     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM40675     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM40703     4  0.0000      1.000 0.000 0.000 0.000 1.000 0.000
#> GSM40660     3  0.0963      0.945 0.000 0.036 0.964 0.000 0.000
#> GSM40668     3  0.1671      0.920 0.000 0.000 0.924 0.076 0.000
#> GSM40678     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM40679     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM40686     2  0.0703      0.970 0.024 0.976 0.000 0.000 0.000
#> GSM40687     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM40691     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM40699     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM40664     2  0.0510      0.980 0.016 0.984 0.000 0.000 0.000
#> GSM40682     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM40688     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM40702     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM40706     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM40711     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM40661     3  0.1197      0.935 0.000 0.048 0.952 0.000 0.000
#> GSM40662     5  0.5372      0.343 0.024 0.376 0.024 0.000 0.576
#> GSM40666     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM40669     5  0.4808      0.663 0.400 0.000 0.024 0.000 0.576
#> GSM40670     5  0.4808      0.663 0.400 0.000 0.024 0.000 0.576
#> GSM40671     1  0.0703      0.776 0.976 0.000 0.000 0.000 0.024
#> GSM40672     1  0.4235      0.583 0.576 0.000 0.000 0.000 0.424
#> GSM40673     1  0.4235      0.583 0.576 0.000 0.000 0.000 0.424
#> GSM40674     5  0.6561      0.674 0.272 0.052 0.100 0.000 0.576
#> GSM40676     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM40680     1  0.0162      0.774 0.996 0.000 0.000 0.000 0.004
#> GSM40681     1  0.2179      0.736 0.888 0.000 0.000 0.000 0.112
#> GSM40683     1  0.4235      0.583 0.576 0.000 0.000 0.000 0.424
#> GSM40684     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM40685     1  0.0162      0.774 0.996 0.000 0.000 0.000 0.004
#> GSM40689     1  0.0865      0.776 0.972 0.000 0.004 0.000 0.024
#> GSM40690     1  0.4283      0.547 0.544 0.000 0.000 0.000 0.456
#> GSM40692     1  0.0162      0.775 0.996 0.004 0.000 0.000 0.000
#> GSM40693     5  0.0162      0.468 0.004 0.000 0.000 0.000 0.996
#> GSM40694     1  0.0000      0.776 1.000 0.000 0.000 0.000 0.000
#> GSM40695     1  0.4171      0.600 0.604 0.000 0.000 0.000 0.396
#> GSM40696     5  0.0162      0.468 0.004 0.000 0.000 0.000 0.996
#> GSM40697     5  0.5906      0.667 0.284 0.140 0.000 0.000 0.576
#> GSM40704     1  0.4235      0.583 0.576 0.000 0.000 0.000 0.424
#> GSM40705     3  0.0000      0.960 0.000 0.000 1.000 0.000 0.000
#> GSM40707     1  0.0865      0.776 0.972 0.000 0.004 0.000 0.024
#> GSM40708     1  0.0162      0.775 0.996 0.000 0.004 0.000 0.000
#> GSM40709     3  0.1768      0.886 0.072 0.000 0.924 0.000 0.004
#> GSM40712     5  0.4375      0.643 0.420 0.000 0.004 0.000 0.576
#> GSM40713     1  0.0162      0.774 0.996 0.000 0.000 0.000 0.004
#> GSM40665     1  0.0162      0.775 0.996 0.000 0.004 0.000 0.000
#> GSM40677     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM40698     1  0.0162      0.775 0.996 0.004 0.000 0.000 0.000
#> GSM40701     3  0.1965      0.928 0.000 0.024 0.924 0.052 0.000
#> GSM40710     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     4  0.3727     0.9832 0.000 0.000 0.000 0.612 0.388 0.000
#> GSM40668     4  0.3965     0.9810 0.000 0.000 0.008 0.604 0.388 0.000
#> GSM40678     2  0.0146     0.6983 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM40679     2  0.3737     0.8226 0.000 0.608 0.000 0.392 0.000 0.000
#> GSM40686     2  0.3737     0.8226 0.000 0.608 0.000 0.392 0.000 0.000
#> GSM40687     2  0.0146     0.6983 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM40691     2  0.3198     0.3583 0.000 0.740 0.000 0.000 0.260 0.000
#> GSM40699     2  0.0146     0.6983 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM40664     2  0.3737     0.8226 0.000 0.608 0.000 0.392 0.000 0.000
#> GSM40682     2  0.3737     0.8226 0.000 0.608 0.000 0.392 0.000 0.000
#> GSM40688     2  0.3717     0.8219 0.000 0.616 0.000 0.384 0.000 0.000
#> GSM40702     2  0.3647     0.8174 0.000 0.640 0.000 0.360 0.000 0.000
#> GSM40706     2  0.3737     0.8226 0.000 0.608 0.000 0.392 0.000 0.000
#> GSM40711     4  0.3737     0.9849 0.000 0.000 0.000 0.608 0.392 0.000
#> GSM40661     4  0.3428     0.8974 0.000 0.000 0.000 0.696 0.304 0.000
#> GSM40662     5  0.3737     0.8874 0.392 0.000 0.000 0.000 0.608 0.000
#> GSM40666     4  0.3737     0.9849 0.000 0.000 0.000 0.608 0.392 0.000
#> GSM40669     5  0.3737     0.8874 0.392 0.000 0.000 0.000 0.608 0.000
#> GSM40670     5  0.3737     0.8874 0.392 0.000 0.000 0.000 0.608 0.000
#> GSM40671     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40672     1  0.3737     0.7108 0.608 0.000 0.000 0.000 0.000 0.392
#> GSM40673     1  0.3737     0.7108 0.608 0.000 0.000 0.000 0.000 0.392
#> GSM40674     5  0.3737     0.8874 0.392 0.000 0.000 0.000 0.608 0.000
#> GSM40676     4  0.3737     0.9849 0.000 0.000 0.000 0.608 0.392 0.000
#> GSM40680     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40681     6  0.2135     0.7447 0.128 0.000 0.000 0.000 0.000 0.872
#> GSM40683     1  0.3737     0.7108 0.608 0.000 0.000 0.000 0.000 0.392
#> GSM40684     4  0.3737     0.9849 0.000 0.000 0.000 0.608 0.392 0.000
#> GSM40685     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40689     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40690     1  0.3727     0.7103 0.612 0.000 0.000 0.000 0.000 0.388
#> GSM40692     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40693     1  0.0865     0.2170 0.964 0.000 0.000 0.000 0.036 0.000
#> GSM40694     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40695     6  0.3782    -0.2329 0.412 0.000 0.000 0.000 0.000 0.588
#> GSM40696     1  0.0865     0.2170 0.964 0.000 0.000 0.000 0.036 0.000
#> GSM40697     5  0.3872     0.8844 0.392 0.000 0.000 0.004 0.604 0.000
#> GSM40704     1  0.3737     0.7108 0.608 0.000 0.000 0.000 0.000 0.392
#> GSM40705     4  0.3737     0.9849 0.000 0.000 0.000 0.608 0.392 0.000
#> GSM40707     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40708     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40709     5  0.3825    -0.0963 0.000 0.000 0.000 0.160 0.768 0.072
#> GSM40712     5  0.3872     0.8842 0.392 0.000 0.000 0.000 0.604 0.004
#> GSM40713     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40665     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40677     2  0.3737     0.8226 0.000 0.608 0.000 0.392 0.000 0.000
#> GSM40698     6  0.0000     0.9331 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40701     4  0.3862     0.9810 0.000 0.004 0.000 0.608 0.388 0.000
#> GSM40710     2  0.0000     0.7000 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> MAD:pam 52         2.51e-08 2
#> MAD:pam 52         2.42e-09 3
#> MAD:pam 51         1.53e-12 4
#> MAD:pam 50         1.82e-10 5
#> MAD:pam 48         1.25e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.217           0.542       0.783        0.41721 0.570   0.570
#> 3 3 0.458           0.547       0.764        0.34294 0.660   0.482
#> 4 4 0.718           0.792       0.838        0.29549 0.711   0.393
#> 5 5 0.782           0.856       0.900        0.09057 0.913   0.680
#> 6 6 0.740           0.484       0.733        0.00625 0.801   0.333

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.9988      0.506 0.480 0.520
#> GSM40667     2  0.9988      0.506 0.480 0.520
#> GSM40675     2  0.9988      0.506 0.480 0.520
#> GSM40703     2  0.9988      0.506 0.480 0.520
#> GSM40660     1  0.9998     -0.512 0.508 0.492
#> GSM40668     2  0.9996      0.497 0.488 0.512
#> GSM40678     2  0.5294      0.747 0.120 0.880
#> GSM40679     2  0.5294      0.747 0.120 0.880
#> GSM40686     2  0.6623      0.701 0.172 0.828
#> GSM40687     2  0.5294      0.747 0.120 0.880
#> GSM40691     1  0.1633      0.712 0.976 0.024
#> GSM40699     2  0.8499      0.687 0.276 0.724
#> GSM40664     2  0.6343      0.749 0.160 0.840
#> GSM40682     2  0.6343      0.749 0.160 0.840
#> GSM40688     1  0.9775      0.331 0.588 0.412
#> GSM40702     2  0.6343      0.749 0.160 0.840
#> GSM40706     2  0.5294      0.747 0.120 0.880
#> GSM40711     1  0.9998     -0.512 0.508 0.492
#> GSM40661     1  0.9998     -0.512 0.508 0.492
#> GSM40662     1  0.1633      0.712 0.976 0.024
#> GSM40666     1  0.1843      0.709 0.972 0.028
#> GSM40669     1  0.1633      0.712 0.976 0.024
#> GSM40670     1  0.1633      0.712 0.976 0.024
#> GSM40671     1  0.5408      0.731 0.876 0.124
#> GSM40672     1  0.7299      0.686 0.796 0.204
#> GSM40673     1  0.7376      0.684 0.792 0.208
#> GSM40674     1  0.1633      0.712 0.976 0.024
#> GSM40676     2  0.9754      0.485 0.408 0.592
#> GSM40680     1  0.5737      0.730 0.864 0.136
#> GSM40681     1  0.5519      0.731 0.872 0.128
#> GSM40683     1  0.7376      0.684 0.792 0.208
#> GSM40684     1  0.9998     -0.512 0.508 0.492
#> GSM40685     1  0.5408      0.731 0.876 0.124
#> GSM40689     1  0.5842      0.729 0.860 0.140
#> GSM40690     1  0.5737      0.728 0.864 0.136
#> GSM40692     1  0.5842      0.729 0.860 0.140
#> GSM40693     1  0.0672      0.721 0.992 0.008
#> GSM40694     1  0.2603      0.729 0.956 0.044
#> GSM40695     1  0.6623      0.710 0.828 0.172
#> GSM40696     1  0.0938      0.723 0.988 0.012
#> GSM40697     1  0.1633      0.712 0.976 0.024
#> GSM40704     1  0.7299      0.686 0.796 0.204
#> GSM40705     1  0.9998     -0.512 0.508 0.492
#> GSM40707     1  0.5519      0.731 0.872 0.128
#> GSM40708     1  0.5737      0.728 0.864 0.136
#> GSM40709     1  0.1843      0.709 0.972 0.028
#> GSM40712     1  0.1633      0.712 0.976 0.024
#> GSM40713     1  0.4161      0.732 0.916 0.084
#> GSM40665     1  0.5408      0.731 0.876 0.124
#> GSM40677     1  0.9775      0.331 0.588 0.412
#> GSM40698     1  0.5519      0.731 0.872 0.128
#> GSM40701     1  0.9998     -0.512 0.508 0.492
#> GSM40710     2  0.5294      0.747 0.120 0.880

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0892      0.692 0.000 0.020 0.980
#> GSM40667     3  0.0892      0.692 0.000 0.020 0.980
#> GSM40675     3  0.0892      0.692 0.000 0.020 0.980
#> GSM40703     3  0.0892      0.692 0.000 0.020 0.980
#> GSM40660     2  0.9842      0.159 0.260 0.412 0.328
#> GSM40668     3  0.4505      0.611 0.048 0.092 0.860
#> GSM40678     2  0.1878      0.700 0.044 0.952 0.004
#> GSM40679     2  0.1878      0.700 0.044 0.952 0.004
#> GSM40686     2  0.2165      0.698 0.064 0.936 0.000
#> GSM40687     2  0.1878      0.700 0.044 0.952 0.004
#> GSM40691     2  0.8111      0.458 0.264 0.624 0.112
#> GSM40699     2  0.1751      0.676 0.012 0.960 0.028
#> GSM40664     2  0.5325      0.615 0.248 0.748 0.004
#> GSM40682     2  0.3129      0.702 0.088 0.904 0.008
#> GSM40688     2  0.2796      0.697 0.092 0.908 0.000
#> GSM40702     2  0.4665      0.668 0.100 0.852 0.048
#> GSM40706     2  0.1878      0.700 0.044 0.952 0.004
#> GSM40711     3  0.9858     -0.219 0.252 0.372 0.376
#> GSM40661     2  0.9853      0.130 0.256 0.400 0.344
#> GSM40662     2  0.8285      0.414 0.288 0.600 0.112
#> GSM40666     1  0.9014      0.222 0.484 0.380 0.136
#> GSM40669     1  0.8710      0.266 0.508 0.380 0.112
#> GSM40670     1  0.8710      0.266 0.508 0.380 0.112
#> GSM40671     1  0.0237      0.755 0.996 0.000 0.004
#> GSM40672     1  0.0000      0.754 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.754 1.000 0.000 0.000
#> GSM40674     1  0.8721      0.255 0.504 0.384 0.112
#> GSM40676     1  0.8310      0.294 0.544 0.368 0.088
#> GSM40680     1  0.6467      0.309 0.604 0.388 0.008
#> GSM40681     1  0.0000      0.754 1.000 0.000 0.000
#> GSM40683     1  0.0000      0.754 1.000 0.000 0.000
#> GSM40684     1  0.8784      0.237 0.512 0.368 0.120
#> GSM40685     1  0.5216      0.530 0.740 0.260 0.000
#> GSM40689     1  0.0475      0.755 0.992 0.004 0.004
#> GSM40690     1  0.0000      0.754 1.000 0.000 0.000
#> GSM40692     1  0.6180      0.421 0.660 0.332 0.008
#> GSM40693     1  0.0983      0.748 0.980 0.016 0.004
#> GSM40694     1  0.0475      0.753 0.992 0.004 0.004
#> GSM40695     1  0.0000      0.754 1.000 0.000 0.000
#> GSM40696     1  0.0983      0.750 0.980 0.016 0.004
#> GSM40697     2  0.8409      0.368 0.308 0.580 0.112
#> GSM40704     1  0.0000      0.754 1.000 0.000 0.000
#> GSM40705     3  0.9858     -0.219 0.252 0.372 0.376
#> GSM40707     1  0.0424      0.754 0.992 0.000 0.008
#> GSM40708     1  0.0424      0.754 0.992 0.000 0.008
#> GSM40709     1  0.9014      0.222 0.484 0.380 0.136
#> GSM40712     1  0.8699      0.269 0.512 0.376 0.112
#> GSM40713     1  0.0661      0.754 0.988 0.004 0.008
#> GSM40665     1  0.0424      0.754 0.992 0.000 0.008
#> GSM40677     2  0.2796      0.697 0.092 0.908 0.000
#> GSM40698     1  0.0661      0.753 0.988 0.004 0.008
#> GSM40701     2  0.9815      0.151 0.256 0.420 0.324
#> GSM40710     2  0.1878      0.700 0.044 0.952 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     3  0.4008      0.746 0.000 0.000 0.756 0.244
#> GSM40667     3  0.4008      0.746 0.000 0.000 0.756 0.244
#> GSM40675     3  0.4008      0.746 0.000 0.000 0.756 0.244
#> GSM40703     3  0.4008      0.746 0.000 0.000 0.756 0.244
#> GSM40660     3  0.3081      0.825 0.064 0.000 0.888 0.048
#> GSM40668     3  0.1940      0.802 0.000 0.000 0.924 0.076
#> GSM40678     2  0.0000      0.924 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000      0.924 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0376      0.923 0.004 0.992 0.004 0.000
#> GSM40687     2  0.0000      0.924 0.000 1.000 0.000 0.000
#> GSM40691     1  0.5569      0.653 0.736 0.176 0.080 0.008
#> GSM40699     2  0.3168      0.853 0.040 0.888 0.068 0.004
#> GSM40664     2  0.3521      0.840 0.016 0.876 0.032 0.076
#> GSM40682     2  0.0188      0.924 0.000 0.996 0.004 0.000
#> GSM40688     2  0.1398      0.905 0.040 0.956 0.004 0.000
#> GSM40702     2  0.0927      0.917 0.000 0.976 0.008 0.016
#> GSM40706     2  0.0000      0.924 0.000 1.000 0.000 0.000
#> GSM40711     3  0.3533      0.829 0.056 0.000 0.864 0.080
#> GSM40661     3  0.3354      0.826 0.044 0.000 0.872 0.084
#> GSM40662     1  0.4923      0.682 0.732 0.004 0.240 0.024
#> GSM40666     3  0.3400      0.819 0.064 0.000 0.872 0.064
#> GSM40669     1  0.4436      0.705 0.764 0.000 0.216 0.020
#> GSM40670     1  0.4675      0.682 0.736 0.000 0.244 0.020
#> GSM40671     4  0.4164      0.877 0.264 0.000 0.000 0.736
#> GSM40672     1  0.0188      0.816 0.996 0.000 0.000 0.004
#> GSM40673     1  0.0707      0.813 0.980 0.000 0.000 0.020
#> GSM40674     1  0.4675      0.682 0.736 0.000 0.244 0.020
#> GSM40676     4  0.4671      0.613 0.028 0.000 0.220 0.752
#> GSM40680     2  0.6514      0.285 0.384 0.556 0.024 0.036
#> GSM40681     1  0.3764      0.573 0.784 0.000 0.000 0.216
#> GSM40683     1  0.2530      0.737 0.888 0.000 0.000 0.112
#> GSM40684     4  0.4507      0.593 0.020 0.000 0.224 0.756
#> GSM40685     1  0.0000      0.818 1.000 0.000 0.000 0.000
#> GSM40689     4  0.4304      0.860 0.284 0.000 0.000 0.716
#> GSM40690     1  0.1302      0.801 0.956 0.000 0.000 0.044
#> GSM40692     1  0.2317      0.790 0.928 0.036 0.004 0.032
#> GSM40693     1  0.0000      0.818 1.000 0.000 0.000 0.000
#> GSM40694     1  0.0000      0.818 1.000 0.000 0.000 0.000
#> GSM40695     1  0.4008      0.515 0.756 0.000 0.000 0.244
#> GSM40696     1  0.0000      0.818 1.000 0.000 0.000 0.000
#> GSM40697     1  0.5168      0.687 0.736 0.024 0.224 0.016
#> GSM40704     1  0.0336      0.816 0.992 0.000 0.000 0.008
#> GSM40705     3  0.3587      0.827 0.052 0.000 0.860 0.088
#> GSM40707     4  0.4164      0.877 0.264 0.000 0.000 0.736
#> GSM40708     4  0.4164      0.877 0.264 0.000 0.000 0.736
#> GSM40709     3  0.3400      0.819 0.064 0.000 0.872 0.064
#> GSM40712     1  0.2376      0.793 0.916 0.000 0.068 0.016
#> GSM40713     1  0.1474      0.797 0.948 0.000 0.000 0.052
#> GSM40665     4  0.4164      0.877 0.264 0.000 0.000 0.736
#> GSM40677     2  0.1398      0.905 0.040 0.956 0.004 0.000
#> GSM40698     4  0.4277      0.869 0.280 0.000 0.000 0.720
#> GSM40701     3  0.2996      0.827 0.064 0.000 0.892 0.044
#> GSM40710     2  0.0000      0.924 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0324      0.841 0.004 0.000 0.992 0.004 0.000
#> GSM40667     3  0.0324      0.841 0.004 0.000 0.992 0.004 0.000
#> GSM40675     3  0.0324      0.841 0.004 0.000 0.992 0.004 0.000
#> GSM40703     3  0.0324      0.841 0.004 0.000 0.992 0.004 0.000
#> GSM40660     3  0.3681      0.889 0.000 0.008 0.820 0.036 0.136
#> GSM40668     3  0.2329      0.887 0.000 0.000 0.876 0.000 0.124
#> GSM40678     2  0.0162      0.892 0.000 0.996 0.004 0.000 0.000
#> GSM40679     2  0.0566      0.899 0.000 0.984 0.004 0.000 0.012
#> GSM40686     2  0.0963      0.902 0.000 0.964 0.000 0.000 0.036
#> GSM40687     2  0.0000      0.892 0.000 1.000 0.000 0.000 0.000
#> GSM40691     5  0.1195      0.869 0.000 0.028 0.000 0.012 0.960
#> GSM40699     2  0.2284      0.873 0.000 0.896 0.004 0.004 0.096
#> GSM40664     2  0.3051      0.850 0.000 0.864 0.000 0.060 0.076
#> GSM40682     2  0.1124      0.902 0.000 0.960 0.004 0.000 0.036
#> GSM40688     2  0.2561      0.833 0.000 0.856 0.000 0.000 0.144
#> GSM40702     2  0.1430      0.898 0.000 0.944 0.004 0.000 0.052
#> GSM40706     2  0.0671      0.900 0.000 0.980 0.004 0.000 0.016
#> GSM40711     3  0.3578      0.888 0.000 0.000 0.820 0.048 0.132
#> GSM40661     3  0.3834      0.887 0.000 0.008 0.816 0.052 0.124
#> GSM40662     5  0.1095      0.876 0.000 0.012 0.008 0.012 0.968
#> GSM40666     3  0.4536      0.817 0.000 0.000 0.712 0.048 0.240
#> GSM40669     5  0.0703      0.882 0.000 0.000 0.000 0.024 0.976
#> GSM40670     5  0.0609      0.881 0.000 0.000 0.000 0.020 0.980
#> GSM40671     4  0.3816      0.564 0.304 0.000 0.000 0.696 0.000
#> GSM40672     1  0.0898      0.951 0.972 0.000 0.000 0.008 0.020
#> GSM40673     1  0.0162      0.953 0.996 0.000 0.000 0.000 0.004
#> GSM40674     5  0.0609      0.881 0.000 0.000 0.000 0.020 0.980
#> GSM40676     4  0.2857      0.840 0.012 0.000 0.008 0.868 0.112
#> GSM40680     2  0.5771      0.686 0.068 0.700 0.000 0.136 0.096
#> GSM40681     1  0.1597      0.934 0.940 0.000 0.000 0.048 0.012
#> GSM40683     1  0.0162      0.953 0.996 0.000 0.000 0.000 0.004
#> GSM40684     4  0.2612      0.829 0.000 0.000 0.008 0.868 0.124
#> GSM40685     5  0.3919      0.783 0.188 0.000 0.000 0.036 0.776
#> GSM40689     4  0.1942      0.875 0.068 0.000 0.000 0.920 0.012
#> GSM40690     1  0.1579      0.941 0.944 0.000 0.000 0.032 0.024
#> GSM40692     2  0.7445      0.362 0.276 0.496 0.000 0.112 0.116
#> GSM40693     5  0.3795      0.777 0.192 0.000 0.000 0.028 0.780
#> GSM40694     5  0.4010      0.763 0.208 0.000 0.000 0.032 0.760
#> GSM40695     1  0.0566      0.955 0.984 0.000 0.000 0.012 0.004
#> GSM40696     5  0.3795      0.777 0.192 0.000 0.000 0.028 0.780
#> GSM40697     5  0.0807      0.880 0.000 0.012 0.000 0.012 0.976
#> GSM40704     1  0.0162      0.953 0.996 0.000 0.000 0.000 0.004
#> GSM40705     3  0.3578      0.888 0.000 0.000 0.820 0.048 0.132
#> GSM40707     4  0.1043      0.884 0.040 0.000 0.000 0.960 0.000
#> GSM40708     4  0.1043      0.884 0.040 0.000 0.000 0.960 0.000
#> GSM40709     3  0.4495      0.815 0.000 0.000 0.712 0.044 0.244
#> GSM40712     5  0.0865      0.881 0.004 0.000 0.000 0.024 0.972
#> GSM40713     1  0.3216      0.832 0.848 0.000 0.000 0.108 0.044
#> GSM40665     4  0.1043      0.884 0.040 0.000 0.000 0.960 0.000
#> GSM40677     2  0.1197      0.900 0.000 0.952 0.000 0.000 0.048
#> GSM40698     4  0.2853      0.865 0.052 0.000 0.000 0.876 0.072
#> GSM40701     3  0.3584      0.889 0.000 0.012 0.828 0.028 0.132
#> GSM40710     2  0.0000      0.892 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     4  0.4093      0.319 0.000 0.008 0.476 0.516 0.000 0.000
#> GSM40667     4  0.4093      0.319 0.000 0.008 0.476 0.516 0.000 0.000
#> GSM40675     4  0.4093      0.319 0.000 0.008 0.476 0.516 0.000 0.000
#> GSM40703     4  0.4093      0.319 0.000 0.008 0.476 0.516 0.000 0.000
#> GSM40660     2  0.2006      0.152 0.000 0.904 0.000 0.080 0.016 0.000
#> GSM40668     3  0.5353     -0.566 0.000 0.440 0.464 0.092 0.004 0.000
#> GSM40678     2  0.3997      0.380 0.004 0.508 0.488 0.000 0.000 0.000
#> GSM40679     2  0.3995      0.383 0.000 0.516 0.480 0.000 0.004 0.000
#> GSM40686     2  0.4325      0.373 0.000 0.524 0.456 0.000 0.020 0.000
#> GSM40687     2  0.3997      0.380 0.004 0.508 0.488 0.000 0.000 0.000
#> GSM40691     2  0.5588      0.342 0.000 0.528 0.300 0.000 0.172 0.000
#> GSM40699     2  0.4002      0.383 0.000 0.588 0.404 0.000 0.008 0.000
#> GSM40664     2  0.4921      0.370 0.000 0.516 0.436 0.000 0.028 0.020
#> GSM40682     2  0.4258      0.386 0.000 0.516 0.468 0.000 0.016 0.000
#> GSM40688     3  0.4566     -0.561 0.008 0.484 0.488 0.000 0.020 0.000
#> GSM40702     2  0.4169      0.389 0.000 0.532 0.456 0.000 0.012 0.000
#> GSM40706     2  0.3995      0.383 0.000 0.516 0.480 0.000 0.004 0.000
#> GSM40711     4  0.3995      0.521 0.000 0.480 0.000 0.516 0.004 0.000
#> GSM40661     2  0.2218      0.131 0.000 0.884 0.000 0.104 0.012 0.000
#> GSM40662     2  0.3766      0.229 0.000 0.720 0.024 0.000 0.256 0.000
#> GSM40666     4  0.4263      0.518 0.000 0.480 0.000 0.504 0.016 0.000
#> GSM40669     5  0.1500      0.731 0.012 0.052 0.000 0.000 0.936 0.000
#> GSM40670     5  0.2170      0.701 0.012 0.100 0.000 0.000 0.888 0.000
#> GSM40671     6  0.0146      0.888 0.000 0.000 0.000 0.000 0.004 0.996
#> GSM40672     5  0.3819      0.629 0.340 0.000 0.000 0.000 0.652 0.008
#> GSM40673     1  0.0858      0.992 0.968 0.000 0.000 0.000 0.028 0.004
#> GSM40674     5  0.2266      0.694 0.012 0.108 0.000 0.000 0.880 0.000
#> GSM40676     4  0.6335      0.359 0.008 0.372 0.000 0.384 0.004 0.232
#> GSM40680     5  0.6721      0.157 0.028 0.328 0.116 0.000 0.484 0.044
#> GSM40681     5  0.4067      0.696 0.260 0.000 0.000 0.000 0.700 0.040
#> GSM40683     1  0.0858      0.992 0.968 0.000 0.000 0.000 0.028 0.004
#> GSM40684     4  0.6313      0.369 0.008 0.380 0.000 0.384 0.004 0.224
#> GSM40685     5  0.2851      0.771 0.132 0.004 0.000 0.000 0.844 0.020
#> GSM40689     6  0.1059      0.866 0.016 0.004 0.000 0.000 0.016 0.964
#> GSM40690     5  0.3859      0.686 0.288 0.000 0.000 0.000 0.692 0.020
#> GSM40692     5  0.5195      0.674 0.040 0.068 0.112 0.000 0.732 0.048
#> GSM40693     5  0.2914      0.763 0.152 0.004 0.000 0.008 0.832 0.004
#> GSM40694     5  0.2907      0.766 0.152 0.000 0.000 0.000 0.828 0.020
#> GSM40695     1  0.1297      0.977 0.948 0.000 0.000 0.000 0.040 0.012
#> GSM40696     5  0.2876      0.764 0.148 0.004 0.000 0.008 0.836 0.004
#> GSM40697     2  0.5174      0.234 0.000 0.536 0.096 0.000 0.368 0.000
#> GSM40704     1  0.0858      0.992 0.968 0.000 0.000 0.000 0.028 0.004
#> GSM40705     4  0.3995      0.521 0.000 0.480 0.000 0.516 0.004 0.000
#> GSM40707     6  0.0000      0.889 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40708     6  0.0000      0.889 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40709     4  0.4263      0.518 0.000 0.480 0.000 0.504 0.016 0.000
#> GSM40712     5  0.1333      0.742 0.008 0.048 0.000 0.000 0.944 0.000
#> GSM40713     5  0.4782      0.698 0.168 0.012 0.000 0.000 0.700 0.120
#> GSM40665     6  0.0000      0.889 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM40677     3  0.4566     -0.561 0.008 0.484 0.488 0.000 0.020 0.000
#> GSM40698     6  0.4622      0.336 0.024 0.020 0.000 0.000 0.332 0.624
#> GSM40701     2  0.1952      0.191 0.000 0.920 0.012 0.052 0.016 0.000
#> GSM40710     2  0.3997      0.380 0.004 0.508 0.488 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> MAD:mclust 43         2.16e-07 2
#> MAD:mclust 35         6.97e-09 3
#> MAD:mclust 52         1.23e-06 4
#> MAD:mclust 52         1.21e-04 5
#> MAD:mclust 26         1.24e-01 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.882           0.898       0.962         0.5073 0.491   0.491
#> 3 3 0.789           0.869       0.945         0.3143 0.738   0.515
#> 4 4 0.887           0.881       0.946         0.1325 0.849   0.584
#> 5 5 0.683           0.571       0.774         0.0439 0.936   0.763
#> 6 6 0.664           0.546       0.771         0.0375 0.849   0.463

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000     0.9591 0.000 1.000
#> GSM40667     2  0.0000     0.9591 0.000 1.000
#> GSM40675     2  0.0000     0.9591 0.000 1.000
#> GSM40703     2  0.0000     0.9591 0.000 1.000
#> GSM40660     2  0.0000     0.9591 0.000 1.000
#> GSM40668     2  0.0000     0.9591 0.000 1.000
#> GSM40678     2  0.0000     0.9591 0.000 1.000
#> GSM40679     2  0.0000     0.9591 0.000 1.000
#> GSM40686     2  1.0000    -0.0132 0.496 0.504
#> GSM40687     2  0.0000     0.9591 0.000 1.000
#> GSM40691     2  0.0000     0.9591 0.000 1.000
#> GSM40699     2  0.0000     0.9591 0.000 1.000
#> GSM40664     2  0.0000     0.9591 0.000 1.000
#> GSM40682     2  0.0000     0.9591 0.000 1.000
#> GSM40688     2  0.0000     0.9591 0.000 1.000
#> GSM40702     2  0.0000     0.9591 0.000 1.000
#> GSM40706     2  0.0000     0.9591 0.000 1.000
#> GSM40711     2  0.0000     0.9591 0.000 1.000
#> GSM40661     2  0.0000     0.9591 0.000 1.000
#> GSM40662     2  0.0000     0.9591 0.000 1.000
#> GSM40666     1  0.9988     0.0600 0.520 0.480
#> GSM40669     1  0.0000     0.9570 1.000 0.000
#> GSM40670     1  0.6801     0.7688 0.820 0.180
#> GSM40671     1  0.0000     0.9570 1.000 0.000
#> GSM40672     1  0.0000     0.9570 1.000 0.000
#> GSM40673     1  0.0000     0.9570 1.000 0.000
#> GSM40674     2  0.9427     0.4118 0.360 0.640
#> GSM40676     1  0.8386     0.6311 0.732 0.268
#> GSM40680     1  0.0000     0.9570 1.000 0.000
#> GSM40681     1  0.0000     0.9570 1.000 0.000
#> GSM40683     1  0.0000     0.9570 1.000 0.000
#> GSM40684     1  0.4298     0.8780 0.912 0.088
#> GSM40685     1  0.0000     0.9570 1.000 0.000
#> GSM40689     1  0.0000     0.9570 1.000 0.000
#> GSM40690     1  0.0000     0.9570 1.000 0.000
#> GSM40692     1  0.0000     0.9570 1.000 0.000
#> GSM40693     1  0.0000     0.9570 1.000 0.000
#> GSM40694     1  0.0000     0.9570 1.000 0.000
#> GSM40695     1  0.0000     0.9570 1.000 0.000
#> GSM40696     1  0.0000     0.9570 1.000 0.000
#> GSM40697     2  0.0376     0.9557 0.004 0.996
#> GSM40704     1  0.0000     0.9570 1.000 0.000
#> GSM40705     2  0.0000     0.9591 0.000 1.000
#> GSM40707     1  0.0000     0.9570 1.000 0.000
#> GSM40708     1  0.0000     0.9570 1.000 0.000
#> GSM40709     2  0.5842     0.8091 0.140 0.860
#> GSM40712     1  0.0000     0.9570 1.000 0.000
#> GSM40713     1  0.0000     0.9570 1.000 0.000
#> GSM40665     1  0.0000     0.9570 1.000 0.000
#> GSM40677     2  0.0000     0.9591 0.000 1.000
#> GSM40698     1  0.0000     0.9570 1.000 0.000
#> GSM40701     2  0.0000     0.9591 0.000 1.000
#> GSM40710     2  0.0000     0.9591 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000      0.891 0.000 0.000 1.000
#> GSM40667     3  0.0000      0.891 0.000 0.000 1.000
#> GSM40675     3  0.0000      0.891 0.000 0.000 1.000
#> GSM40703     3  0.0000      0.891 0.000 0.000 1.000
#> GSM40660     3  0.0000      0.891 0.000 0.000 1.000
#> GSM40668     3  0.0000      0.891 0.000 0.000 1.000
#> GSM40678     2  0.0000      0.933 0.000 1.000 0.000
#> GSM40679     2  0.0000      0.933 0.000 1.000 0.000
#> GSM40686     2  0.0000      0.933 0.000 1.000 0.000
#> GSM40687     2  0.0000      0.933 0.000 1.000 0.000
#> GSM40691     2  0.0000      0.933 0.000 1.000 0.000
#> GSM40699     2  0.6154      0.252 0.000 0.592 0.408
#> GSM40664     3  0.5948      0.413 0.000 0.360 0.640
#> GSM40682     2  0.0000      0.933 0.000 1.000 0.000
#> GSM40688     2  0.0000      0.933 0.000 1.000 0.000
#> GSM40702     2  0.2448      0.870 0.000 0.924 0.076
#> GSM40706     2  0.0237      0.931 0.000 0.996 0.004
#> GSM40711     3  0.0000      0.891 0.000 0.000 1.000
#> GSM40661     3  0.0000      0.891 0.000 0.000 1.000
#> GSM40662     3  0.6280      0.129 0.000 0.460 0.540
#> GSM40666     3  0.3192      0.829 0.112 0.000 0.888
#> GSM40669     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40670     1  0.4504      0.721 0.804 0.000 0.196
#> GSM40671     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40672     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40674     3  0.4702      0.747 0.212 0.000 0.788
#> GSM40676     3  0.4504      0.766 0.196 0.000 0.804
#> GSM40680     2  0.4291      0.771 0.180 0.820 0.000
#> GSM40681     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40683     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40684     3  0.4504      0.766 0.196 0.000 0.804
#> GSM40685     1  0.5678      0.501 0.684 0.316 0.000
#> GSM40689     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40690     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40692     2  0.3941      0.796 0.156 0.844 0.000
#> GSM40693     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40694     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40695     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40696     1  0.0424      0.964 0.992 0.008 0.000
#> GSM40697     2  0.0000      0.933 0.000 1.000 0.000
#> GSM40704     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40705     3  0.0000      0.891 0.000 0.000 1.000
#> GSM40707     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40708     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40709     3  0.0592      0.887 0.012 0.000 0.988
#> GSM40712     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40713     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40665     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40677     2  0.0000      0.933 0.000 1.000 0.000
#> GSM40698     1  0.0000      0.971 1.000 0.000 0.000
#> GSM40701     3  0.0000      0.891 0.000 0.000 1.000
#> GSM40710     2  0.0000      0.933 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     3  0.0000     0.9903 0.000 0.000 1.000 0.000
#> GSM40667     3  0.0000     0.9903 0.000 0.000 1.000 0.000
#> GSM40675     3  0.0000     0.9903 0.000 0.000 1.000 0.000
#> GSM40703     3  0.0000     0.9903 0.000 0.000 1.000 0.000
#> GSM40660     3  0.0188     0.9881 0.000 0.000 0.996 0.004
#> GSM40668     3  0.0000     0.9903 0.000 0.000 1.000 0.000
#> GSM40678     2  0.0000     0.9676 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000     0.9676 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0000     0.9676 0.000 1.000 0.000 0.000
#> GSM40687     2  0.0000     0.9676 0.000 1.000 0.000 0.000
#> GSM40691     2  0.2943     0.8835 0.032 0.892 0.076 0.000
#> GSM40699     2  0.2973     0.8290 0.000 0.856 0.144 0.000
#> GSM40664     4  0.4996    -0.0322 0.000 0.484 0.000 0.516
#> GSM40682     2  0.0336     0.9631 0.000 0.992 0.000 0.008
#> GSM40688     2  0.0188     0.9654 0.004 0.996 0.000 0.000
#> GSM40702     2  0.0000     0.9676 0.000 1.000 0.000 0.000
#> GSM40706     2  0.0000     0.9676 0.000 1.000 0.000 0.000
#> GSM40711     3  0.0000     0.9903 0.000 0.000 1.000 0.000
#> GSM40661     3  0.0336     0.9855 0.000 0.000 0.992 0.008
#> GSM40662     3  0.2742     0.8942 0.076 0.024 0.900 0.000
#> GSM40666     3  0.0188     0.9871 0.004 0.000 0.996 0.000
#> GSM40669     1  0.0000     0.8839 1.000 0.000 0.000 0.000
#> GSM40670     1  0.1557     0.8537 0.944 0.000 0.056 0.000
#> GSM40671     4  0.0921     0.8976 0.028 0.000 0.000 0.972
#> GSM40672     1  0.0000     0.8839 1.000 0.000 0.000 0.000
#> GSM40673     1  0.2011     0.8543 0.920 0.000 0.000 0.080
#> GSM40674     1  0.4477     0.5286 0.688 0.000 0.312 0.000
#> GSM40676     4  0.0000     0.9095 0.000 0.000 0.000 1.000
#> GSM40680     2  0.2589     0.8613 0.000 0.884 0.000 0.116
#> GSM40681     1  0.4800     0.5625 0.656 0.004 0.000 0.340
#> GSM40683     1  0.2408     0.8390 0.896 0.000 0.000 0.104
#> GSM40684     4  0.0000     0.9095 0.000 0.000 0.000 1.000
#> GSM40685     1  0.0188     0.8822 0.996 0.004 0.000 0.000
#> GSM40689     4  0.2149     0.8343 0.088 0.000 0.000 0.912
#> GSM40690     1  0.1792     0.8621 0.932 0.000 0.000 0.068
#> GSM40692     2  0.0188     0.9656 0.000 0.996 0.000 0.004
#> GSM40693     1  0.0000     0.8839 1.000 0.000 0.000 0.000
#> GSM40694     1  0.0000     0.8839 1.000 0.000 0.000 0.000
#> GSM40695     1  0.4406     0.6308 0.700 0.000 0.000 0.300
#> GSM40696     1  0.0000     0.8839 1.000 0.000 0.000 0.000
#> GSM40697     1  0.2300     0.8424 0.924 0.048 0.028 0.000
#> GSM40704     1  0.0000     0.8839 1.000 0.000 0.000 0.000
#> GSM40705     3  0.0000     0.9903 0.000 0.000 1.000 0.000
#> GSM40707     4  0.0469     0.9080 0.012 0.000 0.000 0.988
#> GSM40708     4  0.0336     0.9093 0.008 0.000 0.000 0.992
#> GSM40709     3  0.0000     0.9903 0.000 0.000 1.000 0.000
#> GSM40712     1  0.0000     0.8839 1.000 0.000 0.000 0.000
#> GSM40713     1  0.4776     0.4974 0.624 0.000 0.000 0.376
#> GSM40665     4  0.0000     0.9095 0.000 0.000 0.000 1.000
#> GSM40677     2  0.0000     0.9676 0.000 1.000 0.000 0.000
#> GSM40698     4  0.0188     0.9099 0.004 0.000 0.000 0.996
#> GSM40701     3  0.0000     0.9903 0.000 0.000 1.000 0.000
#> GSM40710     2  0.0000     0.9676 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000
#> GSM40667     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000
#> GSM40675     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000
#> GSM40703     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000
#> GSM40660     3  0.2522     0.8383 0.000 0.012 0.880 0.000 0.108
#> GSM40668     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000
#> GSM40678     2  0.0162     0.7918 0.000 0.996 0.000 0.000 0.004
#> GSM40679     2  0.1121     0.7858 0.000 0.956 0.000 0.000 0.044
#> GSM40686     2  0.0703     0.7913 0.000 0.976 0.000 0.000 0.024
#> GSM40687     2  0.0703     0.7913 0.000 0.976 0.000 0.000 0.024
#> GSM40691     2  0.6369     0.3508 0.004 0.544 0.216 0.000 0.236
#> GSM40699     2  0.5050     0.5755 0.000 0.700 0.180 0.000 0.120
#> GSM40664     5  0.6783    -0.2712 0.000 0.296 0.000 0.316 0.388
#> GSM40682     2  0.3513     0.6996 0.000 0.800 0.000 0.020 0.180
#> GSM40688     2  0.3336     0.7056 0.000 0.772 0.000 0.000 0.228
#> GSM40702     2  0.0510     0.7925 0.000 0.984 0.000 0.000 0.016
#> GSM40706     2  0.0794     0.7889 0.000 0.972 0.000 0.000 0.028
#> GSM40711     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000
#> GSM40661     3  0.2720     0.8367 0.000 0.004 0.880 0.020 0.096
#> GSM40662     5  0.6390     0.1125 0.076 0.036 0.384 0.000 0.504
#> GSM40666     3  0.0794     0.9041 0.028 0.000 0.972 0.000 0.000
#> GSM40669     1  0.4126     0.4044 0.620 0.000 0.000 0.000 0.380
#> GSM40670     1  0.6477     0.1308 0.492 0.000 0.228 0.000 0.280
#> GSM40671     4  0.3961     0.7577 0.212 0.000 0.000 0.760 0.028
#> GSM40672     1  0.1965     0.5539 0.904 0.000 0.000 0.000 0.096
#> GSM40673     1  0.1043     0.5530 0.960 0.000 0.000 0.040 0.000
#> GSM40674     3  0.5297     0.1425 0.360 0.000 0.580 0.000 0.060
#> GSM40676     4  0.1357     0.7473 0.048 0.000 0.000 0.948 0.004
#> GSM40680     2  0.6315     0.2420 0.000 0.448 0.000 0.396 0.156
#> GSM40681     1  0.4691     0.4683 0.784 0.064 0.000 0.092 0.060
#> GSM40683     1  0.1197     0.5526 0.952 0.000 0.000 0.048 0.000
#> GSM40684     4  0.5289     0.7036 0.208 0.000 0.108 0.680 0.004
#> GSM40685     1  0.6673     0.0575 0.388 0.232 0.000 0.000 0.380
#> GSM40689     1  0.5112    -0.5104 0.496 0.000 0.000 0.468 0.036
#> GSM40690     1  0.3410     0.4811 0.840 0.000 0.000 0.092 0.068
#> GSM40692     2  0.5589     0.5539 0.012 0.648 0.000 0.092 0.248
#> GSM40693     1  0.4201     0.3765 0.592 0.000 0.000 0.000 0.408
#> GSM40694     1  0.4210     0.3779 0.588 0.000 0.000 0.000 0.412
#> GSM40695     1  0.2818     0.4827 0.856 0.000 0.000 0.132 0.012
#> GSM40696     1  0.4249     0.3500 0.568 0.000 0.000 0.000 0.432
#> GSM40697     5  0.6408    -0.3951 0.432 0.068 0.040 0.000 0.460
#> GSM40704     1  0.1410     0.5600 0.940 0.000 0.000 0.000 0.060
#> GSM40705     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000
#> GSM40707     4  0.1750     0.7291 0.036 0.000 0.000 0.936 0.028
#> GSM40708     4  0.1597     0.7009 0.012 0.000 0.000 0.940 0.048
#> GSM40709     3  0.0000     0.9265 0.000 0.000 1.000 0.000 0.000
#> GSM40712     1  0.4171     0.3947 0.604 0.000 0.000 0.000 0.396
#> GSM40713     1  0.5474     0.3270 0.576 0.000 0.000 0.348 0.076
#> GSM40665     4  0.4891     0.6853 0.316 0.000 0.000 0.640 0.044
#> GSM40677     2  0.3661     0.6705 0.000 0.724 0.000 0.000 0.276
#> GSM40698     4  0.6162     0.5650 0.392 0.048 0.000 0.516 0.044
#> GSM40701     3  0.0404     0.9207 0.000 0.000 0.988 0.000 0.012
#> GSM40710     2  0.0703     0.7913 0.000 0.976 0.000 0.000 0.024

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000     0.9325 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000     0.9325 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000     0.9325 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000     0.9325 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     3  0.2313     0.8564 0.004 0.000 0.884 0.100 0.012 0.000
#> GSM40668     3  0.0000     0.9325 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40678     2  0.1498     0.7628 0.000 0.940 0.000 0.028 0.032 0.000
#> GSM40679     2  0.2776     0.7310 0.000 0.860 0.000 0.088 0.052 0.000
#> GSM40686     2  0.0458     0.7635 0.000 0.984 0.000 0.016 0.000 0.000
#> GSM40687     2  0.0725     0.7647 0.000 0.976 0.000 0.012 0.012 0.000
#> GSM40691     5  0.7421     0.1371 0.004 0.244 0.156 0.180 0.416 0.000
#> GSM40699     2  0.5884     0.4248 0.000 0.612 0.200 0.128 0.060 0.000
#> GSM40664     4  0.4190     0.0000 0.004 0.056 0.000 0.748 0.008 0.184
#> GSM40682     2  0.4407     0.3380 0.000 0.592 0.000 0.380 0.024 0.004
#> GSM40688     5  0.6126    -0.0521 0.004 0.336 0.000 0.244 0.416 0.000
#> GSM40702     2  0.1257     0.7653 0.000 0.952 0.000 0.020 0.028 0.000
#> GSM40706     2  0.1801     0.7472 0.000 0.924 0.004 0.056 0.016 0.000
#> GSM40711     3  0.0000     0.9325 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40661     3  0.3088     0.7641 0.000 0.000 0.808 0.172 0.000 0.020
#> GSM40662     5  0.3360     0.4159 0.020 0.004 0.148 0.012 0.816 0.000
#> GSM40666     3  0.2300     0.7997 0.144 0.000 0.856 0.000 0.000 0.000
#> GSM40669     5  0.4051     0.4019 0.432 0.000 0.008 0.000 0.560 0.000
#> GSM40670     5  0.6083     0.2854 0.272 0.000 0.364 0.000 0.364 0.000
#> GSM40671     6  0.3728     0.4431 0.344 0.000 0.000 0.004 0.000 0.652
#> GSM40672     1  0.1910     0.6461 0.892 0.000 0.000 0.000 0.108 0.000
#> GSM40673     1  0.1088     0.7386 0.960 0.000 0.000 0.024 0.000 0.016
#> GSM40674     3  0.3976     0.6343 0.196 0.000 0.748 0.004 0.052 0.000
#> GSM40676     6  0.1867     0.4912 0.020 0.000 0.000 0.064 0.000 0.916
#> GSM40680     6  0.6467    -0.0255 0.008 0.200 0.000 0.024 0.284 0.484
#> GSM40681     1  0.4432     0.6449 0.780 0.044 0.000 0.076 0.088 0.012
#> GSM40683     1  0.0692     0.7392 0.976 0.000 0.000 0.004 0.000 0.020
#> GSM40684     6  0.5352     0.4449 0.172 0.000 0.080 0.072 0.000 0.676
#> GSM40685     2  0.7228    -0.1153 0.140 0.408 0.000 0.116 0.328 0.008
#> GSM40689     1  0.4792     0.4479 0.672 0.000 0.000 0.148 0.000 0.180
#> GSM40690     1  0.4140     0.5796 0.704 0.000 0.000 0.260 0.016 0.020
#> GSM40692     5  0.6235     0.1504 0.004 0.176 0.000 0.044 0.564 0.212
#> GSM40693     5  0.3647     0.4763 0.360 0.000 0.000 0.000 0.640 0.000
#> GSM40694     5  0.4504     0.4813 0.332 0.000 0.000 0.032 0.628 0.008
#> GSM40695     1  0.1844     0.7319 0.924 0.000 0.000 0.004 0.024 0.048
#> GSM40696     5  0.3620     0.4813 0.352 0.000 0.000 0.000 0.648 0.000
#> GSM40697     5  0.5856     0.4464 0.108 0.080 0.036 0.096 0.680 0.000
#> GSM40704     1  0.1663     0.6724 0.912 0.000 0.000 0.000 0.088 0.000
#> GSM40705     3  0.0000     0.9325 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40707     6  0.1524     0.5297 0.060 0.000 0.000 0.008 0.000 0.932
#> GSM40708     6  0.0717     0.5006 0.016 0.000 0.000 0.008 0.000 0.976
#> GSM40709     3  0.0000     0.9325 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40712     5  0.4246     0.3748 0.400 0.000 0.000 0.020 0.580 0.000
#> GSM40713     6  0.5014     0.2745 0.392 0.000 0.000 0.008 0.056 0.544
#> GSM40665     6  0.5976     0.1871 0.248 0.000 0.000 0.264 0.004 0.484
#> GSM40677     5  0.5698    -0.1701 0.000 0.400 0.000 0.160 0.440 0.000
#> GSM40698     1  0.7015     0.1006 0.448 0.024 0.000 0.268 0.036 0.224
#> GSM40701     3  0.0260     0.9292 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM40710     2  0.1500     0.7435 0.000 0.936 0.000 0.052 0.012 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> MAD:NMF 50         1.79e-05 2
#> MAD:NMF 50         1.74e-04 3
#> MAD:NMF 51         3.25e-05 4
#> MAD:NMF 35         1.02e-02 5
#> MAD:NMF 29         2.34e-02 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.376           0.701       0.752         0.3965 0.495   0.495
#> 3 3 0.652           0.860       0.925         0.4746 0.730   0.550
#> 4 4 0.719           0.736       0.879         0.2313 0.837   0.624
#> 5 5 0.820           0.717       0.846         0.0804 0.944   0.797
#> 6 6 0.805           0.676       0.834         0.0299 0.960   0.830

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2   0.000     0.6181 0.000 1.000
#> GSM40667     2   0.000     0.6181 0.000 1.000
#> GSM40675     2   0.000     0.6181 0.000 1.000
#> GSM40703     2   0.000     0.6181 0.000 1.000
#> GSM40660     2   0.833     0.8627 0.264 0.736
#> GSM40668     2   0.000     0.6181 0.000 1.000
#> GSM40678     2   0.861     0.8672 0.284 0.716
#> GSM40679     2   0.861     0.8672 0.284 0.716
#> GSM40686     2   0.861     0.8672 0.284 0.716
#> GSM40687     2   0.861     0.8672 0.284 0.716
#> GSM40691     2   0.855     0.8670 0.280 0.720
#> GSM40699     2   0.827     0.8605 0.260 0.740
#> GSM40664     2   0.861     0.8672 0.284 0.716
#> GSM40682     2   0.861     0.8672 0.284 0.716
#> GSM40688     2   0.861     0.8672 0.284 0.716
#> GSM40702     2   0.855     0.8670 0.280 0.720
#> GSM40706     2   0.861     0.8672 0.284 0.716
#> GSM40711     2   0.833     0.8627 0.264 0.736
#> GSM40661     2   0.827     0.8605 0.260 0.740
#> GSM40662     2   0.971     0.6861 0.400 0.600
#> GSM40666     2   0.936     0.7896 0.352 0.648
#> GSM40669     1   0.978    -0.0803 0.588 0.412
#> GSM40670     1   0.978    -0.0803 0.588 0.412
#> GSM40671     1   0.000     0.8298 1.000 0.000
#> GSM40672     1   0.000     0.8298 1.000 0.000
#> GSM40673     1   0.000     0.8298 1.000 0.000
#> GSM40674     1   0.978    -0.0803 0.588 0.412
#> GSM40676     2   0.946     0.7738 0.364 0.636
#> GSM40680     1   0.992    -0.2529 0.552 0.448
#> GSM40681     1   0.000     0.8298 1.000 0.000
#> GSM40683     1   0.000     0.8298 1.000 0.000
#> GSM40684     2   0.946     0.7738 0.364 0.636
#> GSM40685     1   0.416     0.7430 0.916 0.084
#> GSM40689     1   0.000     0.8298 1.000 0.000
#> GSM40690     1   0.000     0.8298 1.000 0.000
#> GSM40692     1   0.992    -0.2529 0.552 0.448
#> GSM40693     1   0.000     0.8298 1.000 0.000
#> GSM40694     1   0.000     0.8298 1.000 0.000
#> GSM40695     1   0.000     0.8298 1.000 0.000
#> GSM40696     1   0.000     0.8298 1.000 0.000
#> GSM40697     2   0.981     0.6414 0.420 0.580
#> GSM40704     1   0.000     0.8298 1.000 0.000
#> GSM40705     2   0.833     0.8627 0.264 0.736
#> GSM40707     1   0.000     0.8298 1.000 0.000
#> GSM40708     1   0.000     0.8298 1.000 0.000
#> GSM40709     2   0.939     0.7838 0.356 0.644
#> GSM40712     1   0.978    -0.0803 0.588 0.412
#> GSM40713     1   0.000     0.8298 1.000 0.000
#> GSM40665     1   0.000     0.8298 1.000 0.000
#> GSM40677     2   0.861     0.8672 0.284 0.716
#> GSM40698     1   0.000     0.8298 1.000 0.000
#> GSM40701     2   0.827     0.8605 0.260 0.740
#> GSM40710     2   0.861     0.8672 0.284 0.716

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000      1.000 0.000 0.000 1.000
#> GSM40667     3  0.0000      1.000 0.000 0.000 1.000
#> GSM40675     3  0.0000      1.000 0.000 0.000 1.000
#> GSM40703     3  0.0000      1.000 0.000 0.000 1.000
#> GSM40660     2  0.4702      0.753 0.000 0.788 0.212
#> GSM40668     3  0.0000      1.000 0.000 0.000 1.000
#> GSM40678     2  0.0000      0.861 0.000 1.000 0.000
#> GSM40679     2  0.0000      0.861 0.000 1.000 0.000
#> GSM40686     2  0.0000      0.861 0.000 1.000 0.000
#> GSM40687     2  0.0000      0.861 0.000 1.000 0.000
#> GSM40691     2  0.0237      0.860 0.000 0.996 0.004
#> GSM40699     2  0.4235      0.774 0.000 0.824 0.176
#> GSM40664     2  0.0000      0.861 0.000 1.000 0.000
#> GSM40682     2  0.0000      0.861 0.000 1.000 0.000
#> GSM40688     2  0.0000      0.861 0.000 1.000 0.000
#> GSM40702     2  0.0237      0.860 0.000 0.996 0.004
#> GSM40706     2  0.0000      0.861 0.000 1.000 0.000
#> GSM40711     2  0.4702      0.753 0.000 0.788 0.212
#> GSM40661     2  0.4750      0.748 0.000 0.784 0.216
#> GSM40662     2  0.3267      0.822 0.116 0.884 0.000
#> GSM40666     2  0.2261      0.853 0.068 0.932 0.000
#> GSM40669     2  0.5591      0.652 0.304 0.696 0.000
#> GSM40670     2  0.5591      0.652 0.304 0.696 0.000
#> GSM40671     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40672     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40674     2  0.5591      0.652 0.304 0.696 0.000
#> GSM40676     2  0.2711      0.848 0.088 0.912 0.000
#> GSM40680     2  0.5291      0.713 0.268 0.732 0.000
#> GSM40681     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40683     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40684     2  0.2711      0.848 0.088 0.912 0.000
#> GSM40685     1  0.5988      0.254 0.632 0.368 0.000
#> GSM40689     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40690     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40692     2  0.5291      0.713 0.268 0.732 0.000
#> GSM40693     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40694     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40695     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40696     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40697     2  0.3619      0.814 0.136 0.864 0.000
#> GSM40704     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40705     2  0.4702      0.753 0.000 0.788 0.212
#> GSM40707     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40708     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40709     2  0.2356      0.852 0.072 0.928 0.000
#> GSM40712     2  0.5591      0.652 0.304 0.696 0.000
#> GSM40713     1  0.0000      0.966 1.000 0.000 0.000
#> GSM40665     1  0.0237      0.961 0.996 0.004 0.000
#> GSM40677     2  0.0000      0.861 0.000 1.000 0.000
#> GSM40698     1  0.1529      0.918 0.960 0.040 0.000
#> GSM40701     2  0.4702      0.753 0.000 0.788 0.212
#> GSM40710     2  0.0000      0.861 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> GSM40667     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> GSM40675     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> GSM40703     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> GSM40660     3  0.5464    0.59913 0.000 0.072 0.716 0.212
#> GSM40668     4  0.0000    1.00000 0.000 0.000 0.000 1.000
#> GSM40678     2  0.0000    0.79022 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0592    0.79230 0.000 0.984 0.016 0.000
#> GSM40686     2  0.0592    0.79230 0.000 0.984 0.016 0.000
#> GSM40687     2  0.0000    0.79022 0.000 1.000 0.000 0.000
#> GSM40691     2  0.3945    0.61919 0.000 0.780 0.216 0.004
#> GSM40699     2  0.6745    0.39833 0.000 0.612 0.212 0.176
#> GSM40664     2  0.4999    0.02906 0.000 0.508 0.492 0.000
#> GSM40682     2  0.0592    0.79230 0.000 0.984 0.016 0.000
#> GSM40688     2  0.0592    0.79230 0.000 0.984 0.016 0.000
#> GSM40702     2  0.3982    0.61444 0.000 0.776 0.220 0.004
#> GSM40706     2  0.0000    0.79022 0.000 1.000 0.000 0.000
#> GSM40711     3  0.3908    0.62002 0.000 0.004 0.784 0.212
#> GSM40661     3  0.5867    0.58405 0.000 0.096 0.688 0.216
#> GSM40662     2  0.6813    0.07739 0.104 0.516 0.380 0.000
#> GSM40666     3  0.0000    0.69765 0.000 0.000 1.000 0.000
#> GSM40669     3  0.3942    0.64986 0.236 0.000 0.764 0.000
#> GSM40670     3  0.3942    0.64986 0.236 0.000 0.764 0.000
#> GSM40671     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40672     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40673     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40674     3  0.3942    0.64986 0.236 0.000 0.764 0.000
#> GSM40676     3  0.0707    0.70154 0.020 0.000 0.980 0.000
#> GSM40680     3  0.7743    0.14779 0.232 0.368 0.400 0.000
#> GSM40681     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40683     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40684     3  0.0707    0.70154 0.020 0.000 0.980 0.000
#> GSM40685     1  0.5060    0.10173 0.584 0.004 0.412 0.000
#> GSM40689     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40690     1  0.0188    0.96164 0.996 0.000 0.004 0.000
#> GSM40692     3  0.7743    0.14779 0.232 0.368 0.400 0.000
#> GSM40693     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40694     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40695     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40696     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40697     2  0.6895    0.00902 0.108 0.492 0.400 0.000
#> GSM40704     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40705     3  0.3908    0.62002 0.000 0.004 0.784 0.212
#> GSM40707     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40708     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40709     3  0.0188    0.69906 0.004 0.000 0.996 0.000
#> GSM40712     3  0.3942    0.64986 0.236 0.000 0.764 0.000
#> GSM40713     1  0.0000    0.96452 1.000 0.000 0.000 0.000
#> GSM40665     1  0.0707    0.94813 0.980 0.000 0.020 0.000
#> GSM40677     2  0.0592    0.79230 0.000 0.984 0.016 0.000
#> GSM40698     1  0.1661    0.91033 0.944 0.004 0.052 0.000
#> GSM40701     3  0.5889    0.58531 0.000 0.100 0.688 0.212
#> GSM40710     2  0.0000    0.79022 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.3143     1.0000 0.000 0.000 0.796 0.204 0.000
#> GSM40667     3  0.3143     1.0000 0.000 0.000 0.796 0.204 0.000
#> GSM40675     3  0.3143     1.0000 0.000 0.000 0.796 0.204 0.000
#> GSM40703     3  0.3143     1.0000 0.000 0.000 0.796 0.204 0.000
#> GSM40660     4  0.1704     0.6275 0.000 0.068 0.004 0.928 0.000
#> GSM40668     3  0.3143     1.0000 0.000 0.000 0.796 0.204 0.000
#> GSM40678     2  0.0960     0.7638 0.000 0.972 0.016 0.008 0.004
#> GSM40679     2  0.0404     0.7639 0.000 0.988 0.000 0.000 0.012
#> GSM40686     2  0.1195     0.7588 0.000 0.960 0.028 0.000 0.012
#> GSM40687     2  0.0960     0.7638 0.000 0.972 0.016 0.008 0.004
#> GSM40691     2  0.3551     0.6448 0.000 0.772 0.000 0.220 0.008
#> GSM40699     2  0.4310     0.3979 0.000 0.604 0.004 0.392 0.000
#> GSM40664     2  0.5330    -0.0530 0.000 0.484 0.028 0.476 0.012
#> GSM40682     2  0.0404     0.7639 0.000 0.988 0.000 0.000 0.012
#> GSM40688     2  0.1195     0.7588 0.000 0.960 0.028 0.000 0.012
#> GSM40702     2  0.3582     0.6411 0.000 0.768 0.000 0.224 0.008
#> GSM40706     2  0.3053     0.7187 0.000 0.872 0.044 0.008 0.076
#> GSM40711     4  0.0162     0.6372 0.000 0.000 0.004 0.996 0.000
#> GSM40661     4  0.2193     0.6116 0.000 0.092 0.008 0.900 0.000
#> GSM40662     2  0.5548    -0.0941 0.000 0.492 0.036 0.016 0.456
#> GSM40666     4  0.4227     0.5746 0.000 0.000 0.000 0.580 0.420
#> GSM40669     5  0.1768     0.6665 0.072 0.000 0.000 0.004 0.924
#> GSM40670     5  0.1768     0.6665 0.072 0.000 0.000 0.004 0.924
#> GSM40671     1  0.0609     0.9521 0.980 0.000 0.020 0.000 0.000
#> GSM40672     1  0.0162     0.9548 0.996 0.000 0.004 0.000 0.000
#> GSM40673     1  0.0404     0.9542 0.988 0.000 0.012 0.000 0.000
#> GSM40674     5  0.1768     0.6665 0.072 0.000 0.000 0.004 0.924
#> GSM40676     4  0.4713     0.5530 0.016 0.000 0.000 0.544 0.440
#> GSM40680     5  0.7163     0.3093 0.048 0.344 0.148 0.000 0.460
#> GSM40681     1  0.1018     0.9489 0.968 0.000 0.016 0.000 0.016
#> GSM40683     1  0.0404     0.9542 0.988 0.000 0.012 0.000 0.000
#> GSM40684     4  0.4713     0.5530 0.016 0.000 0.000 0.544 0.440
#> GSM40685     5  0.6207     0.3781 0.348 0.008 0.120 0.000 0.524
#> GSM40689     1  0.0404     0.9542 0.988 0.000 0.012 0.000 0.000
#> GSM40690     1  0.0579     0.9535 0.984 0.000 0.008 0.000 0.008
#> GSM40692     5  0.7163     0.3093 0.048 0.344 0.148 0.000 0.460
#> GSM40693     1  0.0912     0.9499 0.972 0.000 0.012 0.000 0.016
#> GSM40694     1  0.1018     0.9489 0.968 0.000 0.016 0.000 0.016
#> GSM40695     1  0.0404     0.9542 0.988 0.000 0.012 0.000 0.000
#> GSM40696     1  0.0912     0.9499 0.972 0.000 0.012 0.000 0.016
#> GSM40697     2  0.5557    -0.1718 0.000 0.468 0.068 0.000 0.464
#> GSM40704     1  0.0404     0.9542 0.988 0.000 0.012 0.000 0.000
#> GSM40705     4  0.0162     0.6372 0.000 0.000 0.004 0.996 0.000
#> GSM40707     1  0.0404     0.9542 0.988 0.000 0.012 0.000 0.000
#> GSM40708     1  0.0000     0.9548 1.000 0.000 0.000 0.000 0.000
#> GSM40709     4  0.4262     0.5619 0.000 0.000 0.000 0.560 0.440
#> GSM40712     5  0.1768     0.6665 0.072 0.000 0.000 0.004 0.924
#> GSM40713     1  0.1018     0.9489 0.968 0.000 0.016 0.000 0.016
#> GSM40665     1  0.3657     0.7822 0.820 0.000 0.064 0.000 0.116
#> GSM40677     2  0.1195     0.7588 0.000 0.960 0.028 0.000 0.012
#> GSM40698     1  0.4593     0.7019 0.756 0.008 0.076 0.000 0.160
#> GSM40701     4  0.2068     0.6115 0.000 0.092 0.004 0.904 0.000
#> GSM40710     2  0.0960     0.7638 0.000 0.972 0.016 0.008 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     4  0.6681      0.588 0.000 0.000 0.208 0.508 0.204 0.080
#> GSM40668     3  0.0000      1.000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40678     2  0.3586      0.594 0.000 0.720 0.000 0.000 0.012 0.268
#> GSM40679     2  0.0146      0.710 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM40686     2  0.0713      0.703 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM40687     2  0.3541      0.597 0.000 0.728 0.000 0.000 0.012 0.260
#> GSM40691     2  0.3896      0.614 0.000 0.744 0.000 0.000 0.204 0.052
#> GSM40699     2  0.6338      0.339 0.000 0.552 0.172 0.000 0.212 0.064
#> GSM40664     4  0.5448      0.177 0.000 0.440 0.000 0.476 0.028 0.056
#> GSM40682     2  0.0146      0.710 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM40688     2  0.0713      0.703 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM40702     2  0.3954      0.610 0.000 0.740 0.000 0.000 0.204 0.056
#> GSM40706     6  0.1007      0.000 0.000 0.044 0.000 0.000 0.000 0.956
#> GSM40711     4  0.5702      0.603 0.000 0.000 0.208 0.576 0.204 0.012
#> GSM40661     4  0.6928      0.570 0.000 0.000 0.212 0.476 0.212 0.100
#> GSM40662     2  0.4128     -0.309 0.000 0.504 0.000 0.004 0.488 0.004
#> GSM40666     4  0.0000      0.542 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40669     5  0.4039      0.599 0.000 0.008 0.000 0.424 0.568 0.000
#> GSM40670     5  0.4039      0.599 0.000 0.008 0.000 0.424 0.568 0.000
#> GSM40671     1  0.0547      0.933 0.980 0.000 0.000 0.000 0.020 0.000
#> GSM40672     1  0.0260      0.936 0.992 0.000 0.000 0.000 0.008 0.000
#> GSM40673     1  0.0363      0.935 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM40674     5  0.4039      0.599 0.000 0.008 0.000 0.424 0.568 0.000
#> GSM40676     4  0.1003      0.526 0.016 0.000 0.000 0.964 0.020 0.000
#> GSM40680     5  0.3967      0.430 0.012 0.356 0.000 0.000 0.632 0.000
#> GSM40681     1  0.0937      0.930 0.960 0.000 0.000 0.000 0.040 0.000
#> GSM40683     1  0.0363      0.935 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM40684     4  0.1003      0.526 0.016 0.000 0.000 0.964 0.020 0.000
#> GSM40685     5  0.3944      0.340 0.216 0.016 0.000 0.000 0.744 0.024
#> GSM40689     1  0.0363      0.935 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM40690     1  0.0909      0.931 0.968 0.000 0.000 0.000 0.020 0.012
#> GSM40692     5  0.3967      0.430 0.012 0.356 0.000 0.000 0.632 0.000
#> GSM40693     1  0.0790      0.932 0.968 0.000 0.000 0.000 0.032 0.000
#> GSM40694     1  0.1007      0.928 0.956 0.000 0.000 0.000 0.044 0.000
#> GSM40695     1  0.0363      0.935 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM40696     1  0.0790      0.932 0.968 0.000 0.000 0.000 0.032 0.000
#> GSM40697     5  0.4183      0.234 0.000 0.480 0.000 0.012 0.508 0.000
#> GSM40704     1  0.0363      0.935 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM40705     4  0.5702      0.603 0.000 0.000 0.208 0.576 0.204 0.012
#> GSM40707     1  0.0363      0.935 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM40708     1  0.0146      0.936 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM40709     4  0.0547      0.534 0.000 0.000 0.000 0.980 0.020 0.000
#> GSM40712     5  0.4039      0.599 0.000 0.008 0.000 0.424 0.568 0.000
#> GSM40713     1  0.1007      0.928 0.956 0.000 0.000 0.000 0.044 0.000
#> GSM40665     1  0.3855      0.637 0.704 0.000 0.000 0.000 0.272 0.024
#> GSM40677     2  0.0713      0.703 0.000 0.972 0.000 0.000 0.028 0.000
#> GSM40698     1  0.4406      0.534 0.624 0.008 0.000 0.000 0.344 0.024
#> GSM40701     4  0.6944      0.569 0.000 0.000 0.208 0.476 0.212 0.104
#> GSM40710     2  0.3541      0.597 0.000 0.728 0.000 0.000 0.012 0.260

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:hclust 47         1.15e-03 2
#> ATC:hclust 52         5.09e-08 3
#> ATC:hclust 46         6.81e-09 4
#> ATC:hclust 46         1.53e-07 5
#> ATC:hclust 45         3.58e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.742           0.796       0.924         0.4908 0.499   0.499
#> 3 3 0.665           0.784       0.899         0.2839 0.636   0.405
#> 4 4 0.857           0.908       0.936         0.1837 0.846   0.594
#> 5 5 0.728           0.652       0.745         0.0664 0.965   0.856
#> 6 6 0.723           0.483       0.620         0.0410 0.864   0.483

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2   0.000     0.9048 0.000 1.000
#> GSM40667     2   0.000     0.9048 0.000 1.000
#> GSM40675     2   0.000     0.9048 0.000 1.000
#> GSM40703     2   0.000     0.9048 0.000 1.000
#> GSM40660     2   0.000     0.9048 0.000 1.000
#> GSM40668     2   0.000     0.9048 0.000 1.000
#> GSM40678     2   0.000     0.9048 0.000 1.000
#> GSM40679     2   0.402     0.8436 0.080 0.920
#> GSM40686     1   1.000    -0.0658 0.500 0.500
#> GSM40687     2   0.000     0.9048 0.000 1.000
#> GSM40691     2   0.000     0.9048 0.000 1.000
#> GSM40699     2   0.000     0.9048 0.000 1.000
#> GSM40664     2   0.975     0.3105 0.408 0.592
#> GSM40682     2   0.402     0.8436 0.080 0.920
#> GSM40688     2   0.990     0.2136 0.440 0.560
#> GSM40702     2   0.000     0.9048 0.000 1.000
#> GSM40706     2   0.000     0.9048 0.000 1.000
#> GSM40711     2   0.000     0.9048 0.000 1.000
#> GSM40661     2   0.000     0.9048 0.000 1.000
#> GSM40662     2   0.963     0.3561 0.388 0.612
#> GSM40666     1   0.966     0.3410 0.608 0.392
#> GSM40669     1   0.000     0.9126 1.000 0.000
#> GSM40670     1   0.760     0.6759 0.780 0.220
#> GSM40671     1   0.000     0.9126 1.000 0.000
#> GSM40672     1   0.000     0.9126 1.000 0.000
#> GSM40673     1   0.000     0.9126 1.000 0.000
#> GSM40674     1   0.760     0.6759 0.780 0.220
#> GSM40676     1   0.000     0.9126 1.000 0.000
#> GSM40680     1   0.000     0.9126 1.000 0.000
#> GSM40681     1   0.000     0.9126 1.000 0.000
#> GSM40683     1   0.000     0.9126 1.000 0.000
#> GSM40684     1   0.000     0.9126 1.000 0.000
#> GSM40685     1   0.000     0.9126 1.000 0.000
#> GSM40689     1   0.000     0.9126 1.000 0.000
#> GSM40690     1   0.000     0.9126 1.000 0.000
#> GSM40692     1   0.000     0.9126 1.000 0.000
#> GSM40693     1   0.000     0.9126 1.000 0.000
#> GSM40694     1   0.000     0.9126 1.000 0.000
#> GSM40695     1   0.000     0.9126 1.000 0.000
#> GSM40696     1   0.000     0.9126 1.000 0.000
#> GSM40697     1   0.988     0.1946 0.564 0.436
#> GSM40704     1   0.000     0.9126 1.000 0.000
#> GSM40705     2   0.000     0.9048 0.000 1.000
#> GSM40707     1   0.000     0.9126 1.000 0.000
#> GSM40708     1   0.000     0.9126 1.000 0.000
#> GSM40709     1   0.988     0.2104 0.564 0.436
#> GSM40712     1   0.000     0.9126 1.000 0.000
#> GSM40713     1   0.000     0.9126 1.000 0.000
#> GSM40665     1   0.000     0.9126 1.000 0.000
#> GSM40677     2   0.975     0.3105 0.408 0.592
#> GSM40698     1   0.000     0.9126 1.000 0.000
#> GSM40701     2   0.000     0.9048 0.000 1.000
#> GSM40710     2   0.000     0.9048 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000      0.909 0.000 0.000 1.000
#> GSM40667     3  0.0000      0.909 0.000 0.000 1.000
#> GSM40675     3  0.0000      0.909 0.000 0.000 1.000
#> GSM40703     3  0.0000      0.909 0.000 0.000 1.000
#> GSM40660     3  0.5706      0.615 0.000 0.320 0.680
#> GSM40668     3  0.0000      0.909 0.000 0.000 1.000
#> GSM40678     2  0.0424      0.771 0.000 0.992 0.008
#> GSM40679     2  0.0424      0.771 0.000 0.992 0.008
#> GSM40686     2  0.0424      0.772 0.008 0.992 0.000
#> GSM40687     2  0.0424      0.771 0.000 0.992 0.008
#> GSM40691     2  0.0424      0.771 0.000 0.992 0.008
#> GSM40699     2  0.6305     -0.300 0.000 0.516 0.484
#> GSM40664     2  0.0000      0.771 0.000 1.000 0.000
#> GSM40682     2  0.0424      0.771 0.000 0.992 0.008
#> GSM40688     2  0.0424      0.772 0.008 0.992 0.000
#> GSM40702     2  0.0424      0.771 0.000 0.992 0.008
#> GSM40706     2  0.0424      0.771 0.000 0.992 0.008
#> GSM40711     3  0.1964      0.902 0.000 0.056 0.944
#> GSM40661     3  0.4178      0.833 0.000 0.172 0.828
#> GSM40662     2  0.0000      0.771 0.000 1.000 0.000
#> GSM40666     2  0.5327      0.669 0.272 0.728 0.000
#> GSM40669     2  0.6204      0.470 0.424 0.576 0.000
#> GSM40670     2  0.5327      0.669 0.272 0.728 0.000
#> GSM40671     1  0.0424      0.971 0.992 0.008 0.000
#> GSM40672     1  0.0000      0.973 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.973 1.000 0.000 0.000
#> GSM40674     2  0.5327      0.669 0.272 0.728 0.000
#> GSM40676     2  0.6225      0.440 0.432 0.568 0.000
#> GSM40680     2  0.6111      0.520 0.396 0.604 0.000
#> GSM40681     1  0.0000      0.973 1.000 0.000 0.000
#> GSM40683     1  0.0000      0.973 1.000 0.000 0.000
#> GSM40684     2  0.6225      0.440 0.432 0.568 0.000
#> GSM40685     1  0.5254      0.515 0.736 0.264 0.000
#> GSM40689     1  0.0424      0.971 0.992 0.008 0.000
#> GSM40690     1  0.0000      0.973 1.000 0.000 0.000
#> GSM40692     2  0.6111      0.520 0.396 0.604 0.000
#> GSM40693     1  0.0000      0.973 1.000 0.000 0.000
#> GSM40694     1  0.0000      0.973 1.000 0.000 0.000
#> GSM40695     1  0.0000      0.973 1.000 0.000 0.000
#> GSM40696     1  0.0000      0.973 1.000 0.000 0.000
#> GSM40697     2  0.0424      0.772 0.008 0.992 0.000
#> GSM40704     1  0.0000      0.973 1.000 0.000 0.000
#> GSM40705     3  0.1964      0.902 0.000 0.056 0.944
#> GSM40707     1  0.0424      0.971 0.992 0.008 0.000
#> GSM40708     1  0.0424      0.971 0.992 0.008 0.000
#> GSM40709     2  0.5291      0.672 0.268 0.732 0.000
#> GSM40712     2  0.6291      0.365 0.468 0.532 0.000
#> GSM40713     1  0.0424      0.971 0.992 0.008 0.000
#> GSM40665     1  0.0424      0.971 0.992 0.008 0.000
#> GSM40677     2  0.0424      0.772 0.008 0.992 0.000
#> GSM40698     1  0.1964      0.919 0.944 0.056 0.000
#> GSM40701     3  0.4178      0.833 0.000 0.172 0.828
#> GSM40710     2  0.0424      0.771 0.000 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.0000      0.848 0.000 0.000 0.000 1.000
#> GSM40667     4  0.0000      0.848 0.000 0.000 0.000 1.000
#> GSM40675     4  0.0000      0.848 0.000 0.000 0.000 1.000
#> GSM40703     4  0.0000      0.848 0.000 0.000 0.000 1.000
#> GSM40660     4  0.6429      0.765 0.000 0.144 0.212 0.644
#> GSM40668     4  0.0000      0.848 0.000 0.000 0.000 1.000
#> GSM40678     2  0.0336      0.963 0.000 0.992 0.008 0.000
#> GSM40679     2  0.0469      0.963 0.000 0.988 0.012 0.000
#> GSM40686     2  0.1211      0.955 0.000 0.960 0.040 0.000
#> GSM40687     2  0.0336      0.963 0.000 0.992 0.008 0.000
#> GSM40691     2  0.0336      0.963 0.000 0.992 0.008 0.000
#> GSM40699     2  0.2611      0.864 0.000 0.896 0.008 0.096
#> GSM40664     2  0.1211      0.955 0.000 0.960 0.040 0.000
#> GSM40682     2  0.1022      0.958 0.000 0.968 0.032 0.000
#> GSM40688     2  0.1211      0.955 0.000 0.960 0.040 0.000
#> GSM40702     2  0.0336      0.963 0.000 0.992 0.008 0.000
#> GSM40706     2  0.0707      0.959 0.000 0.980 0.020 0.000
#> GSM40711     4  0.4868      0.799 0.000 0.040 0.212 0.748
#> GSM40661     4  0.6440      0.766 0.000 0.148 0.208 0.644
#> GSM40662     3  0.1302      0.858 0.000 0.044 0.956 0.000
#> GSM40666     3  0.0469      0.875 0.012 0.000 0.988 0.000
#> GSM40669     3  0.2048      0.871 0.064 0.008 0.928 0.000
#> GSM40670     3  0.0469      0.875 0.012 0.000 0.988 0.000
#> GSM40671     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40672     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40673     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40674     3  0.0469      0.875 0.012 0.000 0.988 0.000
#> GSM40676     3  0.0469      0.875 0.012 0.000 0.988 0.000
#> GSM40680     3  0.4849      0.807 0.164 0.064 0.772 0.000
#> GSM40681     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40683     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40684     3  0.0469      0.875 0.012 0.000 0.988 0.000
#> GSM40685     3  0.4158      0.778 0.224 0.008 0.768 0.000
#> GSM40689     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40690     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40692     3  0.4849      0.807 0.164 0.064 0.772 0.000
#> GSM40693     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40694     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40695     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40696     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40697     3  0.3873      0.719 0.000 0.228 0.772 0.000
#> GSM40704     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40705     4  0.4868      0.799 0.000 0.040 0.212 0.748
#> GSM40707     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40708     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40709     3  0.0469      0.875 0.012 0.000 0.988 0.000
#> GSM40712     3  0.2546      0.862 0.092 0.008 0.900 0.000
#> GSM40713     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40665     1  0.0000      1.000 1.000 0.000 0.000 0.000
#> GSM40677     2  0.1211      0.955 0.000 0.960 0.040 0.000
#> GSM40698     3  0.4158      0.778 0.224 0.008 0.768 0.000
#> GSM40701     4  0.6133      0.667 0.000 0.268 0.088 0.644
#> GSM40710     2  0.0336      0.963 0.000 0.992 0.008 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0000      0.732 0.000 0.000 1.000 0.000 0.000
#> GSM40667     3  0.0000      0.732 0.000 0.000 1.000 0.000 0.000
#> GSM40675     3  0.0000      0.732 0.000 0.000 1.000 0.000 0.000
#> GSM40703     3  0.0000      0.732 0.000 0.000 1.000 0.000 0.000
#> GSM40660     3  0.6724      0.588 0.000 0.208 0.408 0.380 0.004
#> GSM40668     3  0.0000      0.732 0.000 0.000 1.000 0.000 0.000
#> GSM40678     2  0.0510      0.872 0.000 0.984 0.000 0.016 0.000
#> GSM40679     2  0.2763      0.864 0.000 0.848 0.000 0.004 0.148
#> GSM40686     2  0.3282      0.847 0.000 0.804 0.000 0.008 0.188
#> GSM40687     2  0.0510      0.872 0.000 0.984 0.000 0.016 0.000
#> GSM40691     2  0.0510      0.872 0.000 0.984 0.000 0.016 0.000
#> GSM40699     2  0.3629      0.711 0.000 0.832 0.092 0.072 0.004
#> GSM40664     2  0.3209      0.852 0.000 0.812 0.000 0.008 0.180
#> GSM40682     2  0.2890      0.862 0.000 0.836 0.000 0.004 0.160
#> GSM40688     2  0.3355      0.848 0.000 0.804 0.000 0.012 0.184
#> GSM40702     2  0.0404      0.872 0.000 0.988 0.000 0.012 0.000
#> GSM40706     2  0.1331      0.859 0.000 0.952 0.000 0.040 0.008
#> GSM40711     3  0.4973      0.631 0.000 0.024 0.564 0.408 0.004
#> GSM40661     3  0.6736      0.592 0.000 0.212 0.412 0.372 0.004
#> GSM40662     5  0.4448     -0.367 0.000 0.004 0.000 0.480 0.516
#> GSM40666     4  0.3366      0.735 0.000 0.000 0.000 0.768 0.232
#> GSM40669     5  0.4297     -0.288 0.000 0.000 0.000 0.472 0.528
#> GSM40670     4  0.4294      0.333 0.000 0.000 0.000 0.532 0.468
#> GSM40671     1  0.1281      0.804 0.956 0.000 0.000 0.032 0.012
#> GSM40672     1  0.0000      0.810 1.000 0.000 0.000 0.000 0.000
#> GSM40673     1  0.0000      0.810 1.000 0.000 0.000 0.000 0.000
#> GSM40674     4  0.4287      0.356 0.000 0.000 0.000 0.540 0.460
#> GSM40676     4  0.2891      0.714 0.000 0.000 0.000 0.824 0.176
#> GSM40680     5  0.0898      0.519 0.008 0.000 0.000 0.020 0.972
#> GSM40681     1  0.4251      0.678 0.624 0.000 0.000 0.004 0.372
#> GSM40683     1  0.0000      0.810 1.000 0.000 0.000 0.000 0.000
#> GSM40684     4  0.2891      0.714 0.000 0.000 0.000 0.824 0.176
#> GSM40685     5  0.0579      0.513 0.008 0.000 0.000 0.008 0.984
#> GSM40689     1  0.1168      0.803 0.960 0.000 0.000 0.032 0.008
#> GSM40690     1  0.3491      0.774 0.768 0.000 0.000 0.004 0.228
#> GSM40692     5  0.0798      0.519 0.008 0.000 0.000 0.016 0.976
#> GSM40693     1  0.4310      0.653 0.604 0.000 0.000 0.004 0.392
#> GSM40694     1  0.4446      0.524 0.520 0.000 0.000 0.004 0.476
#> GSM40695     1  0.0000      0.810 1.000 0.000 0.000 0.000 0.000
#> GSM40696     1  0.4310      0.653 0.604 0.000 0.000 0.004 0.392
#> GSM40697     5  0.4725      0.300 0.000 0.200 0.000 0.080 0.720
#> GSM40704     1  0.0000      0.810 1.000 0.000 0.000 0.000 0.000
#> GSM40705     3  0.4973      0.631 0.000 0.024 0.564 0.408 0.004
#> GSM40707     1  0.1331      0.800 0.952 0.000 0.000 0.040 0.008
#> GSM40708     1  0.4793      0.760 0.700 0.000 0.000 0.068 0.232
#> GSM40709     4  0.3395      0.734 0.000 0.000 0.000 0.764 0.236
#> GSM40712     5  0.4273     -0.201 0.000 0.000 0.000 0.448 0.552
#> GSM40713     1  0.4297      0.771 0.728 0.000 0.000 0.036 0.236
#> GSM40665     1  0.4793      0.760 0.700 0.000 0.000 0.068 0.232
#> GSM40677     2  0.3246      0.849 0.000 0.808 0.000 0.008 0.184
#> GSM40698     5  0.5656      0.218 0.104 0.000 0.000 0.308 0.588
#> GSM40701     3  0.6840      0.586 0.000 0.252 0.412 0.332 0.004
#> GSM40710     2  0.0404      0.873 0.000 0.988 0.000 0.012 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000     0.9993 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     4  0.8442     0.1266 0.148 0.196 0.212 0.356 0.088 0.000
#> GSM40668     3  0.0146     0.9970 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM40678     2  0.0000     0.6867 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40679     2  0.4674     0.6183 0.060 0.608 0.000 0.000 0.332 0.000
#> GSM40686     2  0.4808     0.5837 0.056 0.536 0.000 0.000 0.408 0.000
#> GSM40687     2  0.0000     0.6867 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40691     2  0.0603     0.6843 0.016 0.980 0.000 0.000 0.004 0.000
#> GSM40699     2  0.3034     0.6075 0.048 0.864 0.032 0.000 0.056 0.000
#> GSM40664     2  0.4863     0.5877 0.060 0.528 0.000 0.000 0.412 0.000
#> GSM40682     2  0.4831     0.5937 0.060 0.548 0.000 0.000 0.392 0.000
#> GSM40688     2  0.4808     0.5837 0.056 0.536 0.000 0.000 0.408 0.000
#> GSM40702     2  0.0909     0.6772 0.020 0.968 0.000 0.000 0.012 0.000
#> GSM40706     2  0.3845     0.6471 0.088 0.772 0.000 0.000 0.140 0.000
#> GSM40711     4  0.6768     0.1185 0.136 0.008 0.320 0.468 0.068 0.000
#> GSM40661     4  0.8549     0.0831 0.148 0.236 0.216 0.312 0.088 0.000
#> GSM40662     4  0.5022    -0.0128 0.000 0.000 0.000 0.496 0.432 0.072
#> GSM40666     4  0.0000     0.4924 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40669     4  0.5319     0.1427 0.000 0.000 0.000 0.568 0.296 0.136
#> GSM40670     4  0.4664     0.2678 0.000 0.000 0.000 0.644 0.280 0.076
#> GSM40671     1  0.4076     0.6206 0.620 0.000 0.000 0.000 0.016 0.364
#> GSM40672     6  0.4689    -0.7048 0.440 0.000 0.000 0.000 0.044 0.516
#> GSM40673     1  0.4639     0.7913 0.512 0.000 0.000 0.000 0.040 0.448
#> GSM40674     4  0.4616     0.2719 0.000 0.000 0.000 0.648 0.280 0.072
#> GSM40676     4  0.2747     0.4696 0.096 0.000 0.000 0.860 0.044 0.000
#> GSM40680     5  0.4845     0.8228 0.008 0.000 0.000 0.044 0.560 0.388
#> GSM40681     6  0.0547     0.4603 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM40683     1  0.4639     0.7913 0.512 0.000 0.000 0.000 0.040 0.448
#> GSM40684     4  0.2747     0.4696 0.096 0.000 0.000 0.860 0.044 0.000
#> GSM40685     5  0.5169     0.7414 0.020 0.000 0.000 0.044 0.476 0.460
#> GSM40689     1  0.3563     0.7143 0.664 0.000 0.000 0.000 0.000 0.336
#> GSM40690     6  0.3290     0.2082 0.208 0.000 0.000 0.000 0.016 0.776
#> GSM40692     5  0.4837     0.8227 0.008 0.000 0.000 0.044 0.564 0.384
#> GSM40693     6  0.0405     0.4639 0.004 0.000 0.000 0.000 0.008 0.988
#> GSM40694     6  0.1500     0.4546 0.012 0.000 0.000 0.000 0.052 0.936
#> GSM40695     1  0.4639     0.7913 0.512 0.000 0.000 0.000 0.040 0.448
#> GSM40696     6  0.0405     0.4639 0.004 0.000 0.000 0.000 0.008 0.988
#> GSM40697     5  0.5572     0.5421 0.000 0.100 0.000 0.104 0.668 0.128
#> GSM40704     1  0.4639     0.7913 0.512 0.000 0.000 0.000 0.040 0.448
#> GSM40705     4  0.6768     0.1185 0.136 0.008 0.320 0.468 0.068 0.000
#> GSM40707     1  0.3528     0.6603 0.700 0.000 0.000 0.000 0.004 0.296
#> GSM40708     6  0.5031     0.0830 0.448 0.000 0.000 0.000 0.072 0.480
#> GSM40709     4  0.0000     0.4924 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM40712     4  0.5916    -0.0561 0.004 0.000 0.000 0.488 0.300 0.208
#> GSM40713     6  0.4634     0.0445 0.400 0.000 0.000 0.000 0.044 0.556
#> GSM40665     6  0.5033     0.0866 0.452 0.000 0.000 0.000 0.072 0.476
#> GSM40677     2  0.4808     0.5837 0.056 0.536 0.000 0.000 0.408 0.000
#> GSM40698     6  0.7673    -0.0921 0.280 0.000 0.000 0.228 0.200 0.292
#> GSM40701     2  0.8453    -0.1739 0.148 0.352 0.216 0.196 0.088 0.000
#> GSM40710     2  0.0405     0.6878 0.004 0.988 0.000 0.000 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:kmeans 45         1.73e-06 2
#> ATC:kmeans 48         2.64e-04 3
#> ATC:kmeans 53         1.08e-07 4
#> ATC:kmeans 46         4.91e-05 5
#> ATC:kmeans 29         7.90e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.922           0.956       0.980         0.5094 0.491   0.491
#> 3 3 0.999           0.958       0.982         0.3061 0.761   0.549
#> 4 4 0.810           0.864       0.930         0.0967 0.919   0.765
#> 5 5 0.847           0.811       0.892         0.0464 0.946   0.811
#> 6 6 0.810           0.773       0.879         0.0404 0.958   0.833

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      0.979 0.000 1.000
#> GSM40667     2  0.0000      0.979 0.000 1.000
#> GSM40675     2  0.0000      0.979 0.000 1.000
#> GSM40703     2  0.0000      0.979 0.000 1.000
#> GSM40660     2  0.0000      0.979 0.000 1.000
#> GSM40668     2  0.0000      0.979 0.000 1.000
#> GSM40678     2  0.0000      0.979 0.000 1.000
#> GSM40679     2  0.0000      0.979 0.000 1.000
#> GSM40686     2  0.6148      0.818 0.152 0.848
#> GSM40687     2  0.0000      0.979 0.000 1.000
#> GSM40691     2  0.0000      0.979 0.000 1.000
#> GSM40699     2  0.0000      0.979 0.000 1.000
#> GSM40664     2  0.0000      0.979 0.000 1.000
#> GSM40682     2  0.0000      0.979 0.000 1.000
#> GSM40688     2  0.0376      0.976 0.004 0.996
#> GSM40702     2  0.0000      0.979 0.000 1.000
#> GSM40706     2  0.0000      0.979 0.000 1.000
#> GSM40711     2  0.0000      0.979 0.000 1.000
#> GSM40661     2  0.0000      0.979 0.000 1.000
#> GSM40662     2  0.0000      0.979 0.000 1.000
#> GSM40666     1  0.8144      0.679 0.748 0.252
#> GSM40669     1  0.0000      0.978 1.000 0.000
#> GSM40670     1  0.6247      0.821 0.844 0.156
#> GSM40671     1  0.0000      0.978 1.000 0.000
#> GSM40672     1  0.0000      0.978 1.000 0.000
#> GSM40673     1  0.0000      0.978 1.000 0.000
#> GSM40674     1  0.5737      0.845 0.864 0.136
#> GSM40676     1  0.0000      0.978 1.000 0.000
#> GSM40680     1  0.0000      0.978 1.000 0.000
#> GSM40681     1  0.0000      0.978 1.000 0.000
#> GSM40683     1  0.0000      0.978 1.000 0.000
#> GSM40684     1  0.0000      0.978 1.000 0.000
#> GSM40685     1  0.0000      0.978 1.000 0.000
#> GSM40689     1  0.0000      0.978 1.000 0.000
#> GSM40690     1  0.0000      0.978 1.000 0.000
#> GSM40692     1  0.0000      0.978 1.000 0.000
#> GSM40693     1  0.0000      0.978 1.000 0.000
#> GSM40694     1  0.0000      0.978 1.000 0.000
#> GSM40695     1  0.0000      0.978 1.000 0.000
#> GSM40696     1  0.0000      0.978 1.000 0.000
#> GSM40697     2  0.2948      0.933 0.052 0.948
#> GSM40704     1  0.0000      0.978 1.000 0.000
#> GSM40705     2  0.0000      0.979 0.000 1.000
#> GSM40707     1  0.0000      0.978 1.000 0.000
#> GSM40708     1  0.0000      0.978 1.000 0.000
#> GSM40709     2  0.8661      0.580 0.288 0.712
#> GSM40712     1  0.0000      0.978 1.000 0.000
#> GSM40713     1  0.0000      0.978 1.000 0.000
#> GSM40665     1  0.0000      0.978 1.000 0.000
#> GSM40677     2  0.0000      0.979 0.000 1.000
#> GSM40698     1  0.0000      0.978 1.000 0.000
#> GSM40701     2  0.0000      0.979 0.000 1.000
#> GSM40710     2  0.0000      0.979 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40667     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40675     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40703     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40660     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40668     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40678     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40679     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40686     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40687     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40691     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40699     2  0.0424      0.978 0.000 0.992 0.008
#> GSM40664     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40682     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40688     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40702     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40706     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40711     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40661     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40662     2  0.4555      0.745 0.000 0.800 0.200
#> GSM40666     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40669     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40670     3  0.5882      0.495 0.348 0.000 0.652
#> GSM40671     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40672     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40673     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40674     3  0.2878      0.864 0.096 0.000 0.904
#> GSM40676     3  0.5397      0.623 0.280 0.000 0.720
#> GSM40680     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40681     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40683     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40684     3  0.0424      0.938 0.008 0.000 0.992
#> GSM40685     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40689     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40690     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40692     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40693     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40694     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40695     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40696     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40697     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40704     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40705     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40707     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40708     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40709     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40712     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40713     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40665     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40677     2  0.0000      0.985 0.000 1.000 0.000
#> GSM40698     1  0.0000      1.000 1.000 0.000 0.000
#> GSM40701     3  0.0000      0.944 0.000 0.000 1.000
#> GSM40710     2  0.0000      0.985 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.0000     0.9365 0.000 0.000 0.000 1.000
#> GSM40667     4  0.0000     0.9365 0.000 0.000 0.000 1.000
#> GSM40675     4  0.0000     0.9365 0.000 0.000 0.000 1.000
#> GSM40703     4  0.0000     0.9365 0.000 0.000 0.000 1.000
#> GSM40660     4  0.0000     0.9365 0.000 0.000 0.000 1.000
#> GSM40668     4  0.0000     0.9365 0.000 0.000 0.000 1.000
#> GSM40678     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> GSM40687     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> GSM40691     2  0.3610     0.7598 0.000 0.800 0.000 0.200
#> GSM40699     4  0.4989    -0.0275 0.000 0.472 0.000 0.528
#> GSM40664     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> GSM40682     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> GSM40688     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> GSM40702     2  0.3610     0.7598 0.000 0.800 0.000 0.200
#> GSM40706     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> GSM40711     4  0.0000     0.9365 0.000 0.000 0.000 1.000
#> GSM40661     4  0.0000     0.9365 0.000 0.000 0.000 1.000
#> GSM40662     2  0.5564     0.6826 0.000 0.708 0.076 0.216
#> GSM40666     3  0.3649     0.7353 0.000 0.000 0.796 0.204
#> GSM40669     3  0.3444     0.6693 0.184 0.000 0.816 0.000
#> GSM40670     3  0.0592     0.7973 0.016 0.000 0.984 0.000
#> GSM40671     1  0.0469     0.9246 0.988 0.000 0.012 0.000
#> GSM40672     1  0.0000     0.9275 1.000 0.000 0.000 0.000
#> GSM40673     1  0.0000     0.9275 1.000 0.000 0.000 0.000
#> GSM40674     3  0.0804     0.7989 0.008 0.000 0.980 0.012
#> GSM40676     3  0.4079     0.7779 0.180 0.000 0.800 0.020
#> GSM40680     1  0.3219     0.8581 0.836 0.000 0.164 0.000
#> GSM40681     1  0.1118     0.9169 0.964 0.000 0.036 0.000
#> GSM40683     1  0.0000     0.9275 1.000 0.000 0.000 0.000
#> GSM40684     3  0.4244     0.7838 0.160 0.000 0.804 0.036
#> GSM40685     1  0.3219     0.8581 0.836 0.000 0.164 0.000
#> GSM40689     1  0.0469     0.9246 0.988 0.000 0.012 0.000
#> GSM40690     1  0.0000     0.9275 1.000 0.000 0.000 0.000
#> GSM40692     1  0.3172     0.8611 0.840 0.000 0.160 0.000
#> GSM40693     1  0.3172     0.8611 0.840 0.000 0.160 0.000
#> GSM40694     1  0.3172     0.8611 0.840 0.000 0.160 0.000
#> GSM40695     1  0.0000     0.9275 1.000 0.000 0.000 0.000
#> GSM40696     1  0.3172     0.8611 0.840 0.000 0.160 0.000
#> GSM40697     2  0.3172     0.7707 0.000 0.840 0.160 0.000
#> GSM40704     1  0.0000     0.9275 1.000 0.000 0.000 0.000
#> GSM40705     4  0.0000     0.9365 0.000 0.000 0.000 1.000
#> GSM40707     1  0.0469     0.9246 0.988 0.000 0.012 0.000
#> GSM40708     1  0.0469     0.9246 0.988 0.000 0.012 0.000
#> GSM40709     3  0.3726     0.7287 0.000 0.000 0.788 0.212
#> GSM40712     1  0.3649     0.8211 0.796 0.000 0.204 0.000
#> GSM40713     1  0.0188     0.9267 0.996 0.000 0.004 0.000
#> GSM40665     1  0.0469     0.9246 0.988 0.000 0.012 0.000
#> GSM40677     2  0.0000     0.9272 0.000 1.000 0.000 0.000
#> GSM40698     1  0.0469     0.9246 0.988 0.000 0.012 0.000
#> GSM40701     4  0.0000     0.9365 0.000 0.000 0.000 1.000
#> GSM40710     2  0.0000     0.9272 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM40667     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM40675     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM40703     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM40660     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM40668     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM40678     2  0.0963     0.8541 0.000 0.964 0.000 0.000 0.036
#> GSM40679     2  0.0404     0.8548 0.000 0.988 0.000 0.000 0.012
#> GSM40686     2  0.1341     0.8452 0.000 0.944 0.000 0.000 0.056
#> GSM40687     2  0.0963     0.8541 0.000 0.964 0.000 0.000 0.036
#> GSM40691     2  0.3875     0.7255 0.000 0.792 0.160 0.000 0.048
#> GSM40699     2  0.5096     0.2547 0.000 0.520 0.444 0.000 0.036
#> GSM40664     2  0.1043     0.8504 0.000 0.960 0.000 0.000 0.040
#> GSM40682     2  0.0000     0.8556 0.000 1.000 0.000 0.000 0.000
#> GSM40688     2  0.1410     0.8433 0.000 0.940 0.000 0.000 0.060
#> GSM40702     2  0.3734     0.7236 0.000 0.796 0.168 0.000 0.036
#> GSM40706     2  0.0963     0.8541 0.000 0.964 0.000 0.000 0.036
#> GSM40711     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM40661     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM40662     5  0.7071    -0.0228 0.000 0.328 0.188 0.028 0.456
#> GSM40666     4  0.3119     0.8160 0.000 0.000 0.072 0.860 0.068
#> GSM40669     5  0.4264     0.5223 0.044 0.000 0.000 0.212 0.744
#> GSM40670     5  0.3980     0.4907 0.008 0.000 0.000 0.284 0.708
#> GSM40671     1  0.0703     0.8992 0.976 0.000 0.000 0.024 0.000
#> GSM40672     1  0.0324     0.9031 0.992 0.000 0.000 0.004 0.004
#> GSM40673     1  0.0000     0.9042 1.000 0.000 0.000 0.000 0.000
#> GSM40674     5  0.4183     0.4375 0.008 0.000 0.000 0.324 0.668
#> GSM40676     4  0.1270     0.8413 0.052 0.000 0.000 0.948 0.000
#> GSM40680     1  0.4452     0.7078 0.696 0.000 0.000 0.032 0.272
#> GSM40681     1  0.2193     0.8765 0.912 0.000 0.000 0.028 0.060
#> GSM40683     1  0.0000     0.9042 1.000 0.000 0.000 0.000 0.000
#> GSM40684     4  0.1270     0.8413 0.052 0.000 0.000 0.948 0.000
#> GSM40685     1  0.3724     0.8030 0.788 0.000 0.000 0.028 0.184
#> GSM40689     1  0.1341     0.8885 0.944 0.000 0.000 0.056 0.000
#> GSM40690     1  0.0000     0.9042 1.000 0.000 0.000 0.000 0.000
#> GSM40692     1  0.4326     0.7222 0.708 0.000 0.000 0.028 0.264
#> GSM40693     1  0.3146     0.8403 0.844 0.000 0.000 0.028 0.128
#> GSM40694     1  0.3193     0.8377 0.840 0.000 0.000 0.028 0.132
#> GSM40695     1  0.0000     0.9042 1.000 0.000 0.000 0.000 0.000
#> GSM40696     1  0.3193     0.8384 0.840 0.000 0.000 0.028 0.132
#> GSM40697     2  0.4835     0.3972 0.000 0.592 0.000 0.028 0.380
#> GSM40704     1  0.0000     0.9042 1.000 0.000 0.000 0.000 0.000
#> GSM40705     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM40707     1  0.1671     0.8795 0.924 0.000 0.000 0.076 0.000
#> GSM40708     1  0.1732     0.8771 0.920 0.000 0.000 0.080 0.000
#> GSM40709     4  0.3130     0.8139 0.000 0.000 0.096 0.856 0.048
#> GSM40712     5  0.4167     0.3867 0.252 0.000 0.000 0.024 0.724
#> GSM40713     1  0.0162     0.9037 0.996 0.000 0.000 0.004 0.000
#> GSM40665     1  0.1671     0.8795 0.924 0.000 0.000 0.076 0.000
#> GSM40677     2  0.1341     0.8452 0.000 0.944 0.000 0.000 0.056
#> GSM40698     1  0.1671     0.8795 0.924 0.000 0.000 0.076 0.000
#> GSM40701     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000
#> GSM40710     2  0.0963     0.8541 0.000 0.964 0.000 0.000 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40667     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40675     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40703     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40660     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40668     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40678     2  0.0692     0.8093 0.000 0.976 0.000 0.000 0.020 0.004
#> GSM40679     2  0.2213     0.8087 0.000 0.888 0.000 0.004 0.100 0.008
#> GSM40686     2  0.3533     0.7629 0.000 0.776 0.000 0.008 0.196 0.020
#> GSM40687     2  0.0692     0.8093 0.000 0.976 0.000 0.000 0.020 0.004
#> GSM40691     2  0.4374     0.6593 0.000 0.756 0.112 0.008 0.116 0.008
#> GSM40699     2  0.4176     0.3344 0.000 0.580 0.404 0.000 0.016 0.000
#> GSM40664     2  0.3183     0.7845 0.000 0.812 0.000 0.008 0.164 0.016
#> GSM40682     2  0.1787     0.8128 0.000 0.920 0.000 0.004 0.068 0.008
#> GSM40688     2  0.4029     0.7098 0.000 0.712 0.000 0.012 0.256 0.020
#> GSM40702     2  0.2680     0.7294 0.000 0.856 0.124 0.000 0.016 0.004
#> GSM40706     2  0.1268     0.8092 0.000 0.952 0.008 0.000 0.036 0.004
#> GSM40711     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40661     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40662     5  0.7319     0.0913 0.000 0.208 0.124 0.020 0.484 0.164
#> GSM40666     4  0.3447     0.8369 0.000 0.000 0.064 0.820 0.008 0.108
#> GSM40669     6  0.2123     0.8773 0.012 0.000 0.000 0.052 0.024 0.912
#> GSM40670     6  0.1411     0.8780 0.000 0.000 0.000 0.060 0.004 0.936
#> GSM40671     1  0.0508     0.8527 0.984 0.000 0.000 0.012 0.000 0.004
#> GSM40672     1  0.1003     0.8432 0.964 0.000 0.000 0.004 0.028 0.004
#> GSM40673     1  0.0000     0.8553 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40674     6  0.1444     0.8708 0.000 0.000 0.000 0.072 0.000 0.928
#> GSM40676     4  0.0858     0.8711 0.028 0.000 0.000 0.968 0.000 0.004
#> GSM40680     5  0.4283     0.2947 0.344 0.004 0.000 0.004 0.632 0.016
#> GSM40681     1  0.2994     0.7325 0.820 0.000 0.000 0.008 0.164 0.008
#> GSM40683     1  0.0000     0.8553 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40684     4  0.0858     0.8711 0.028 0.000 0.000 0.968 0.000 0.004
#> GSM40685     1  0.4630     0.2988 0.580 0.000 0.000 0.000 0.372 0.048
#> GSM40689     1  0.0858     0.8471 0.968 0.000 0.000 0.028 0.000 0.004
#> GSM40690     1  0.0458     0.8523 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM40692     5  0.4303     0.1802 0.392 0.000 0.000 0.008 0.588 0.012
#> GSM40693     1  0.3780     0.6219 0.728 0.000 0.000 0.004 0.248 0.020
#> GSM40694     1  0.3858     0.6160 0.724 0.000 0.000 0.004 0.248 0.024
#> GSM40695     1  0.0000     0.8553 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40696     1  0.3803     0.6158 0.724 0.000 0.000 0.004 0.252 0.020
#> GSM40697     5  0.4542     0.2247 0.000 0.176 0.000 0.008 0.716 0.100
#> GSM40704     1  0.0146     0.8549 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM40705     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40707     1  0.1806     0.8154 0.908 0.000 0.000 0.088 0.000 0.004
#> GSM40708     1  0.1908     0.8103 0.900 0.000 0.000 0.096 0.000 0.004
#> GSM40709     4  0.3290     0.8533 0.000 0.000 0.060 0.840 0.016 0.084
#> GSM40712     6  0.3554     0.7142 0.108 0.000 0.000 0.004 0.080 0.808
#> GSM40713     1  0.0291     0.8545 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM40665     1  0.1753     0.8191 0.912 0.000 0.000 0.084 0.000 0.004
#> GSM40677     2  0.3661     0.7590 0.000 0.768 0.000 0.012 0.200 0.020
#> GSM40698     1  0.1949     0.8159 0.904 0.000 0.000 0.088 0.004 0.004
#> GSM40701     3  0.0000     1.0000 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40710     2  0.0405     0.8116 0.000 0.988 0.000 0.000 0.008 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) k
#> ATC:skmeans 53         5.12e-06 2
#> ATC:skmeans 52         1.26e-05 3
#> ATC:skmeans 52         3.98e-06 4
#> ATC:skmeans 47         4.70e-05 5
#> ATC:skmeans 47         3.99e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.992       0.996         0.5087 0.492   0.492
#> 3 3 0.898           0.943       0.975         0.1569 0.927   0.853
#> 4 4 0.775           0.767       0.899         0.1845 0.834   0.626
#> 5 5 0.744           0.797       0.845         0.1093 0.817   0.484
#> 6 6 0.798           0.766       0.875         0.0639 0.893   0.584

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000      0.999 0.000 1.000
#> GSM40667     2  0.0000      0.999 0.000 1.000
#> GSM40675     2  0.0000      0.999 0.000 1.000
#> GSM40703     2  0.0000      0.999 0.000 1.000
#> GSM40660     2  0.0000      0.999 0.000 1.000
#> GSM40668     2  0.0000      0.999 0.000 1.000
#> GSM40678     2  0.0000      0.999 0.000 1.000
#> GSM40679     2  0.0000      0.999 0.000 1.000
#> GSM40686     2  0.0672      0.992 0.008 0.992
#> GSM40687     2  0.0000      0.999 0.000 1.000
#> GSM40691     2  0.0000      0.999 0.000 1.000
#> GSM40699     2  0.0000      0.999 0.000 1.000
#> GSM40664     2  0.0000      0.999 0.000 1.000
#> GSM40682     2  0.0000      0.999 0.000 1.000
#> GSM40688     2  0.0376      0.996 0.004 0.996
#> GSM40702     2  0.0000      0.999 0.000 1.000
#> GSM40706     2  0.0000      0.999 0.000 1.000
#> GSM40711     2  0.0000      0.999 0.000 1.000
#> GSM40661     2  0.0000      0.999 0.000 1.000
#> GSM40662     2  0.0000      0.999 0.000 1.000
#> GSM40666     1  0.2423      0.958 0.960 0.040
#> GSM40669     1  0.0000      0.993 1.000 0.000
#> GSM40670     1  0.0672      0.987 0.992 0.008
#> GSM40671     1  0.0000      0.993 1.000 0.000
#> GSM40672     1  0.0000      0.993 1.000 0.000
#> GSM40673     1  0.0000      0.993 1.000 0.000
#> GSM40674     1  0.0672      0.987 0.992 0.008
#> GSM40676     1  0.0000      0.993 1.000 0.000
#> GSM40680     1  0.0000      0.993 1.000 0.000
#> GSM40681     1  0.0000      0.993 1.000 0.000
#> GSM40683     1  0.0000      0.993 1.000 0.000
#> GSM40684     1  0.0000      0.993 1.000 0.000
#> GSM40685     1  0.0000      0.993 1.000 0.000
#> GSM40689     1  0.0000      0.993 1.000 0.000
#> GSM40690     1  0.0000      0.993 1.000 0.000
#> GSM40692     1  0.0000      0.993 1.000 0.000
#> GSM40693     1  0.0000      0.993 1.000 0.000
#> GSM40694     1  0.0000      0.993 1.000 0.000
#> GSM40695     1  0.0000      0.993 1.000 0.000
#> GSM40696     1  0.0000      0.993 1.000 0.000
#> GSM40697     2  0.0672      0.992 0.008 0.992
#> GSM40704     1  0.0000      0.993 1.000 0.000
#> GSM40705     2  0.0000      0.999 0.000 1.000
#> GSM40707     1  0.0000      0.993 1.000 0.000
#> GSM40708     1  0.0000      0.993 1.000 0.000
#> GSM40709     1  0.5408      0.863 0.876 0.124
#> GSM40712     1  0.0000      0.993 1.000 0.000
#> GSM40713     1  0.0000      0.993 1.000 0.000
#> GSM40665     1  0.0000      0.993 1.000 0.000
#> GSM40677     2  0.0000      0.999 0.000 1.000
#> GSM40698     1  0.0000      0.993 1.000 0.000
#> GSM40701     2  0.0000      0.999 0.000 1.000
#> GSM40710     2  0.0000      0.999 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3   0.000      1.000 0.000 0.000 1.000
#> GSM40667     3   0.000      1.000 0.000 0.000 1.000
#> GSM40675     3   0.000      1.000 0.000 0.000 1.000
#> GSM40703     3   0.000      1.000 0.000 0.000 1.000
#> GSM40660     2   0.000      0.981 0.000 1.000 0.000
#> GSM40668     3   0.000      1.000 0.000 0.000 1.000
#> GSM40678     2   0.000      0.981 0.000 1.000 0.000
#> GSM40679     2   0.000      0.981 0.000 1.000 0.000
#> GSM40686     2   0.000      0.981 0.000 1.000 0.000
#> GSM40687     2   0.000      0.981 0.000 1.000 0.000
#> GSM40691     2   0.000      0.981 0.000 1.000 0.000
#> GSM40699     2   0.000      0.981 0.000 1.000 0.000
#> GSM40664     2   0.000      0.981 0.000 1.000 0.000
#> GSM40682     2   0.000      0.981 0.000 1.000 0.000
#> GSM40688     2   0.000      0.981 0.000 1.000 0.000
#> GSM40702     2   0.000      0.981 0.000 1.000 0.000
#> GSM40706     2   0.000      0.981 0.000 1.000 0.000
#> GSM40711     2   0.263      0.899 0.000 0.916 0.084
#> GSM40661     2   0.000      0.981 0.000 1.000 0.000
#> GSM40662     2   0.000      0.981 0.000 1.000 0.000
#> GSM40666     1   0.304      0.869 0.896 0.104 0.000
#> GSM40669     1   0.000      0.956 1.000 0.000 0.000
#> GSM40670     1   0.263      0.887 0.916 0.084 0.000
#> GSM40671     1   0.000      0.956 1.000 0.000 0.000
#> GSM40672     1   0.000      0.956 1.000 0.000 0.000
#> GSM40673     1   0.000      0.956 1.000 0.000 0.000
#> GSM40674     1   0.341      0.850 0.876 0.124 0.000
#> GSM40676     1   0.000      0.956 1.000 0.000 0.000
#> GSM40680     1   0.480      0.721 0.780 0.220 0.000
#> GSM40681     1   0.000      0.956 1.000 0.000 0.000
#> GSM40683     1   0.000      0.956 1.000 0.000 0.000
#> GSM40684     1   0.000      0.956 1.000 0.000 0.000
#> GSM40685     1   0.000      0.956 1.000 0.000 0.000
#> GSM40689     1   0.000      0.956 1.000 0.000 0.000
#> GSM40690     1   0.000      0.956 1.000 0.000 0.000
#> GSM40692     1   0.514      0.678 0.748 0.252 0.000
#> GSM40693     1   0.000      0.956 1.000 0.000 0.000
#> GSM40694     1   0.000      0.956 1.000 0.000 0.000
#> GSM40695     1   0.000      0.956 1.000 0.000 0.000
#> GSM40696     1   0.000      0.956 1.000 0.000 0.000
#> GSM40697     2   0.000      0.981 0.000 1.000 0.000
#> GSM40704     1   0.000      0.956 1.000 0.000 0.000
#> GSM40705     2   0.518      0.657 0.000 0.744 0.256
#> GSM40707     1   0.000      0.956 1.000 0.000 0.000
#> GSM40708     1   0.000      0.956 1.000 0.000 0.000
#> GSM40709     1   0.475      0.737 0.784 0.216 0.000
#> GSM40712     1   0.000      0.956 1.000 0.000 0.000
#> GSM40713     1   0.000      0.956 1.000 0.000 0.000
#> GSM40665     1   0.000      0.956 1.000 0.000 0.000
#> GSM40677     2   0.000      0.981 0.000 1.000 0.000
#> GSM40698     1   0.000      0.956 1.000 0.000 0.000
#> GSM40701     2   0.000      0.981 0.000 1.000 0.000
#> GSM40710     2   0.000      0.981 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3 p4
#> GSM40663     4  0.0000     1.0000 0.000 0.000 0.000  1
#> GSM40667     4  0.0000     1.0000 0.000 0.000 0.000  1
#> GSM40675     4  0.0000     1.0000 0.000 0.000 0.000  1
#> GSM40703     4  0.0000     1.0000 0.000 0.000 0.000  1
#> GSM40660     3  0.4072     0.6721 0.000 0.252 0.748  0
#> GSM40668     4  0.0000     1.0000 0.000 0.000 0.000  1
#> GSM40678     2  0.0000     0.8794 0.000 1.000 0.000  0
#> GSM40679     2  0.0000     0.8794 0.000 1.000 0.000  0
#> GSM40686     2  0.0000     0.8794 0.000 1.000 0.000  0
#> GSM40687     2  0.0000     0.8794 0.000 1.000 0.000  0
#> GSM40691     2  0.2469     0.7689 0.000 0.892 0.108  0
#> GSM40699     2  0.4790     0.2228 0.000 0.620 0.380  0
#> GSM40664     2  0.0000     0.8794 0.000 1.000 0.000  0
#> GSM40682     2  0.0000     0.8794 0.000 1.000 0.000  0
#> GSM40688     2  0.0000     0.8794 0.000 1.000 0.000  0
#> GSM40702     2  0.0000     0.8794 0.000 1.000 0.000  0
#> GSM40706     2  0.0000     0.8794 0.000 1.000 0.000  0
#> GSM40711     3  0.3873     0.6846 0.000 0.228 0.772  0
#> GSM40661     3  0.4103     0.6686 0.000 0.256 0.744  0
#> GSM40662     2  0.3975     0.6344 0.000 0.760 0.240  0
#> GSM40666     3  0.0000     0.5808 0.000 0.000 1.000  0
#> GSM40669     1  0.4103     0.6778 0.744 0.000 0.256  0
#> GSM40670     1  0.6851     0.1880 0.496 0.104 0.400  0
#> GSM40671     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40672     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40673     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40674     3  0.7788    -0.0168 0.376 0.244 0.380  0
#> GSM40676     1  0.3172     0.7932 0.840 0.000 0.160  0
#> GSM40680     1  0.6247     0.1266 0.516 0.428 0.056  0
#> GSM40681     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40683     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40684     3  0.4843     0.0712 0.396 0.000 0.604  0
#> GSM40685     1  0.2053     0.8610 0.924 0.004 0.072  0
#> GSM40689     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40690     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40692     2  0.5697     0.4232 0.292 0.656 0.052  0
#> GSM40693     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40694     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40695     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40696     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40697     2  0.4040     0.6239 0.000 0.752 0.248  0
#> GSM40704     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40705     3  0.3873     0.6846 0.000 0.228 0.772  0
#> GSM40707     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40708     1  0.0188     0.9067 0.996 0.000 0.004  0
#> GSM40709     3  0.0000     0.5808 0.000 0.000 1.000  0
#> GSM40712     1  0.4103     0.6778 0.744 0.000 0.256  0
#> GSM40713     1  0.0188     0.9067 0.996 0.000 0.004  0
#> GSM40665     1  0.0000     0.9085 1.000 0.000 0.000  0
#> GSM40677     2  0.0000     0.8794 0.000 1.000 0.000  0
#> GSM40698     1  0.2256     0.8629 0.924 0.020 0.056  0
#> GSM40701     3  0.4103     0.6686 0.000 0.256 0.744  0
#> GSM40710     2  0.0000     0.8794 0.000 1.000 0.000  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2 p3    p4    p5
#> GSM40663     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM40667     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM40675     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM40703     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM40660     4  0.2377      0.888 0.000 0.128  0 0.872 0.000
#> GSM40668     3  0.0000      1.000 0.000 0.000  1 0.000 0.000
#> GSM40678     2  0.1997      0.840 0.000 0.924  0 0.040 0.036
#> GSM40679     2  0.1043      0.851 0.000 0.960  0 0.040 0.000
#> GSM40686     2  0.0000      0.849 0.000 1.000  0 0.000 0.000
#> GSM40687     2  0.1997      0.840 0.000 0.924  0 0.040 0.036
#> GSM40691     2  0.3847      0.662 0.000 0.784  0 0.180 0.036
#> GSM40699     4  0.4946      0.477 0.000 0.368  0 0.596 0.036
#> GSM40664     2  0.0000      0.849 0.000 1.000  0 0.000 0.000
#> GSM40682     2  0.1043      0.851 0.000 0.960  0 0.040 0.000
#> GSM40688     2  0.0000      0.849 0.000 1.000  0 0.000 0.000
#> GSM40702     2  0.1043      0.851 0.000 0.960  0 0.040 0.000
#> GSM40706     2  0.1043      0.851 0.000 0.960  0 0.040 0.000
#> GSM40711     4  0.2597      0.855 0.000 0.092  0 0.884 0.024
#> GSM40661     4  0.2377      0.888 0.000 0.128  0 0.872 0.000
#> GSM40662     5  0.3326      0.687 0.000 0.152  0 0.024 0.824
#> GSM40666     5  0.3949      0.540 0.000 0.000  0 0.332 0.668
#> GSM40669     5  0.2230      0.746 0.116 0.000  0 0.000 0.884
#> GSM40670     5  0.2838      0.747 0.036 0.072  0 0.008 0.884
#> GSM40671     1  0.0963      0.895 0.964 0.000  0 0.000 0.036
#> GSM40672     1  0.3590      0.851 0.828 0.000  0 0.092 0.080
#> GSM40673     1  0.3590      0.851 0.828 0.000  0 0.092 0.080
#> GSM40674     5  0.2775      0.747 0.036 0.076  0 0.004 0.884
#> GSM40676     5  0.6338      0.368 0.392 0.000  0 0.160 0.448
#> GSM40680     2  0.4394      0.596 0.220 0.732  0 0.000 0.048
#> GSM40681     1  0.1997      0.873 0.924 0.040  0 0.000 0.036
#> GSM40683     1  0.3590      0.851 0.828 0.000  0 0.092 0.080
#> GSM40684     5  0.6260      0.501 0.172 0.000  0 0.312 0.516
#> GSM40685     5  0.5027      0.589 0.304 0.056  0 0.000 0.640
#> GSM40689     1  0.0510      0.903 0.984 0.000  0 0.016 0.000
#> GSM40690     1  0.0510      0.903 0.984 0.000  0 0.016 0.000
#> GSM40692     2  0.3772      0.664 0.172 0.792  0 0.000 0.036
#> GSM40693     1  0.0510      0.903 0.984 0.000  0 0.016 0.000
#> GSM40694     1  0.0963      0.895 0.964 0.000  0 0.000 0.036
#> GSM40695     1  0.3590      0.851 0.828 0.000  0 0.092 0.080
#> GSM40696     1  0.1386      0.894 0.952 0.032  0 0.016 0.000
#> GSM40697     5  0.3424      0.649 0.000 0.240  0 0.000 0.760
#> GSM40704     1  0.3590      0.851 0.828 0.000  0 0.092 0.080
#> GSM40705     4  0.2685      0.851 0.000 0.092  0 0.880 0.028
#> GSM40707     1  0.2782      0.888 0.880 0.000  0 0.048 0.072
#> GSM40708     1  0.2472      0.862 0.908 0.012  0 0.036 0.044
#> GSM40709     5  0.3003      0.671 0.000 0.000  0 0.188 0.812
#> GSM40712     5  0.2915      0.745 0.116 0.024  0 0.000 0.860
#> GSM40713     1  0.1469      0.889 0.948 0.016  0 0.000 0.036
#> GSM40665     1  0.0963      0.895 0.964 0.000  0 0.000 0.036
#> GSM40677     2  0.0000      0.849 0.000 1.000  0 0.000 0.000
#> GSM40698     2  0.5907      0.111 0.440 0.488  0 0.036 0.036
#> GSM40701     4  0.2377      0.888 0.000 0.128  0 0.872 0.000
#> GSM40710     2  0.1997      0.840 0.000 0.924  0 0.040 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM40663     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM40667     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM40675     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM40703     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM40660     4  0.0790      0.931 0.000 0.032  0 0.968 0.000 0.000
#> GSM40668     3  0.0000      1.000 0.000 0.000  1 0.000 0.000 0.000
#> GSM40678     2  0.3158      0.819 0.164 0.812  0 0.020 0.004 0.000
#> GSM40679     2  0.0000      0.903 0.000 1.000  0 0.000 0.000 0.000
#> GSM40686     2  0.0000      0.903 0.000 1.000  0 0.000 0.000 0.000
#> GSM40687     2  0.3158      0.819 0.164 0.812  0 0.020 0.004 0.000
#> GSM40691     2  0.5113      0.610 0.164 0.644  0 0.188 0.004 0.000
#> GSM40699     4  0.3891      0.757 0.164 0.064  0 0.768 0.004 0.000
#> GSM40664     2  0.0000      0.903 0.000 1.000  0 0.000 0.000 0.000
#> GSM40682     2  0.0000      0.903 0.000 1.000  0 0.000 0.000 0.000
#> GSM40688     2  0.0000      0.903 0.000 1.000  0 0.000 0.000 0.000
#> GSM40702     2  0.0363      0.898 0.000 0.988  0 0.012 0.000 0.000
#> GSM40706     2  0.0000      0.903 0.000 1.000  0 0.000 0.000 0.000
#> GSM40711     4  0.0603      0.909 0.016 0.000  0 0.980 0.004 0.000
#> GSM40661     4  0.0790      0.931 0.000 0.032  0 0.968 0.000 0.000
#> GSM40662     5  0.1387      0.834 0.000 0.068  0 0.000 0.932 0.000
#> GSM40666     5  0.3320      0.705 0.016 0.000  0 0.212 0.772 0.000
#> GSM40669     5  0.0363      0.860 0.000 0.000  0 0.000 0.988 0.012
#> GSM40670     5  0.0260      0.860 0.000 0.000  0 0.000 0.992 0.008
#> GSM40671     6  0.0260      0.701 0.008 0.000  0 0.000 0.000 0.992
#> GSM40672     1  0.2697      1.000 0.812 0.000  0 0.000 0.000 0.188
#> GSM40673     1  0.2697      1.000 0.812 0.000  0 0.000 0.000 0.188
#> GSM40674     5  0.0146      0.860 0.000 0.000  0 0.000 0.996 0.004
#> GSM40676     6  0.4667      0.530 0.024 0.000  0 0.108 0.140 0.728
#> GSM40680     6  0.3789      0.249 0.000 0.416  0 0.000 0.000 0.584
#> GSM40681     6  0.0000      0.704 0.000 0.000  0 0.000 0.000 1.000
#> GSM40683     1  0.2697      1.000 0.812 0.000  0 0.000 0.000 0.188
#> GSM40684     5  0.5691      0.528 0.024 0.000  0 0.232 0.596 0.148
#> GSM40685     6  0.3175      0.521 0.000 0.000  0 0.000 0.256 0.744
#> GSM40689     6  0.3765      0.171 0.404 0.000  0 0.000 0.000 0.596
#> GSM40690     6  0.3774      0.159 0.408 0.000  0 0.000 0.000 0.592
#> GSM40692     2  0.3217      0.633 0.000 0.768  0 0.000 0.008 0.224
#> GSM40693     6  0.3756      0.178 0.400 0.000  0 0.000 0.000 0.600
#> GSM40694     6  0.0000      0.704 0.000 0.000  0 0.000 0.000 1.000
#> GSM40695     1  0.2697      1.000 0.812 0.000  0 0.000 0.000 0.188
#> GSM40696     6  0.3706      0.228 0.380 0.000  0 0.000 0.000 0.620
#> GSM40697     5  0.2854      0.696 0.000 0.208  0 0.000 0.792 0.000
#> GSM40704     1  0.2697      1.000 0.812 0.000  0 0.000 0.000 0.188
#> GSM40705     4  0.0603      0.909 0.016 0.000  0 0.980 0.004 0.000
#> GSM40707     6  0.3288      0.357 0.276 0.000  0 0.000 0.000 0.724
#> GSM40708     6  0.0632      0.698 0.024 0.000  0 0.000 0.000 0.976
#> GSM40709     5  0.1408      0.846 0.020 0.000  0 0.036 0.944 0.000
#> GSM40712     5  0.1387      0.831 0.000 0.000  0 0.000 0.932 0.068
#> GSM40713     6  0.0000      0.704 0.000 0.000  0 0.000 0.000 1.000
#> GSM40665     6  0.0000      0.704 0.000 0.000  0 0.000 0.000 1.000
#> GSM40677     2  0.0000      0.903 0.000 1.000  0 0.000 0.000 0.000
#> GSM40698     6  0.1492      0.684 0.024 0.036  0 0.000 0.000 0.940
#> GSM40701     4  0.0790      0.931 0.000 0.032  0 0.968 0.000 0.000
#> GSM40710     2  0.2632      0.830 0.164 0.832  0 0.000 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> ATC:pam 53         1.45e-06 2
#> ATC:pam 53         7.07e-12 3
#> ATC:pam 47         3.07e-08 4
#> ATC:pam 50         3.11e-08 5
#> ATC:pam 47         7.83e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.330           0.584       0.731         0.3374 0.826   0.826
#> 3 3 0.311           0.845       0.859         0.4492 0.705   0.642
#> 4 4 0.553           0.736       0.842         0.3879 0.737   0.512
#> 5 5 0.850           0.723       0.887         0.1750 0.847   0.512
#> 6 6 0.875           0.850       0.929         0.0311 0.948   0.751

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.6438      1.000 0.164 0.836
#> GSM40667     2  0.6438      1.000 0.164 0.836
#> GSM40675     2  0.6438      1.000 0.164 0.836
#> GSM40703     2  0.6438      1.000 0.164 0.836
#> GSM40660     1  0.9954      0.206 0.540 0.460
#> GSM40668     2  0.6438      1.000 0.164 0.836
#> GSM40678     1  0.5519      0.676 0.872 0.128
#> GSM40679     1  0.5519      0.676 0.872 0.128
#> GSM40686     1  0.5519      0.676 0.872 0.128
#> GSM40687     1  0.5519      0.676 0.872 0.128
#> GSM40691     1  0.9922      0.226 0.552 0.448
#> GSM40699     1  0.9963      0.212 0.536 0.464
#> GSM40664     1  0.2948      0.717 0.948 0.052
#> GSM40682     1  0.2778      0.718 0.952 0.048
#> GSM40688     1  0.2948      0.717 0.948 0.052
#> GSM40702     1  0.4298      0.710 0.912 0.088
#> GSM40706     1  0.5519      0.676 0.872 0.128
#> GSM40711     1  0.9944      0.212 0.544 0.456
#> GSM40661     1  0.9954      0.206 0.540 0.460
#> GSM40662     1  0.9909      0.230 0.556 0.444
#> GSM40666     1  0.9922      0.222 0.552 0.448
#> GSM40669     1  0.9922      0.222 0.552 0.448
#> GSM40670     1  0.9922      0.222 0.552 0.448
#> GSM40671     1  0.3274      0.708 0.940 0.060
#> GSM40672     1  0.2236      0.718 0.964 0.036
#> GSM40673     1  0.3274      0.708 0.940 0.060
#> GSM40674     1  0.9922      0.222 0.552 0.448
#> GSM40676     1  0.1633      0.721 0.976 0.024
#> GSM40680     1  0.0938      0.724 0.988 0.012
#> GSM40681     1  0.3274      0.708 0.940 0.060
#> GSM40683     1  0.3274      0.708 0.940 0.060
#> GSM40684     1  0.9922      0.222 0.552 0.448
#> GSM40685     1  0.0672      0.725 0.992 0.008
#> GSM40689     1  0.3274      0.708 0.940 0.060
#> GSM40690     1  0.3274      0.708 0.940 0.060
#> GSM40692     1  0.0938      0.724 0.988 0.012
#> GSM40693     1  0.0672      0.725 0.992 0.008
#> GSM40694     1  0.7674      0.548 0.776 0.224
#> GSM40695     1  0.3274      0.708 0.940 0.060
#> GSM40696     1  0.0000      0.725 1.000 0.000
#> GSM40697     1  0.9909      0.230 0.556 0.444
#> GSM40704     1  0.3274      0.708 0.940 0.060
#> GSM40705     1  0.9944      0.212 0.544 0.456
#> GSM40707     1  0.0000      0.725 1.000 0.000
#> GSM40708     1  0.0000      0.725 1.000 0.000
#> GSM40709     1  0.9922      0.222 0.552 0.448
#> GSM40712     1  0.9922      0.222 0.552 0.448
#> GSM40713     1  0.4022      0.707 0.920 0.080
#> GSM40665     1  0.0000      0.725 1.000 0.000
#> GSM40677     1  0.5519      0.676 0.872 0.128
#> GSM40698     1  0.0000      0.725 1.000 0.000
#> GSM40701     1  0.9954      0.206 0.540 0.460
#> GSM40710     1  0.5519      0.676 0.872 0.128

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.3116     0.9884 0.108 0.000 0.892
#> GSM40667     3  0.3116     0.9884 0.108 0.000 0.892
#> GSM40675     3  0.3116     0.9884 0.108 0.000 0.892
#> GSM40703     3  0.3116     0.9884 0.108 0.000 0.892
#> GSM40660     1  0.1751     0.8384 0.960 0.028 0.012
#> GSM40668     3  0.3619     0.9522 0.136 0.000 0.864
#> GSM40678     2  0.3752     0.9318 0.144 0.856 0.000
#> GSM40679     2  0.3752     0.9318 0.144 0.856 0.000
#> GSM40686     2  0.3752     0.9318 0.144 0.856 0.000
#> GSM40687     2  0.3752     0.9318 0.144 0.856 0.000
#> GSM40691     1  0.1289     0.8388 0.968 0.032 0.000
#> GSM40699     2  0.7437     0.8302 0.200 0.692 0.108
#> GSM40664     1  0.6302    -0.0584 0.520 0.480 0.000
#> GSM40682     2  0.4235     0.9147 0.176 0.824 0.000
#> GSM40688     2  0.4504     0.8977 0.196 0.804 0.000
#> GSM40702     2  0.7044     0.8293 0.168 0.724 0.108
#> GSM40706     2  0.5363     0.7808 0.276 0.724 0.000
#> GSM40711     1  0.1411     0.8363 0.964 0.000 0.036
#> GSM40661     1  0.4446     0.8193 0.856 0.032 0.112
#> GSM40662     1  0.1163     0.8412 0.972 0.028 0.000
#> GSM40666     1  0.1163     0.8401 0.972 0.000 0.028
#> GSM40669     1  0.0424     0.8480 0.992 0.000 0.008
#> GSM40670     1  0.0424     0.8480 0.992 0.000 0.008
#> GSM40671     1  0.5138     0.8177 0.748 0.252 0.000
#> GSM40672     1  0.5138     0.8177 0.748 0.252 0.000
#> GSM40673     1  0.5138     0.8177 0.748 0.252 0.000
#> GSM40674     1  0.0424     0.8480 0.992 0.000 0.008
#> GSM40676     1  0.3715     0.8300 0.868 0.004 0.128
#> GSM40680     1  0.3116     0.8493 0.892 0.108 0.000
#> GSM40681     1  0.5138     0.8177 0.748 0.252 0.000
#> GSM40683     1  0.5138     0.8177 0.748 0.252 0.000
#> GSM40684     1  0.3715     0.8300 0.868 0.004 0.128
#> GSM40685     1  0.3116     0.8493 0.892 0.108 0.000
#> GSM40689     1  0.5138     0.8177 0.748 0.252 0.000
#> GSM40690     1  0.5138     0.8177 0.748 0.252 0.000
#> GSM40692     1  0.3116     0.8493 0.892 0.108 0.000
#> GSM40693     1  0.3752     0.8531 0.856 0.144 0.000
#> GSM40694     1  0.2537     0.8631 0.920 0.080 0.000
#> GSM40695     1  0.5138     0.8177 0.748 0.252 0.000
#> GSM40696     1  0.3686     0.8530 0.860 0.140 0.000
#> GSM40697     1  0.0892     0.8452 0.980 0.020 0.000
#> GSM40704     1  0.5138     0.8177 0.748 0.252 0.000
#> GSM40705     1  0.1411     0.8363 0.964 0.000 0.036
#> GSM40707     1  0.4862     0.8542 0.820 0.160 0.020
#> GSM40708     1  0.3879     0.8526 0.848 0.152 0.000
#> GSM40709     1  0.1399     0.8393 0.968 0.004 0.028
#> GSM40712     1  0.0237     0.8493 0.996 0.000 0.004
#> GSM40713     1  0.4702     0.8181 0.788 0.212 0.000
#> GSM40665     1  0.3941     0.8523 0.844 0.156 0.000
#> GSM40677     2  0.3752     0.9318 0.144 0.856 0.000
#> GSM40698     1  0.3192     0.8480 0.888 0.112 0.000
#> GSM40701     1  0.4489     0.8181 0.856 0.036 0.108
#> GSM40710     2  0.3752     0.9318 0.144 0.856 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40667     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40675     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40703     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40660     3  0.6894      0.677 0.320 0.000 0.552 0.128
#> GSM40668     4  0.0000      1.000 0.000 0.000 0.000 1.000
#> GSM40678     2  0.0000      0.837 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000      0.837 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0000      0.837 0.000 1.000 0.000 0.000
#> GSM40687     2  0.0000      0.837 0.000 1.000 0.000 0.000
#> GSM40691     1  0.1211      0.801 0.960 0.040 0.000 0.000
#> GSM40699     2  0.5905      0.429 0.304 0.636 0.060 0.000
#> GSM40664     2  0.4814      0.492 0.008 0.676 0.316 0.000
#> GSM40682     2  0.0779      0.832 0.004 0.980 0.016 0.000
#> GSM40688     2  0.4964      0.568 0.256 0.716 0.028 0.000
#> GSM40702     2  0.0592      0.831 0.016 0.984 0.000 0.000
#> GSM40706     2  0.3726      0.670 0.000 0.788 0.212 0.000
#> GSM40711     3  0.6878      0.682 0.316 0.000 0.556 0.128
#> GSM40661     3  0.6878      0.682 0.316 0.000 0.556 0.128
#> GSM40662     1  0.2530      0.763 0.888 0.000 0.112 0.000
#> GSM40666     3  0.6835      0.685 0.316 0.000 0.560 0.124
#> GSM40669     1  0.0921      0.826 0.972 0.000 0.028 0.000
#> GSM40670     1  0.1022      0.825 0.968 0.000 0.032 0.000
#> GSM40671     3  0.3764      0.755 0.216 0.000 0.784 0.000
#> GSM40672     1  0.4999     -0.182 0.508 0.000 0.492 0.000
#> GSM40673     3  0.4040      0.741 0.248 0.000 0.752 0.000
#> GSM40674     1  0.1867      0.797 0.928 0.000 0.072 0.000
#> GSM40676     3  0.2149      0.675 0.088 0.000 0.912 0.000
#> GSM40680     1  0.4164      0.544 0.736 0.000 0.264 0.000
#> GSM40681     1  0.4761      0.352 0.628 0.000 0.372 0.000
#> GSM40683     3  0.4040      0.741 0.248 0.000 0.752 0.000
#> GSM40684     3  0.3172      0.697 0.160 0.000 0.840 0.000
#> GSM40685     1  0.1118      0.827 0.964 0.000 0.036 0.000
#> GSM40689     3  0.3569      0.755 0.196 0.000 0.804 0.000
#> GSM40690     3  0.4008      0.743 0.244 0.000 0.756 0.000
#> GSM40692     1  0.3311      0.721 0.828 0.000 0.172 0.000
#> GSM40693     1  0.1211      0.826 0.960 0.000 0.040 0.000
#> GSM40694     1  0.1302      0.824 0.956 0.000 0.044 0.000
#> GSM40695     3  0.3764      0.755 0.216 0.000 0.784 0.000
#> GSM40696     1  0.1211      0.826 0.960 0.000 0.040 0.000
#> GSM40697     1  0.0000      0.821 1.000 0.000 0.000 0.000
#> GSM40704     3  0.4356      0.698 0.292 0.000 0.708 0.000
#> GSM40705     3  0.6878      0.682 0.316 0.000 0.556 0.128
#> GSM40707     3  0.0188      0.672 0.004 0.000 0.996 0.000
#> GSM40708     3  0.0188      0.672 0.004 0.000 0.996 0.000
#> GSM40709     3  0.6501      0.698 0.316 0.000 0.588 0.096
#> GSM40712     1  0.0921      0.826 0.972 0.000 0.028 0.000
#> GSM40713     3  0.4072      0.741 0.252 0.000 0.748 0.000
#> GSM40665     3  0.0188      0.672 0.004 0.000 0.996 0.000
#> GSM40677     2  0.0000      0.837 0.000 1.000 0.000 0.000
#> GSM40698     3  0.1022      0.678 0.032 0.000 0.968 0.000
#> GSM40701     3  0.7288      0.673 0.320 0.016 0.548 0.116
#> GSM40710     2  0.0000      0.837 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0000     0.6520 0.000 0.000 1.000 0.000 0.000
#> GSM40667     3  0.0000     0.6520 0.000 0.000 1.000 0.000 0.000
#> GSM40675     3  0.0000     0.6520 0.000 0.000 1.000 0.000 0.000
#> GSM40703     3  0.0000     0.6520 0.000 0.000 1.000 0.000 0.000
#> GSM40660     3  0.5295     0.4136 0.000 0.000 0.540 0.408 0.052
#> GSM40668     3  0.0000     0.6520 0.000 0.000 1.000 0.000 0.000
#> GSM40678     2  0.0000     0.8785 0.000 1.000 0.000 0.000 0.000
#> GSM40679     2  0.0000     0.8785 0.000 1.000 0.000 0.000 0.000
#> GSM40686     2  0.0000     0.8785 0.000 1.000 0.000 0.000 0.000
#> GSM40687     2  0.0000     0.8785 0.000 1.000 0.000 0.000 0.000
#> GSM40691     5  0.0404     0.9116 0.000 0.012 0.000 0.000 0.988
#> GSM40699     2  0.2074     0.8305 0.000 0.920 0.000 0.044 0.036
#> GSM40664     2  0.4084     0.4458 0.000 0.668 0.000 0.328 0.004
#> GSM40682     2  0.0162     0.8766 0.004 0.996 0.000 0.000 0.000
#> GSM40688     2  0.4452     0.0495 0.004 0.500 0.000 0.000 0.496
#> GSM40702     2  0.0290     0.8749 0.000 0.992 0.000 0.000 0.008
#> GSM40706     2  0.3305     0.6490 0.000 0.776 0.000 0.224 0.000
#> GSM40711     3  0.4942     0.3931 0.000 0.000 0.540 0.432 0.028
#> GSM40661     4  0.6869    -0.1020 0.000 0.152 0.340 0.480 0.028
#> GSM40662     5  0.0162     0.9180 0.004 0.000 0.000 0.000 0.996
#> GSM40666     3  0.5809     0.4052 0.004 0.000 0.528 0.384 0.084
#> GSM40669     5  0.0000     0.9191 0.000 0.000 0.000 0.000 1.000
#> GSM40670     5  0.0000     0.9191 0.000 0.000 0.000 0.000 1.000
#> GSM40671     1  0.0162     0.9361 0.996 0.000 0.000 0.004 0.000
#> GSM40672     1  0.0963     0.9266 0.964 0.000 0.000 0.000 0.036
#> GSM40673     1  0.0000     0.9364 1.000 0.000 0.000 0.000 0.000
#> GSM40674     5  0.0000     0.9191 0.000 0.000 0.000 0.000 1.000
#> GSM40676     4  0.0000     0.7928 0.000 0.000 0.000 1.000 0.000
#> GSM40680     5  0.6056     0.3162 0.356 0.032 0.000 0.060 0.552
#> GSM40681     1  0.3983     0.4403 0.660 0.000 0.000 0.000 0.340
#> GSM40683     1  0.0000     0.9364 1.000 0.000 0.000 0.000 0.000
#> GSM40684     4  0.0162     0.7913 0.000 0.000 0.000 0.996 0.004
#> GSM40685     5  0.2891     0.7625 0.176 0.000 0.000 0.000 0.824
#> GSM40689     1  0.0566     0.9330 0.984 0.000 0.000 0.012 0.004
#> GSM40690     1  0.0880     0.9291 0.968 0.000 0.000 0.000 0.032
#> GSM40692     5  0.4815     0.6607 0.208 0.056 0.000 0.012 0.724
#> GSM40693     5  0.0162     0.9184 0.004 0.000 0.000 0.000 0.996
#> GSM40694     5  0.0162     0.9184 0.004 0.000 0.000 0.000 0.996
#> GSM40695     1  0.0000     0.9364 1.000 0.000 0.000 0.000 0.000
#> GSM40696     5  0.0162     0.9184 0.004 0.000 0.000 0.000 0.996
#> GSM40697     5  0.0000     0.9191 0.000 0.000 0.000 0.000 1.000
#> GSM40704     1  0.1478     0.8977 0.936 0.000 0.000 0.000 0.064
#> GSM40705     3  0.4942     0.3931 0.000 0.000 0.540 0.432 0.028
#> GSM40707     4  0.0510     0.7947 0.016 0.000 0.000 0.984 0.000
#> GSM40708     4  0.0404     0.7974 0.012 0.000 0.000 0.988 0.000
#> GSM40709     4  0.4965    -0.3059 0.000 0.000 0.452 0.520 0.028
#> GSM40712     5  0.0000     0.9191 0.000 0.000 0.000 0.000 1.000
#> GSM40713     1  0.0324     0.9362 0.992 0.000 0.000 0.004 0.004
#> GSM40665     4  0.0404     0.7974 0.012 0.000 0.000 0.988 0.000
#> GSM40677     2  0.0000     0.8785 0.000 1.000 0.000 0.000 0.000
#> GSM40698     4  0.0404     0.7974 0.012 0.000 0.000 0.988 0.000
#> GSM40701     3  0.5763     0.3517 0.000 0.032 0.508 0.428 0.032
#> GSM40710     2  0.0000     0.8785 0.000 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0146      0.981 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40667     3  0.0146      0.981 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40675     3  0.0146      0.981 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40703     3  0.0146      0.981 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM40660     4  0.1708      0.776 0.000 0.040 0.004 0.932 0.024 0.000
#> GSM40668     3  0.1444      0.921 0.000 0.000 0.928 0.072 0.000 0.000
#> GSM40678     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40679     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40686     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40687     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40691     5  0.1152      0.858 0.000 0.044 0.000 0.004 0.952 0.000
#> GSM40699     2  0.2869      0.779 0.000 0.832 0.000 0.148 0.020 0.000
#> GSM40664     2  0.3575      0.771 0.000 0.796 0.000 0.076 0.000 0.128
#> GSM40682     2  0.0260      0.930 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM40688     5  0.4991      0.284 0.000 0.404 0.000 0.072 0.524 0.000
#> GSM40702     2  0.0260      0.930 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM40706     2  0.3534      0.776 0.000 0.800 0.000 0.076 0.000 0.124
#> GSM40711     4  0.0405      0.777 0.000 0.000 0.004 0.988 0.000 0.008
#> GSM40661     4  0.5587      0.335 0.000 0.356 0.004 0.508 0.000 0.132
#> GSM40662     5  0.1700      0.831 0.000 0.004 0.000 0.080 0.916 0.000
#> GSM40666     4  0.2309      0.738 0.000 0.000 0.000 0.888 0.084 0.028
#> GSM40669     5  0.0291      0.882 0.000 0.000 0.004 0.004 0.992 0.000
#> GSM40670     5  0.0405      0.881 0.000 0.000 0.004 0.008 0.988 0.000
#> GSM40671     1  0.0146      0.947 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM40672     1  0.2219      0.834 0.864 0.000 0.000 0.000 0.136 0.000
#> GSM40673     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40674     5  0.0405      0.881 0.000 0.000 0.004 0.008 0.988 0.000
#> GSM40676     6  0.0146      0.953 0.000 0.000 0.000 0.004 0.000 0.996
#> GSM40680     5  0.4984      0.524 0.000 0.244 0.000 0.124 0.632 0.000
#> GSM40681     1  0.1663      0.890 0.912 0.000 0.000 0.000 0.088 0.000
#> GSM40683     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40684     6  0.1556      0.881 0.000 0.000 0.000 0.080 0.000 0.920
#> GSM40685     5  0.0146      0.882 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM40689     1  0.0146      0.947 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM40690     1  0.0146      0.947 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM40692     5  0.4721      0.580 0.000 0.212 0.000 0.116 0.672 0.000
#> GSM40693     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM40694     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM40695     1  0.0000      0.946 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM40696     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM40697     5  0.0000      0.883 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM40704     1  0.2454      0.810 0.840 0.000 0.000 0.000 0.160 0.000
#> GSM40705     4  0.0405      0.777 0.000 0.000 0.004 0.988 0.000 0.008
#> GSM40707     6  0.0632      0.969 0.024 0.000 0.000 0.000 0.000 0.976
#> GSM40708     6  0.0632      0.969 0.024 0.000 0.000 0.000 0.000 0.976
#> GSM40709     4  0.1267      0.770 0.000 0.000 0.000 0.940 0.000 0.060
#> GSM40712     5  0.0291      0.882 0.000 0.000 0.004 0.004 0.992 0.000
#> GSM40713     1  0.0146      0.947 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM40665     6  0.0632      0.969 0.024 0.000 0.000 0.000 0.000 0.976
#> GSM40677     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM40698     6  0.0547      0.968 0.020 0.000 0.000 0.000 0.000 0.980
#> GSM40701     4  0.4313      0.387 0.000 0.372 0.004 0.604 0.020 0.000
#> GSM40710     2  0.0000      0.932 0.000 1.000 0.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) k
#> ATC:mclust 37         1.37e-05 2
#> ATC:mclust 52         6.50e-12 3
#> ATC:mclust 49         2.04e-09 4
#> ATC:mclust 42         4.16e-08 5
#> ATC:mclust 50         1.88e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 35373 rows and 53 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.919           0.912       0.963         0.5062 0.492   0.492
#> 3 3 0.887           0.886       0.952         0.3143 0.734   0.513
#> 4 4 0.725           0.760       0.884         0.1221 0.858   0.608
#> 5 5 0.693           0.630       0.835         0.0345 0.931   0.758
#> 6 6 0.668           0.545       0.787         0.0343 0.925   0.713

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM40663     2  0.0000     0.9858 0.000 1.000
#> GSM40667     2  0.0000     0.9858 0.000 1.000
#> GSM40675     2  0.0000     0.9858 0.000 1.000
#> GSM40703     2  0.0000     0.9858 0.000 1.000
#> GSM40660     2  0.0000     0.9858 0.000 1.000
#> GSM40668     2  0.0000     0.9858 0.000 1.000
#> GSM40678     2  0.0000     0.9858 0.000 1.000
#> GSM40679     2  0.0000     0.9858 0.000 1.000
#> GSM40686     1  0.9460     0.4710 0.636 0.364
#> GSM40687     2  0.0000     0.9858 0.000 1.000
#> GSM40691     2  0.0000     0.9858 0.000 1.000
#> GSM40699     2  0.0000     0.9858 0.000 1.000
#> GSM40664     2  0.0000     0.9858 0.000 1.000
#> GSM40682     2  0.0000     0.9858 0.000 1.000
#> GSM40688     2  0.4562     0.8934 0.096 0.904
#> GSM40702     2  0.0000     0.9858 0.000 1.000
#> GSM40706     2  0.0000     0.9858 0.000 1.000
#> GSM40711     2  0.0000     0.9858 0.000 1.000
#> GSM40661     2  0.0000     0.9858 0.000 1.000
#> GSM40662     2  0.2236     0.9566 0.036 0.964
#> GSM40666     2  0.5178     0.8674 0.116 0.884
#> GSM40669     1  0.0000     0.9364 1.000 0.000
#> GSM40670     1  0.9000     0.5671 0.684 0.316
#> GSM40671     1  0.0000     0.9364 1.000 0.000
#> GSM40672     1  0.0000     0.9364 1.000 0.000
#> GSM40673     1  0.0000     0.9364 1.000 0.000
#> GSM40674     1  0.9427     0.4808 0.640 0.360
#> GSM40676     1  0.1414     0.9221 0.980 0.020
#> GSM40680     1  0.0000     0.9364 1.000 0.000
#> GSM40681     1  0.0000     0.9364 1.000 0.000
#> GSM40683     1  0.0000     0.9364 1.000 0.000
#> GSM40684     1  0.4562     0.8565 0.904 0.096
#> GSM40685     1  0.0000     0.9364 1.000 0.000
#> GSM40689     1  0.0000     0.9364 1.000 0.000
#> GSM40690     1  0.0000     0.9364 1.000 0.000
#> GSM40692     1  0.0000     0.9364 1.000 0.000
#> GSM40693     1  0.0000     0.9364 1.000 0.000
#> GSM40694     1  0.0000     0.9364 1.000 0.000
#> GSM40695     1  0.0000     0.9364 1.000 0.000
#> GSM40696     1  0.0000     0.9364 1.000 0.000
#> GSM40697     1  1.0000     0.0883 0.504 0.496
#> GSM40704     1  0.0000     0.9364 1.000 0.000
#> GSM40705     2  0.0000     0.9858 0.000 1.000
#> GSM40707     1  0.0000     0.9364 1.000 0.000
#> GSM40708     1  0.0000     0.9364 1.000 0.000
#> GSM40709     2  0.3114     0.9375 0.056 0.944
#> GSM40712     1  0.0000     0.9364 1.000 0.000
#> GSM40713     1  0.0000     0.9364 1.000 0.000
#> GSM40665     1  0.0000     0.9364 1.000 0.000
#> GSM40677     2  0.0672     0.9800 0.008 0.992
#> GSM40698     1  0.0000     0.9364 1.000 0.000
#> GSM40701     2  0.0000     0.9858 0.000 1.000
#> GSM40710     2  0.0000     0.9858 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM40663     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40667     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40675     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40703     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40660     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40668     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40678     2  0.0000      0.914 0.000 1.000 0.000
#> GSM40679     2  0.0000      0.914 0.000 1.000 0.000
#> GSM40686     2  0.0000      0.914 0.000 1.000 0.000
#> GSM40687     2  0.0000      0.914 0.000 1.000 0.000
#> GSM40691     2  0.1031      0.906 0.000 0.976 0.024
#> GSM40699     2  0.2625      0.863 0.000 0.916 0.084
#> GSM40664     2  0.0424      0.912 0.000 0.992 0.008
#> GSM40682     2  0.0000      0.914 0.000 1.000 0.000
#> GSM40688     2  0.0000      0.914 0.000 1.000 0.000
#> GSM40702     2  0.0892      0.908 0.000 0.980 0.020
#> GSM40706     3  0.0592      0.958 0.000 0.012 0.988
#> GSM40711     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40661     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40662     2  0.8387      0.157 0.084 0.488 0.428
#> GSM40666     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40669     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40670     1  0.5465      0.596 0.712 0.000 0.288
#> GSM40671     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40672     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40673     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40674     1  0.6180      0.302 0.584 0.000 0.416
#> GSM40676     1  0.4291      0.769 0.820 0.000 0.180
#> GSM40680     2  0.4555      0.752 0.200 0.800 0.000
#> GSM40681     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40683     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40684     3  0.5733      0.480 0.324 0.000 0.676
#> GSM40685     2  0.1860      0.890 0.052 0.948 0.000
#> GSM40689     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40690     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40692     2  0.5926      0.494 0.356 0.644 0.000
#> GSM40693     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40694     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40695     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40696     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40697     2  0.2301      0.884 0.060 0.936 0.004
#> GSM40704     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40705     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40707     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40708     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40709     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40712     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40713     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40665     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40677     2  0.0000      0.914 0.000 1.000 0.000
#> GSM40698     1  0.0000      0.955 1.000 0.000 0.000
#> GSM40701     3  0.0000      0.970 0.000 0.000 1.000
#> GSM40710     2  0.0000      0.914 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM40663     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40667     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40675     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40703     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40660     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40668     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40678     2  0.0000     0.8888 0.000 1.000 0.000 0.000
#> GSM40679     2  0.0000     0.8888 0.000 1.000 0.000 0.000
#> GSM40686     2  0.0000     0.8888 0.000 1.000 0.000 0.000
#> GSM40687     2  0.0000     0.8888 0.000 1.000 0.000 0.000
#> GSM40691     2  0.5354     0.7414 0.116 0.756 0.124 0.004
#> GSM40699     2  0.2760     0.8016 0.000 0.872 0.128 0.000
#> GSM40664     4  0.4967     0.0592 0.000 0.452 0.000 0.548
#> GSM40682     2  0.0336     0.8868 0.000 0.992 0.000 0.008
#> GSM40688     2  0.2334     0.8510 0.088 0.908 0.000 0.004
#> GSM40702     2  0.0524     0.8867 0.000 0.988 0.004 0.008
#> GSM40706     3  0.4993     0.6031 0.000 0.260 0.712 0.028
#> GSM40711     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40661     3  0.1109     0.9129 0.000 0.004 0.968 0.028
#> GSM40662     3  0.7565     0.2385 0.200 0.292 0.504 0.004
#> GSM40666     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40669     1  0.0188     0.7562 0.996 0.000 0.004 0.000
#> GSM40670     1  0.3873     0.5727 0.772 0.000 0.228 0.000
#> GSM40671     4  0.4250     0.4753 0.276 0.000 0.000 0.724
#> GSM40672     1  0.2345     0.7631 0.900 0.000 0.000 0.100
#> GSM40673     1  0.3764     0.7302 0.784 0.000 0.000 0.216
#> GSM40674     1  0.4500     0.4678 0.684 0.000 0.316 0.000
#> GSM40676     4  0.1118     0.8470 0.036 0.000 0.000 0.964
#> GSM40680     2  0.1975     0.8568 0.048 0.936 0.000 0.016
#> GSM40681     1  0.3610     0.7384 0.800 0.000 0.000 0.200
#> GSM40683     1  0.4008     0.7116 0.756 0.000 0.000 0.244
#> GSM40684     4  0.2002     0.8393 0.044 0.000 0.020 0.936
#> GSM40685     2  0.4837     0.5300 0.348 0.648 0.000 0.004
#> GSM40689     1  0.4877     0.4639 0.592 0.000 0.000 0.408
#> GSM40690     1  0.4585     0.6089 0.668 0.000 0.000 0.332
#> GSM40692     2  0.5125     0.4641 0.388 0.604 0.000 0.008
#> GSM40693     1  0.0000     0.7583 1.000 0.000 0.000 0.000
#> GSM40694     1  0.0000     0.7583 1.000 0.000 0.000 0.000
#> GSM40695     1  0.4304     0.6729 0.716 0.000 0.000 0.284
#> GSM40696     1  0.0000     0.7583 1.000 0.000 0.000 0.000
#> GSM40697     1  0.5166     0.3528 0.688 0.288 0.020 0.004
#> GSM40704     1  0.2868     0.7581 0.864 0.000 0.000 0.136
#> GSM40705     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40707     4  0.1792     0.8323 0.068 0.000 0.000 0.932
#> GSM40708     4  0.1302     0.8481 0.044 0.000 0.000 0.956
#> GSM40709     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40712     1  0.0000     0.7583 1.000 0.000 0.000 0.000
#> GSM40713     1  0.4103     0.7022 0.744 0.000 0.000 0.256
#> GSM40665     4  0.1302     0.8481 0.044 0.000 0.000 0.956
#> GSM40677     2  0.0376     0.8874 0.004 0.992 0.000 0.004
#> GSM40698     4  0.0895     0.8377 0.020 0.004 0.000 0.976
#> GSM40701     3  0.0000     0.9348 0.000 0.000 1.000 0.000
#> GSM40710     2  0.0188     0.8880 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM40663     3  0.0000     0.8435 0.000 0.000 1.000 0.000 0.000
#> GSM40667     3  0.0000     0.8435 0.000 0.000 1.000 0.000 0.000
#> GSM40675     3  0.0000     0.8435 0.000 0.000 1.000 0.000 0.000
#> GSM40703     3  0.0000     0.8435 0.000 0.000 1.000 0.000 0.000
#> GSM40660     3  0.0510     0.8354 0.000 0.000 0.984 0.016 0.000
#> GSM40668     3  0.0000     0.8435 0.000 0.000 1.000 0.000 0.000
#> GSM40678     2  0.0451     0.7457 0.004 0.988 0.000 0.008 0.000
#> GSM40679     2  0.1732     0.7396 0.000 0.920 0.000 0.080 0.000
#> GSM40686     2  0.0162     0.7470 0.000 0.996 0.000 0.004 0.000
#> GSM40687     2  0.0865     0.7413 0.004 0.972 0.000 0.024 0.000
#> GSM40691     2  0.6459     0.3458 0.000 0.584 0.148 0.240 0.028
#> GSM40699     2  0.3395     0.3789 0.000 0.764 0.236 0.000 0.000
#> GSM40664     1  0.4593     0.5735 0.736 0.184 0.000 0.080 0.000
#> GSM40682     2  0.3536     0.6686 0.084 0.832 0.000 0.084 0.000
#> GSM40688     2  0.4602     0.5505 0.000 0.656 0.000 0.316 0.028
#> GSM40702     2  0.1153     0.7454 0.004 0.964 0.008 0.024 0.000
#> GSM40706     4  0.6547     0.0000 0.000 0.296 0.232 0.472 0.000
#> GSM40711     3  0.0000     0.8435 0.000 0.000 1.000 0.000 0.000
#> GSM40661     3  0.2367     0.7450 0.072 0.004 0.904 0.020 0.000
#> GSM40662     3  0.8071    -0.2286 0.000 0.160 0.424 0.256 0.160
#> GSM40666     3  0.0290     0.8384 0.000 0.000 0.992 0.000 0.008
#> GSM40669     5  0.3318     0.6603 0.000 0.000 0.008 0.192 0.800
#> GSM40670     5  0.5845     0.2107 0.000 0.000 0.352 0.108 0.540
#> GSM40671     5  0.4297     0.0591 0.472 0.000 0.000 0.000 0.528
#> GSM40672     5  0.1041     0.7386 0.032 0.000 0.000 0.004 0.964
#> GSM40673     5  0.1732     0.7316 0.080 0.000 0.000 0.000 0.920
#> GSM40674     3  0.4976     0.0364 0.000 0.000 0.504 0.028 0.468
#> GSM40676     1  0.0566     0.8781 0.984 0.000 0.000 0.004 0.012
#> GSM40680     2  0.3961     0.6584 0.008 0.812 0.000 0.072 0.108
#> GSM40681     5  0.1478     0.7352 0.064 0.000 0.000 0.000 0.936
#> GSM40683     5  0.2233     0.7217 0.104 0.000 0.000 0.004 0.892
#> GSM40684     1  0.1806     0.8727 0.940 0.000 0.016 0.016 0.028
#> GSM40685     2  0.5027     0.4484 0.000 0.700 0.000 0.112 0.188
#> GSM40689     5  0.4302     0.5583 0.248 0.000 0.000 0.032 0.720
#> GSM40690     5  0.3106     0.6892 0.140 0.000 0.000 0.020 0.840
#> GSM40692     5  0.7029    -0.1177 0.008 0.352 0.000 0.284 0.356
#> GSM40693     5  0.3480     0.6283 0.000 0.000 0.000 0.248 0.752
#> GSM40694     5  0.2516     0.6907 0.000 0.000 0.000 0.140 0.860
#> GSM40695     5  0.2230     0.7168 0.116 0.000 0.000 0.000 0.884
#> GSM40696     5  0.3707     0.6007 0.000 0.000 0.000 0.284 0.716
#> GSM40697     5  0.6914     0.0896 0.000 0.232 0.008 0.372 0.388
#> GSM40704     5  0.1205     0.7384 0.040 0.000 0.000 0.004 0.956
#> GSM40705     3  0.0000     0.8435 0.000 0.000 1.000 0.000 0.000
#> GSM40707     1  0.3318     0.7200 0.800 0.000 0.000 0.008 0.192
#> GSM40708     1  0.0671     0.8796 0.980 0.000 0.000 0.004 0.016
#> GSM40709     3  0.2873     0.7004 0.000 0.000 0.860 0.120 0.020
#> GSM40712     5  0.0880     0.7255 0.000 0.000 0.000 0.032 0.968
#> GSM40713     5  0.2230     0.7183 0.116 0.000 0.000 0.000 0.884
#> GSM40665     1  0.1753     0.8773 0.936 0.000 0.000 0.032 0.032
#> GSM40677     2  0.3706     0.6470 0.004 0.756 0.000 0.236 0.004
#> GSM40698     1  0.1901     0.8710 0.932 0.004 0.000 0.024 0.040
#> GSM40701     3  0.0162     0.8417 0.000 0.000 0.996 0.004 0.000
#> GSM40710     2  0.0671     0.7436 0.004 0.980 0.000 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM40663     3  0.0909     0.8142 0.000 0.000 0.968 0.012 0.020 0.000
#> GSM40667     3  0.0622     0.8178 0.000 0.000 0.980 0.008 0.012 0.000
#> GSM40675     3  0.0622     0.8178 0.000 0.000 0.980 0.008 0.012 0.000
#> GSM40703     3  0.0909     0.8142 0.000 0.000 0.968 0.012 0.020 0.000
#> GSM40660     3  0.0363     0.8166 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM40668     3  0.0000     0.8192 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40678     2  0.0551     0.6771 0.000 0.984 0.000 0.004 0.004 0.008
#> GSM40679     2  0.3168     0.6390 0.000 0.820 0.000 0.028 0.148 0.004
#> GSM40686     2  0.0547     0.6800 0.000 0.980 0.000 0.000 0.020 0.000
#> GSM40687     2  0.1555     0.6638 0.000 0.940 0.000 0.012 0.040 0.008
#> GSM40691     2  0.5870     0.1430 0.000 0.480 0.160 0.008 0.352 0.000
#> GSM40699     2  0.3023     0.5016 0.000 0.768 0.232 0.000 0.000 0.000
#> GSM40664     6  0.5936     0.4078 0.000 0.096 0.000 0.088 0.204 0.612
#> GSM40682     2  0.7198     0.1172 0.000 0.440 0.000 0.140 0.232 0.188
#> GSM40688     5  0.4532    -0.2494 0.000 0.468 0.000 0.032 0.500 0.000
#> GSM40702     2  0.2212     0.6749 0.000 0.912 0.020 0.004 0.048 0.016
#> GSM40706     4  0.3510     0.0000 0.000 0.084 0.072 0.828 0.012 0.004
#> GSM40711     3  0.0291     0.8184 0.000 0.000 0.992 0.004 0.004 0.000
#> GSM40661     3  0.5443     0.4704 0.000 0.000 0.668 0.056 0.120 0.156
#> GSM40662     5  0.6685     0.2105 0.088 0.104 0.352 0.004 0.452 0.000
#> GSM40666     3  0.0146     0.8188 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM40669     1  0.3766     0.3834 0.684 0.000 0.012 0.000 0.304 0.000
#> GSM40670     3  0.5914    -0.1417 0.380 0.000 0.412 0.000 0.208 0.000
#> GSM40671     1  0.3955     0.3935 0.648 0.000 0.000 0.008 0.004 0.340
#> GSM40672     1  0.0291     0.7534 0.992 0.000 0.000 0.004 0.004 0.000
#> GSM40673     1  0.1080     0.7570 0.960 0.000 0.000 0.004 0.004 0.032
#> GSM40674     3  0.4838     0.2374 0.372 0.000 0.564 0.000 0.064 0.000
#> GSM40676     6  0.1307     0.7851 0.032 0.000 0.000 0.008 0.008 0.952
#> GSM40680     2  0.6795     0.2996 0.112 0.560 0.000 0.060 0.220 0.048
#> GSM40681     1  0.1628     0.7460 0.940 0.008 0.000 0.004 0.036 0.012
#> GSM40683     1  0.1155     0.7565 0.956 0.000 0.000 0.004 0.004 0.036
#> GSM40684     6  0.3208     0.7722 0.088 0.000 0.036 0.016 0.008 0.852
#> GSM40685     2  0.5189     0.4268 0.104 0.688 0.000 0.012 0.176 0.020
#> GSM40689     1  0.4422     0.4625 0.672 0.000 0.000 0.020 0.024 0.284
#> GSM40690     1  0.3666     0.7106 0.812 0.000 0.000 0.016 0.092 0.080
#> GSM40692     5  0.6296     0.4053 0.340 0.200 0.000 0.020 0.440 0.000
#> GSM40693     1  0.3747     0.1496 0.604 0.000 0.000 0.000 0.396 0.000
#> GSM40694     1  0.3288     0.4859 0.724 0.000 0.000 0.000 0.276 0.000
#> GSM40695     1  0.1471     0.7499 0.932 0.000 0.000 0.004 0.000 0.064
#> GSM40696     5  0.3868    -0.0541 0.496 0.000 0.000 0.000 0.504 0.000
#> GSM40697     5  0.5206     0.4316 0.156 0.176 0.008 0.004 0.656 0.000
#> GSM40704     1  0.0363     0.7505 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM40705     3  0.0260     0.8194 0.000 0.000 0.992 0.008 0.000 0.000
#> GSM40707     6  0.3788     0.6658 0.232 0.000 0.000 0.020 0.008 0.740
#> GSM40708     6  0.2586     0.7857 0.080 0.000 0.000 0.032 0.008 0.880
#> GSM40709     3  0.4498     0.3343 0.040 0.000 0.632 0.324 0.000 0.004
#> GSM40712     1  0.2003     0.6767 0.884 0.000 0.000 0.000 0.116 0.000
#> GSM40713     1  0.3093     0.6889 0.816 0.000 0.000 0.008 0.012 0.164
#> GSM40665     6  0.2989     0.7903 0.072 0.000 0.000 0.028 0.036 0.864
#> GSM40677     2  0.5260     0.1927 0.000 0.464 0.000 0.064 0.460 0.012
#> GSM40698     6  0.4756     0.7360 0.080 0.016 0.000 0.056 0.088 0.760
#> GSM40701     3  0.0000     0.8192 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM40710     2  0.1511     0.6625 0.000 0.940 0.000 0.012 0.044 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) k
#> ATC:NMF 50         1.79e-05 2
#> ATC:NMF 49         5.46e-05 3
#> ATC:NMF 46         1.62e-04 4
#> ATC:NMF 43         3.92e-04 5
#> ATC:NMF 32         2.85e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0