cola Report for GDS1209

Date: 2019-12-25 20:17:11 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 21168    54

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
SD:skmeans 3 1.000 0.990 0.995 **
MAD:hclust 2 1.000 0.942 0.972 **
ATC:kmeans 2 1.000 0.960 0.981 **
MAD:skmeans 3 0.998 0.970 0.984 **
ATC:skmeans 3 0.996 0.966 0.981 ** 2
ATC:hclust 5 0.995 0.950 0.976 **
ATC:NMF 2 0.961 0.925 0.973 **
ATC:pam 6 0.943 0.904 0.963 * 2
MAD:pam 4 0.929 0.909 0.964 * 2
CV:skmeans 3 0.925 0.913 0.960 *
SD:NMF 3 0.913 0.874 0.951 *
ATC:mclust 3 0.913 0.893 0.958 * 2
MAD:mclust 5 0.899 0.904 0.945
SD:pam 6 0.874 0.911 0.941
MAD:NMF 3 0.856 0.892 0.948
CV:NMF 3 0.842 0.856 0.931
CV:pam 2 0.800 0.906 0.944
SD:mclust 5 0.740 0.710 0.814
MAD:kmeans 3 0.717 0.867 0.910
CV:mclust 5 0.709 0.765 0.859
SD:hclust 3 0.614 0.783 0.819
SD:kmeans 3 0.583 0.869 0.882
CV:kmeans 3 0.544 0.803 0.810
CV:hclust 2 0.499 0.930 0.942

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.885           0.917       0.967          0.431 0.575   0.575
#> CV:NMF      2 0.815           0.873       0.950          0.447 0.547   0.547
#> MAD:NMF     2 0.850           0.881       0.952          0.449 0.560   0.560
#> ATC:NMF     2 0.961           0.925       0.973          0.308 0.717   0.717
#> SD:skmeans  2 0.477           0.639       0.846          0.497 0.516   0.516
#> CV:skmeans  2 0.694           0.856       0.939          0.489 0.508   0.508
#> MAD:skmeans 2 0.502           0.866       0.917          0.506 0.491   0.491
#> ATC:skmeans 2 1.000           0.973       0.991          0.433 0.575   0.575
#> SD:mclust   2 0.497           0.847       0.846          0.361 0.628   0.628
#> CV:mclust   2 0.447           0.872       0.804          0.373 0.628   0.628
#> MAD:mclust  2 0.743           0.799       0.915          0.389 0.609   0.609
#> ATC:mclust  2 1.000           0.997       0.999          0.374 0.628   0.628
#> SD:kmeans   2 0.631           0.920       0.940          0.398 0.628   0.628
#> CV:kmeans   2 0.836           0.942       0.951          0.393 0.609   0.609
#> MAD:kmeans  2 0.430           0.792       0.877          0.438 0.591   0.591
#> ATC:kmeans  2 1.000           0.960       0.981          0.329 0.648   0.648
#> SD:pam      2 0.482           0.826       0.898          0.475 0.516   0.516
#> CV:pam      2 0.800           0.906       0.944          0.461 0.535   0.535
#> MAD:pam     2 0.958           0.946       0.972          0.487 0.508   0.508
#> ATC:pam     2 0.924           0.963       0.983          0.266 0.743   0.743
#> SD:hclust   2 0.753           0.888       0.934          0.327 0.628   0.628
#> CV:hclust   2 0.499           0.930       0.942          0.379 0.591   0.591
#> MAD:hclust  2 1.000           0.942       0.972          0.403 0.575   0.575
#> ATC:hclust  2 0.782           0.939       0.948          0.303 0.628   0.628
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.913           0.874       0.951          0.528 0.732   0.547
#> CV:NMF      3 0.842           0.856       0.931          0.476 0.661   0.448
#> MAD:NMF     3 0.856           0.892       0.948          0.486 0.718   0.518
#> ATC:NMF     3 0.715           0.835       0.929          0.817 0.697   0.587
#> SD:skmeans  3 1.000           0.990       0.995          0.347 0.673   0.442
#> CV:skmeans  3 0.925           0.913       0.960          0.372 0.669   0.436
#> MAD:skmeans 3 0.998           0.970       0.984          0.325 0.755   0.541
#> ATC:skmeans 3 0.996           0.966       0.981          0.510 0.765   0.592
#> SD:mclust   3 0.348           0.669       0.741          0.600 0.706   0.532
#> CV:mclust   3 0.347           0.450       0.639          0.643 0.768   0.636
#> MAD:mclust  3 0.411           0.773       0.795          0.543 0.491   0.317
#> ATC:mclust  3 0.913           0.893       0.958          0.656 0.757   0.612
#> SD:kmeans   3 0.583           0.869       0.882          0.537 0.727   0.566
#> CV:kmeans   3 0.544           0.803       0.810          0.529 0.738   0.569
#> MAD:kmeans  3 0.717           0.867       0.910          0.443 0.728   0.553
#> ATC:kmeans  3 0.587           0.746       0.866          0.558 0.887   0.829
#> SD:pam      3 0.783           0.855       0.938          0.352 0.781   0.597
#> CV:pam      3 0.814           0.891       0.952          0.370 0.772   0.596
#> MAD:pam     3 0.835           0.893       0.954          0.322 0.788   0.606
#> ATC:pam     3 0.558           0.800       0.847          0.830 0.809   0.747
#> SD:hclust   3 0.614           0.783       0.819          0.559 0.906   0.853
#> CV:hclust   3 0.744           0.885       0.940          0.212 0.965   0.941
#> MAD:hclust  3 0.587           0.358       0.738          0.380 0.848   0.736
#> ATC:hclust  3 0.980           0.979       0.986          0.316 0.975   0.960
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.715           0.639       0.809         0.1074 0.948   0.851
#> CV:NMF      4 0.694           0.615       0.801         0.1060 0.918   0.768
#> MAD:NMF     4 0.664           0.683       0.812         0.0972 0.971   0.911
#> ATC:NMF     4 0.755           0.814       0.900         0.2488 0.753   0.506
#> SD:skmeans  4 0.784           0.851       0.914         0.1136 0.912   0.739
#> CV:skmeans  4 0.742           0.737       0.859         0.1182 0.892   0.693
#> MAD:skmeans 4 0.759           0.800       0.888         0.1108 0.912   0.739
#> ATC:skmeans 4 0.744           0.814       0.881         0.1099 0.936   0.814
#> SD:mclust   4 0.562           0.726       0.807         0.2124 0.920   0.769
#> CV:mclust   4 0.653           0.720       0.848         0.1187 0.860   0.687
#> MAD:mclust  4 0.684           0.797       0.866         0.1696 0.752   0.450
#> ATC:mclust  4 0.851           0.857       0.945         0.0668 0.875   0.702
#> SD:kmeans   4 0.546           0.479       0.793         0.1358 0.955   0.880
#> CV:kmeans   4 0.558           0.569       0.737         0.1709 0.954   0.867
#> MAD:kmeans  4 0.704           0.735       0.840         0.1372 0.916   0.763
#> ATC:kmeans  4 0.587           0.786       0.864         0.2651 0.776   0.605
#> SD:pam      4 0.853           0.766       0.896         0.0757 0.941   0.836
#> CV:pam      4 0.719           0.847       0.892         0.0759 0.979   0.942
#> MAD:pam     4 0.929           0.909       0.964         0.0980 0.939   0.827
#> ATC:pam     4 0.820           0.883       0.950         0.3873 0.755   0.575
#> SD:hclust   4 0.513           0.606       0.753         0.3119 0.755   0.560
#> CV:hclust   4 0.499           0.670       0.788         0.2979 0.997   0.995
#> MAD:hclust  4 0.811           0.791       0.861         0.2609 0.721   0.455
#> ATC:hclust  4 0.878           0.851       0.928         0.2630 0.897   0.828
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.746           0.751       0.839         0.0640 0.864   0.585
#> CV:NMF      5 0.732           0.662       0.786         0.0677 0.907   0.691
#> MAD:NMF     5 0.765           0.810       0.862         0.0709 0.894   0.662
#> ATC:NMF     5 0.716           0.754       0.854         0.0637 0.924   0.767
#> SD:skmeans  5 0.839           0.848       0.899         0.0597 0.962   0.851
#> CV:skmeans  5 0.759           0.754       0.848         0.0628 0.939   0.769
#> MAD:skmeans 5 0.768           0.761       0.860         0.0637 0.945   0.792
#> ATC:skmeans 5 0.695           0.704       0.820         0.0656 0.956   0.848
#> SD:mclust   5 0.740           0.710       0.814         0.1063 0.843   0.510
#> CV:mclust   5 0.709           0.765       0.859         0.1347 0.824   0.511
#> MAD:mclust  5 0.899           0.904       0.945         0.0824 0.850   0.550
#> ATC:mclust  5 0.843           0.911       0.943         0.0889 0.963   0.888
#> SD:kmeans   5 0.718           0.680       0.767         0.1014 0.890   0.692
#> CV:kmeans   5 0.664           0.702       0.765         0.0899 0.899   0.675
#> MAD:kmeans  5 0.700           0.696       0.792         0.0723 0.983   0.936
#> ATC:kmeans  5 0.602           0.602       0.759         0.1374 0.978   0.938
#> SD:pam      5 0.840           0.783       0.884         0.0980 0.878   0.616
#> CV:pam      5 0.828           0.869       0.914         0.0825 0.936   0.812
#> MAD:pam     5 0.822           0.722       0.873         0.0680 0.985   0.948
#> ATC:pam     5 0.707           0.645       0.815         0.0879 0.962   0.886
#> SD:hclust   5 0.597           0.514       0.750         0.0788 0.896   0.686
#> CV:hclust   5 0.491           0.438       0.720         0.1059 0.902   0.823
#> MAD:hclust  5 0.788           0.815       0.873         0.0896 0.920   0.752
#> ATC:hclust  5 0.995           0.950       0.976         0.1070 0.906   0.815
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.893           0.862       0.892         0.0484 0.960   0.818
#> CV:NMF      6 0.864           0.775       0.870         0.0491 0.918   0.657
#> MAD:NMF     6 0.879           0.799       0.887         0.0409 0.959   0.817
#> ATC:NMF     6 0.642           0.511       0.750         0.0618 0.945   0.808
#> SD:skmeans  6 0.805           0.724       0.851         0.0436 0.979   0.904
#> CV:skmeans  6 0.755           0.697       0.810         0.0414 0.974   0.879
#> MAD:skmeans 6 0.781           0.686       0.819         0.0417 0.984   0.925
#> ATC:skmeans 6 0.738           0.588       0.777         0.0459 0.982   0.927
#> SD:mclust   6 0.831           0.751       0.850         0.0423 0.916   0.646
#> CV:mclust   6 0.785           0.725       0.846         0.0439 0.927   0.683
#> MAD:mclust  6 0.816           0.768       0.848         0.0567 0.980   0.917
#> ATC:mclust  6 0.787           0.815       0.888         0.0374 0.964   0.882
#> SD:kmeans   6 0.722           0.687       0.793         0.0516 0.925   0.717
#> CV:kmeans   6 0.720           0.776       0.819         0.0522 0.949   0.777
#> MAD:kmeans  6 0.704           0.634       0.754         0.0527 0.910   0.668
#> ATC:kmeans  6 0.645           0.472       0.721         0.0839 0.825   0.494
#> SD:pam      6 0.874           0.911       0.941         0.0500 0.980   0.905
#> CV:pam      6 0.758           0.693       0.834         0.0543 0.947   0.809
#> MAD:pam     6 0.783           0.748       0.840         0.0706 0.869   0.556
#> ATC:pam     6 0.943           0.904       0.963         0.0821 0.869   0.588
#> SD:hclust   6 0.596           0.589       0.746         0.0508 0.862   0.548
#> CV:hclust   6 0.581           0.694       0.767         0.1319 0.768   0.495
#> MAD:hclust  6 0.769           0.741       0.812         0.0349 0.950   0.797
#> ATC:hclust  6 0.769           0.880       0.920         0.0885 1.000   1.000

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 2000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 3000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 4000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 5000, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 1000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 2000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 3000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 4000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 5000, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 1000)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 2000)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 3000)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 4000)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 5000)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n disease.state(p) tissue(p) k
#> SD:NMF      52         5.73e-10  0.000862 2
#> CV:NMF      50         1.64e-10  0.000991 2
#> MAD:NMF     49         2.58e-10  0.001502 2
#> ATC:NMF     52         1.22e-07  0.000114 2
#> SD:skmeans  37         6.59e-08  0.011782 2
#> CV:skmeans  51         5.82e-08  0.009414 2
#> MAD:skmeans 54         2.66e-04  0.002441 2
#> ATC:skmeans 53         1.19e-07  0.005502 2
#> SD:mclust   54         2.67e-10  0.000164 2
#> CV:mclust   54         2.67e-10  0.000164 2
#> MAD:mclust  48         2.95e-02  0.025652 2
#> ATC:mclust  54         2.67e-10  0.000164 2
#> SD:kmeans   53         5.20e-11  0.000138 2
#> CV:kmeans   54         2.68e-11  0.000164 2
#> MAD:kmeans  53         4.20e-11  0.000227 2
#> ATC:kmeans  54         2.40e-09  0.000164 2
#> SD:pam      52         7.42e-01  0.008327 2
#> CV:pam      52         8.43e-01  0.012421 2
#> MAD:pam     53         5.44e-01  0.008875 2
#> ATC:pam     54         6.37e-06  0.000164 2
#> SD:hclust   52         8.13e-11  0.000191 2
#> CV:hclust   54         2.44e-10  0.000541 2
#> MAD:hclust  51         1.26e-11  0.000159 2
#> ATC:hclust  54         2.67e-10  0.000164 2
test_to_known_factors(res_list, k = 3)
#>              n disease.state(p) tissue(p) k
#> SD:NMF      50         1.49e-10  1.22e-05 3
#> CV:NMF      50         1.48e-10  1.35e-05 3
#> MAD:NMF     51         9.47e-10  9.04e-05 3
#> ATC:NMF     50         9.75e-08  6.52e-07 3
#> SD:skmeans  54         2.08e-10  1.21e-04 3
#> CV:skmeans  52         5.48e-11  4.78e-05 3
#> MAD:skmeans 54         2.08e-10  1.21e-04 3
#> ATC:skmeans 54         9.01e-08  9.93e-04 3
#> SD:mclust   40         1.62e-08  1.69e-03 3
#> CV:mclust   13               NA        NA 3
#> MAD:mclust  52         4.59e-10  1.88e-05 3
#> ATC:mclust  53         3.73e-10  1.73e-05 3
#> SD:kmeans   53         2.89e-10  5.59e-06 3
#> CV:kmeans   52         5.84e-11  4.20e-06 3
#> MAD:kmeans  51         9.34e-11  6.83e-06 3
#> ATC:kmeans  51         7.31e-09  9.08e-06 3
#> SD:pam      49         2.32e-09  2.48e-04 3
#> CV:pam      53         3.26e-10  7.09e-05 3
#> MAD:pam     51         1.06e-10  4.68e-05 3
#> ATC:pam     54         1.96e-09  1.44e-06 3
#> SD:hclust   51         1.10e-10  2.54e-07 3
#> CV:hclust   54         2.01e-10  1.27e-06 3
#> MAD:hclust  22         1.68e-04  3.50e-01 3
#> ATC:hclust  54         2.15e-10  2.67e-07 3
test_to_known_factors(res_list, k = 4)
#>              n disease.state(p) tissue(p) k
#> SD:NMF      43         3.98e-09  6.54e-04 4
#> CV:NMF      43         3.98e-09  1.39e-04 4
#> MAD:NMF     48         1.83e-08  1.37e-06 4
#> ATC:NMF     52         1.20e-08  9.11e-07 4
#> SD:skmeans  53         1.78e-10  2.00e-07 4
#> CV:skmeans  48         2.13e-10  1.46e-07 4
#> MAD:skmeans 50         7.12e-10  2.24e-07 4
#> ATC:skmeans 50         3.76e-07  2.55e-04 4
#> SD:mclust   48         2.02e-09  4.25e-06 4
#> CV:mclust   47         3.60e-09  3.71e-06 4
#> MAD:mclust  52         2.20e-09  1.38e-06 4
#> ATC:mclust  53         9.68e-09  4.34e-07 4
#> SD:kmeans   38         5.60e-09  8.28e-04 4
#> CV:kmeans   43         2.46e-09  5.85e-05 4
#> MAD:kmeans  49         1.14e-09  3.95e-07 4
#> ATC:kmeans  50         7.25e-09  1.42e-07 4
#> SD:pam      46         1.06e-08  2.47e-04 4
#> CV:pam      52         2.69e-09  3.97e-07 4
#> MAD:pam     51         5.74e-10  1.15e-07 4
#> ATC:pam     52         2.22e-08  3.31e-06 4
#> SD:hclust   36         5.40e-07  1.04e-04 4
#> CV:hclust   48         7.34e-09  9.76e-07 4
#> MAD:hclust  49         1.30e-10  7.03e-09 4
#> ATC:hclust  51         4.14e-09  5.29e-05 4
test_to_known_factors(res_list, k = 5)
#>              n disease.state(p) tissue(p) k
#> SD:NMF      49         5.23e-09  4.65e-09 5
#> CV:NMF      42         3.34e-08  1.57e-05 5
#> MAD:NMF     52         1.23e-09  7.85e-09 5
#> ATC:NMF     47         9.98e-08  1.18e-07 5
#> SD:skmeans  51         2.23e-10  1.18e-08 5
#> CV:skmeans  48         9.44e-10  4.99e-08 5
#> MAD:skmeans 48         9.44e-10  1.61e-08 5
#> ATC:skmeans 48         1.37e-08  3.20e-03 5
#> SD:mclust   47         5.57e-08  1.10e-04 5
#> CV:mclust   50         2.90e-09  3.79e-05 5
#> MAD:mclust  53         2.00e-09  4.20e-06 5
#> ATC:mclust  53         5.85e-09  4.97e-10 5
#> SD:kmeans   46         4.99e-09  4.41e-06 5
#> CV:kmeans   47         1.52e-09  6.15e-09 5
#> MAD:kmeans  49         1.30e-10  3.10e-07 5
#> ATC:kmeans  41         7.04e-08  2.32e-06 5
#> SD:pam      49         4.51e-08  1.16e-09 5
#> CV:pam      52         1.11e-08  1.83e-09 5
#> MAD:pam     47         1.94e-08  1.44e-10 5
#> ATC:pam     42         3.61e-06  2.40e-05 5
#> SD:hclust   35         3.03e-06  2.27e-05 5
#> CV:hclust   13         1.54e-02  1.63e-01 5
#> MAD:hclust  49         5.84e-10  1.39e-11 5
#> ATC:hclust  54         4.78e-09  5.06e-10 5
test_to_known_factors(res_list, k = 6)
#>              n disease.state(p) tissue(p) k
#> SD:NMF      53         3.24e-09  3.00e-07 6
#> CV:NMF      45         8.37e-08  5.22e-11 6
#> MAD:NMF     48         1.02e-08  4.69e-10 6
#> ATC:NMF     32         1.91e-06  6.28e-05 6
#> SD:skmeans  48         1.11e-08  5.73e-09 6
#> CV:skmeans  49         9.69e-09  1.42e-08 6
#> MAD:skmeans 45         1.45e-08  6.26e-10 6
#> ATC:skmeans 42         2.01e-07  3.59e-04 6
#> SD:mclust   46         5.31e-08  2.50e-07 6
#> CV:mclust   43         7.17e-06  2.45e-10 6
#> MAD:mclust  50         7.58e-09  1.53e-06 6
#> ATC:mclust  51         5.55e-09  1.10e-12 6
#> SD:kmeans   45         1.84e-07  3.41e-12 6
#> CV:kmeans   53         3.30e-09  3.89e-12 6
#> MAD:kmeans  43         3.70e-08  4.66e-12 6
#> ATC:kmeans  28         1.25e-05  5.40e-05 6
#> SD:pam      54         1.65e-08  2.24e-11 6
#> CV:pam      48         1.97e-07  1.65e-10 6
#> MAD:pam     49         2.39e-08  6.96e-13 6
#> ATC:pam     53         2.24e-07  3.47e-08 6
#> SD:hclust   41         1.83e-06  2.09e-07 6
#> CV:hclust   47         4.00e-07  4.10e-10 6
#> MAD:hclust  44         6.42e-09  5.17e-10 6
#> ATC:hclust  54         4.78e-09  5.06e-10 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.753           0.888       0.934         0.3275 0.628   0.628
#> 3 3 0.614           0.783       0.819         0.5587 0.906   0.853
#> 4 4 0.513           0.606       0.753         0.3119 0.755   0.560
#> 5 5 0.597           0.514       0.750         0.0788 0.896   0.686
#> 6 6 0.596           0.589       0.746         0.0508 0.862   0.548

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.3584      0.790 0.068 0.932
#> GSM52557     2  0.9129      0.770 0.328 0.672
#> GSM52558     2  0.9129      0.770 0.328 0.672
#> GSM52559     2  0.8386      0.804 0.268 0.732
#> GSM52560     2  0.9129      0.770 0.328 0.672
#> GSM52561     1  0.9427      0.184 0.640 0.360
#> GSM52562     2  0.9129      0.770 0.328 0.672
#> GSM52563     2  0.9209      0.755 0.336 0.664
#> GSM52564     1  0.3114      0.912 0.944 0.056
#> GSM52565     2  0.1414      0.779 0.020 0.980
#> GSM52566     2  0.8386      0.804 0.268 0.732
#> GSM52567     2  0.0000      0.767 0.000 1.000
#> GSM52568     2  0.7745      0.803 0.228 0.772
#> GSM52569     2  0.0938      0.772 0.012 0.988
#> GSM52570     2  0.1414      0.779 0.020 0.980
#> GSM52571     1  0.0000      0.967 1.000 0.000
#> GSM52572     1  0.2236      0.940 0.964 0.036
#> GSM52573     1  0.0000      0.967 1.000 0.000
#> GSM52574     1  0.0000      0.967 1.000 0.000
#> GSM52575     1  0.0000      0.967 1.000 0.000
#> GSM52576     1  0.0000      0.967 1.000 0.000
#> GSM52577     1  0.0000      0.967 1.000 0.000
#> GSM52578     1  0.0376      0.964 0.996 0.004
#> GSM52579     1  0.0376      0.964 0.996 0.004
#> GSM52580     1  0.2043      0.943 0.968 0.032
#> GSM52581     1  0.2043      0.943 0.968 0.032
#> GSM52582     1  0.0000      0.967 1.000 0.000
#> GSM52583     1  0.0000      0.967 1.000 0.000
#> GSM52584     1  0.0000      0.967 1.000 0.000
#> GSM52585     1  0.2236      0.940 0.964 0.036
#> GSM52586     1  0.2236      0.940 0.964 0.036
#> GSM52587     1  0.9427      0.184 0.640 0.360
#> GSM52588     1  0.0000      0.967 1.000 0.000
#> GSM52589     1  0.0000      0.967 1.000 0.000
#> GSM52590     1  0.0000      0.967 1.000 0.000
#> GSM52591     1  0.2236      0.940 0.964 0.036
#> GSM52592     1  0.0000      0.967 1.000 0.000
#> GSM52593     1  0.0000      0.967 1.000 0.000
#> GSM52594     1  0.0000      0.967 1.000 0.000
#> GSM52595     1  0.0000      0.967 1.000 0.000
#> GSM52596     1  0.0000      0.967 1.000 0.000
#> GSM52597     1  0.2236      0.940 0.964 0.036
#> GSM52598     1  0.0000      0.967 1.000 0.000
#> GSM52599     1  0.0000      0.967 1.000 0.000
#> GSM52600     1  0.0000      0.967 1.000 0.000
#> GSM52601     1  0.0000      0.967 1.000 0.000
#> GSM52602     1  0.0000      0.967 1.000 0.000
#> GSM52603     1  0.0000      0.967 1.000 0.000
#> GSM52604     1  0.0000      0.967 1.000 0.000
#> GSM52605     1  0.0000      0.967 1.000 0.000
#> GSM52606     1  0.0000      0.967 1.000 0.000
#> GSM52607     1  0.0000      0.967 1.000 0.000
#> GSM52608     1  0.0000      0.967 1.000 0.000
#> GSM52609     1  0.0000      0.967 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     3  0.6291      0.760 0.000 0.468 0.532
#> GSM52557     2  0.0000      0.705 0.000 1.000 0.000
#> GSM52558     2  0.0000      0.705 0.000 1.000 0.000
#> GSM52559     2  0.2796      0.608 0.000 0.908 0.092
#> GSM52560     2  0.0000      0.705 0.000 1.000 0.000
#> GSM52561     2  0.7418      0.400 0.248 0.672 0.080
#> GSM52562     2  0.0000      0.705 0.000 1.000 0.000
#> GSM52563     2  0.2356      0.659 0.000 0.928 0.072
#> GSM52564     1  0.5263      0.798 0.828 0.088 0.084
#> GSM52565     3  0.6168      0.877 0.000 0.412 0.588
#> GSM52566     2  0.2796      0.608 0.000 0.908 0.092
#> GSM52567     3  0.5926      0.874 0.000 0.356 0.644
#> GSM52568     2  0.5216      0.168 0.000 0.740 0.260
#> GSM52569     3  0.6298      0.870 0.004 0.388 0.608
#> GSM52570     3  0.6154      0.876 0.000 0.408 0.592
#> GSM52571     1  0.0424      0.886 0.992 0.000 0.008
#> GSM52572     1  0.7748      0.636 0.652 0.096 0.252
#> GSM52573     1  0.4887      0.836 0.844 0.060 0.096
#> GSM52574     1  0.4887      0.836 0.844 0.060 0.096
#> GSM52575     1  0.1182      0.886 0.976 0.012 0.012
#> GSM52576     1  0.1182      0.886 0.976 0.012 0.012
#> GSM52577     1  0.0424      0.886 0.992 0.000 0.008
#> GSM52578     1  0.5339      0.829 0.824 0.080 0.096
#> GSM52579     1  0.5339      0.829 0.824 0.080 0.096
#> GSM52580     1  0.7533      0.667 0.668 0.088 0.244
#> GSM52581     1  0.7533      0.667 0.668 0.088 0.244
#> GSM52582     1  0.1411      0.885 0.964 0.000 0.036
#> GSM52583     1  0.1289      0.885 0.968 0.000 0.032
#> GSM52584     1  0.2446      0.883 0.936 0.012 0.052
#> GSM52585     1  0.7848      0.632 0.640 0.096 0.264
#> GSM52586     1  0.7748      0.636 0.652 0.096 0.252
#> GSM52587     2  0.7418      0.400 0.248 0.672 0.080
#> GSM52588     1  0.0237      0.886 0.996 0.000 0.004
#> GSM52589     1  0.0424      0.886 0.992 0.000 0.008
#> GSM52590     1  0.3043      0.870 0.908 0.008 0.084
#> GSM52591     1  0.7065      0.688 0.700 0.072 0.228
#> GSM52592     1  0.0424      0.886 0.992 0.000 0.008
#> GSM52593     1  0.0237      0.886 0.996 0.000 0.004
#> GSM52594     1  0.0237      0.886 0.996 0.000 0.004
#> GSM52595     1  0.0237      0.886 0.996 0.000 0.004
#> GSM52596     1  0.0237      0.886 0.996 0.000 0.004
#> GSM52597     1  0.7065      0.688 0.700 0.072 0.228
#> GSM52598     1  0.0424      0.886 0.992 0.000 0.008
#> GSM52599     1  0.0424      0.886 0.992 0.000 0.008
#> GSM52600     1  0.0424      0.886 0.992 0.000 0.008
#> GSM52601     1  0.2229      0.872 0.944 0.012 0.044
#> GSM52602     1  0.3043      0.870 0.908 0.008 0.084
#> GSM52603     1  0.3043      0.870 0.908 0.008 0.084
#> GSM52604     1  0.3043      0.870 0.908 0.008 0.084
#> GSM52605     1  0.3043      0.870 0.908 0.008 0.084
#> GSM52606     1  0.4887      0.836 0.844 0.060 0.096
#> GSM52607     1  0.4887      0.836 0.844 0.060 0.096
#> GSM52608     1  0.4887      0.836 0.844 0.060 0.096
#> GSM52609     1  0.4887      0.836 0.844 0.060 0.096

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     4  0.5662      0.780 0.000 0.236 0.072 0.692
#> GSM52557     2  0.0336      0.756 0.000 0.992 0.008 0.000
#> GSM52558     2  0.0336      0.756 0.000 0.992 0.008 0.000
#> GSM52559     2  0.2704      0.661 0.000 0.876 0.000 0.124
#> GSM52560     2  0.0336      0.756 0.000 0.992 0.008 0.000
#> GSM52561     2  0.7051      0.473 0.100 0.656 0.192 0.052
#> GSM52562     2  0.0336      0.756 0.000 0.992 0.008 0.000
#> GSM52563     2  0.2335      0.713 0.000 0.920 0.020 0.060
#> GSM52564     1  0.7500      0.631 0.576 0.080 0.288 0.056
#> GSM52565     4  0.4500      0.842 0.000 0.316 0.000 0.684
#> GSM52566     2  0.2704      0.661 0.000 0.876 0.000 0.124
#> GSM52567     4  0.4188      0.852 0.000 0.244 0.004 0.752
#> GSM52568     2  0.4720      0.334 0.000 0.720 0.016 0.264
#> GSM52569     4  0.4290      0.836 0.000 0.212 0.016 0.772
#> GSM52570     4  0.4720      0.834 0.000 0.324 0.004 0.672
#> GSM52571     1  0.4500      0.749 0.684 0.000 0.316 0.000
#> GSM52572     1  0.8561      0.435 0.488 0.072 0.284 0.156
#> GSM52573     3  0.4992      0.659 0.476 0.000 0.524 0.000
#> GSM52574     3  0.4992      0.659 0.476 0.000 0.524 0.000
#> GSM52575     1  0.4996      0.432 0.516 0.000 0.484 0.000
#> GSM52576     1  0.4996      0.432 0.516 0.000 0.484 0.000
#> GSM52577     1  0.4585      0.728 0.668 0.000 0.332 0.000
#> GSM52578     3  0.5899      0.628 0.284 0.020 0.664 0.032
#> GSM52579     3  0.5899      0.628 0.284 0.020 0.664 0.032
#> GSM52580     3  0.7779      0.270 0.192 0.064 0.600 0.144
#> GSM52581     3  0.7779      0.270 0.192 0.064 0.600 0.144
#> GSM52582     3  0.4319      0.376 0.228 0.000 0.760 0.012
#> GSM52583     3  0.4284      0.372 0.224 0.000 0.764 0.012
#> GSM52584     3  0.4955      0.242 0.272 0.004 0.708 0.016
#> GSM52585     3  0.8027      0.270 0.188 0.072 0.580 0.160
#> GSM52586     1  0.8561      0.435 0.488 0.072 0.284 0.156
#> GSM52587     2  0.7051      0.473 0.100 0.656 0.192 0.052
#> GSM52588     1  0.4543      0.748 0.676 0.000 0.324 0.000
#> GSM52589     1  0.4605      0.725 0.664 0.000 0.336 0.000
#> GSM52590     1  0.0859      0.433 0.980 0.004 0.008 0.008
#> GSM52591     1  0.8182      0.509 0.528 0.056 0.268 0.148
#> GSM52592     1  0.4500      0.749 0.684 0.000 0.316 0.000
#> GSM52593     1  0.4543      0.748 0.676 0.000 0.324 0.000
#> GSM52594     1  0.4543      0.748 0.676 0.000 0.324 0.000
#> GSM52595     1  0.4543      0.748 0.676 0.000 0.324 0.000
#> GSM52596     1  0.4543      0.748 0.676 0.000 0.324 0.000
#> GSM52597     1  0.8182      0.509 0.528 0.056 0.268 0.148
#> GSM52598     1  0.4500      0.749 0.684 0.000 0.316 0.000
#> GSM52599     1  0.4500      0.749 0.684 0.000 0.316 0.000
#> GSM52600     1  0.4500      0.749 0.684 0.000 0.316 0.000
#> GSM52601     1  0.5583      0.728 0.648 0.008 0.320 0.024
#> GSM52602     1  0.0859      0.433 0.980 0.004 0.008 0.008
#> GSM52603     1  0.0859      0.433 0.980 0.004 0.008 0.008
#> GSM52604     1  0.0859      0.433 0.980 0.004 0.008 0.008
#> GSM52605     1  0.0859      0.433 0.980 0.004 0.008 0.008
#> GSM52606     3  0.4992      0.659 0.476 0.000 0.524 0.000
#> GSM52607     3  0.4992      0.659 0.476 0.000 0.524 0.000
#> GSM52608     3  0.4992      0.659 0.476 0.000 0.524 0.000
#> GSM52609     3  0.4992      0.659 0.476 0.000 0.524 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     5   0.541      0.561 0.000 0.000 0.064 0.380 0.556
#> GSM52557     2   0.000      0.768 0.000 1.000 0.000 0.000 0.000
#> GSM52558     2   0.000      0.768 0.000 1.000 0.000 0.000 0.000
#> GSM52559     2   0.350      0.660 0.000 0.808 0.004 0.016 0.172
#> GSM52560     2   0.000      0.768 0.000 1.000 0.000 0.000 0.000
#> GSM52561     2   0.648      0.493 0.064 0.652 0.180 0.088 0.016
#> GSM52562     2   0.000      0.768 0.000 1.000 0.000 0.000 0.000
#> GSM52563     2   0.244      0.731 0.000 0.908 0.008 0.040 0.044
#> GSM52564     1   0.726      0.519 0.524 0.068 0.300 0.092 0.016
#> GSM52565     5   0.497      0.622 0.000 0.280 0.000 0.060 0.660
#> GSM52566     2   0.350      0.660 0.000 0.808 0.004 0.016 0.172
#> GSM52567     5   0.289      0.644 0.000 0.176 0.000 0.000 0.824
#> GSM52568     2   0.413      0.440 0.000 0.720 0.000 0.020 0.260
#> GSM52569     5   0.443      0.605 0.000 0.000 0.016 0.336 0.648
#> GSM52570     5   0.377      0.592 0.000 0.296 0.000 0.000 0.704
#> GSM52571     1   0.453      0.732 0.596 0.000 0.392 0.012 0.000
#> GSM52572     4   0.629      0.195 0.432 0.016 0.096 0.456 0.000
#> GSM52573     3   0.419      0.594 0.404 0.000 0.596 0.000 0.000
#> GSM52574     3   0.419      0.594 0.404 0.000 0.596 0.000 0.000
#> GSM52575     3   0.477     -0.442 0.420 0.000 0.560 0.020 0.000
#> GSM52576     3   0.477     -0.442 0.420 0.000 0.560 0.020 0.000
#> GSM52577     1   0.474      0.705 0.576 0.000 0.404 0.020 0.000
#> GSM52578     3   0.554      0.467 0.220 0.008 0.660 0.112 0.000
#> GSM52579     3   0.554      0.467 0.220 0.008 0.660 0.112 0.000
#> GSM52580     4   0.587      0.541 0.064 0.016 0.388 0.532 0.000
#> GSM52581     4   0.587      0.541 0.064 0.016 0.388 0.532 0.000
#> GSM52582     3   0.292      0.233 0.016 0.000 0.852 0.132 0.000
#> GSM52583     3   0.287      0.230 0.016 0.000 0.856 0.128 0.000
#> GSM52584     3   0.438      0.051 0.048 0.008 0.760 0.184 0.000
#> GSM52585     4   0.581      0.532 0.064 0.016 0.360 0.560 0.000
#> GSM52586     4   0.629      0.195 0.432 0.016 0.096 0.456 0.000
#> GSM52587     2   0.648      0.493 0.064 0.652 0.180 0.088 0.016
#> GSM52588     1   0.433      0.733 0.596 0.000 0.400 0.004 0.000
#> GSM52589     1   0.474      0.701 0.572 0.000 0.408 0.020 0.000
#> GSM52590     1   0.088      0.384 0.968 0.000 0.000 0.032 0.000
#> GSM52591     1   0.624      0.111 0.500 0.000 0.156 0.344 0.000
#> GSM52592     1   0.453      0.732 0.596 0.000 0.392 0.012 0.000
#> GSM52593     1   0.433      0.733 0.596 0.000 0.400 0.004 0.000
#> GSM52594     1   0.433      0.733 0.596 0.000 0.400 0.004 0.000
#> GSM52595     1   0.433      0.733 0.596 0.000 0.400 0.004 0.000
#> GSM52596     1   0.433      0.733 0.596 0.000 0.400 0.004 0.000
#> GSM52597     1   0.624      0.111 0.500 0.000 0.156 0.344 0.000
#> GSM52598     1   0.453      0.732 0.596 0.000 0.392 0.012 0.000
#> GSM52599     1   0.453      0.732 0.596 0.000 0.392 0.012 0.000
#> GSM52600     1   0.453      0.732 0.596 0.000 0.392 0.012 0.000
#> GSM52601     1   0.538      0.687 0.568 0.000 0.368 0.064 0.000
#> GSM52602     1   0.088      0.384 0.968 0.000 0.000 0.032 0.000
#> GSM52603     1   0.088      0.384 0.968 0.000 0.000 0.032 0.000
#> GSM52604     1   0.088      0.384 0.968 0.000 0.000 0.032 0.000
#> GSM52605     1   0.088      0.384 0.968 0.000 0.000 0.032 0.000
#> GSM52606     3   0.419      0.594 0.404 0.000 0.596 0.000 0.000
#> GSM52607     3   0.419      0.594 0.404 0.000 0.596 0.000 0.000
#> GSM52608     3   0.419      0.594 0.404 0.000 0.596 0.000 0.000
#> GSM52609     3   0.419      0.594 0.404 0.000 0.596 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.0146     0.8878 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM52557     6  0.0000     0.7960 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52558     6  0.0000     0.7960 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52559     6  0.2730     0.6908 0.000 0.192 0.000 0.000 0.000 0.808
#> GSM52560     6  0.0000     0.7960 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52561     6  0.5294     0.5250 0.240 0.000 0.020 0.076 0.012 0.652
#> GSM52562     6  0.0000     0.7960 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52563     6  0.2009     0.7647 0.000 0.068 0.000 0.024 0.000 0.908
#> GSM52564     1  0.3789     0.6867 0.820 0.000 0.020 0.080 0.012 0.068
#> GSM52565     5  0.8925    -0.3205 0.000 0.164 0.188 0.204 0.252 0.192
#> GSM52566     6  0.2730     0.6908 0.000 0.192 0.000 0.000 0.000 0.808
#> GSM52567     5  0.8342    -0.3129 0.000 0.124 0.204 0.256 0.340 0.076
#> GSM52568     6  0.5015     0.5512 0.000 0.004 0.032 0.092 0.168 0.704
#> GSM52569     2  0.2858     0.8870 0.000 0.864 0.028 0.016 0.092 0.000
#> GSM52570     5  0.7708    -0.2303 0.000 0.004 0.208 0.256 0.340 0.192
#> GSM52571     1  0.0146     0.8222 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52572     1  0.3862     0.1474 0.524 0.000 0.000 0.476 0.000 0.000
#> GSM52573     3  0.4640     0.6979 0.048 0.000 0.576 0.000 0.376 0.000
#> GSM52574     3  0.4640     0.6979 0.048 0.000 0.576 0.000 0.376 0.000
#> GSM52575     1  0.3678     0.5602 0.748 0.000 0.228 0.008 0.016 0.000
#> GSM52576     1  0.3678     0.5602 0.748 0.000 0.228 0.008 0.016 0.000
#> GSM52577     1  0.1349     0.7927 0.940 0.000 0.056 0.004 0.000 0.000
#> GSM52578     3  0.6385     0.5472 0.116 0.000 0.572 0.128 0.184 0.000
#> GSM52579     3  0.6385     0.5472 0.116 0.000 0.572 0.128 0.184 0.000
#> GSM52580     4  0.4383     0.9809 0.108 0.000 0.176 0.716 0.000 0.000
#> GSM52581     4  0.4383     0.9809 0.108 0.000 0.176 0.716 0.000 0.000
#> GSM52582     3  0.5781    -0.0285 0.184 0.000 0.540 0.268 0.008 0.000
#> GSM52583     3  0.5804    -0.0327 0.188 0.000 0.536 0.268 0.008 0.000
#> GSM52584     3  0.6160    -0.2948 0.224 0.000 0.428 0.340 0.008 0.000
#> GSM52585     4  0.4131     0.9622 0.100 0.000 0.156 0.744 0.000 0.000
#> GSM52586     1  0.3862     0.1474 0.524 0.000 0.000 0.476 0.000 0.000
#> GSM52587     6  0.5294     0.5250 0.240 0.000 0.020 0.076 0.012 0.652
#> GSM52588     1  0.0363     0.8217 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM52589     1  0.1462     0.7908 0.936 0.000 0.056 0.008 0.000 0.000
#> GSM52590     5  0.3672     0.4790 0.368 0.000 0.000 0.000 0.632 0.000
#> GSM52591     1  0.3531     0.5006 0.672 0.000 0.000 0.328 0.000 0.000
#> GSM52592     1  0.0146     0.8222 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52593     1  0.0363     0.8217 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM52594     1  0.0363     0.8217 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM52595     1  0.0363     0.8217 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM52596     1  0.0363     0.8217 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM52597     1  0.3531     0.5006 0.672 0.000 0.000 0.328 0.000 0.000
#> GSM52598     1  0.0146     0.8222 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52599     1  0.0146     0.8222 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52600     1  0.0146     0.8222 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52601     1  0.1075     0.7988 0.952 0.000 0.000 0.048 0.000 0.000
#> GSM52602     5  0.3672     0.4790 0.368 0.000 0.000 0.000 0.632 0.000
#> GSM52603     5  0.3672     0.4790 0.368 0.000 0.000 0.000 0.632 0.000
#> GSM52604     5  0.3672     0.4790 0.368 0.000 0.000 0.000 0.632 0.000
#> GSM52605     5  0.3672     0.4790 0.368 0.000 0.000 0.000 0.632 0.000
#> GSM52606     3  0.4640     0.6979 0.048 0.000 0.576 0.000 0.376 0.000
#> GSM52607     3  0.4640     0.6979 0.048 0.000 0.576 0.000 0.376 0.000
#> GSM52608     3  0.4640     0.6979 0.048 0.000 0.576 0.000 0.376 0.000
#> GSM52609     3  0.4640     0.6979 0.048 0.000 0.576 0.000 0.376 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) tissue(p) k
#> SD:hclust 52         8.13e-11  1.91e-04 2
#> SD:hclust 51         1.10e-10  2.54e-07 3
#> SD:hclust 36         5.40e-07  1.04e-04 4
#> SD:hclust 35         3.03e-06  2.27e-05 5
#> SD:hclust 41         1.83e-06  2.09e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.631           0.920       0.940         0.3985 0.628   0.628
#> 3 3 0.583           0.869       0.882         0.5375 0.727   0.566
#> 4 4 0.546           0.479       0.793         0.1358 0.955   0.880
#> 5 5 0.718           0.680       0.767         0.1014 0.890   0.692
#> 6 6 0.722           0.687       0.793         0.0516 0.925   0.717

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.1843      0.941 0.028 0.972
#> GSM52557     2  0.2423      0.995 0.040 0.960
#> GSM52558     2  0.2423      0.995 0.040 0.960
#> GSM52559     2  0.2423      0.995 0.040 0.960
#> GSM52560     2  0.2423      0.995 0.040 0.960
#> GSM52561     1  0.9795      0.262 0.584 0.416
#> GSM52562     2  0.2423      0.995 0.040 0.960
#> GSM52563     2  0.2423      0.995 0.040 0.960
#> GSM52564     1  0.1414      0.934 0.980 0.020
#> GSM52565     2  0.2423      0.995 0.040 0.960
#> GSM52566     2  0.2423      0.995 0.040 0.960
#> GSM52567     2  0.2423      0.995 0.040 0.960
#> GSM52568     2  0.2423      0.995 0.040 0.960
#> GSM52569     2  0.2423      0.995 0.040 0.960
#> GSM52570     2  0.2423      0.995 0.040 0.960
#> GSM52571     1  0.1414      0.934 0.980 0.020
#> GSM52572     1  0.1414      0.934 0.980 0.020
#> GSM52573     1  0.5842      0.878 0.860 0.140
#> GSM52574     1  0.5842      0.878 0.860 0.140
#> GSM52575     1  0.2043      0.918 0.968 0.032
#> GSM52576     1  0.2043      0.918 0.968 0.032
#> GSM52577     1  0.2043      0.918 0.968 0.032
#> GSM52578     1  0.5737      0.881 0.864 0.136
#> GSM52579     1  0.5737      0.881 0.864 0.136
#> GSM52580     1  0.1843      0.931 0.972 0.028
#> GSM52581     1  0.1843      0.931 0.972 0.028
#> GSM52582     1  0.1843      0.921 0.972 0.028
#> GSM52583     1  0.1843      0.931 0.972 0.028
#> GSM52584     1  0.1843      0.931 0.972 0.028
#> GSM52585     1  0.1843      0.931 0.972 0.028
#> GSM52586     1  0.1414      0.934 0.980 0.020
#> GSM52587     1  0.4815      0.880 0.896 0.104
#> GSM52588     1  0.1184      0.934 0.984 0.016
#> GSM52589     1  0.0938      0.933 0.988 0.012
#> GSM52590     1  0.0000      0.930 1.000 0.000
#> GSM52591     1  0.1414      0.934 0.980 0.020
#> GSM52592     1  0.1414      0.934 0.980 0.020
#> GSM52593     1  0.1414      0.934 0.980 0.020
#> GSM52594     1  0.1414      0.934 0.980 0.020
#> GSM52595     1  0.1414      0.934 0.980 0.020
#> GSM52596     1  0.1414      0.934 0.980 0.020
#> GSM52597     1  0.1414      0.934 0.980 0.020
#> GSM52598     1  0.1414      0.934 0.980 0.020
#> GSM52599     1  0.1414      0.934 0.980 0.020
#> GSM52600     1  0.1414      0.934 0.980 0.020
#> GSM52601     1  0.1414      0.934 0.980 0.020
#> GSM52602     1  0.5842      0.878 0.860 0.140
#> GSM52603     1  0.5842      0.878 0.860 0.140
#> GSM52604     1  0.5842      0.878 0.860 0.140
#> GSM52605     1  0.5842      0.878 0.860 0.140
#> GSM52606     1  0.5842      0.878 0.860 0.140
#> GSM52607     1  0.5842      0.878 0.860 0.140
#> GSM52608     1  0.5842      0.878 0.860 0.140
#> GSM52609     1  0.5842      0.878 0.860 0.140

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2   0.103      0.959 0.000 0.976 0.024
#> GSM52557     2   0.398      0.934 0.068 0.884 0.048
#> GSM52558     2   0.398      0.934 0.068 0.884 0.048
#> GSM52559     2   0.183      0.963 0.008 0.956 0.036
#> GSM52560     2   0.206      0.961 0.008 0.948 0.044
#> GSM52561     1   0.642      0.627 0.752 0.180 0.068
#> GSM52562     2   0.398      0.934 0.068 0.884 0.048
#> GSM52563     2   0.101      0.965 0.008 0.980 0.012
#> GSM52564     1   0.240      0.859 0.932 0.004 0.064
#> GSM52565     2   0.132      0.965 0.008 0.972 0.020
#> GSM52566     2   0.183      0.963 0.008 0.956 0.036
#> GSM52567     2   0.132      0.965 0.008 0.972 0.020
#> GSM52568     2   0.101      0.966 0.008 0.980 0.012
#> GSM52569     2   0.132      0.965 0.008 0.972 0.020
#> GSM52570     2   0.132      0.965 0.008 0.972 0.020
#> GSM52571     1   0.463      0.863 0.808 0.004 0.188
#> GSM52572     1   0.220      0.863 0.940 0.004 0.056
#> GSM52573     3   0.327      0.915 0.104 0.004 0.892
#> GSM52574     3   0.327      0.915 0.104 0.004 0.892
#> GSM52575     3   0.312      0.913 0.108 0.000 0.892
#> GSM52576     3   0.556      0.677 0.300 0.000 0.700
#> GSM52577     3   0.565      0.654 0.312 0.000 0.688
#> GSM52578     3   0.520      0.818 0.236 0.004 0.760
#> GSM52579     3   0.520      0.818 0.236 0.004 0.760
#> GSM52580     1   0.000      0.831 1.000 0.000 0.000
#> GSM52581     1   0.000      0.831 1.000 0.000 0.000
#> GSM52582     1   0.341      0.839 0.876 0.000 0.124
#> GSM52583     1   0.226      0.860 0.932 0.000 0.068
#> GSM52584     1   0.226      0.860 0.932 0.000 0.068
#> GSM52585     1   0.000      0.831 1.000 0.000 0.000
#> GSM52586     1   0.220      0.863 0.940 0.004 0.056
#> GSM52587     1   0.195      0.798 0.952 0.040 0.008
#> GSM52588     1   0.463      0.863 0.808 0.004 0.188
#> GSM52589     1   0.463      0.863 0.808 0.004 0.188
#> GSM52590     1   0.672      0.409 0.568 0.012 0.420
#> GSM52591     1   0.220      0.863 0.940 0.004 0.056
#> GSM52592     1   0.463      0.863 0.808 0.004 0.188
#> GSM52593     1   0.463      0.863 0.808 0.004 0.188
#> GSM52594     1   0.463      0.863 0.808 0.004 0.188
#> GSM52595     1   0.458      0.865 0.812 0.004 0.184
#> GSM52596     1   0.463      0.863 0.808 0.004 0.188
#> GSM52597     1   0.220      0.863 0.940 0.004 0.056
#> GSM52598     1   0.429      0.869 0.832 0.004 0.164
#> GSM52599     1   0.463      0.863 0.808 0.004 0.188
#> GSM52600     1   0.458      0.865 0.812 0.004 0.184
#> GSM52601     1   0.371      0.872 0.868 0.004 0.128
#> GSM52602     3   0.296      0.891 0.080 0.008 0.912
#> GSM52603     3   0.296      0.891 0.080 0.008 0.912
#> GSM52604     3   0.296      0.891 0.080 0.008 0.912
#> GSM52605     3   0.296      0.891 0.080 0.008 0.912
#> GSM52606     3   0.327      0.915 0.104 0.004 0.892
#> GSM52607     3   0.327      0.915 0.104 0.004 0.892
#> GSM52608     3   0.327      0.915 0.104 0.004 0.892
#> GSM52609     3   0.327      0.915 0.104 0.004 0.892

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.0707      0.866 0.000 0.980 0.020 0.000
#> GSM52557     2  0.5030      0.797 0.004 0.640 0.004 0.352
#> GSM52558     2  0.5030      0.797 0.004 0.640 0.004 0.352
#> GSM52559     2  0.4284      0.854 0.000 0.780 0.020 0.200
#> GSM52560     2  0.4262      0.848 0.000 0.756 0.008 0.236
#> GSM52561     1  0.7982     -0.292 0.388 0.220 0.008 0.384
#> GSM52562     2  0.5030      0.797 0.004 0.640 0.004 0.352
#> GSM52563     2  0.0707      0.866 0.000 0.980 0.020 0.000
#> GSM52564     1  0.3636      0.337 0.820 0.000 0.008 0.172
#> GSM52565     2  0.1938      0.857 0.000 0.936 0.012 0.052
#> GSM52566     2  0.4284      0.854 0.000 0.780 0.020 0.200
#> GSM52567     2  0.1584      0.856 0.000 0.952 0.012 0.036
#> GSM52568     2  0.2408      0.866 0.000 0.896 0.000 0.104
#> GSM52569     2  0.1706      0.856 0.000 0.948 0.016 0.036
#> GSM52570     2  0.1938      0.857 0.000 0.936 0.012 0.052
#> GSM52571     1  0.1174      0.587 0.968 0.000 0.020 0.012
#> GSM52572     1  0.3300      0.406 0.848 0.000 0.008 0.144
#> GSM52573     3  0.2589      0.821 0.116 0.000 0.884 0.000
#> GSM52574     3  0.2589      0.821 0.116 0.000 0.884 0.000
#> GSM52575     3  0.3196      0.809 0.136 0.000 0.856 0.008
#> GSM52576     3  0.5290      0.279 0.476 0.000 0.516 0.008
#> GSM52577     1  0.5488     -0.208 0.532 0.000 0.452 0.016
#> GSM52578     3  0.6204      0.679 0.192 0.004 0.680 0.124
#> GSM52579     3  0.6204      0.679 0.192 0.004 0.680 0.124
#> GSM52580     1  0.5590     -0.813 0.524 0.000 0.020 0.456
#> GSM52581     1  0.5590     -0.813 0.524 0.000 0.020 0.456
#> GSM52582     1  0.6440     -0.516 0.564 0.000 0.080 0.356
#> GSM52583     1  0.5203     -0.447 0.636 0.000 0.016 0.348
#> GSM52584     1  0.5269     -0.499 0.620 0.000 0.016 0.364
#> GSM52585     1  0.5590     -0.813 0.524 0.000 0.020 0.456
#> GSM52586     1  0.3681      0.337 0.816 0.000 0.008 0.176
#> GSM52587     4  0.6018      0.000 0.468 0.016 0.016 0.500
#> GSM52588     1  0.1042      0.588 0.972 0.000 0.020 0.008
#> GSM52589     1  0.1174      0.585 0.968 0.000 0.020 0.012
#> GSM52590     1  0.7076      0.147 0.600 0.008 0.172 0.220
#> GSM52591     1  0.2737      0.466 0.888 0.000 0.008 0.104
#> GSM52592     1  0.1042      0.588 0.972 0.000 0.020 0.008
#> GSM52593     1  0.1174      0.587 0.968 0.000 0.020 0.012
#> GSM52594     1  0.1174      0.587 0.968 0.000 0.020 0.012
#> GSM52595     1  0.1174      0.587 0.968 0.000 0.020 0.012
#> GSM52596     1  0.1042      0.588 0.972 0.000 0.020 0.008
#> GSM52597     1  0.3300      0.406 0.848 0.000 0.008 0.144
#> GSM52598     1  0.0804      0.586 0.980 0.000 0.012 0.008
#> GSM52599     1  0.1174      0.587 0.968 0.000 0.020 0.012
#> GSM52600     1  0.1174      0.587 0.968 0.000 0.020 0.012
#> GSM52601     1  0.0672      0.578 0.984 0.000 0.008 0.008
#> GSM52602     3  0.6697      0.699 0.124 0.012 0.644 0.220
#> GSM52603     3  0.6697      0.699 0.124 0.012 0.644 0.220
#> GSM52604     3  0.6697      0.699 0.124 0.012 0.644 0.220
#> GSM52605     3  0.6697      0.699 0.124 0.012 0.644 0.220
#> GSM52606     3  0.2589      0.821 0.116 0.000 0.884 0.000
#> GSM52607     3  0.2589      0.821 0.116 0.000 0.884 0.000
#> GSM52608     3  0.2589      0.821 0.116 0.000 0.884 0.000
#> GSM52609     3  0.2589      0.821 0.116 0.000 0.884 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4 p5
#> GSM52556     2  0.4623     0.7585 0.000 0.664 0.000 0.032 NA
#> GSM52557     2  0.3112     0.7011 0.000 0.856 0.000 0.100 NA
#> GSM52558     2  0.3112     0.7011 0.000 0.856 0.000 0.100 NA
#> GSM52559     2  0.1310     0.7551 0.000 0.956 0.000 0.020 NA
#> GSM52560     2  0.0510     0.7457 0.000 0.984 0.000 0.016 NA
#> GSM52561     2  0.7508     0.0624 0.180 0.480 0.000 0.264 NA
#> GSM52562     2  0.3112     0.7011 0.000 0.856 0.000 0.100 NA
#> GSM52563     2  0.4623     0.7585 0.000 0.664 0.000 0.032 NA
#> GSM52564     1  0.4701     0.5608 0.704 0.000 0.000 0.236 NA
#> GSM52565     2  0.4403     0.7372 0.000 0.560 0.000 0.004 NA
#> GSM52566     2  0.1310     0.7551 0.000 0.956 0.000 0.020 NA
#> GSM52567     2  0.4375     0.7371 0.000 0.576 0.000 0.004 NA
#> GSM52568     2  0.4452     0.7628 0.000 0.696 0.000 0.032 NA
#> GSM52569     2  0.4489     0.7354 0.000 0.572 0.000 0.008 NA
#> GSM52570     2  0.4403     0.7372 0.000 0.560 0.000 0.004 NA
#> GSM52571     1  0.0613     0.8033 0.984 0.000 0.004 0.004 NA
#> GSM52572     1  0.4136     0.6349 0.764 0.000 0.000 0.188 NA
#> GSM52573     3  0.0865     0.7333 0.024 0.000 0.972 0.000 NA
#> GSM52574     3  0.0865     0.7333 0.024 0.000 0.972 0.000 NA
#> GSM52575     3  0.2945     0.7014 0.044 0.000 0.884 0.016 NA
#> GSM52576     3  0.5900     0.2475 0.376 0.000 0.540 0.016 NA
#> GSM52577     1  0.6112    -0.0759 0.476 0.000 0.432 0.020 NA
#> GSM52578     3  0.6088     0.5730 0.052 0.004 0.672 0.164 NA
#> GSM52579     3  0.6088     0.5730 0.052 0.004 0.672 0.164 NA
#> GSM52580     4  0.3231     0.8990 0.196 0.000 0.000 0.800 NA
#> GSM52581     4  0.3231     0.8975 0.196 0.000 0.000 0.800 NA
#> GSM52582     4  0.5566     0.8252 0.216 0.000 0.068 0.680 NA
#> GSM52583     4  0.4526     0.8248 0.300 0.000 0.000 0.672 NA
#> GSM52584     4  0.4430     0.8604 0.256 0.000 0.000 0.708 NA
#> GSM52585     4  0.3231     0.8975 0.196 0.000 0.000 0.800 NA
#> GSM52586     1  0.4689     0.5191 0.688 0.000 0.000 0.264 NA
#> GSM52587     4  0.3653     0.8735 0.164 0.016 0.000 0.808 NA
#> GSM52588     1  0.1243     0.7940 0.960 0.000 0.004 0.008 NA
#> GSM52589     1  0.1934     0.7716 0.928 0.000 0.004 0.016 NA
#> GSM52590     1  0.7545     0.0482 0.412 0.000 0.080 0.144 NA
#> GSM52591     1  0.3882     0.6625 0.788 0.000 0.000 0.168 NA
#> GSM52592     1  0.0451     0.8041 0.988 0.000 0.004 0.000 NA
#> GSM52593     1  0.1074     0.8036 0.968 0.000 0.004 0.016 NA
#> GSM52594     1  0.1074     0.8036 0.968 0.000 0.004 0.016 NA
#> GSM52595     1  0.1074     0.8036 0.968 0.000 0.004 0.016 NA
#> GSM52596     1  0.0740     0.8042 0.980 0.000 0.004 0.008 NA
#> GSM52597     1  0.4031     0.6433 0.772 0.000 0.000 0.184 NA
#> GSM52598     1  0.0579     0.8028 0.984 0.000 0.000 0.008 NA
#> GSM52599     1  0.0613     0.8033 0.984 0.000 0.004 0.004 NA
#> GSM52600     1  0.0613     0.8033 0.984 0.000 0.004 0.004 NA
#> GSM52601     1  0.1310     0.7938 0.956 0.000 0.000 0.024 NA
#> GSM52602     3  0.7511     0.4800 0.080 0.000 0.424 0.140 NA
#> GSM52603     3  0.7511     0.4800 0.080 0.000 0.424 0.140 NA
#> GSM52604     3  0.7511     0.4800 0.080 0.000 0.424 0.140 NA
#> GSM52605     3  0.7511     0.4800 0.080 0.000 0.424 0.140 NA
#> GSM52606     3  0.0992     0.7312 0.024 0.000 0.968 0.000 NA
#> GSM52607     3  0.0703     0.7334 0.024 0.000 0.976 0.000 NA
#> GSM52608     3  0.0703     0.7334 0.024 0.000 0.976 0.000 NA
#> GSM52609     3  0.0703     0.7334 0.024 0.000 0.976 0.000 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.3498     0.6332 0.000 0.836 0.004 0.024 0.064 0.072
#> GSM52557     6  0.4230     0.7079 0.000 0.324 0.000 0.024 0.004 0.648
#> GSM52558     6  0.4230     0.7079 0.000 0.324 0.000 0.024 0.004 0.648
#> GSM52559     2  0.5386    -0.2870 0.000 0.496 0.004 0.020 0.052 0.428
#> GSM52560     6  0.4474     0.4184 0.000 0.440 0.000 0.012 0.012 0.536
#> GSM52561     6  0.6500     0.3463 0.104 0.088 0.000 0.132 0.052 0.624
#> GSM52562     6  0.4230     0.7079 0.000 0.324 0.000 0.024 0.004 0.648
#> GSM52563     2  0.3440     0.6347 0.000 0.840 0.004 0.024 0.060 0.072
#> GSM52564     1  0.5799     0.6203 0.628 0.000 0.000 0.172 0.060 0.140
#> GSM52565     2  0.1232     0.6694 0.000 0.956 0.000 0.004 0.024 0.016
#> GSM52566     2  0.5386    -0.2870 0.000 0.496 0.004 0.020 0.052 0.428
#> GSM52567     2  0.0146     0.6773 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM52568     2  0.3954     0.3560 0.000 0.688 0.000 0.008 0.012 0.292
#> GSM52569     2  0.0806     0.6758 0.000 0.972 0.000 0.008 0.020 0.000
#> GSM52570     2  0.1237     0.6681 0.000 0.956 0.000 0.004 0.020 0.020
#> GSM52571     1  0.1350     0.8259 0.952 0.000 0.000 0.008 0.020 0.020
#> GSM52572     1  0.5275     0.6677 0.684 0.000 0.000 0.152 0.052 0.112
#> GSM52573     3  0.1293     0.7678 0.004 0.000 0.956 0.016 0.004 0.020
#> GSM52574     3  0.1293     0.7678 0.004 0.000 0.956 0.016 0.004 0.020
#> GSM52575     3  0.3986     0.7000 0.024 0.000 0.816 0.028 0.068 0.064
#> GSM52576     3  0.6602     0.3868 0.296 0.000 0.528 0.028 0.072 0.076
#> GSM52577     1  0.7125     0.0105 0.464 0.000 0.320 0.040 0.080 0.096
#> GSM52578     3  0.6977     0.4750 0.036 0.000 0.536 0.220 0.076 0.132
#> GSM52579     3  0.6977     0.4750 0.036 0.000 0.536 0.220 0.076 0.132
#> GSM52580     4  0.1812     0.9320 0.080 0.000 0.000 0.912 0.000 0.008
#> GSM52581     4  0.2094     0.9297 0.080 0.000 0.000 0.900 0.000 0.020
#> GSM52582     4  0.3292     0.9022 0.104 0.000 0.016 0.840 0.036 0.004
#> GSM52583     4  0.3155     0.9003 0.132 0.000 0.000 0.828 0.036 0.004
#> GSM52584     4  0.2959     0.9193 0.104 0.000 0.000 0.852 0.036 0.008
#> GSM52585     4  0.2176     0.9284 0.080 0.000 0.000 0.896 0.000 0.024
#> GSM52586     1  0.5607     0.6223 0.644 0.000 0.000 0.180 0.052 0.124
#> GSM52587     4  0.2842     0.9080 0.068 0.000 0.000 0.872 0.020 0.040
#> GSM52588     1  0.2177     0.8086 0.908 0.000 0.000 0.008 0.032 0.052
#> GSM52589     1  0.3617     0.7505 0.816 0.000 0.000 0.016 0.088 0.080
#> GSM52590     5  0.4196     0.6410 0.240 0.000 0.040 0.008 0.712 0.000
#> GSM52591     1  0.4988     0.6908 0.708 0.000 0.000 0.140 0.040 0.112
#> GSM52592     1  0.0363     0.8313 0.988 0.000 0.000 0.000 0.000 0.012
#> GSM52593     1  0.1296     0.8295 0.952 0.000 0.000 0.012 0.004 0.032
#> GSM52594     1  0.1296     0.8295 0.952 0.000 0.000 0.012 0.004 0.032
#> GSM52595     1  0.1296     0.8295 0.952 0.000 0.000 0.012 0.004 0.032
#> GSM52596     1  0.1116     0.8286 0.960 0.000 0.000 0.008 0.004 0.028
#> GSM52597     1  0.5038     0.6836 0.704 0.000 0.000 0.148 0.044 0.104
#> GSM52598     1  0.1167     0.8292 0.960 0.000 0.000 0.008 0.012 0.020
#> GSM52599     1  0.1350     0.8259 0.952 0.000 0.000 0.008 0.020 0.020
#> GSM52600     1  0.1350     0.8259 0.952 0.000 0.000 0.008 0.020 0.020
#> GSM52601     1  0.1605     0.8285 0.940 0.000 0.000 0.016 0.012 0.032
#> GSM52602     5  0.4201     0.8963 0.028 0.000 0.252 0.008 0.708 0.004
#> GSM52603     5  0.4379     0.8947 0.028 0.000 0.248 0.012 0.704 0.008
#> GSM52604     5  0.4201     0.8963 0.028 0.000 0.252 0.008 0.708 0.004
#> GSM52605     5  0.4177     0.8966 0.028 0.000 0.248 0.008 0.712 0.004
#> GSM52606     3  0.0146     0.7758 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM52607     3  0.0146     0.7758 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM52608     3  0.0146     0.7758 0.004 0.000 0.996 0.000 0.000 0.000
#> GSM52609     3  0.0146     0.7758 0.004 0.000 0.996 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) tissue(p) k
#> SD:kmeans 53         5.20e-11  1.38e-04 2
#> SD:kmeans 53         2.89e-10  5.59e-06 3
#> SD:kmeans 38         5.60e-09  8.28e-04 4
#> SD:kmeans 46         4.99e-09  4.41e-06 5
#> SD:kmeans 45         1.84e-07  3.41e-12 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.477           0.639       0.846         0.4974 0.516   0.516
#> 3 3 1.000           0.990       0.995         0.3465 0.673   0.442
#> 4 4 0.784           0.851       0.914         0.1136 0.912   0.739
#> 5 5 0.839           0.848       0.899         0.0597 0.962   0.851
#> 6 6 0.805           0.724       0.851         0.0436 0.979   0.904

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0000      0.806 0.000 1.000
#> GSM52557     2  0.0000      0.806 0.000 1.000
#> GSM52558     2  0.0000      0.806 0.000 1.000
#> GSM52559     2  0.0000      0.806 0.000 1.000
#> GSM52560     2  0.0000      0.806 0.000 1.000
#> GSM52561     2  0.3114      0.771 0.056 0.944
#> GSM52562     2  0.0000      0.806 0.000 1.000
#> GSM52563     2  0.0000      0.806 0.000 1.000
#> GSM52564     2  0.9970      0.305 0.468 0.532
#> GSM52565     2  0.0000      0.806 0.000 1.000
#> GSM52566     2  0.0000      0.806 0.000 1.000
#> GSM52567     2  0.0000      0.806 0.000 1.000
#> GSM52568     2  0.0000      0.806 0.000 1.000
#> GSM52569     2  0.0000      0.806 0.000 1.000
#> GSM52570     2  0.0000      0.806 0.000 1.000
#> GSM52571     1  0.0000      0.764 1.000 0.000
#> GSM52572     1  0.4161      0.686 0.916 0.084
#> GSM52573     1  0.9933      0.403 0.548 0.452
#> GSM52574     1  0.9933      0.403 0.548 0.452
#> GSM52575     1  0.0000      0.764 1.000 0.000
#> GSM52576     1  0.0000      0.764 1.000 0.000
#> GSM52577     1  0.0000      0.764 1.000 0.000
#> GSM52578     1  0.9954      0.392 0.540 0.460
#> GSM52579     2  0.8081      0.434 0.248 0.752
#> GSM52580     2  0.9970      0.305 0.468 0.532
#> GSM52581     2  0.9970      0.305 0.468 0.532
#> GSM52582     1  0.0000      0.764 1.000 0.000
#> GSM52583     1  0.0000      0.764 1.000 0.000
#> GSM52584     1  0.0000      0.764 1.000 0.000
#> GSM52585     2  0.9970      0.305 0.468 0.532
#> GSM52586     2  0.9970      0.305 0.468 0.532
#> GSM52587     2  0.5737      0.704 0.136 0.864
#> GSM52588     1  0.0000      0.764 1.000 0.000
#> GSM52589     1  0.0000      0.764 1.000 0.000
#> GSM52590     1  0.0938      0.757 0.988 0.012
#> GSM52591     1  0.6973      0.545 0.812 0.188
#> GSM52592     1  0.0000      0.764 1.000 0.000
#> GSM52593     1  0.0000      0.764 1.000 0.000
#> GSM52594     1  0.0000      0.764 1.000 0.000
#> GSM52595     1  0.0000      0.764 1.000 0.000
#> GSM52596     1  0.0000      0.764 1.000 0.000
#> GSM52597     1  0.6973      0.545 0.812 0.188
#> GSM52598     1  0.0000      0.764 1.000 0.000
#> GSM52599     1  0.0000      0.764 1.000 0.000
#> GSM52600     1  0.0000      0.764 1.000 0.000
#> GSM52601     1  0.0000      0.764 1.000 0.000
#> GSM52602     1  0.9970      0.381 0.532 0.468
#> GSM52603     1  0.9970      0.381 0.532 0.468
#> GSM52604     1  0.9970      0.381 0.532 0.468
#> GSM52605     1  0.9970      0.381 0.532 0.468
#> GSM52606     1  0.9944      0.398 0.544 0.456
#> GSM52607     1  0.9954      0.393 0.540 0.460
#> GSM52608     1  0.9944      0.398 0.544 0.456
#> GSM52609     1  0.9944      0.398 0.544 0.456

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52557     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52558     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52559     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52560     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52561     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52562     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52563     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52564     1  0.1163      0.972 0.972 0.028 0.000
#> GSM52565     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52566     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52567     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52568     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52569     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52570     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52571     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52572     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52573     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52574     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52575     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52576     3  0.0424      0.980 0.008 0.000 0.992
#> GSM52577     3  0.0747      0.974 0.016 0.000 0.984
#> GSM52578     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52579     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52580     1  0.0237      0.995 0.996 0.004 0.000
#> GSM52581     1  0.0237      0.995 0.996 0.004 0.000
#> GSM52582     3  0.3412      0.860 0.124 0.000 0.876
#> GSM52583     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52584     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52585     1  0.0237      0.995 0.996 0.004 0.000
#> GSM52586     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52587     2  0.0000      1.000 0.000 1.000 0.000
#> GSM52588     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52589     1  0.0592      0.987 0.988 0.000 0.012
#> GSM52590     3  0.2165      0.928 0.064 0.000 0.936
#> GSM52591     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52592     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52593     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52594     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52595     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52596     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52597     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52598     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52599     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52600     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52601     1  0.0000      0.998 1.000 0.000 0.000
#> GSM52602     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52603     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52604     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52605     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52606     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52607     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52608     3  0.0000      0.985 0.000 0.000 1.000
#> GSM52609     3  0.0000      0.985 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52557     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52558     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52559     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52560     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52561     2  0.1389      0.947 0.000 0.952 0.000 0.048
#> GSM52562     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52563     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52564     1  0.3688      0.768 0.792 0.000 0.000 0.208
#> GSM52565     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52566     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52567     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52568     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52569     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52570     2  0.0000      0.996 0.000 1.000 0.000 0.000
#> GSM52571     1  0.0336      0.907 0.992 0.000 0.000 0.008
#> GSM52572     1  0.3528      0.782 0.808 0.000 0.000 0.192
#> GSM52573     3  0.0000      0.844 0.000 0.000 1.000 0.000
#> GSM52574     3  0.0000      0.844 0.000 0.000 1.000 0.000
#> GSM52575     3  0.0592      0.839 0.016 0.000 0.984 0.000
#> GSM52576     3  0.3852      0.703 0.192 0.000 0.800 0.008
#> GSM52577     3  0.4741      0.531 0.328 0.000 0.668 0.004
#> GSM52578     3  0.4072      0.616 0.000 0.000 0.748 0.252
#> GSM52579     3  0.4252      0.612 0.000 0.004 0.744 0.252
#> GSM52580     4  0.2921      0.879 0.140 0.000 0.000 0.860
#> GSM52581     4  0.2921      0.879 0.140 0.000 0.000 0.860
#> GSM52582     4  0.3900      0.714 0.020 0.000 0.164 0.816
#> GSM52583     4  0.3569      0.833 0.196 0.000 0.000 0.804
#> GSM52584     4  0.2973      0.876 0.144 0.000 0.000 0.856
#> GSM52585     4  0.2868      0.880 0.136 0.000 0.000 0.864
#> GSM52586     1  0.4277      0.651 0.720 0.000 0.000 0.280
#> GSM52587     4  0.3942      0.648 0.000 0.236 0.000 0.764
#> GSM52588     1  0.1302      0.889 0.956 0.000 0.000 0.044
#> GSM52589     1  0.5113      0.677 0.760 0.000 0.088 0.152
#> GSM52590     3  0.7202      0.243 0.396 0.000 0.464 0.140
#> GSM52591     1  0.3024      0.823 0.852 0.000 0.000 0.148
#> GSM52592     1  0.0188      0.908 0.996 0.000 0.000 0.004
#> GSM52593     1  0.0000      0.908 1.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.908 1.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.908 1.000 0.000 0.000 0.000
#> GSM52596     1  0.0188      0.907 0.996 0.000 0.000 0.004
#> GSM52597     1  0.3024      0.823 0.852 0.000 0.000 0.148
#> GSM52598     1  0.0469      0.907 0.988 0.000 0.000 0.012
#> GSM52599     1  0.0336      0.907 0.992 0.000 0.000 0.008
#> GSM52600     1  0.0336      0.907 0.992 0.000 0.000 0.008
#> GSM52601     1  0.0000      0.908 1.000 0.000 0.000 0.000
#> GSM52602     3  0.2814      0.813 0.000 0.000 0.868 0.132
#> GSM52603     3  0.3142      0.809 0.000 0.008 0.860 0.132
#> GSM52604     3  0.2814      0.813 0.000 0.000 0.868 0.132
#> GSM52605     3  0.2814      0.813 0.000 0.000 0.868 0.132
#> GSM52606     3  0.0000      0.844 0.000 0.000 1.000 0.000
#> GSM52607     3  0.0000      0.844 0.000 0.000 1.000 0.000
#> GSM52608     3  0.0000      0.844 0.000 0.000 1.000 0.000
#> GSM52609     3  0.0000      0.844 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.0451      0.965 0.000 0.988 0.004 0.000 0.008
#> GSM52557     2  0.1668      0.953 0.000 0.940 0.000 0.028 0.032
#> GSM52558     2  0.1668      0.953 0.000 0.940 0.000 0.028 0.032
#> GSM52559     2  0.1012      0.962 0.000 0.968 0.000 0.012 0.020
#> GSM52560     2  0.0579      0.965 0.000 0.984 0.000 0.008 0.008
#> GSM52561     2  0.4028      0.814 0.004 0.804 0.004 0.132 0.056
#> GSM52562     2  0.1668      0.953 0.000 0.940 0.000 0.028 0.032
#> GSM52563     2  0.0290      0.966 0.000 0.992 0.000 0.000 0.008
#> GSM52564     1  0.5991      0.462 0.548 0.008 0.008 0.364 0.072
#> GSM52565     2  0.0290      0.966 0.000 0.992 0.000 0.000 0.008
#> GSM52566     2  0.1012      0.962 0.000 0.968 0.000 0.012 0.020
#> GSM52567     2  0.0290      0.966 0.000 0.992 0.000 0.000 0.008
#> GSM52568     2  0.0451      0.966 0.000 0.988 0.000 0.004 0.008
#> GSM52569     2  0.0290      0.966 0.000 0.992 0.000 0.000 0.008
#> GSM52570     2  0.0290      0.966 0.000 0.992 0.000 0.000 0.008
#> GSM52571     1  0.0912      0.833 0.972 0.000 0.012 0.000 0.016
#> GSM52572     1  0.5120      0.619 0.648 0.000 0.004 0.292 0.056
#> GSM52573     3  0.1341      0.910 0.000 0.000 0.944 0.000 0.056
#> GSM52574     3  0.1270      0.912 0.000 0.000 0.948 0.000 0.052
#> GSM52575     3  0.1549      0.891 0.016 0.000 0.944 0.000 0.040
#> GSM52576     3  0.2632      0.844 0.072 0.000 0.892 0.004 0.032
#> GSM52577     3  0.3059      0.807 0.108 0.000 0.860 0.004 0.028
#> GSM52578     3  0.3073      0.831 0.004 0.000 0.856 0.116 0.024
#> GSM52579     3  0.2848      0.841 0.000 0.000 0.868 0.104 0.028
#> GSM52580     4  0.1041      0.852 0.032 0.000 0.000 0.964 0.004
#> GSM52581     4  0.0771      0.848 0.020 0.000 0.000 0.976 0.004
#> GSM52582     4  0.4639      0.737 0.056 0.000 0.140 0.772 0.032
#> GSM52583     4  0.4065      0.707 0.224 0.000 0.008 0.752 0.016
#> GSM52584     4  0.1924      0.843 0.064 0.000 0.004 0.924 0.008
#> GSM52585     4  0.0510      0.846 0.016 0.000 0.000 0.984 0.000
#> GSM52586     1  0.5591      0.428 0.528 0.000 0.000 0.396 0.076
#> GSM52587     4  0.3509      0.669 0.000 0.196 0.004 0.792 0.008
#> GSM52588     1  0.2625      0.806 0.900 0.000 0.040 0.012 0.048
#> GSM52589     1  0.6439      0.481 0.628 0.000 0.196 0.104 0.072
#> GSM52590     5  0.2813      0.880 0.064 0.000 0.048 0.004 0.884
#> GSM52591     1  0.4933      0.672 0.688 0.000 0.000 0.236 0.076
#> GSM52592     1  0.1012      0.839 0.968 0.000 0.000 0.012 0.020
#> GSM52593     1  0.0324      0.838 0.992 0.000 0.000 0.004 0.004
#> GSM52594     1  0.0451      0.839 0.988 0.000 0.000 0.008 0.004
#> GSM52595     1  0.0451      0.839 0.988 0.000 0.000 0.008 0.004
#> GSM52596     1  0.0613      0.838 0.984 0.000 0.008 0.004 0.004
#> GSM52597     1  0.4575      0.683 0.712 0.000 0.000 0.236 0.052
#> GSM52598     1  0.1918      0.830 0.928 0.000 0.000 0.036 0.036
#> GSM52599     1  0.0671      0.835 0.980 0.000 0.004 0.000 0.016
#> GSM52600     1  0.0798      0.835 0.976 0.000 0.008 0.000 0.016
#> GSM52601     1  0.0865      0.837 0.972 0.000 0.000 0.024 0.004
#> GSM52602     5  0.2377      0.969 0.000 0.000 0.128 0.000 0.872
#> GSM52603     5  0.2329      0.967 0.000 0.000 0.124 0.000 0.876
#> GSM52604     5  0.2377      0.969 0.000 0.000 0.128 0.000 0.872
#> GSM52605     5  0.2377      0.969 0.000 0.000 0.128 0.000 0.872
#> GSM52606     3  0.0963      0.914 0.000 0.000 0.964 0.000 0.036
#> GSM52607     3  0.1197      0.914 0.000 0.000 0.952 0.000 0.048
#> GSM52608     3  0.1121      0.914 0.000 0.000 0.956 0.000 0.044
#> GSM52609     3  0.1121      0.914 0.000 0.000 0.956 0.000 0.044

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.0748      0.885 0.000 0.976 0.004 0.000 0.004 0.016
#> GSM52557     2  0.3230      0.842 0.000 0.776 0.000 0.012 0.000 0.212
#> GSM52558     2  0.3259      0.840 0.000 0.772 0.000 0.012 0.000 0.216
#> GSM52559     2  0.1910      0.883 0.000 0.892 0.000 0.000 0.000 0.108
#> GSM52560     2  0.2135      0.882 0.000 0.872 0.000 0.000 0.000 0.128
#> GSM52561     2  0.5787      0.493 0.012 0.508 0.000 0.116 0.004 0.360
#> GSM52562     2  0.3259      0.840 0.000 0.772 0.000 0.012 0.000 0.216
#> GSM52563     2  0.0520      0.887 0.000 0.984 0.000 0.000 0.008 0.008
#> GSM52564     6  0.5910      0.576 0.420 0.008 0.000 0.136 0.004 0.432
#> GSM52565     2  0.0806      0.883 0.000 0.972 0.000 0.000 0.008 0.020
#> GSM52566     2  0.2178      0.880 0.000 0.868 0.000 0.000 0.000 0.132
#> GSM52567     2  0.0405      0.887 0.000 0.988 0.000 0.000 0.004 0.008
#> GSM52568     2  0.1674      0.884 0.000 0.924 0.000 0.004 0.004 0.068
#> GSM52569     2  0.0972      0.882 0.000 0.964 0.000 0.000 0.008 0.028
#> GSM52570     2  0.0891      0.885 0.000 0.968 0.000 0.000 0.008 0.024
#> GSM52571     1  0.2841      0.639 0.832 0.000 0.004 0.004 0.004 0.156
#> GSM52572     1  0.5999     -0.555 0.452 0.000 0.004 0.116 0.020 0.408
#> GSM52573     3  0.1088      0.893 0.000 0.000 0.960 0.000 0.016 0.024
#> GSM52574     3  0.1088      0.892 0.000 0.000 0.960 0.000 0.016 0.024
#> GSM52575     3  0.3268      0.836 0.008 0.000 0.828 0.012 0.016 0.136
#> GSM52576     3  0.4213      0.774 0.044 0.000 0.752 0.012 0.008 0.184
#> GSM52577     3  0.4326      0.750 0.084 0.000 0.736 0.008 0.000 0.172
#> GSM52578     3  0.4100      0.795 0.000 0.000 0.788 0.068 0.040 0.104
#> GSM52579     3  0.4052      0.795 0.000 0.000 0.788 0.060 0.036 0.116
#> GSM52580     4  0.0520      0.877 0.008 0.000 0.000 0.984 0.000 0.008
#> GSM52581     4  0.1340      0.869 0.008 0.000 0.000 0.948 0.004 0.040
#> GSM52582     4  0.2523      0.847 0.004 0.000 0.036 0.888 0.004 0.068
#> GSM52583     4  0.2629      0.819 0.068 0.000 0.000 0.872 0.000 0.060
#> GSM52584     4  0.1863      0.868 0.016 0.000 0.004 0.920 0.000 0.060
#> GSM52585     4  0.1285      0.864 0.004 0.000 0.000 0.944 0.000 0.052
#> GSM52586     6  0.6235      0.626 0.308 0.000 0.000 0.216 0.016 0.460
#> GSM52587     4  0.3909      0.706 0.000 0.076 0.000 0.772 0.004 0.148
#> GSM52588     1  0.4874      0.433 0.708 0.000 0.028 0.012 0.052 0.200
#> GSM52589     1  0.7180      0.186 0.488 0.000 0.120 0.100 0.028 0.264
#> GSM52590     5  0.0622      0.982 0.012 0.000 0.008 0.000 0.980 0.000
#> GSM52591     1  0.5181     -0.251 0.604 0.000 0.000 0.068 0.020 0.308
#> GSM52592     1  0.1531      0.659 0.928 0.000 0.004 0.000 0.000 0.068
#> GSM52593     1  0.0713      0.651 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM52594     1  0.0713      0.648 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM52595     1  0.0713      0.651 0.972 0.000 0.000 0.000 0.000 0.028
#> GSM52596     1  0.0935      0.658 0.964 0.000 0.000 0.004 0.000 0.032
#> GSM52597     1  0.4747     -0.267 0.584 0.000 0.000 0.060 0.000 0.356
#> GSM52598     1  0.3526      0.604 0.792 0.000 0.004 0.028 0.004 0.172
#> GSM52599     1  0.2804      0.641 0.836 0.000 0.004 0.004 0.004 0.152
#> GSM52600     1  0.2914      0.638 0.832 0.000 0.004 0.008 0.004 0.152
#> GSM52601     1  0.1411      0.618 0.936 0.000 0.000 0.004 0.000 0.060
#> GSM52602     5  0.0458      0.991 0.000 0.000 0.016 0.000 0.984 0.000
#> GSM52603     5  0.0405      0.987 0.000 0.004 0.008 0.000 0.988 0.000
#> GSM52604     5  0.0458      0.991 0.000 0.000 0.016 0.000 0.984 0.000
#> GSM52605     5  0.0603      0.990 0.000 0.000 0.016 0.000 0.980 0.004
#> GSM52606     3  0.0363      0.894 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM52607     3  0.1088      0.888 0.000 0.000 0.960 0.000 0.016 0.024
#> GSM52608     3  0.0458      0.894 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM52609     3  0.0603      0.894 0.000 0.000 0.980 0.000 0.016 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) tissue(p) k
#> SD:skmeans 37         6.59e-08  1.18e-02 2
#> SD:skmeans 54         2.08e-10  1.21e-04 3
#> SD:skmeans 53         1.78e-10  2.00e-07 4
#> SD:skmeans 51         2.23e-10  1.18e-08 5
#> SD:skmeans 48         1.11e-08  5.73e-09 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.482           0.826       0.898         0.4752 0.516   0.516
#> 3 3 0.783           0.855       0.938         0.3517 0.781   0.597
#> 4 4 0.853           0.766       0.896         0.0757 0.941   0.836
#> 5 5 0.840           0.783       0.884         0.0980 0.878   0.616
#> 6 6 0.874           0.911       0.941         0.0500 0.980   0.905

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2   0.000      0.814 0.000 1.000
#> GSM52557     1   0.985      0.436 0.572 0.428
#> GSM52558     1   0.745      0.786 0.788 0.212
#> GSM52559     2   0.000      0.814 0.000 1.000
#> GSM52560     2   0.000      0.814 0.000 1.000
#> GSM52561     2   0.518      0.744 0.116 0.884
#> GSM52562     1   0.753      0.782 0.784 0.216
#> GSM52563     2   0.118      0.809 0.016 0.984
#> GSM52564     1   0.000      0.912 1.000 0.000
#> GSM52565     1   0.745      0.786 0.788 0.212
#> GSM52566     2   0.000      0.814 0.000 1.000
#> GSM52567     1   0.745      0.786 0.788 0.212
#> GSM52568     2   1.000     -0.247 0.492 0.508
#> GSM52569     1   0.745      0.786 0.788 0.212
#> GSM52570     1   0.745      0.786 0.788 0.212
#> GSM52571     1   0.000      0.912 1.000 0.000
#> GSM52572     1   0.000      0.912 1.000 0.000
#> GSM52573     2   0.722      0.849 0.200 0.800
#> GSM52574     2   0.722      0.849 0.200 0.800
#> GSM52575     2   0.722      0.849 0.200 0.800
#> GSM52576     2   0.722      0.849 0.200 0.800
#> GSM52577     2   0.722      0.849 0.200 0.800
#> GSM52578     2   0.714      0.850 0.196 0.804
#> GSM52579     2   0.000      0.814 0.000 1.000
#> GSM52580     1   0.000      0.912 1.000 0.000
#> GSM52581     1   0.000      0.912 1.000 0.000
#> GSM52582     2   0.722      0.849 0.200 0.800
#> GSM52583     1   0.000      0.912 1.000 0.000
#> GSM52584     1   0.000      0.912 1.000 0.000
#> GSM52585     1   0.000      0.912 1.000 0.000
#> GSM52586     1   0.000      0.912 1.000 0.000
#> GSM52587     2   0.000      0.814 0.000 1.000
#> GSM52588     1   0.358      0.846 0.932 0.068
#> GSM52589     2   0.952      0.626 0.372 0.628
#> GSM52590     1   0.000      0.912 1.000 0.000
#> GSM52591     1   0.000      0.912 1.000 0.000
#> GSM52592     1   0.000      0.912 1.000 0.000
#> GSM52593     1   0.000      0.912 1.000 0.000
#> GSM52594     1   0.000      0.912 1.000 0.000
#> GSM52595     1   0.000      0.912 1.000 0.000
#> GSM52596     1   0.000      0.912 1.000 0.000
#> GSM52597     1   0.000      0.912 1.000 0.000
#> GSM52598     1   0.000      0.912 1.000 0.000
#> GSM52599     1   0.000      0.912 1.000 0.000
#> GSM52600     1   0.000      0.912 1.000 0.000
#> GSM52601     1   0.000      0.912 1.000 0.000
#> GSM52602     1   0.184      0.899 0.972 0.028
#> GSM52603     1   0.745      0.786 0.788 0.212
#> GSM52604     1   0.745      0.786 0.788 0.212
#> GSM52605     1   0.541      0.845 0.876 0.124
#> GSM52606     2   0.722      0.849 0.200 0.800
#> GSM52607     2   0.644      0.848 0.164 0.836
#> GSM52608     2   0.714      0.850 0.196 0.804
#> GSM52609     2   0.706      0.850 0.192 0.808

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52557     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52558     2  0.6291     0.0394 0.468 0.532 0.000
#> GSM52559     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52560     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52561     3  0.7165     0.7113 0.112 0.172 0.716
#> GSM52562     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52563     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52564     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52565     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52566     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52567     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52568     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52569     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52570     2  0.0000     0.9488 0.000 1.000 0.000
#> GSM52571     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52572     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52573     3  0.0000     0.8933 0.000 0.000 1.000
#> GSM52574     3  0.0000     0.8933 0.000 0.000 1.000
#> GSM52575     3  0.0000     0.8933 0.000 0.000 1.000
#> GSM52576     3  0.4002     0.8090 0.160 0.000 0.840
#> GSM52577     3  0.4062     0.8056 0.164 0.000 0.836
#> GSM52578     3  0.1964     0.8744 0.056 0.000 0.944
#> GSM52579     3  0.3412     0.8233 0.000 0.124 0.876
#> GSM52580     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52581     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52582     3  0.0000     0.8933 0.000 0.000 1.000
#> GSM52583     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52584     1  0.0237     0.9327 0.996 0.000 0.004
#> GSM52585     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52586     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52587     3  0.4702     0.7344 0.000 0.212 0.788
#> GSM52588     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52589     3  0.6008     0.4581 0.372 0.000 0.628
#> GSM52590     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52591     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52592     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52593     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52594     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52595     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52596     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52597     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52598     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52599     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52600     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52601     1  0.0000     0.9359 1.000 0.000 0.000
#> GSM52602     1  0.6126     0.4021 0.600 0.000 0.400
#> GSM52603     1  0.8408     0.4480 0.600 0.128 0.272
#> GSM52604     1  0.6330     0.4052 0.600 0.004 0.396
#> GSM52605     1  0.7531     0.5588 0.672 0.092 0.236
#> GSM52606     3  0.0000     0.8933 0.000 0.000 1.000
#> GSM52607     3  0.0000     0.8933 0.000 0.000 1.000
#> GSM52608     3  0.0000     0.8933 0.000 0.000 1.000
#> GSM52609     3  0.0000     0.8933 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.0921      0.894 0.000 0.972 0.028 0.000
#> GSM52557     2  0.4981      0.498 0.000 0.536 0.000 0.464
#> GSM52558     4  0.6149     -0.560 0.048 0.472 0.000 0.480
#> GSM52559     2  0.0592      0.908 0.000 0.984 0.000 0.016
#> GSM52560     2  0.0592      0.908 0.000 0.984 0.000 0.016
#> GSM52561     3  0.5766      0.750 0.100 0.080 0.764 0.056
#> GSM52562     2  0.4967      0.515 0.000 0.548 0.000 0.452
#> GSM52563     2  0.0000      0.911 0.000 1.000 0.000 0.000
#> GSM52564     1  0.1022      0.894 0.968 0.000 0.000 0.032
#> GSM52565     2  0.0469      0.910 0.000 0.988 0.000 0.012
#> GSM52566     2  0.0336      0.910 0.000 0.992 0.000 0.008
#> GSM52567     2  0.0469      0.910 0.000 0.988 0.000 0.012
#> GSM52568     2  0.0336      0.910 0.000 0.992 0.000 0.008
#> GSM52569     2  0.0469      0.910 0.000 0.988 0.000 0.012
#> GSM52570     2  0.0469      0.910 0.000 0.988 0.000 0.012
#> GSM52571     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52572     1  0.1118      0.892 0.964 0.000 0.000 0.036
#> GSM52573     3  0.0000      0.910 0.000 0.000 1.000 0.000
#> GSM52574     3  0.0000      0.910 0.000 0.000 1.000 0.000
#> GSM52575     3  0.0000      0.910 0.000 0.000 1.000 0.000
#> GSM52576     3  0.1792      0.886 0.068 0.000 0.932 0.000
#> GSM52577     3  0.2011      0.878 0.080 0.000 0.920 0.000
#> GSM52578     3  0.1489      0.898 0.044 0.000 0.952 0.004
#> GSM52579     3  0.2281      0.861 0.000 0.096 0.904 0.000
#> GSM52580     1  0.1474      0.883 0.948 0.000 0.000 0.052
#> GSM52581     1  0.1474      0.883 0.948 0.000 0.000 0.052
#> GSM52582     3  0.1474      0.894 0.000 0.000 0.948 0.052
#> GSM52583     1  0.1474      0.883 0.948 0.000 0.000 0.052
#> GSM52584     1  0.1661      0.879 0.944 0.000 0.004 0.052
#> GSM52585     1  0.1474      0.883 0.948 0.000 0.000 0.052
#> GSM52586     1  0.1118      0.892 0.964 0.000 0.000 0.036
#> GSM52587     3  0.4624      0.764 0.000 0.164 0.784 0.052
#> GSM52588     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52589     3  0.4761      0.392 0.372 0.000 0.628 0.000
#> GSM52590     1  0.4933     -0.412 0.568 0.000 0.000 0.432
#> GSM52591     1  0.0188      0.902 0.996 0.000 0.000 0.004
#> GSM52592     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52593     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52596     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52597     1  0.1118      0.892 0.964 0.000 0.000 0.036
#> GSM52598     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52599     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52600     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52601     1  0.0000      0.902 1.000 0.000 0.000 0.000
#> GSM52602     1  0.5862     -0.593 0.484 0.000 0.032 0.484
#> GSM52603     4  0.6232      0.457 0.472 0.036 0.008 0.484
#> GSM52604     4  0.6178      0.450 0.472 0.004 0.040 0.484
#> GSM52605     4  0.5292      0.427 0.480 0.000 0.008 0.512
#> GSM52606     3  0.0000      0.910 0.000 0.000 1.000 0.000
#> GSM52607     3  0.0000      0.910 0.000 0.000 1.000 0.000
#> GSM52608     3  0.0000      0.910 0.000 0.000 1.000 0.000
#> GSM52609     3  0.0000      0.910 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.1043      0.887 0.000 0.960 0.040 0.000 0.000
#> GSM52557     2  0.4803      0.532 0.000 0.536 0.000 0.444 0.020
#> GSM52558     4  0.4807     -0.504 0.000 0.448 0.000 0.532 0.020
#> GSM52559     2  0.0404      0.910 0.000 0.988 0.000 0.012 0.000
#> GSM52560     2  0.0404      0.910 0.000 0.988 0.000 0.012 0.000
#> GSM52561     3  0.5104      0.698 0.076 0.056 0.752 0.116 0.000
#> GSM52562     2  0.4767      0.558 0.000 0.560 0.000 0.420 0.020
#> GSM52563     2  0.0000      0.912 0.000 1.000 0.000 0.000 0.000
#> GSM52564     1  0.1197      0.936 0.952 0.000 0.000 0.048 0.000
#> GSM52565     2  0.0566      0.910 0.000 0.984 0.000 0.012 0.004
#> GSM52566     2  0.0162      0.912 0.000 0.996 0.000 0.004 0.000
#> GSM52567     2  0.0566      0.910 0.000 0.984 0.000 0.012 0.004
#> GSM52568     2  0.0162      0.912 0.000 0.996 0.000 0.004 0.000
#> GSM52569     2  0.0955      0.901 0.000 0.968 0.000 0.028 0.004
#> GSM52570     2  0.0566      0.910 0.000 0.984 0.000 0.012 0.004
#> GSM52571     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52572     1  0.0703      0.968 0.976 0.000 0.000 0.024 0.000
#> GSM52573     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM52574     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM52575     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM52576     3  0.1732      0.858 0.080 0.000 0.920 0.000 0.000
#> GSM52577     3  0.1792      0.854 0.084 0.000 0.916 0.000 0.000
#> GSM52578     3  0.3194      0.788 0.020 0.000 0.832 0.148 0.000
#> GSM52579     3  0.2511      0.838 0.000 0.080 0.892 0.028 0.000
#> GSM52580     4  0.4249      0.539 0.432 0.000 0.000 0.568 0.000
#> GSM52581     4  0.4249      0.539 0.432 0.000 0.000 0.568 0.000
#> GSM52582     4  0.4249     -0.022 0.000 0.000 0.432 0.568 0.000
#> GSM52583     4  0.4249      0.539 0.432 0.000 0.000 0.568 0.000
#> GSM52584     4  0.4249      0.539 0.432 0.000 0.000 0.568 0.000
#> GSM52585     4  0.4249      0.539 0.432 0.000 0.000 0.568 0.000
#> GSM52586     1  0.0880      0.959 0.968 0.000 0.000 0.032 0.000
#> GSM52587     4  0.4249     -0.022 0.000 0.000 0.432 0.568 0.000
#> GSM52588     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52589     3  0.4060      0.402 0.360 0.000 0.640 0.000 0.000
#> GSM52590     5  0.4242      0.167 0.428 0.000 0.000 0.000 0.572
#> GSM52591     1  0.0290      0.981 0.992 0.000 0.000 0.008 0.000
#> GSM52592     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52593     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52596     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52597     1  0.0703      0.968 0.976 0.000 0.000 0.024 0.000
#> GSM52598     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52599     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52600     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52601     1  0.0000      0.987 1.000 0.000 0.000 0.000 0.000
#> GSM52602     5  0.0703      0.848 0.024 0.000 0.000 0.000 0.976
#> GSM52603     5  0.0703      0.848 0.024 0.000 0.000 0.000 0.976
#> GSM52604     5  0.0703      0.848 0.024 0.000 0.000 0.000 0.976
#> GSM52605     5  0.0703      0.848 0.024 0.000 0.000 0.000 0.976
#> GSM52606     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM52607     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM52608     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000
#> GSM52609     3  0.0000      0.897 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.0790      0.909 0.000 0.968 0.032 0.000 0.000 0.000
#> GSM52557     6  0.0260      1.000 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM52558     6  0.0260      1.000 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM52559     2  0.1007      0.916 0.000 0.956 0.000 0.000 0.000 0.044
#> GSM52560     2  0.1007      0.916 0.000 0.956 0.000 0.000 0.000 0.044
#> GSM52561     3  0.4861      0.738 0.084 0.028 0.756 0.088 0.000 0.044
#> GSM52562     6  0.0260      1.000 0.000 0.008 0.000 0.000 0.000 0.992
#> GSM52563     2  0.0458      0.923 0.000 0.984 0.000 0.000 0.000 0.016
#> GSM52564     1  0.1049      0.965 0.960 0.000 0.000 0.032 0.000 0.008
#> GSM52565     2  0.2219      0.897 0.000 0.864 0.000 0.136 0.000 0.000
#> GSM52566     2  0.0713      0.922 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM52567     2  0.2219      0.897 0.000 0.864 0.000 0.136 0.000 0.000
#> GSM52568     2  0.0713      0.922 0.000 0.972 0.000 0.000 0.000 0.028
#> GSM52569     2  0.2260      0.894 0.000 0.860 0.000 0.140 0.000 0.000
#> GSM52570     2  0.2219      0.897 0.000 0.864 0.000 0.136 0.000 0.000
#> GSM52571     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52572     1  0.0806      0.976 0.972 0.000 0.000 0.020 0.000 0.008
#> GSM52573     3  0.0000      0.902 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52574     3  0.0000      0.902 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52575     3  0.0000      0.902 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52576     3  0.1556      0.865 0.080 0.000 0.920 0.000 0.000 0.000
#> GSM52577     3  0.1610      0.862 0.084 0.000 0.916 0.000 0.000 0.000
#> GSM52578     3  0.2859      0.794 0.016 0.000 0.828 0.156 0.000 0.000
#> GSM52579     3  0.2309      0.843 0.000 0.084 0.888 0.028 0.000 0.000
#> GSM52580     4  0.2219      0.914 0.136 0.000 0.000 0.864 0.000 0.000
#> GSM52581     4  0.2219      0.914 0.136 0.000 0.000 0.864 0.000 0.000
#> GSM52582     4  0.2219      0.775 0.000 0.000 0.136 0.864 0.000 0.000
#> GSM52583     4  0.2219      0.914 0.136 0.000 0.000 0.864 0.000 0.000
#> GSM52584     4  0.2219      0.914 0.136 0.000 0.000 0.864 0.000 0.000
#> GSM52585     4  0.2219      0.914 0.136 0.000 0.000 0.864 0.000 0.000
#> GSM52586     1  0.0891      0.973 0.968 0.000 0.000 0.024 0.000 0.008
#> GSM52587     4  0.2219      0.775 0.000 0.000 0.136 0.864 0.000 0.000
#> GSM52588     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52589     3  0.3758      0.545 0.324 0.000 0.668 0.008 0.000 0.000
#> GSM52590     5  0.2883      0.622 0.212 0.000 0.000 0.000 0.788 0.000
#> GSM52591     1  0.0405      0.986 0.988 0.000 0.000 0.004 0.000 0.008
#> GSM52592     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52593     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52596     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52597     1  0.0806      0.976 0.972 0.000 0.000 0.020 0.000 0.008
#> GSM52598     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52599     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52600     1  0.0260      0.987 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM52601     1  0.0000      0.990 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52602     5  0.0000      0.908 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52603     5  0.0000      0.908 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52604     5  0.0000      0.908 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52605     5  0.0000      0.908 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52606     3  0.0000      0.902 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52607     3  0.0000      0.902 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52608     3  0.0000      0.902 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52609     3  0.0000      0.902 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) tissue(p) k
#> SD:pam 52         7.42e-01  8.33e-03 2
#> SD:pam 49         2.32e-09  2.48e-04 3
#> SD:pam 46         1.06e-08  2.47e-04 4
#> SD:pam 49         4.51e-08  1.16e-09 5
#> SD:pam 54         1.65e-08  2.24e-11 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.497           0.847       0.846         0.3606 0.628   0.628
#> 3 3 0.348           0.669       0.741         0.6000 0.706   0.532
#> 4 4 0.562           0.726       0.807         0.2124 0.920   0.769
#> 5 5 0.740           0.710       0.814         0.1063 0.843   0.510
#> 6 6 0.831           0.751       0.850         0.0423 0.916   0.646

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.9286      1.000 0.344 0.656
#> GSM52557     2  0.9286      1.000 0.344 0.656
#> GSM52558     2  0.9286      1.000 0.344 0.656
#> GSM52559     2  0.9286      1.000 0.344 0.656
#> GSM52560     2  0.9286      1.000 0.344 0.656
#> GSM52561     1  0.0000      0.855 1.000 0.000
#> GSM52562     2  0.9286      1.000 0.344 0.656
#> GSM52563     2  0.9286      1.000 0.344 0.656
#> GSM52564     1  0.0376      0.855 0.996 0.004
#> GSM52565     2  0.9286      1.000 0.344 0.656
#> GSM52566     2  0.9286      1.000 0.344 0.656
#> GSM52567     2  0.9286      1.000 0.344 0.656
#> GSM52568     2  0.9286      1.000 0.344 0.656
#> GSM52569     2  0.9286      1.000 0.344 0.656
#> GSM52570     2  0.9286      1.000 0.344 0.656
#> GSM52571     1  0.9286      0.646 0.656 0.344
#> GSM52572     1  0.0376      0.855 0.996 0.004
#> GSM52573     1  0.0000      0.855 1.000 0.000
#> GSM52574     1  0.0000      0.855 1.000 0.000
#> GSM52575     1  0.0000      0.855 1.000 0.000
#> GSM52576     1  0.1184      0.850 0.984 0.016
#> GSM52577     1  0.3114      0.827 0.944 0.056
#> GSM52578     1  0.0000      0.855 1.000 0.000
#> GSM52579     1  0.0000      0.855 1.000 0.000
#> GSM52580     1  0.0376      0.855 0.996 0.004
#> GSM52581     1  0.0376      0.855 0.996 0.004
#> GSM52582     1  0.0000      0.855 1.000 0.000
#> GSM52583     1  0.1414      0.849 0.980 0.020
#> GSM52584     1  0.1184      0.851 0.984 0.016
#> GSM52585     1  0.0000      0.855 1.000 0.000
#> GSM52586     1  0.0376      0.855 0.996 0.004
#> GSM52587     1  0.0000      0.855 1.000 0.000
#> GSM52588     1  0.9286      0.646 0.656 0.344
#> GSM52589     1  0.2423      0.838 0.960 0.040
#> GSM52590     1  0.0000      0.855 1.000 0.000
#> GSM52591     1  0.0376      0.855 0.996 0.004
#> GSM52592     1  0.9286      0.646 0.656 0.344
#> GSM52593     1  0.9286      0.646 0.656 0.344
#> GSM52594     1  0.9286      0.646 0.656 0.344
#> GSM52595     1  0.9286      0.646 0.656 0.344
#> GSM52596     1  0.9286      0.646 0.656 0.344
#> GSM52597     1  0.0376      0.855 0.996 0.004
#> GSM52598     1  0.9286      0.646 0.656 0.344
#> GSM52599     1  0.9286      0.646 0.656 0.344
#> GSM52600     1  0.9286      0.646 0.656 0.344
#> GSM52601     1  0.8661      0.678 0.712 0.288
#> GSM52602     1  0.0000      0.855 1.000 0.000
#> GSM52603     1  0.0000      0.855 1.000 0.000
#> GSM52604     1  0.0000      0.855 1.000 0.000
#> GSM52605     1  0.0000      0.855 1.000 0.000
#> GSM52606     1  0.0000      0.855 1.000 0.000
#> GSM52607     1  0.0000      0.855 1.000 0.000
#> GSM52608     1  0.0000      0.855 1.000 0.000
#> GSM52609     1  0.0000      0.855 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.1643      0.956 0.000 0.956 0.044
#> GSM52557     2  0.0892      0.977 0.000 0.980 0.020
#> GSM52558     2  0.0892      0.977 0.000 0.980 0.020
#> GSM52559     2  0.0892      0.977 0.000 0.980 0.020
#> GSM52560     2  0.0892      0.977 0.000 0.980 0.020
#> GSM52561     3  0.9633      0.711 0.208 0.368 0.424
#> GSM52562     2  0.0892      0.977 0.000 0.980 0.020
#> GSM52563     2  0.0892      0.977 0.000 0.980 0.020
#> GSM52564     1  0.8685      0.191 0.548 0.328 0.124
#> GSM52565     2  0.1289      0.951 0.000 0.968 0.032
#> GSM52566     2  0.0892      0.977 0.000 0.980 0.020
#> GSM52567     2  0.1289      0.951 0.000 0.968 0.032
#> GSM52568     2  0.0892      0.977 0.000 0.980 0.020
#> GSM52569     2  0.0747      0.959 0.000 0.984 0.016
#> GSM52570     2  0.1289      0.951 0.000 0.968 0.032
#> GSM52571     1  0.0000      0.670 1.000 0.000 0.000
#> GSM52572     1  0.7260      0.416 0.636 0.316 0.048
#> GSM52573     3  0.2793      0.475 0.044 0.028 0.928
#> GSM52574     3  0.2793      0.475 0.044 0.028 0.928
#> GSM52575     3  0.7002      0.643 0.048 0.280 0.672
#> GSM52576     3  0.9838      0.684 0.288 0.288 0.424
#> GSM52577     3  0.9823      0.615 0.336 0.252 0.412
#> GSM52578     3  0.9020      0.698 0.140 0.364 0.496
#> GSM52579     3  0.8102      0.653 0.076 0.368 0.556
#> GSM52580     3  0.9776      0.706 0.244 0.332 0.424
#> GSM52581     3  0.9776      0.706 0.244 0.332 0.424
#> GSM52582     3  0.9558      0.717 0.200 0.356 0.444
#> GSM52583     3  0.9836      0.690 0.280 0.296 0.424
#> GSM52584     3  0.9820      0.700 0.264 0.312 0.424
#> GSM52585     3  0.9690      0.711 0.220 0.356 0.424
#> GSM52586     1  0.7285      0.411 0.632 0.320 0.048
#> GSM52587     3  0.9633      0.711 0.208 0.368 0.424
#> GSM52588     1  0.0424      0.669 0.992 0.000 0.008
#> GSM52589     3  0.9846      0.665 0.304 0.276 0.420
#> GSM52590     1  0.8925      0.396 0.504 0.364 0.132
#> GSM52591     1  0.6553      0.447 0.656 0.324 0.020
#> GSM52592     1  0.0237      0.670 0.996 0.004 0.000
#> GSM52593     1  0.0000      0.670 1.000 0.000 0.000
#> GSM52594     1  0.0000      0.670 1.000 0.000 0.000
#> GSM52595     1  0.0000      0.670 1.000 0.000 0.000
#> GSM52596     1  0.0000      0.670 1.000 0.000 0.000
#> GSM52597     1  0.7285      0.411 0.632 0.320 0.048
#> GSM52598     1  0.0592      0.668 0.988 0.000 0.012
#> GSM52599     1  0.0000      0.670 1.000 0.000 0.000
#> GSM52600     1  0.3482      0.549 0.872 0.000 0.128
#> GSM52601     1  0.2550      0.652 0.932 0.056 0.012
#> GSM52602     1  0.9868      0.303 0.384 0.360 0.256
#> GSM52603     1  0.9868      0.303 0.384 0.360 0.256
#> GSM52604     1  0.9868      0.303 0.384 0.360 0.256
#> GSM52605     1  0.9506      0.334 0.448 0.360 0.192
#> GSM52606     3  0.7378      0.654 0.052 0.320 0.628
#> GSM52607     3  0.7112      0.646 0.044 0.308 0.648
#> GSM52608     3  0.2793      0.475 0.044 0.028 0.928
#> GSM52609     3  0.2793      0.475 0.044 0.028 0.928

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.0592      0.897 0.000 0.984 0.016 0.000
#> GSM52557     2  0.2345      0.869 0.000 0.900 0.000 0.100
#> GSM52558     2  0.2345      0.869 0.000 0.900 0.000 0.100
#> GSM52559     2  0.0000      0.902 0.000 1.000 0.000 0.000
#> GSM52560     2  0.0000      0.902 0.000 1.000 0.000 0.000
#> GSM52561     3  0.5930      0.711 0.088 0.068 0.756 0.088
#> GSM52562     2  0.2345      0.869 0.000 0.900 0.000 0.100
#> GSM52563     2  0.0657      0.900 0.004 0.984 0.000 0.012
#> GSM52564     3  0.7187      0.170 0.356 0.028 0.540 0.076
#> GSM52565     2  0.3356      0.813 0.000 0.824 0.000 0.176
#> GSM52566     2  0.0000      0.902 0.000 1.000 0.000 0.000
#> GSM52567     2  0.3356      0.813 0.000 0.824 0.000 0.176
#> GSM52568     2  0.2125      0.887 0.004 0.920 0.000 0.076
#> GSM52569     2  0.2704      0.854 0.000 0.876 0.000 0.124
#> GSM52570     2  0.3311      0.817 0.000 0.828 0.000 0.172
#> GSM52571     1  0.0000      0.682 1.000 0.000 0.000 0.000
#> GSM52572     1  0.6773      0.383 0.528 0.024 0.400 0.048
#> GSM52573     3  0.2469      0.765 0.000 0.000 0.892 0.108
#> GSM52574     3  0.2469      0.765 0.000 0.000 0.892 0.108
#> GSM52575     3  0.3634      0.775 0.028 0.008 0.860 0.104
#> GSM52576     3  0.4248      0.667 0.220 0.012 0.768 0.000
#> GSM52577     3  0.4770      0.547 0.288 0.012 0.700 0.000
#> GSM52578     3  0.1843      0.793 0.028 0.016 0.948 0.008
#> GSM52579     3  0.3719      0.743 0.020 0.124 0.848 0.008
#> GSM52580     3  0.4109      0.774 0.092 0.032 0.848 0.028
#> GSM52581     3  0.4298      0.773 0.092 0.032 0.840 0.036
#> GSM52582     3  0.1888      0.792 0.044 0.016 0.940 0.000
#> GSM52583     3  0.4662      0.681 0.204 0.016 0.768 0.012
#> GSM52584     3  0.3504      0.770 0.116 0.012 0.860 0.012
#> GSM52585     3  0.4298      0.773 0.092 0.032 0.840 0.036
#> GSM52586     1  0.7341      0.197 0.452 0.024 0.440 0.084
#> GSM52587     3  0.5013      0.755 0.072 0.044 0.808 0.076
#> GSM52588     1  0.5110      0.508 0.636 0.000 0.352 0.012
#> GSM52589     3  0.5233      0.518 0.292 0.012 0.684 0.012
#> GSM52590     4  0.5119      0.945 0.112 0.124 0.000 0.764
#> GSM52591     1  0.6198      0.421 0.560 0.024 0.396 0.020
#> GSM52592     1  0.2546      0.685 0.900 0.000 0.092 0.008
#> GSM52593     1  0.0000      0.682 1.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.682 1.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.682 1.000 0.000 0.000 0.000
#> GSM52596     1  0.0000      0.682 1.000 0.000 0.000 0.000
#> GSM52597     1  0.6217      0.409 0.552 0.024 0.404 0.020
#> GSM52598     1  0.5217      0.467 0.608 0.000 0.380 0.012
#> GSM52599     1  0.0336      0.674 0.992 0.000 0.000 0.008
#> GSM52600     1  0.1211      0.679 0.960 0.000 0.040 0.000
#> GSM52601     1  0.2805      0.680 0.888 0.000 0.100 0.012
#> GSM52602     4  0.5119      0.945 0.112 0.124 0.000 0.764
#> GSM52603     4  0.5119      0.945 0.112 0.124 0.000 0.764
#> GSM52604     4  0.5119      0.945 0.112 0.124 0.000 0.764
#> GSM52605     4  0.6644      0.768 0.248 0.124 0.004 0.624
#> GSM52606     3  0.3505      0.775 0.012 0.016 0.864 0.108
#> GSM52607     3  0.3257      0.773 0.012 0.008 0.872 0.108
#> GSM52608     3  0.2469      0.765 0.000 0.000 0.892 0.108
#> GSM52609     3  0.2469      0.765 0.000 0.000 0.892 0.108

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.0404     0.9517 0.000 0.988 0.000 0.012 0.000
#> GSM52557     2  0.0404     0.9565 0.000 0.988 0.000 0.012 0.000
#> GSM52558     2  0.0404     0.9565 0.000 0.988 0.000 0.012 0.000
#> GSM52559     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000
#> GSM52560     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000
#> GSM52561     4  0.2162     0.7041 0.012 0.008 0.064 0.916 0.000
#> GSM52562     2  0.0404     0.9565 0.000 0.988 0.000 0.012 0.000
#> GSM52563     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000
#> GSM52564     4  0.2753     0.7184 0.136 0.000 0.008 0.856 0.000
#> GSM52565     2  0.2843     0.9105 0.000 0.876 0.000 0.076 0.048
#> GSM52566     2  0.0000     0.9581 0.000 1.000 0.000 0.000 0.000
#> GSM52567     2  0.2843     0.9105 0.000 0.876 0.000 0.076 0.048
#> GSM52568     2  0.0290     0.9573 0.000 0.992 0.000 0.008 0.000
#> GSM52569     2  0.2770     0.9127 0.000 0.880 0.000 0.076 0.044
#> GSM52570     2  0.2843     0.9105 0.000 0.876 0.000 0.076 0.048
#> GSM52571     1  0.0000     0.7693 1.000 0.000 0.000 0.000 0.000
#> GSM52572     4  0.4251     0.5009 0.372 0.000 0.000 0.624 0.004
#> GSM52573     3  0.0290     0.7517 0.008 0.000 0.992 0.000 0.000
#> GSM52574     3  0.0000     0.7531 0.000 0.000 1.000 0.000 0.000
#> GSM52575     3  0.2588     0.7526 0.048 0.000 0.892 0.060 0.000
#> GSM52576     3  0.6612    -0.0212 0.372 0.000 0.412 0.216 0.000
#> GSM52577     1  0.6429     0.1598 0.496 0.000 0.296 0.208 0.000
#> GSM52578     3  0.4270     0.5666 0.004 0.000 0.656 0.336 0.004
#> GSM52579     3  0.4410     0.3919 0.000 0.000 0.556 0.440 0.004
#> GSM52580     4  0.2300     0.7144 0.024 0.000 0.072 0.904 0.000
#> GSM52581     4  0.2396     0.7161 0.024 0.004 0.068 0.904 0.000
#> GSM52582     3  0.3861     0.6387 0.004 0.000 0.712 0.284 0.000
#> GSM52583     4  0.6163     0.3758 0.352 0.000 0.144 0.504 0.000
#> GSM52584     4  0.6091     0.5220 0.268 0.000 0.172 0.560 0.000
#> GSM52585     4  0.2396     0.7161 0.024 0.004 0.068 0.904 0.000
#> GSM52586     4  0.2763     0.7106 0.148 0.000 0.000 0.848 0.004
#> GSM52587     4  0.2141     0.7089 0.016 0.004 0.064 0.916 0.000
#> GSM52588     1  0.3966     0.3266 0.664 0.000 0.000 0.336 0.000
#> GSM52589     1  0.6373    -0.2693 0.420 0.000 0.164 0.416 0.000
#> GSM52590     5  0.0000     0.9714 0.000 0.000 0.000 0.000 1.000
#> GSM52591     4  0.4251     0.5015 0.372 0.000 0.000 0.624 0.004
#> GSM52592     1  0.0703     0.7579 0.976 0.000 0.000 0.024 0.000
#> GSM52593     1  0.0000     0.7693 1.000 0.000 0.000 0.000 0.000
#> GSM52594     1  0.0000     0.7693 1.000 0.000 0.000 0.000 0.000
#> GSM52595     1  0.0000     0.7693 1.000 0.000 0.000 0.000 0.000
#> GSM52596     1  0.0000     0.7693 1.000 0.000 0.000 0.000 0.000
#> GSM52597     4  0.4225     0.5149 0.364 0.000 0.000 0.632 0.004
#> GSM52598     1  0.4649     0.0839 0.580 0.000 0.016 0.404 0.000
#> GSM52599     1  0.0000     0.7693 1.000 0.000 0.000 0.000 0.000
#> GSM52600     1  0.0290     0.7669 0.992 0.000 0.000 0.008 0.000
#> GSM52601     1  0.3074     0.5985 0.804 0.000 0.000 0.196 0.000
#> GSM52602     5  0.0000     0.9714 0.000 0.000 0.000 0.000 1.000
#> GSM52603     5  0.0000     0.9714 0.000 0.000 0.000 0.000 1.000
#> GSM52604     5  0.0000     0.9714 0.000 0.000 0.000 0.000 1.000
#> GSM52605     5  0.1892     0.8816 0.080 0.000 0.000 0.004 0.916
#> GSM52606     3  0.2516     0.7547 0.000 0.000 0.860 0.140 0.000
#> GSM52607     3  0.2536     0.7567 0.000 0.000 0.868 0.128 0.004
#> GSM52608     3  0.0000     0.7531 0.000 0.000 1.000 0.000 0.000
#> GSM52609     3  0.0000     0.7531 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4 p5    p6
#> GSM52556     6  0.0508     0.9478 0.000 0.012 0.000 0.004  0 0.984
#> GSM52557     6  0.1367     0.9297 0.000 0.044 0.000 0.012  0 0.944
#> GSM52558     6  0.1367     0.9297 0.000 0.044 0.000 0.012  0 0.944
#> GSM52559     6  0.0363     0.9491 0.000 0.012 0.000 0.000  0 0.988
#> GSM52560     6  0.0146     0.9508 0.000 0.004 0.000 0.000  0 0.996
#> GSM52561     4  0.0000     0.7368 0.000 0.000 0.000 1.000  0 0.000
#> GSM52562     6  0.1367     0.9297 0.000 0.044 0.000 0.012  0 0.944
#> GSM52563     6  0.0790     0.9306 0.000 0.032 0.000 0.000  0 0.968
#> GSM52564     4  0.5428     0.4332 0.252 0.176 0.000 0.572  0 0.000
#> GSM52565     2  0.3737     0.9908 0.000 0.608 0.000 0.000  0 0.392
#> GSM52566     6  0.0363     0.9491 0.000 0.012 0.000 0.000  0 0.988
#> GSM52567     2  0.3756     0.9908 0.000 0.600 0.000 0.000  0 0.400
#> GSM52568     6  0.0632     0.9467 0.000 0.024 0.000 0.000  0 0.976
#> GSM52569     2  0.3756     0.9908 0.000 0.600 0.000 0.000  0 0.400
#> GSM52570     2  0.3737     0.9908 0.000 0.608 0.000 0.000  0 0.392
#> GSM52571     1  0.0000     0.8132 1.000 0.000 0.000 0.000  0 0.000
#> GSM52572     1  0.4922     0.5431 0.616 0.288 0.000 0.096  0 0.000
#> GSM52573     3  0.0260     0.8029 0.000 0.008 0.992 0.000  0 0.000
#> GSM52574     3  0.0260     0.8029 0.000 0.008 0.992 0.000  0 0.000
#> GSM52575     3  0.1196     0.8050 0.008 0.000 0.952 0.040  0 0.000
#> GSM52576     3  0.5776    -0.0649 0.432 0.052 0.460 0.056  0 0.000
#> GSM52577     1  0.5169     0.4547 0.624 0.052 0.288 0.036  0 0.000
#> GSM52578     3  0.3865     0.6961 0.000 0.056 0.752 0.192  0 0.000
#> GSM52579     3  0.4747     0.4520 0.000 0.056 0.568 0.376  0 0.000
#> GSM52580     4  0.0508     0.7444 0.012 0.004 0.000 0.984  0 0.000
#> GSM52581     4  0.0508     0.7444 0.012 0.004 0.000 0.984  0 0.000
#> GSM52582     3  0.4634     0.5666 0.004 0.056 0.640 0.300  0 0.000
#> GSM52583     1  0.6108     0.1188 0.440 0.004 0.264 0.292  0 0.000
#> GSM52584     4  0.6074     0.1124 0.248 0.008 0.264 0.480  0 0.000
#> GSM52585     4  0.0508     0.7444 0.012 0.004 0.000 0.984  0 0.000
#> GSM52586     4  0.6080     0.1797 0.316 0.288 0.000 0.396  0 0.000
#> GSM52587     4  0.0146     0.7361 0.000 0.000 0.004 0.996  0 0.000
#> GSM52588     1  0.0458     0.8086 0.984 0.000 0.000 0.016  0 0.000
#> GSM52589     1  0.5572     0.3329 0.560 0.048 0.336 0.056  0 0.000
#> GSM52590     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1 0.000
#> GSM52591     1  0.4793     0.5591 0.628 0.288 0.000 0.084  0 0.000
#> GSM52592     1  0.0000     0.8132 1.000 0.000 0.000 0.000  0 0.000
#> GSM52593     1  0.0000     0.8132 1.000 0.000 0.000 0.000  0 0.000
#> GSM52594     1  0.0000     0.8132 1.000 0.000 0.000 0.000  0 0.000
#> GSM52595     1  0.0000     0.8132 1.000 0.000 0.000 0.000  0 0.000
#> GSM52596     1  0.0000     0.8132 1.000 0.000 0.000 0.000  0 0.000
#> GSM52597     1  0.4887     0.5530 0.624 0.280 0.000 0.096  0 0.000
#> GSM52598     1  0.2263     0.7702 0.900 0.036 0.004 0.060  0 0.000
#> GSM52599     1  0.0000     0.8132 1.000 0.000 0.000 0.000  0 0.000
#> GSM52600     1  0.0000     0.8132 1.000 0.000 0.000 0.000  0 0.000
#> GSM52601     1  0.0865     0.7994 0.964 0.000 0.000 0.036  0 0.000
#> GSM52602     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1 0.000
#> GSM52603     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1 0.000
#> GSM52604     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1 0.000
#> GSM52605     5  0.0000     1.0000 0.000 0.000 0.000 0.000  1 0.000
#> GSM52606     3  0.1462     0.8018 0.000 0.008 0.936 0.056  0 0.000
#> GSM52607     3  0.1141     0.8038 0.000 0.000 0.948 0.052  0 0.000
#> GSM52608     3  0.0260     0.8029 0.000 0.008 0.992 0.000  0 0.000
#> GSM52609     3  0.0260     0.8029 0.000 0.008 0.992 0.000  0 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) tissue(p) k
#> SD:mclust 54         2.67e-10  1.64e-04 2
#> SD:mclust 40         1.62e-08  1.69e-03 3
#> SD:mclust 48         2.02e-09  4.25e-06 4
#> SD:mclust 47         5.57e-08  1.10e-04 5
#> SD:mclust 46         5.31e-08  2.50e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.885           0.917       0.967         0.4306 0.575   0.575
#> 3 3 0.913           0.874       0.951         0.5284 0.732   0.547
#> 4 4 0.715           0.639       0.809         0.1074 0.948   0.851
#> 5 5 0.746           0.751       0.839         0.0640 0.864   0.585
#> 6 6 0.893           0.862       0.892         0.0484 0.960   0.818

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0000      0.956 0.000 1.000
#> GSM52557     2  0.0000      0.956 0.000 1.000
#> GSM52558     2  0.0000      0.956 0.000 1.000
#> GSM52559     2  0.0000      0.956 0.000 1.000
#> GSM52560     2  0.0000      0.956 0.000 1.000
#> GSM52561     2  0.0000      0.956 0.000 1.000
#> GSM52562     2  0.0000      0.956 0.000 1.000
#> GSM52563     2  0.0000      0.956 0.000 1.000
#> GSM52564     1  0.7883      0.698 0.764 0.236
#> GSM52565     2  0.0000      0.956 0.000 1.000
#> GSM52566     2  0.0000      0.956 0.000 1.000
#> GSM52567     2  0.0000      0.956 0.000 1.000
#> GSM52568     2  0.0000      0.956 0.000 1.000
#> GSM52569     2  0.0000      0.956 0.000 1.000
#> GSM52570     2  0.0000      0.956 0.000 1.000
#> GSM52571     1  0.0000      0.967 1.000 0.000
#> GSM52572     1  0.0000      0.967 1.000 0.000
#> GSM52573     1  0.0000      0.967 1.000 0.000
#> GSM52574     1  0.0000      0.967 1.000 0.000
#> GSM52575     1  0.0000      0.967 1.000 0.000
#> GSM52576     1  0.0000      0.967 1.000 0.000
#> GSM52577     1  0.0000      0.967 1.000 0.000
#> GSM52578     1  0.0000      0.967 1.000 0.000
#> GSM52579     1  0.2603      0.932 0.956 0.044
#> GSM52580     1  0.3431      0.913 0.936 0.064
#> GSM52581     1  0.7139      0.758 0.804 0.196
#> GSM52582     1  0.0000      0.967 1.000 0.000
#> GSM52583     1  0.0000      0.967 1.000 0.000
#> GSM52584     1  0.0000      0.967 1.000 0.000
#> GSM52585     2  0.9988      0.012 0.480 0.520
#> GSM52586     1  0.9460      0.434 0.636 0.364
#> GSM52587     2  0.5946      0.802 0.144 0.856
#> GSM52588     1  0.0000      0.967 1.000 0.000
#> GSM52589     1  0.0000      0.967 1.000 0.000
#> GSM52590     1  0.0000      0.967 1.000 0.000
#> GSM52591     1  0.1184      0.955 0.984 0.016
#> GSM52592     1  0.0000      0.967 1.000 0.000
#> GSM52593     1  0.0000      0.967 1.000 0.000
#> GSM52594     1  0.0000      0.967 1.000 0.000
#> GSM52595     1  0.0000      0.967 1.000 0.000
#> GSM52596     1  0.0000      0.967 1.000 0.000
#> GSM52597     1  0.0000      0.967 1.000 0.000
#> GSM52598     1  0.0000      0.967 1.000 0.000
#> GSM52599     1  0.0000      0.967 1.000 0.000
#> GSM52600     1  0.0000      0.967 1.000 0.000
#> GSM52601     1  0.0000      0.967 1.000 0.000
#> GSM52602     1  0.0000      0.967 1.000 0.000
#> GSM52603     1  0.7950      0.687 0.760 0.240
#> GSM52604     1  0.0000      0.967 1.000 0.000
#> GSM52605     1  0.0376      0.964 0.996 0.004
#> GSM52606     1  0.0000      0.967 1.000 0.000
#> GSM52607     1  0.0000      0.967 1.000 0.000
#> GSM52608     1  0.0000      0.967 1.000 0.000
#> GSM52609     1  0.0000      0.967 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.6299     0.1286 0.000 0.524 0.476
#> GSM52557     2  0.0237     0.9315 0.000 0.996 0.004
#> GSM52558     2  0.0237     0.9291 0.004 0.996 0.000
#> GSM52559     2  0.0592     0.9289 0.000 0.988 0.012
#> GSM52560     2  0.0424     0.9309 0.000 0.992 0.008
#> GSM52561     2  0.1289     0.9077 0.032 0.968 0.000
#> GSM52562     2  0.0000     0.9308 0.000 1.000 0.000
#> GSM52563     2  0.0424     0.9309 0.000 0.992 0.008
#> GSM52564     1  0.0747     0.9468 0.984 0.016 0.000
#> GSM52565     2  0.0237     0.9315 0.000 0.996 0.004
#> GSM52566     2  0.0424     0.9309 0.000 0.992 0.008
#> GSM52567     2  0.0237     0.9315 0.000 0.996 0.004
#> GSM52568     2  0.0000     0.9308 0.000 1.000 0.000
#> GSM52569     2  0.0424     0.9309 0.000 0.992 0.008
#> GSM52570     2  0.0000     0.9308 0.000 1.000 0.000
#> GSM52571     1  0.0592     0.9503 0.988 0.000 0.012
#> GSM52572     1  0.0000     0.9530 1.000 0.000 0.000
#> GSM52573     3  0.0237     0.9424 0.004 0.000 0.996
#> GSM52574     3  0.0237     0.9424 0.004 0.000 0.996
#> GSM52575     3  0.0424     0.9407 0.008 0.000 0.992
#> GSM52576     3  0.3752     0.8048 0.144 0.000 0.856
#> GSM52577     3  0.6302     0.0375 0.480 0.000 0.520
#> GSM52578     3  0.1031     0.9285 0.024 0.000 0.976
#> GSM52579     3  0.0237     0.9424 0.004 0.000 0.996
#> GSM52580     1  0.0424     0.9505 0.992 0.008 0.000
#> GSM52581     1  0.1031     0.9410 0.976 0.024 0.000
#> GSM52582     1  0.6309    -0.0404 0.504 0.000 0.496
#> GSM52583     1  0.0237     0.9540 0.996 0.000 0.004
#> GSM52584     1  0.0237     0.9540 0.996 0.000 0.004
#> GSM52585     1  0.2711     0.8796 0.912 0.088 0.000
#> GSM52586     1  0.1289     0.9350 0.968 0.032 0.000
#> GSM52587     2  0.5859     0.4595 0.344 0.656 0.000
#> GSM52588     1  0.0592     0.9503 0.988 0.000 0.012
#> GSM52589     1  0.1964     0.9128 0.944 0.000 0.056
#> GSM52590     1  0.4796     0.7024 0.780 0.000 0.220
#> GSM52591     1  0.0237     0.9519 0.996 0.004 0.000
#> GSM52592     1  0.0237     0.9540 0.996 0.000 0.004
#> GSM52593     1  0.0237     0.9540 0.996 0.000 0.004
#> GSM52594     1  0.0237     0.9540 0.996 0.000 0.004
#> GSM52595     1  0.0237     0.9540 0.996 0.000 0.004
#> GSM52596     1  0.0424     0.9524 0.992 0.000 0.008
#> GSM52597     1  0.0424     0.9501 0.992 0.008 0.000
#> GSM52598     1  0.0000     0.9530 1.000 0.000 0.000
#> GSM52599     1  0.0237     0.9540 0.996 0.000 0.004
#> GSM52600     1  0.0237     0.9540 0.996 0.000 0.004
#> GSM52601     1  0.0237     0.9540 0.996 0.000 0.004
#> GSM52602     3  0.0237     0.9424 0.004 0.000 0.996
#> GSM52603     3  0.0237     0.9366 0.000 0.004 0.996
#> GSM52604     3  0.0000     0.9404 0.000 0.000 1.000
#> GSM52605     3  0.0424     0.9407 0.008 0.000 0.992
#> GSM52606     3  0.0237     0.9424 0.004 0.000 0.996
#> GSM52607     3  0.0000     0.9404 0.000 0.000 1.000
#> GSM52608     3  0.0000     0.9404 0.000 0.000 1.000
#> GSM52609     3  0.0237     0.9424 0.004 0.000 0.996

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.5522    0.39750 0.000 0.668 0.288 0.044
#> GSM52557     2  0.4222    0.65411 0.000 0.728 0.000 0.272
#> GSM52558     2  0.4699    0.57475 0.004 0.676 0.000 0.320
#> GSM52559     2  0.2589    0.75553 0.000 0.884 0.000 0.116
#> GSM52560     2  0.2760    0.75370 0.000 0.872 0.000 0.128
#> GSM52561     2  0.4964    0.63739 0.028 0.716 0.000 0.256
#> GSM52562     2  0.4134    0.66358 0.000 0.740 0.000 0.260
#> GSM52563     2  0.0188    0.75566 0.000 0.996 0.000 0.004
#> GSM52564     1  0.0336    0.82549 0.992 0.000 0.000 0.008
#> GSM52565     2  0.2973    0.68597 0.000 0.856 0.000 0.144
#> GSM52566     2  0.2589    0.75526 0.000 0.884 0.000 0.116
#> GSM52567     2  0.2408    0.71536 0.000 0.896 0.000 0.104
#> GSM52568     2  0.1474    0.75187 0.000 0.948 0.000 0.052
#> GSM52569     2  0.1716    0.73730 0.000 0.936 0.000 0.064
#> GSM52570     2  0.3610    0.64025 0.000 0.800 0.000 0.200
#> GSM52571     1  0.1182    0.81789 0.968 0.000 0.016 0.016
#> GSM52572     1  0.3942    0.67353 0.764 0.000 0.000 0.236
#> GSM52573     3  0.0188    0.76327 0.000 0.000 0.996 0.004
#> GSM52574     3  0.0188    0.76327 0.000 0.000 0.996 0.004
#> GSM52575     3  0.0469    0.76196 0.000 0.000 0.988 0.012
#> GSM52576     3  0.1677    0.74671 0.040 0.000 0.948 0.012
#> GSM52577     3  0.4372    0.47622 0.268 0.000 0.728 0.004
#> GSM52578     3  0.3099    0.70006 0.020 0.000 0.876 0.104
#> GSM52579     3  0.6404    0.40284 0.004 0.088 0.624 0.284
#> GSM52580     1  0.5028    0.45106 0.596 0.004 0.000 0.400
#> GSM52581     1  0.5004    0.46546 0.604 0.004 0.000 0.392
#> GSM52582     3  0.8217   -0.00807 0.176 0.028 0.404 0.392
#> GSM52583     1  0.4122    0.65813 0.760 0.000 0.004 0.236
#> GSM52584     1  0.4741    0.55992 0.668 0.000 0.004 0.328
#> GSM52585     1  0.6130    0.28755 0.512 0.048 0.000 0.440
#> GSM52586     1  0.4855    0.53355 0.644 0.004 0.000 0.352
#> GSM52587     4  0.7211   -0.39891 0.120 0.436 0.004 0.440
#> GSM52588     1  0.1182    0.81789 0.968 0.000 0.016 0.016
#> GSM52589     1  0.2002    0.79243 0.936 0.000 0.044 0.020
#> GSM52590     4  0.7826   -0.07342 0.392 0.056 0.080 0.472
#> GSM52591     1  0.2345    0.75148 0.900 0.000 0.000 0.100
#> GSM52592     1  0.0469    0.82575 0.988 0.000 0.000 0.012
#> GSM52593     1  0.0336    0.82628 0.992 0.000 0.000 0.008
#> GSM52594     1  0.0376    0.82693 0.992 0.000 0.004 0.004
#> GSM52595     1  0.0657    0.82484 0.984 0.000 0.004 0.012
#> GSM52596     1  0.0927    0.82179 0.976 0.000 0.008 0.016
#> GSM52597     1  0.1211    0.81568 0.960 0.000 0.000 0.040
#> GSM52598     1  0.0188    0.82605 0.996 0.000 0.000 0.004
#> GSM52599     1  0.0188    0.82698 0.996 0.000 0.004 0.000
#> GSM52600     1  0.0469    0.82622 0.988 0.000 0.012 0.000
#> GSM52601     1  0.0000    0.82643 1.000 0.000 0.000 0.000
#> GSM52602     3  0.5906    0.53898 0.028 0.012 0.616 0.344
#> GSM52603     3  0.6938    0.40703 0.004 0.096 0.492 0.408
#> GSM52604     3  0.5828    0.54387 0.016 0.020 0.620 0.344
#> GSM52605     3  0.6605    0.45691 0.056 0.012 0.536 0.396
#> GSM52606     3  0.0336    0.76190 0.000 0.000 0.992 0.008
#> GSM52607     3  0.0188    0.76322 0.000 0.000 0.996 0.004
#> GSM52608     3  0.0188    0.76322 0.000 0.000 0.996 0.004
#> GSM52609     3  0.0188    0.76322 0.000 0.000 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.3622     0.6589 0.000 0.804 0.172 0.008 0.016
#> GSM52557     2  0.4989     0.5295 0.000 0.552 0.000 0.416 0.032
#> GSM52558     4  0.5254    -0.4561 0.000 0.460 0.004 0.500 0.036
#> GSM52559     2  0.4258     0.7286 0.000 0.744 0.004 0.220 0.032
#> GSM52560     2  0.4042     0.7320 0.000 0.756 0.000 0.212 0.032
#> GSM52561     2  0.5133     0.6296 0.012 0.620 0.000 0.336 0.032
#> GSM52562     2  0.5439     0.5638 0.000 0.560 0.000 0.372 0.068
#> GSM52563     2  0.1211     0.7537 0.000 0.960 0.000 0.024 0.016
#> GSM52564     1  0.0290     0.9355 0.992 0.000 0.000 0.008 0.000
#> GSM52565     2  0.2438     0.7217 0.000 0.900 0.000 0.060 0.040
#> GSM52566     2  0.4083     0.7270 0.000 0.744 0.000 0.228 0.028
#> GSM52567     2  0.1469     0.7441 0.000 0.948 0.000 0.016 0.036
#> GSM52568     2  0.1997     0.7404 0.000 0.924 0.000 0.040 0.036
#> GSM52569     2  0.1043     0.7471 0.000 0.960 0.000 0.000 0.040
#> GSM52570     2  0.5507     0.5050 0.000 0.652 0.000 0.160 0.188
#> GSM52571     1  0.0404     0.9378 0.988 0.000 0.000 0.000 0.012
#> GSM52572     1  0.6682    -0.0784 0.472 0.008 0.000 0.328 0.192
#> GSM52573     3  0.0000     0.9479 0.000 0.000 1.000 0.000 0.000
#> GSM52574     3  0.0000     0.9479 0.000 0.000 1.000 0.000 0.000
#> GSM52575     3  0.0162     0.9453 0.000 0.000 0.996 0.000 0.004
#> GSM52576     3  0.0771     0.9290 0.020 0.000 0.976 0.000 0.004
#> GSM52577     3  0.3737     0.6056 0.224 0.000 0.764 0.004 0.008
#> GSM52578     3  0.0955     0.9269 0.000 0.000 0.968 0.028 0.004
#> GSM52579     3  0.1717     0.8978 0.000 0.004 0.936 0.052 0.008
#> GSM52580     4  0.4066     0.6352 0.324 0.000 0.000 0.672 0.004
#> GSM52581     4  0.3796     0.6516 0.300 0.000 0.000 0.700 0.000
#> GSM52582     4  0.5692     0.5698 0.160 0.012 0.136 0.684 0.008
#> GSM52583     4  0.4283     0.4273 0.456 0.000 0.000 0.544 0.000
#> GSM52584     4  0.4402     0.5783 0.372 0.000 0.004 0.620 0.004
#> GSM52585     4  0.3866     0.6407 0.192 0.004 0.000 0.780 0.024
#> GSM52586     4  0.6726     0.3230 0.328 0.008 0.000 0.464 0.200
#> GSM52587     4  0.3731     0.3094 0.016 0.172 0.000 0.800 0.012
#> GSM52588     1  0.0566     0.9368 0.984 0.000 0.000 0.004 0.012
#> GSM52589     1  0.1299     0.9160 0.960 0.000 0.008 0.012 0.020
#> GSM52590     5  0.3812     0.6805 0.196 0.020 0.004 0.000 0.780
#> GSM52591     1  0.0865     0.9212 0.972 0.000 0.000 0.004 0.024
#> GSM52592     1  0.0162     0.9375 0.996 0.000 0.000 0.004 0.000
#> GSM52593     1  0.0324     0.9381 0.992 0.000 0.000 0.004 0.004
#> GSM52594     1  0.0451     0.9383 0.988 0.000 0.000 0.004 0.008
#> GSM52595     1  0.0510     0.9363 0.984 0.000 0.000 0.000 0.016
#> GSM52596     1  0.0510     0.9363 0.984 0.000 0.000 0.000 0.016
#> GSM52597     1  0.1471     0.9002 0.952 0.004 0.000 0.020 0.024
#> GSM52598     1  0.0162     0.9367 0.996 0.000 0.000 0.004 0.000
#> GSM52599     1  0.0404     0.9378 0.988 0.000 0.000 0.000 0.012
#> GSM52600     1  0.0162     0.9367 0.996 0.000 0.000 0.004 0.000
#> GSM52601     1  0.0290     0.9349 0.992 0.000 0.000 0.008 0.000
#> GSM52602     5  0.4218     0.8913 0.040 0.004 0.196 0.000 0.760
#> GSM52603     5  0.4081     0.8803 0.012 0.032 0.172 0.000 0.784
#> GSM52604     5  0.4048     0.8775 0.012 0.016 0.208 0.000 0.764
#> GSM52605     5  0.4028     0.8926 0.048 0.000 0.176 0.000 0.776
#> GSM52606     3  0.0000     0.9479 0.000 0.000 1.000 0.000 0.000
#> GSM52607     3  0.0000     0.9479 0.000 0.000 1.000 0.000 0.000
#> GSM52608     3  0.0000     0.9479 0.000 0.000 1.000 0.000 0.000
#> GSM52609     3  0.0000     0.9479 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     6  0.5484      0.652 0.000 0.248 0.052 0.024 0.032 0.644
#> GSM52557     6  0.2592      0.678 0.000 0.016 0.000 0.116 0.004 0.864
#> GSM52558     6  0.3628      0.590 0.000 0.036 0.000 0.184 0.004 0.776
#> GSM52559     6  0.1196      0.725 0.000 0.008 0.000 0.040 0.000 0.952
#> GSM52560     6  0.1225      0.727 0.000 0.012 0.000 0.036 0.000 0.952
#> GSM52561     6  0.1728      0.714 0.000 0.008 0.000 0.064 0.004 0.924
#> GSM52562     6  0.3030      0.669 0.000 0.056 0.000 0.092 0.004 0.848
#> GSM52563     6  0.4014      0.683 0.000 0.268 0.000 0.012 0.016 0.704
#> GSM52564     1  0.0260      0.978 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM52565     6  0.4758      0.619 0.000 0.356 0.000 0.016 0.032 0.596
#> GSM52566     6  0.1152      0.725 0.000 0.004 0.000 0.044 0.000 0.952
#> GSM52567     6  0.4638      0.650 0.000 0.320 0.000 0.016 0.032 0.632
#> GSM52568     6  0.3983      0.655 0.000 0.348 0.000 0.004 0.008 0.640
#> GSM52569     6  0.5006      0.639 0.000 0.324 0.004 0.024 0.036 0.612
#> GSM52570     2  0.1707      0.477 0.000 0.928 0.000 0.004 0.012 0.056
#> GSM52571     1  0.0146      0.981 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM52572     2  0.4919      0.656 0.232 0.676 0.004 0.072 0.016 0.000
#> GSM52573     3  0.0405      0.968 0.000 0.000 0.988 0.004 0.008 0.000
#> GSM52574     3  0.0146      0.969 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM52575     3  0.0146      0.969 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM52576     3  0.0551      0.966 0.008 0.000 0.984 0.004 0.004 0.000
#> GSM52577     3  0.2631      0.762 0.152 0.000 0.840 0.008 0.000 0.000
#> GSM52578     3  0.1067      0.952 0.004 0.004 0.964 0.024 0.004 0.000
#> GSM52579     3  0.0837      0.956 0.000 0.000 0.972 0.020 0.004 0.004
#> GSM52580     4  0.1219      0.924 0.048 0.000 0.000 0.948 0.000 0.004
#> GSM52581     4  0.1285      0.924 0.052 0.000 0.000 0.944 0.000 0.004
#> GSM52582     4  0.1579      0.909 0.024 0.000 0.008 0.944 0.004 0.020
#> GSM52583     4  0.2278      0.846 0.128 0.000 0.000 0.868 0.004 0.000
#> GSM52584     4  0.1663      0.897 0.088 0.000 0.000 0.912 0.000 0.000
#> GSM52585     4  0.1485      0.904 0.028 0.024 0.000 0.944 0.004 0.000
#> GSM52586     2  0.5889      0.682 0.128 0.668 0.000 0.084 0.024 0.096
#> GSM52587     4  0.1958      0.831 0.000 0.000 0.000 0.896 0.004 0.100
#> GSM52588     1  0.0146      0.981 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM52589     1  0.1956      0.881 0.908 0.000 0.008 0.080 0.004 0.000
#> GSM52590     5  0.0935      0.959 0.032 0.004 0.000 0.000 0.964 0.000
#> GSM52591     1  0.0935      0.953 0.964 0.004 0.000 0.000 0.032 0.000
#> GSM52592     1  0.0146      0.979 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM52593     1  0.0146      0.981 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM52594     1  0.0146      0.981 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM52595     1  0.0146      0.981 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM52596     1  0.0146      0.981 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM52597     1  0.1458      0.937 0.948 0.020 0.000 0.016 0.016 0.000
#> GSM52598     1  0.0146      0.979 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM52599     1  0.0146      0.981 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM52600     1  0.0000      0.980 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52601     1  0.0260      0.977 0.992 0.008 0.000 0.000 0.000 0.000
#> GSM52602     5  0.1003      0.974 0.020 0.000 0.016 0.000 0.964 0.000
#> GSM52603     5  0.0893      0.963 0.004 0.004 0.004 0.000 0.972 0.016
#> GSM52604     5  0.1065      0.972 0.008 0.000 0.020 0.000 0.964 0.008
#> GSM52605     5  0.1078      0.976 0.016 0.000 0.012 0.000 0.964 0.008
#> GSM52606     3  0.0291      0.969 0.000 0.000 0.992 0.004 0.004 0.000
#> GSM52607     3  0.0000      0.968 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52608     3  0.0146      0.969 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM52609     3  0.0291      0.969 0.000 0.000 0.992 0.004 0.004 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) tissue(p) k
#> SD:NMF 52         5.73e-10  8.62e-04 2
#> SD:NMF 50         1.49e-10  1.22e-05 3
#> SD:NMF 43         3.98e-09  6.54e-04 4
#> SD:NMF 49         5.23e-09  4.65e-09 5
#> SD:NMF 53         3.24e-09  3.00e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.499           0.930       0.942          0.379 0.591   0.591
#> 3 3 0.744           0.885       0.940          0.212 0.965   0.941
#> 4 4 0.499           0.670       0.788          0.298 0.997   0.995
#> 5 5 0.491           0.438       0.720          0.106 0.902   0.823
#> 6 6 0.581           0.694       0.767          0.132 0.768   0.495

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.4690      0.869 0.100 0.900
#> GSM52557     2  0.5408      0.912 0.124 0.876
#> GSM52558     2  0.5408      0.912 0.124 0.876
#> GSM52559     2  0.6343      0.912 0.160 0.840
#> GSM52560     2  0.6048      0.914 0.148 0.852
#> GSM52561     2  0.7815      0.839 0.232 0.768
#> GSM52562     2  0.5408      0.912 0.124 0.876
#> GSM52563     2  0.6973      0.895 0.188 0.812
#> GSM52564     1  0.4690      0.894 0.900 0.100
#> GSM52565     2  0.3114      0.875 0.056 0.944
#> GSM52566     2  0.6343      0.912 0.160 0.840
#> GSM52567     2  0.2948      0.872 0.052 0.948
#> GSM52568     2  0.5294      0.912 0.120 0.880
#> GSM52569     2  0.4431      0.870 0.092 0.908
#> GSM52570     2  0.4690      0.905 0.100 0.900
#> GSM52571     1  0.0000      0.971 1.000 0.000
#> GSM52572     1  0.6887      0.791 0.816 0.184
#> GSM52573     1  0.0000      0.971 1.000 0.000
#> GSM52574     1  0.0000      0.971 1.000 0.000
#> GSM52575     1  0.0000      0.971 1.000 0.000
#> GSM52576     1  0.0000      0.971 1.000 0.000
#> GSM52577     1  0.0000      0.971 1.000 0.000
#> GSM52578     1  0.0000      0.971 1.000 0.000
#> GSM52579     1  0.0000      0.971 1.000 0.000
#> GSM52580     1  0.4690      0.894 0.900 0.100
#> GSM52581     1  0.4690      0.894 0.900 0.100
#> GSM52582     1  0.0376      0.968 0.996 0.004
#> GSM52583     1  0.0376      0.968 0.996 0.004
#> GSM52584     1  0.0376      0.968 0.996 0.004
#> GSM52585     1  0.4690      0.894 0.900 0.100
#> GSM52586     1  0.6887      0.791 0.816 0.184
#> GSM52587     2  0.9460      0.652 0.364 0.636
#> GSM52588     1  0.0000      0.971 1.000 0.000
#> GSM52589     1  0.0000      0.971 1.000 0.000
#> GSM52590     1  0.0000      0.971 1.000 0.000
#> GSM52591     1  0.4815      0.890 0.896 0.104
#> GSM52592     1  0.0000      0.971 1.000 0.000
#> GSM52593     1  0.0000      0.971 1.000 0.000
#> GSM52594     1  0.0000      0.971 1.000 0.000
#> GSM52595     1  0.0000      0.971 1.000 0.000
#> GSM52596     1  0.0000      0.971 1.000 0.000
#> GSM52597     1  0.4815      0.890 0.896 0.104
#> GSM52598     1  0.0000      0.971 1.000 0.000
#> GSM52599     1  0.0000      0.971 1.000 0.000
#> GSM52600     1  0.0000      0.971 1.000 0.000
#> GSM52601     1  0.0000      0.971 1.000 0.000
#> GSM52602     1  0.0000      0.971 1.000 0.000
#> GSM52603     1  0.0000      0.971 1.000 0.000
#> GSM52604     1  0.0000      0.971 1.000 0.000
#> GSM52605     1  0.0000      0.971 1.000 0.000
#> GSM52606     1  0.0000      0.971 1.000 0.000
#> GSM52607     1  0.0000      0.971 1.000 0.000
#> GSM52608     1  0.0000      0.971 1.000 0.000
#> GSM52609     1  0.0000      0.971 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     3  0.1129      0.821 0.004 0.020 0.976
#> GSM52557     2  0.0000      0.842 0.000 1.000 0.000
#> GSM52558     2  0.0000      0.842 0.000 1.000 0.000
#> GSM52559     2  0.2066      0.832 0.000 0.940 0.060
#> GSM52560     2  0.1753      0.838 0.000 0.952 0.048
#> GSM52561     2  0.4121      0.752 0.084 0.876 0.040
#> GSM52562     2  0.0000      0.842 0.000 1.000 0.000
#> GSM52563     2  0.4233      0.760 0.004 0.836 0.160
#> GSM52564     1  0.4045      0.871 0.872 0.104 0.024
#> GSM52565     3  0.2959      0.829 0.000 0.100 0.900
#> GSM52566     2  0.2066      0.832 0.000 0.940 0.060
#> GSM52567     3  0.4452      0.789 0.000 0.192 0.808
#> GSM52568     2  0.4887      0.577 0.000 0.772 0.228
#> GSM52569     3  0.1585      0.824 0.008 0.028 0.964
#> GSM52570     3  0.5988      0.524 0.000 0.368 0.632
#> GSM52571     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52572     1  0.6180      0.660 0.716 0.260 0.024
#> GSM52573     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52574     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52575     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52576     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52577     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52578     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52579     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52580     1  0.3752      0.881 0.884 0.096 0.020
#> GSM52581     1  0.3752      0.881 0.884 0.096 0.020
#> GSM52582     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52583     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52584     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52585     1  0.3752      0.881 0.884 0.096 0.020
#> GSM52586     1  0.6180      0.660 0.716 0.260 0.024
#> GSM52587     2  0.6141      0.505 0.232 0.736 0.032
#> GSM52588     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52589     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52590     1  0.0475      0.960 0.992 0.004 0.004
#> GSM52591     1  0.3987      0.871 0.872 0.108 0.020
#> GSM52592     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52593     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52594     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52595     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52596     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52597     1  0.3987      0.871 0.872 0.108 0.020
#> GSM52598     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52599     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52600     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52601     1  0.0000      0.962 1.000 0.000 0.000
#> GSM52602     1  0.0475      0.960 0.992 0.004 0.004
#> GSM52603     1  0.0475      0.960 0.992 0.004 0.004
#> GSM52604     1  0.0475      0.960 0.992 0.004 0.004
#> GSM52605     1  0.0475      0.960 0.992 0.004 0.004
#> GSM52606     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52607     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52608     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52609     1  0.0237      0.962 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     4  0.5368     0.6118 0.000 0.024 0.340 0.636
#> GSM52557     2  0.0817     0.8363 0.000 0.976 0.024 0.000
#> GSM52558     2  0.0817     0.8363 0.000 0.976 0.024 0.000
#> GSM52559     2  0.1118     0.8278 0.000 0.964 0.000 0.036
#> GSM52560     2  0.1489     0.8286 0.000 0.952 0.004 0.044
#> GSM52561     2  0.3673     0.7608 0.068 0.872 0.020 0.040
#> GSM52562     2  0.0817     0.8363 0.000 0.976 0.024 0.000
#> GSM52563     2  0.3485     0.7566 0.000 0.856 0.028 0.116
#> GSM52564     1  0.4499     0.6263 0.756 0.012 0.228 0.004
#> GSM52565     4  0.6148     0.4199 0.000 0.048 0.468 0.484
#> GSM52566     2  0.1118     0.8278 0.000 0.964 0.000 0.036
#> GSM52567     4  0.7641     0.0756 0.000 0.208 0.376 0.416
#> GSM52568     2  0.6136     0.1838 0.000 0.584 0.356 0.060
#> GSM52569     4  0.5040     0.6192 0.000 0.008 0.364 0.628
#> GSM52570     3  0.6432     0.0000 0.000 0.128 0.636 0.236
#> GSM52571     1  0.0188     0.7788 0.996 0.000 0.000 0.004
#> GSM52572     1  0.5417     0.3793 0.596 0.012 0.388 0.004
#> GSM52573     1  0.4624     0.7103 0.660 0.000 0.000 0.340
#> GSM52574     1  0.4624     0.7103 0.660 0.000 0.000 0.340
#> GSM52575     1  0.4222     0.7407 0.728 0.000 0.000 0.272
#> GSM52576     1  0.4222     0.7407 0.728 0.000 0.000 0.272
#> GSM52577     1  0.1022     0.7792 0.968 0.000 0.000 0.032
#> GSM52578     1  0.4697     0.7264 0.696 0.000 0.008 0.296
#> GSM52579     1  0.4697     0.7264 0.696 0.000 0.008 0.296
#> GSM52580     1  0.6522     0.6238 0.632 0.000 0.224 0.144
#> GSM52581     1  0.6522     0.6238 0.632 0.000 0.224 0.144
#> GSM52582     1  0.4454     0.7224 0.692 0.000 0.000 0.308
#> GSM52583     1  0.4356     0.7310 0.708 0.000 0.000 0.292
#> GSM52584     1  0.4331     0.7326 0.712 0.000 0.000 0.288
#> GSM52585     1  0.6522     0.6238 0.632 0.000 0.224 0.144
#> GSM52586     1  0.5417     0.3793 0.596 0.012 0.388 0.004
#> GSM52587     2  0.5460     0.5297 0.204 0.736 0.020 0.040
#> GSM52588     1  0.0000     0.7786 1.000 0.000 0.000 0.000
#> GSM52589     1  0.0817     0.7796 0.976 0.000 0.000 0.024
#> GSM52590     1  0.5180     0.6435 0.740 0.000 0.196 0.064
#> GSM52591     1  0.4408     0.6261 0.756 0.008 0.232 0.004
#> GSM52592     1  0.0000     0.7786 1.000 0.000 0.000 0.000
#> GSM52593     1  0.0188     0.7788 0.996 0.000 0.000 0.004
#> GSM52594     1  0.0188     0.7788 0.996 0.000 0.000 0.004
#> GSM52595     1  0.0188     0.7788 0.996 0.000 0.000 0.004
#> GSM52596     1  0.0188     0.7788 0.996 0.000 0.000 0.004
#> GSM52597     1  0.4408     0.6261 0.756 0.008 0.232 0.004
#> GSM52598     1  0.0000     0.7786 1.000 0.000 0.000 0.000
#> GSM52599     1  0.0188     0.7788 0.996 0.000 0.000 0.004
#> GSM52600     1  0.0000     0.7786 1.000 0.000 0.000 0.000
#> GSM52601     1  0.0000     0.7786 1.000 0.000 0.000 0.000
#> GSM52602     1  0.5609     0.6383 0.712 0.000 0.200 0.088
#> GSM52603     1  0.5609     0.6383 0.712 0.000 0.200 0.088
#> GSM52604     1  0.5609     0.6383 0.712 0.000 0.200 0.088
#> GSM52605     1  0.5609     0.6383 0.712 0.000 0.200 0.088
#> GSM52606     1  0.4624     0.7103 0.660 0.000 0.000 0.340
#> GSM52607     1  0.4624     0.7103 0.660 0.000 0.000 0.340
#> GSM52608     1  0.4624     0.7103 0.660 0.000 0.000 0.340
#> GSM52609     1  0.4624     0.7103 0.660 0.000 0.000 0.340

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     4  0.2966     0.4113 0.000 0.016 0.000 0.848 0.136
#> GSM52557     2  0.0671     0.8475 0.000 0.980 0.016 0.000 0.004
#> GSM52558     2  0.0912     0.8488 0.000 0.972 0.016 0.000 0.012
#> GSM52559     2  0.1485     0.8406 0.000 0.948 0.000 0.020 0.032
#> GSM52560     2  0.1430     0.8398 0.000 0.944 0.000 0.052 0.004
#> GSM52561     2  0.3503     0.7838 0.060 0.864 0.020 0.044 0.012
#> GSM52562     2  0.0912     0.8488 0.000 0.972 0.016 0.000 0.012
#> GSM52563     2  0.3243     0.7820 0.000 0.848 0.004 0.116 0.032
#> GSM52564     1  0.4151     0.3189 0.748 0.008 0.228 0.004 0.012
#> GSM52565     4  0.6131    -0.0055 0.000 0.000 0.284 0.548 0.168
#> GSM52566     2  0.1485     0.8406 0.000 0.948 0.000 0.020 0.032
#> GSM52567     4  0.8259    -0.3761 0.000 0.116 0.292 0.312 0.280
#> GSM52568     2  0.7165     0.1560 0.000 0.544 0.236 0.132 0.088
#> GSM52569     4  0.1282     0.4398 0.000 0.000 0.044 0.952 0.004
#> GSM52570     3  0.6980     0.0000 0.000 0.048 0.528 0.152 0.272
#> GSM52571     1  0.0162     0.4732 0.996 0.000 0.004 0.000 0.000
#> GSM52572     1  0.5178     0.1331 0.588 0.012 0.372 0.000 0.028
#> GSM52573     1  0.6523     0.2679 0.480 0.000 0.288 0.000 0.232
#> GSM52574     1  0.6523     0.2679 0.480 0.000 0.288 0.000 0.232
#> GSM52575     1  0.5612     0.3673 0.624 0.000 0.248 0.000 0.128
#> GSM52576     1  0.5612     0.3673 0.624 0.000 0.248 0.000 0.128
#> GSM52577     1  0.1386     0.4459 0.952 0.000 0.016 0.000 0.032
#> GSM52578     1  0.6191     0.3387 0.536 0.000 0.292 0.000 0.172
#> GSM52579     1  0.6191     0.3387 0.536 0.000 0.292 0.000 0.172
#> GSM52580     1  0.4403     0.3596 0.560 0.000 0.436 0.000 0.004
#> GSM52581     1  0.4403     0.3596 0.560 0.000 0.436 0.000 0.004
#> GSM52582     1  0.5619     0.4040 0.584 0.000 0.332 0.004 0.080
#> GSM52583     1  0.5608     0.4105 0.596 0.000 0.316 0.004 0.084
#> GSM52584     1  0.5543     0.4136 0.604 0.000 0.312 0.004 0.080
#> GSM52585     1  0.4403     0.3596 0.560 0.000 0.436 0.000 0.004
#> GSM52586     1  0.5178     0.1331 0.588 0.012 0.372 0.000 0.028
#> GSM52587     2  0.5642     0.6201 0.148 0.728 0.040 0.036 0.048
#> GSM52588     1  0.0162     0.4686 0.996 0.000 0.000 0.000 0.004
#> GSM52589     1  0.0703     0.4751 0.976 0.000 0.024 0.000 0.000
#> GSM52590     1  0.4420    -0.8740 0.548 0.000 0.004 0.000 0.448
#> GSM52591     1  0.4103     0.3190 0.748 0.012 0.228 0.000 0.012
#> GSM52592     1  0.0000     0.4715 1.000 0.000 0.000 0.000 0.000
#> GSM52593     1  0.0162     0.4732 0.996 0.000 0.004 0.000 0.000
#> GSM52594     1  0.0162     0.4732 0.996 0.000 0.004 0.000 0.000
#> GSM52595     1  0.0162     0.4732 0.996 0.000 0.004 0.000 0.000
#> GSM52596     1  0.0162     0.4732 0.996 0.000 0.004 0.000 0.000
#> GSM52597     1  0.4103     0.3190 0.748 0.012 0.228 0.000 0.012
#> GSM52598     1  0.0000     0.4715 1.000 0.000 0.000 0.000 0.000
#> GSM52599     1  0.0162     0.4732 0.996 0.000 0.004 0.000 0.000
#> GSM52600     1  0.0000     0.4715 1.000 0.000 0.000 0.000 0.000
#> GSM52601     1  0.0000     0.4715 1.000 0.000 0.000 0.000 0.000
#> GSM52602     5  0.4559     1.0000 0.480 0.000 0.008 0.000 0.512
#> GSM52603     5  0.4559     1.0000 0.480 0.000 0.008 0.000 0.512
#> GSM52604     5  0.4559     1.0000 0.480 0.000 0.008 0.000 0.512
#> GSM52605     5  0.4559     1.0000 0.480 0.000 0.008 0.000 0.512
#> GSM52606     1  0.6523     0.2679 0.480 0.000 0.288 0.000 0.232
#> GSM52607     1  0.6523     0.2679 0.480 0.000 0.288 0.000 0.232
#> GSM52608     1  0.6523     0.2679 0.480 0.000 0.288 0.000 0.232
#> GSM52609     1  0.6523     0.2679 0.480 0.000 0.288 0.000 0.232

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     4  0.0000      0.607 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM52557     6  0.0547      0.847 0.000 0.020 0.000 0.000 0.000 0.980
#> GSM52558     6  0.0547      0.850 0.000 0.020 0.000 0.000 0.000 0.980
#> GSM52559     6  0.1938      0.839 0.000 0.020 0.008 0.052 0.000 0.920
#> GSM52560     6  0.1672      0.839 0.000 0.048 0.016 0.004 0.000 0.932
#> GSM52561     6  0.3468      0.790 0.056 0.048 0.024 0.004 0.016 0.852
#> GSM52562     6  0.0547      0.850 0.000 0.020 0.000 0.000 0.000 0.980
#> GSM52563     6  0.2859      0.785 0.000 0.016 0.000 0.156 0.000 0.828
#> GSM52564     1  0.4233      0.670 0.740 0.012 0.036 0.000 0.204 0.008
#> GSM52565     2  0.4602      0.293 0.000 0.628 0.004 0.320 0.048 0.000
#> GSM52566     6  0.1938      0.839 0.000 0.020 0.008 0.052 0.000 0.920
#> GSM52567     2  0.3453      0.533 0.000 0.792 0.000 0.164 0.000 0.044
#> GSM52568     6  0.5103      0.132 0.000 0.436 0.020 0.000 0.040 0.504
#> GSM52569     4  0.3758      0.508 0.000 0.284 0.016 0.700 0.000 0.000
#> GSM52570     2  0.2834      0.527 0.000 0.864 0.020 0.000 0.096 0.020
#> GSM52571     1  0.0146      0.852 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52572     1  0.6243      0.482 0.572 0.120 0.048 0.000 0.248 0.012
#> GSM52573     3  0.3543      0.650 0.200 0.000 0.768 0.000 0.032 0.000
#> GSM52574     3  0.3543      0.650 0.200 0.000 0.768 0.000 0.032 0.000
#> GSM52575     3  0.3955      0.585 0.384 0.000 0.608 0.000 0.008 0.000
#> GSM52576     3  0.3955      0.585 0.384 0.000 0.608 0.000 0.008 0.000
#> GSM52577     1  0.1444      0.777 0.928 0.000 0.072 0.000 0.000 0.000
#> GSM52578     3  0.3608      0.656 0.272 0.000 0.716 0.000 0.012 0.000
#> GSM52579     3  0.3608      0.656 0.272 0.000 0.716 0.000 0.012 0.000
#> GSM52580     3  0.6268      0.318 0.300 0.008 0.408 0.000 0.284 0.000
#> GSM52581     3  0.6268      0.318 0.300 0.008 0.408 0.000 0.284 0.000
#> GSM52582     3  0.4659      0.579 0.252 0.004 0.668 0.000 0.076 0.000
#> GSM52583     3  0.4682      0.570 0.284 0.000 0.640 0.000 0.076 0.000
#> GSM52584     3  0.4818      0.573 0.284 0.004 0.636 0.000 0.076 0.000
#> GSM52585     3  0.6268      0.318 0.300 0.008 0.408 0.000 0.284 0.000
#> GSM52586     1  0.6243      0.482 0.572 0.120 0.048 0.000 0.248 0.012
#> GSM52587     6  0.5140      0.681 0.096 0.020 0.120 0.004 0.032 0.728
#> GSM52588     1  0.0363      0.845 0.988 0.000 0.012 0.000 0.000 0.000
#> GSM52589     1  0.1649      0.796 0.932 0.000 0.036 0.000 0.032 0.000
#> GSM52590     5  0.5042      0.790 0.332 0.000 0.092 0.000 0.576 0.000
#> GSM52591     1  0.4233      0.670 0.740 0.008 0.036 0.000 0.204 0.012
#> GSM52592     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52593     1  0.0146      0.852 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52594     1  0.0146      0.852 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52595     1  0.0146      0.852 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52596     1  0.0146      0.852 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52597     1  0.4233      0.670 0.740 0.008 0.036 0.000 0.204 0.012
#> GSM52598     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52599     1  0.0146      0.852 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM52600     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52601     1  0.0000      0.851 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52602     5  0.4783      0.948 0.204 0.000 0.128 0.000 0.668 0.000
#> GSM52603     5  0.4783      0.948 0.204 0.000 0.128 0.000 0.668 0.000
#> GSM52604     5  0.4783      0.948 0.204 0.000 0.128 0.000 0.668 0.000
#> GSM52605     5  0.4783      0.948 0.204 0.000 0.128 0.000 0.668 0.000
#> GSM52606     3  0.3543      0.650 0.200 0.000 0.768 0.000 0.032 0.000
#> GSM52607     3  0.3543      0.650 0.200 0.000 0.768 0.000 0.032 0.000
#> GSM52608     3  0.3543      0.650 0.200 0.000 0.768 0.000 0.032 0.000
#> GSM52609     3  0.3543      0.650 0.200 0.000 0.768 0.000 0.032 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) tissue(p) k
#> CV:hclust 54         2.44e-10  5.41e-04 2
#> CV:hclust 54         2.01e-10  1.27e-06 3
#> CV:hclust 48         7.34e-09  9.76e-07 4
#> CV:hclust 13         1.54e-02  1.63e-01 5
#> CV:hclust 47         4.00e-07  4.10e-10 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.836           0.942       0.951         0.3928 0.609   0.609
#> 3 3 0.544           0.803       0.810         0.5287 0.738   0.569
#> 4 4 0.558           0.569       0.737         0.1709 0.954   0.867
#> 5 5 0.664           0.702       0.765         0.0899 0.899   0.675
#> 6 6 0.720           0.776       0.819         0.0522 0.949   0.777

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.3733      0.899 0.072 0.928
#> GSM52557     2  0.2423      0.970 0.040 0.960
#> GSM52558     2  0.2423      0.970 0.040 0.960
#> GSM52559     2  0.2423      0.970 0.040 0.960
#> GSM52560     2  0.2423      0.970 0.040 0.960
#> GSM52561     2  0.8955      0.564 0.312 0.688
#> GSM52562     2  0.2423      0.970 0.040 0.960
#> GSM52563     2  0.2423      0.970 0.040 0.960
#> GSM52564     1  0.5178      0.904 0.884 0.116
#> GSM52565     2  0.2423      0.970 0.040 0.960
#> GSM52566     2  0.2423      0.970 0.040 0.960
#> GSM52567     2  0.2423      0.970 0.040 0.960
#> GSM52568     2  0.2423      0.970 0.040 0.960
#> GSM52569     2  0.2423      0.970 0.040 0.960
#> GSM52570     2  0.2423      0.970 0.040 0.960
#> GSM52571     1  0.2236      0.957 0.964 0.036
#> GSM52572     1  0.4161      0.931 0.916 0.084
#> GSM52573     1  0.1843      0.944 0.972 0.028
#> GSM52574     1  0.1843      0.944 0.972 0.028
#> GSM52575     1  0.1843      0.944 0.972 0.028
#> GSM52576     1  0.1843      0.944 0.972 0.028
#> GSM52577     1  0.1843      0.944 0.972 0.028
#> GSM52578     1  0.1843      0.944 0.972 0.028
#> GSM52579     1  0.1843      0.944 0.972 0.028
#> GSM52580     1  0.2778      0.955 0.952 0.048
#> GSM52581     1  0.5408      0.903 0.876 0.124
#> GSM52582     1  0.1633      0.951 0.976 0.024
#> GSM52583     1  0.2603      0.956 0.956 0.044
#> GSM52584     1  0.2603      0.956 0.956 0.044
#> GSM52585     1  0.5408      0.903 0.876 0.124
#> GSM52586     1  0.5178      0.904 0.884 0.116
#> GSM52587     1  0.5408      0.903 0.876 0.124
#> GSM52588     1  0.2236      0.957 0.964 0.036
#> GSM52589     1  0.2043      0.958 0.968 0.032
#> GSM52590     1  0.1633      0.957 0.976 0.024
#> GSM52591     1  0.4298      0.928 0.912 0.088
#> GSM52592     1  0.2236      0.957 0.964 0.036
#> GSM52593     1  0.2236      0.957 0.964 0.036
#> GSM52594     1  0.2236      0.957 0.964 0.036
#> GSM52595     1  0.2236      0.957 0.964 0.036
#> GSM52596     1  0.2236      0.957 0.964 0.036
#> GSM52597     1  0.4431      0.925 0.908 0.092
#> GSM52598     1  0.2236      0.957 0.964 0.036
#> GSM52599     1  0.2236      0.957 0.964 0.036
#> GSM52600     1  0.2236      0.957 0.964 0.036
#> GSM52601     1  0.2236      0.957 0.964 0.036
#> GSM52602     1  0.0376      0.953 0.996 0.004
#> GSM52603     1  0.0376      0.953 0.996 0.004
#> GSM52604     1  0.0376      0.953 0.996 0.004
#> GSM52605     1  0.0376      0.953 0.996 0.004
#> GSM52606     1  0.1843      0.944 0.972 0.028
#> GSM52607     1  0.1843      0.944 0.972 0.028
#> GSM52608     1  0.1843      0.944 0.972 0.028
#> GSM52609     1  0.1843      0.944 0.972 0.028

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.1411      0.922 0.000 0.964 0.036
#> GSM52557     2  0.3998      0.909 0.060 0.884 0.056
#> GSM52558     2  0.3998      0.909 0.060 0.884 0.056
#> GSM52559     2  0.2096      0.927 0.004 0.944 0.052
#> GSM52560     2  0.2096      0.927 0.004 0.944 0.052
#> GSM52561     2  0.7945      0.425 0.388 0.548 0.064
#> GSM52562     2  0.3998      0.909 0.060 0.884 0.056
#> GSM52563     2  0.1129      0.929 0.004 0.976 0.020
#> GSM52564     1  0.2492      0.796 0.936 0.016 0.048
#> GSM52565     2  0.1585      0.928 0.008 0.964 0.028
#> GSM52566     2  0.2096      0.927 0.004 0.944 0.052
#> GSM52567     2  0.1399      0.929 0.004 0.968 0.028
#> GSM52568     2  0.0424      0.931 0.008 0.992 0.000
#> GSM52569     2  0.1585      0.928 0.008 0.964 0.028
#> GSM52570     2  0.1751      0.928 0.012 0.960 0.028
#> GSM52571     1  0.5461      0.778 0.748 0.008 0.244
#> GSM52572     1  0.2339      0.798 0.940 0.012 0.048
#> GSM52573     3  0.3941      0.852 0.156 0.000 0.844
#> GSM52574     3  0.3941      0.852 0.156 0.000 0.844
#> GSM52575     3  0.3941      0.852 0.156 0.000 0.844
#> GSM52576     3  0.4654      0.827 0.208 0.000 0.792
#> GSM52577     3  0.5560      0.731 0.300 0.000 0.700
#> GSM52578     3  0.5760      0.710 0.328 0.000 0.672
#> GSM52579     3  0.5760      0.710 0.328 0.000 0.672
#> GSM52580     1  0.0000      0.767 1.000 0.000 0.000
#> GSM52581     1  0.0424      0.761 0.992 0.008 0.000
#> GSM52582     1  0.2625      0.800 0.916 0.000 0.084
#> GSM52583     1  0.2448      0.801 0.924 0.000 0.076
#> GSM52584     1  0.2356      0.800 0.928 0.000 0.072
#> GSM52585     1  0.0424      0.761 0.992 0.008 0.000
#> GSM52586     1  0.1905      0.785 0.956 0.016 0.028
#> GSM52587     1  0.0424      0.761 0.992 0.008 0.000
#> GSM52588     1  0.5461      0.778 0.748 0.008 0.244
#> GSM52589     1  0.5285      0.776 0.752 0.004 0.244
#> GSM52590     1  0.6836      0.388 0.572 0.016 0.412
#> GSM52591     1  0.2492      0.796 0.936 0.016 0.048
#> GSM52592     1  0.5461      0.778 0.748 0.008 0.244
#> GSM52593     1  0.5461      0.778 0.748 0.008 0.244
#> GSM52594     1  0.5461      0.778 0.748 0.008 0.244
#> GSM52595     1  0.5461      0.778 0.748 0.008 0.244
#> GSM52596     1  0.5461      0.778 0.748 0.008 0.244
#> GSM52597     1  0.2492      0.796 0.936 0.016 0.048
#> GSM52598     1  0.4531      0.805 0.824 0.008 0.168
#> GSM52599     1  0.5461      0.778 0.748 0.008 0.244
#> GSM52600     1  0.5461      0.778 0.748 0.008 0.244
#> GSM52601     1  0.4291      0.807 0.840 0.008 0.152
#> GSM52602     3  0.5848      0.707 0.268 0.012 0.720
#> GSM52603     3  0.5884      0.704 0.272 0.012 0.716
#> GSM52604     3  0.5848      0.707 0.268 0.012 0.720
#> GSM52605     3  0.5884      0.704 0.272 0.012 0.716
#> GSM52606     3  0.3941      0.852 0.156 0.000 0.844
#> GSM52607     3  0.3941      0.852 0.156 0.000 0.844
#> GSM52608     3  0.3941      0.852 0.156 0.000 0.844
#> GSM52609     3  0.3941      0.852 0.156 0.000 0.844

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.4951      0.843 0.000 0.744 0.044 0.212
#> GSM52557     2  0.2940      0.817 0.012 0.892 0.008 0.088
#> GSM52558     2  0.2940      0.817 0.012 0.892 0.008 0.088
#> GSM52559     2  0.0188      0.851 0.000 0.996 0.000 0.004
#> GSM52560     2  0.0000      0.850 0.000 1.000 0.000 0.000
#> GSM52561     2  0.6540      0.451 0.204 0.648 0.004 0.144
#> GSM52562     2  0.2940      0.817 0.012 0.892 0.008 0.088
#> GSM52563     2  0.4361      0.851 0.000 0.772 0.020 0.208
#> GSM52564     1  0.4008      0.123 0.756 0.000 0.000 0.244
#> GSM52565     2  0.4954      0.844 0.004 0.736 0.028 0.232
#> GSM52566     2  0.0188      0.851 0.000 0.996 0.000 0.004
#> GSM52567     2  0.4706      0.847 0.000 0.748 0.028 0.224
#> GSM52568     2  0.3736      0.859 0.004 0.844 0.024 0.128
#> GSM52569     2  0.4954      0.844 0.004 0.736 0.028 0.232
#> GSM52570     2  0.5250      0.845 0.008 0.720 0.032 0.240
#> GSM52571     1  0.2266      0.644 0.912 0.000 0.084 0.004
#> GSM52572     1  0.3907      0.129 0.768 0.000 0.000 0.232
#> GSM52573     3  0.2654      0.811 0.108 0.004 0.888 0.000
#> GSM52574     3  0.2654      0.811 0.108 0.004 0.888 0.000
#> GSM52575     3  0.2589      0.809 0.116 0.000 0.884 0.000
#> GSM52576     3  0.3791      0.762 0.200 0.000 0.796 0.004
#> GSM52577     3  0.4963      0.694 0.284 0.000 0.696 0.020
#> GSM52578     3  0.5776      0.723 0.220 0.004 0.700 0.076
#> GSM52579     3  0.5776      0.723 0.220 0.004 0.700 0.076
#> GSM52580     1  0.4996     -0.915 0.516 0.000 0.000 0.484
#> GSM52581     4  0.4992      0.965 0.476 0.000 0.000 0.524
#> GSM52582     1  0.4830     -0.596 0.608 0.000 0.000 0.392
#> GSM52583     1  0.4790     -0.559 0.620 0.000 0.000 0.380
#> GSM52584     1  0.4817     -0.584 0.612 0.000 0.000 0.388
#> GSM52585     4  0.4992      0.965 0.476 0.000 0.000 0.524
#> GSM52586     1  0.4331     -0.125 0.712 0.000 0.000 0.288
#> GSM52587     4  0.5000      0.927 0.500 0.000 0.000 0.500
#> GSM52588     1  0.2542      0.644 0.904 0.000 0.084 0.012
#> GSM52589     1  0.2662      0.640 0.900 0.000 0.084 0.016
#> GSM52590     1  0.6917      0.266 0.592 0.000 0.208 0.200
#> GSM52591     1  0.3569      0.248 0.804 0.000 0.000 0.196
#> GSM52592     1  0.2266      0.644 0.912 0.000 0.084 0.004
#> GSM52593     1  0.2412      0.645 0.908 0.000 0.084 0.008
#> GSM52594     1  0.2412      0.645 0.908 0.000 0.084 0.008
#> GSM52595     1  0.2412      0.645 0.908 0.000 0.084 0.008
#> GSM52596     1  0.2542      0.644 0.904 0.000 0.084 0.012
#> GSM52597     1  0.3873      0.144 0.772 0.000 0.000 0.228
#> GSM52598     1  0.0817      0.597 0.976 0.000 0.024 0.000
#> GSM52599     1  0.2266      0.644 0.912 0.000 0.084 0.004
#> GSM52600     1  0.2266      0.644 0.912 0.000 0.084 0.004
#> GSM52601     1  0.1209      0.601 0.964 0.000 0.032 0.004
#> GSM52602     3  0.7271      0.532 0.244 0.000 0.540 0.216
#> GSM52603     3  0.7301      0.528 0.228 0.000 0.536 0.236
#> GSM52604     3  0.7271      0.532 0.244 0.000 0.540 0.216
#> GSM52605     3  0.7277      0.528 0.228 0.000 0.540 0.232
#> GSM52606     3  0.2654      0.811 0.108 0.004 0.888 0.000
#> GSM52607     3  0.2654      0.811 0.108 0.004 0.888 0.000
#> GSM52608     3  0.2654      0.811 0.108 0.004 0.888 0.000
#> GSM52609     3  0.2654      0.811 0.108 0.004 0.888 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.2523      0.709 0.000 0.908 0.040 0.028 0.024
#> GSM52557     2  0.6330      0.663 0.000 0.456 0.000 0.160 0.384
#> GSM52558     2  0.6330      0.663 0.000 0.456 0.000 0.160 0.384
#> GSM52559     2  0.6020      0.708 0.000 0.560 0.012 0.096 0.332
#> GSM52560     2  0.5988      0.707 0.000 0.552 0.008 0.100 0.340
#> GSM52561     5  0.8090     -0.562 0.076 0.320 0.008 0.224 0.372
#> GSM52562     2  0.6330      0.663 0.000 0.456 0.000 0.160 0.384
#> GSM52563     2  0.1913      0.722 0.000 0.936 0.020 0.024 0.020
#> GSM52564     1  0.5741      0.448 0.608 0.000 0.012 0.296 0.084
#> GSM52565     2  0.0867      0.715 0.000 0.976 0.008 0.008 0.008
#> GSM52566     2  0.6020      0.708 0.000 0.560 0.012 0.096 0.332
#> GSM52567     2  0.0451      0.716 0.000 0.988 0.004 0.008 0.000
#> GSM52568     2  0.4492      0.730 0.000 0.740 0.004 0.052 0.204
#> GSM52569     2  0.1393      0.706 0.000 0.956 0.012 0.024 0.008
#> GSM52570     2  0.1710      0.711 0.000 0.940 0.004 0.016 0.040
#> GSM52571     1  0.0566      0.795 0.984 0.000 0.004 0.000 0.012
#> GSM52572     1  0.5630      0.444 0.612 0.000 0.004 0.288 0.096
#> GSM52573     3  0.1788      0.871 0.056 0.000 0.932 0.004 0.008
#> GSM52574     3  0.1788      0.871 0.056 0.000 0.932 0.004 0.008
#> GSM52575     3  0.2206      0.866 0.068 0.000 0.912 0.004 0.016
#> GSM52576     3  0.3308      0.810 0.144 0.000 0.832 0.004 0.020
#> GSM52577     3  0.4668      0.637 0.272 0.000 0.684 0.000 0.044
#> GSM52578     3  0.5703      0.701 0.144 0.000 0.700 0.104 0.052
#> GSM52579     3  0.5703      0.701 0.144 0.000 0.700 0.104 0.052
#> GSM52580     4  0.2970      0.887 0.168 0.000 0.000 0.828 0.004
#> GSM52581     4  0.2605      0.876 0.148 0.000 0.000 0.852 0.000
#> GSM52582     4  0.4086      0.848 0.284 0.000 0.000 0.704 0.012
#> GSM52583     4  0.4130      0.838 0.292 0.000 0.000 0.696 0.012
#> GSM52584     4  0.4086      0.848 0.284 0.000 0.000 0.704 0.012
#> GSM52585     4  0.3087      0.869 0.152 0.000 0.004 0.836 0.008
#> GSM52586     1  0.5778      0.387 0.584 0.000 0.004 0.312 0.100
#> GSM52587     4  0.3211      0.884 0.164 0.000 0.008 0.824 0.004
#> GSM52588     1  0.1059      0.793 0.968 0.000 0.004 0.008 0.020
#> GSM52589     1  0.1653      0.778 0.944 0.000 0.004 0.024 0.028
#> GSM52590     1  0.5932     -0.114 0.516 0.000 0.044 0.032 0.408
#> GSM52591     1  0.5198      0.491 0.648 0.000 0.004 0.284 0.064
#> GSM52592     1  0.0324      0.796 0.992 0.000 0.004 0.004 0.000
#> GSM52593     1  0.0968      0.797 0.972 0.000 0.004 0.012 0.012
#> GSM52594     1  0.0968      0.797 0.972 0.000 0.004 0.012 0.012
#> GSM52595     1  0.0968      0.797 0.972 0.000 0.004 0.012 0.012
#> GSM52596     1  0.0833      0.795 0.976 0.000 0.004 0.004 0.016
#> GSM52597     1  0.5486      0.460 0.624 0.000 0.004 0.288 0.084
#> GSM52598     1  0.1153      0.789 0.964 0.000 0.004 0.024 0.008
#> GSM52599     1  0.0566      0.795 0.984 0.000 0.004 0.000 0.012
#> GSM52600     1  0.0566      0.795 0.984 0.000 0.004 0.000 0.012
#> GSM52601     1  0.1444      0.770 0.948 0.000 0.000 0.040 0.012
#> GSM52602     5  0.7079      0.685 0.196 0.000 0.288 0.032 0.484
#> GSM52603     5  0.7079      0.685 0.196 0.000 0.288 0.032 0.484
#> GSM52604     5  0.7079      0.685 0.196 0.000 0.288 0.032 0.484
#> GSM52605     5  0.7079      0.685 0.196 0.000 0.288 0.032 0.484
#> GSM52606     3  0.1341      0.873 0.056 0.000 0.944 0.000 0.000
#> GSM52607     3  0.1341      0.873 0.056 0.000 0.944 0.000 0.000
#> GSM52608     3  0.1341      0.873 0.056 0.000 0.944 0.000 0.000
#> GSM52609     3  0.1341      0.873 0.056 0.000 0.944 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.2976     0.7949 0.000 0.876 0.016 0.024 0.056 0.028
#> GSM52557     6  0.3692     0.8202 0.000 0.244 0.000 0.012 0.008 0.736
#> GSM52558     6  0.3692     0.8202 0.000 0.244 0.000 0.012 0.008 0.736
#> GSM52559     6  0.5175     0.7545 0.000 0.352 0.004 0.016 0.052 0.576
#> GSM52560     6  0.4540     0.7895 0.000 0.324 0.000 0.008 0.036 0.632
#> GSM52561     6  0.5794     0.5827 0.028 0.164 0.004 0.100 0.036 0.668
#> GSM52562     6  0.3692     0.8202 0.000 0.244 0.000 0.012 0.008 0.736
#> GSM52563     2  0.2896     0.7902 0.000 0.880 0.012 0.024 0.052 0.032
#> GSM52564     1  0.6677     0.5424 0.564 0.012 0.004 0.212 0.092 0.116
#> GSM52565     2  0.0508     0.8300 0.000 0.984 0.000 0.004 0.012 0.000
#> GSM52566     6  0.5175     0.7545 0.000 0.352 0.004 0.016 0.052 0.576
#> GSM52567     2  0.0363     0.8321 0.000 0.988 0.000 0.000 0.000 0.012
#> GSM52568     2  0.4321    -0.0626 0.000 0.580 0.000 0.012 0.008 0.400
#> GSM52569     2  0.1053     0.8304 0.000 0.964 0.004 0.012 0.020 0.000
#> GSM52570     2  0.1769     0.7954 0.000 0.924 0.000 0.004 0.012 0.060
#> GSM52571     1  0.0893     0.8261 0.972 0.000 0.004 0.004 0.004 0.016
#> GSM52572     1  0.6107     0.5860 0.604 0.004 0.000 0.200 0.076 0.116
#> GSM52573     3  0.1599     0.8382 0.024 0.000 0.940 0.000 0.008 0.028
#> GSM52574     3  0.1599     0.8382 0.024 0.000 0.940 0.000 0.008 0.028
#> GSM52575     3  0.3001     0.8159 0.024 0.000 0.872 0.008 0.040 0.056
#> GSM52576     3  0.4431     0.7540 0.112 0.000 0.776 0.012 0.044 0.056
#> GSM52577     3  0.6087     0.5850 0.228 0.000 0.608 0.016 0.068 0.080
#> GSM52578     3  0.6494     0.6300 0.048 0.000 0.616 0.160 0.100 0.076
#> GSM52579     3  0.6494     0.6300 0.048 0.000 0.616 0.160 0.100 0.076
#> GSM52580     4  0.1444     0.9234 0.072 0.000 0.000 0.928 0.000 0.000
#> GSM52581     4  0.2247     0.9101 0.060 0.000 0.000 0.904 0.012 0.024
#> GSM52582     4  0.2846     0.9131 0.116 0.000 0.004 0.856 0.016 0.008
#> GSM52583     4  0.2976     0.9075 0.120 0.000 0.004 0.848 0.020 0.008
#> GSM52584     4  0.2754     0.9139 0.116 0.000 0.004 0.860 0.012 0.008
#> GSM52585     4  0.2495     0.9035 0.060 0.000 0.000 0.892 0.016 0.032
#> GSM52586     1  0.6327     0.5536 0.576 0.004 0.000 0.208 0.076 0.136
#> GSM52587     4  0.2569     0.9065 0.060 0.008 0.004 0.896 0.016 0.016
#> GSM52588     1  0.1995     0.7988 0.924 0.000 0.004 0.012 0.024 0.036
#> GSM52589     1  0.3018     0.7600 0.868 0.000 0.004 0.028 0.036 0.064
#> GSM52590     5  0.4821     0.5891 0.352 0.004 0.020 0.024 0.600 0.000
#> GSM52591     1  0.5816     0.6093 0.636 0.004 0.000 0.192 0.076 0.092
#> GSM52592     1  0.0291     0.8289 0.992 0.000 0.004 0.000 0.004 0.000
#> GSM52593     1  0.0912     0.8269 0.972 0.000 0.004 0.004 0.012 0.008
#> GSM52594     1  0.0912     0.8269 0.972 0.000 0.004 0.004 0.012 0.008
#> GSM52595     1  0.0912     0.8269 0.972 0.000 0.004 0.004 0.012 0.008
#> GSM52596     1  0.0798     0.8243 0.976 0.000 0.004 0.004 0.012 0.004
#> GSM52597     1  0.5961     0.6078 0.624 0.004 0.000 0.188 0.080 0.104
#> GSM52598     1  0.1109     0.8266 0.964 0.000 0.004 0.012 0.004 0.016
#> GSM52599     1  0.0893     0.8261 0.972 0.000 0.004 0.004 0.004 0.016
#> GSM52600     1  0.0893     0.8261 0.972 0.000 0.004 0.004 0.004 0.016
#> GSM52601     1  0.1406     0.8226 0.952 0.000 0.004 0.020 0.016 0.008
#> GSM52602     5  0.4946     0.9063 0.108 0.004 0.156 0.024 0.708 0.000
#> GSM52603     5  0.4946     0.9063 0.108 0.004 0.156 0.024 0.708 0.000
#> GSM52604     5  0.4946     0.9063 0.108 0.004 0.156 0.024 0.708 0.000
#> GSM52605     5  0.4946     0.9063 0.108 0.004 0.156 0.024 0.708 0.000
#> GSM52606     3  0.0777     0.8418 0.024 0.000 0.972 0.000 0.000 0.004
#> GSM52607     3  0.0891     0.8416 0.024 0.000 0.968 0.000 0.000 0.008
#> GSM52608     3  0.0891     0.8414 0.024 0.000 0.968 0.000 0.000 0.008
#> GSM52609     3  0.0891     0.8414 0.024 0.000 0.968 0.000 0.000 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) tissue(p) k
#> CV:kmeans 54         2.68e-11  1.64e-04 2
#> CV:kmeans 52         5.84e-11  4.20e-06 3
#> CV:kmeans 43         2.46e-09  5.85e-05 4
#> CV:kmeans 47         1.52e-09  6.15e-09 5
#> CV:kmeans 53         3.30e-09  3.89e-12 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.694           0.856       0.939         0.4886 0.508   0.508
#> 3 3 0.925           0.913       0.960         0.3717 0.669   0.436
#> 4 4 0.742           0.737       0.859         0.1182 0.892   0.693
#> 5 5 0.759           0.754       0.848         0.0628 0.939   0.769
#> 6 6 0.755           0.697       0.810         0.0414 0.974   0.879

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0000      0.911 0.000 1.000
#> GSM52557     2  0.0000      0.911 0.000 1.000
#> GSM52558     2  0.0000      0.911 0.000 1.000
#> GSM52559     2  0.0000      0.911 0.000 1.000
#> GSM52560     2  0.0000      0.911 0.000 1.000
#> GSM52561     2  0.0000      0.911 0.000 1.000
#> GSM52562     2  0.0000      0.911 0.000 1.000
#> GSM52563     2  0.0000      0.911 0.000 1.000
#> GSM52564     2  0.1843      0.896 0.028 0.972
#> GSM52565     2  0.0000      0.911 0.000 1.000
#> GSM52566     2  0.0000      0.911 0.000 1.000
#> GSM52567     2  0.0000      0.911 0.000 1.000
#> GSM52568     2  0.0000      0.911 0.000 1.000
#> GSM52569     2  0.0000      0.911 0.000 1.000
#> GSM52570     2  0.0000      0.911 0.000 1.000
#> GSM52571     1  0.0000      0.945 1.000 0.000
#> GSM52572     2  0.9998      0.167 0.492 0.508
#> GSM52573     1  0.0376      0.944 0.996 0.004
#> GSM52574     1  0.0376      0.944 0.996 0.004
#> GSM52575     1  0.0000      0.945 1.000 0.000
#> GSM52576     1  0.0000      0.945 1.000 0.000
#> GSM52577     1  0.0000      0.945 1.000 0.000
#> GSM52578     1  0.0672      0.942 0.992 0.008
#> GSM52579     1  0.2603      0.918 0.956 0.044
#> GSM52580     2  0.8144      0.704 0.252 0.748
#> GSM52581     2  0.7139      0.772 0.196 0.804
#> GSM52582     1  0.0000      0.945 1.000 0.000
#> GSM52583     1  0.0000      0.945 1.000 0.000
#> GSM52584     1  0.0000      0.945 1.000 0.000
#> GSM52585     2  0.6712      0.791 0.176 0.824
#> GSM52586     2  0.6801      0.788 0.180 0.820
#> GSM52587     2  0.0000      0.911 0.000 1.000
#> GSM52588     1  0.0000      0.945 1.000 0.000
#> GSM52589     1  0.0000      0.945 1.000 0.000
#> GSM52590     1  0.5629      0.832 0.868 0.132
#> GSM52591     1  1.0000     -0.203 0.500 0.500
#> GSM52592     1  0.0000      0.945 1.000 0.000
#> GSM52593     1  0.0000      0.945 1.000 0.000
#> GSM52594     1  0.0000      0.945 1.000 0.000
#> GSM52595     1  0.0000      0.945 1.000 0.000
#> GSM52596     1  0.0000      0.945 1.000 0.000
#> GSM52597     2  0.9963      0.259 0.464 0.536
#> GSM52598     1  0.0000      0.945 1.000 0.000
#> GSM52599     1  0.0000      0.945 1.000 0.000
#> GSM52600     1  0.0000      0.945 1.000 0.000
#> GSM52601     1  0.0000      0.945 1.000 0.000
#> GSM52602     1  0.5629      0.836 0.868 0.132
#> GSM52603     1  0.9044      0.555 0.680 0.320
#> GSM52604     1  0.6048      0.818 0.852 0.148
#> GSM52605     1  0.6247      0.811 0.844 0.156
#> GSM52606     1  0.1184      0.939 0.984 0.016
#> GSM52607     1  0.1184      0.939 0.984 0.016
#> GSM52608     1  0.1184      0.939 0.984 0.016
#> GSM52609     1  0.0938      0.940 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.2537     0.9087 0.000 0.920 0.080
#> GSM52557     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52558     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52559     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52560     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52561     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52562     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52563     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52564     1  0.6307     0.1024 0.512 0.488 0.000
#> GSM52565     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52566     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52567     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52568     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52569     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52570     2  0.0000     0.9916 0.000 1.000 0.000
#> GSM52571     1  0.0747     0.9230 0.984 0.000 0.016
#> GSM52572     1  0.1860     0.9021 0.948 0.052 0.000
#> GSM52573     3  0.0000     0.9763 0.000 0.000 1.000
#> GSM52574     3  0.0000     0.9763 0.000 0.000 1.000
#> GSM52575     3  0.0000     0.9763 0.000 0.000 1.000
#> GSM52576     3  0.1163     0.9567 0.028 0.000 0.972
#> GSM52577     3  0.0892     0.9646 0.020 0.000 0.980
#> GSM52578     3  0.0237     0.9750 0.004 0.000 0.996
#> GSM52579     3  0.0000     0.9763 0.000 0.000 1.000
#> GSM52580     1  0.0661     0.9210 0.988 0.008 0.004
#> GSM52581     1  0.2625     0.8805 0.916 0.084 0.000
#> GSM52582     1  0.6295     0.0953 0.528 0.000 0.472
#> GSM52583     1  0.0424     0.9225 0.992 0.000 0.008
#> GSM52584     1  0.0592     0.9209 0.988 0.000 0.012
#> GSM52585     1  0.3038     0.8640 0.896 0.104 0.000
#> GSM52586     1  0.3340     0.8503 0.880 0.120 0.000
#> GSM52587     2  0.1289     0.9634 0.032 0.968 0.000
#> GSM52588     1  0.1964     0.8988 0.944 0.000 0.056
#> GSM52589     1  0.3551     0.8268 0.868 0.000 0.132
#> GSM52590     3  0.5285     0.6731 0.244 0.004 0.752
#> GSM52591     1  0.1031     0.9164 0.976 0.024 0.000
#> GSM52592     1  0.0592     0.9243 0.988 0.000 0.012
#> GSM52593     1  0.0592     0.9243 0.988 0.000 0.012
#> GSM52594     1  0.0592     0.9243 0.988 0.000 0.012
#> GSM52595     1  0.0592     0.9243 0.988 0.000 0.012
#> GSM52596     1  0.0592     0.9243 0.988 0.000 0.012
#> GSM52597     1  0.1163     0.9148 0.972 0.028 0.000
#> GSM52598     1  0.0592     0.9243 0.988 0.000 0.012
#> GSM52599     1  0.0592     0.9243 0.988 0.000 0.012
#> GSM52600     1  0.0592     0.9243 0.988 0.000 0.012
#> GSM52601     1  0.0592     0.9243 0.988 0.000 0.012
#> GSM52602     3  0.0237     0.9749 0.004 0.000 0.996
#> GSM52603     3  0.1182     0.9650 0.012 0.012 0.976
#> GSM52604     3  0.0424     0.9741 0.008 0.000 0.992
#> GSM52605     3  0.0592     0.9719 0.012 0.000 0.988
#> GSM52606     3  0.0000     0.9763 0.000 0.000 1.000
#> GSM52607     3  0.0000     0.9763 0.000 0.000 1.000
#> GSM52608     3  0.0000     0.9763 0.000 0.000 1.000
#> GSM52609     3  0.0000     0.9763 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.0817     0.9677 0.000 0.976 0.024 0.000
#> GSM52557     2  0.0336     0.9886 0.000 0.992 0.000 0.008
#> GSM52558     2  0.0336     0.9886 0.000 0.992 0.000 0.008
#> GSM52559     2  0.0000     0.9895 0.000 1.000 0.000 0.000
#> GSM52560     2  0.0000     0.9895 0.000 1.000 0.000 0.000
#> GSM52561     2  0.1474     0.9481 0.000 0.948 0.000 0.052
#> GSM52562     2  0.0336     0.9886 0.000 0.992 0.000 0.008
#> GSM52563     2  0.0000     0.9895 0.000 1.000 0.000 0.000
#> GSM52564     1  0.7325     0.2401 0.536 0.168 0.004 0.292
#> GSM52565     2  0.0000     0.9895 0.000 1.000 0.000 0.000
#> GSM52566     2  0.0000     0.9895 0.000 1.000 0.000 0.000
#> GSM52567     2  0.0000     0.9895 0.000 1.000 0.000 0.000
#> GSM52568     2  0.0336     0.9886 0.000 0.992 0.000 0.008
#> GSM52569     2  0.0336     0.9857 0.000 0.992 0.000 0.008
#> GSM52570     2  0.0336     0.9886 0.000 0.992 0.000 0.008
#> GSM52571     1  0.1059     0.7440 0.972 0.000 0.012 0.016
#> GSM52572     1  0.5030     0.3621 0.640 0.004 0.004 0.352
#> GSM52573     3  0.0188     0.8378 0.004 0.000 0.996 0.000
#> GSM52574     3  0.0188     0.8378 0.004 0.000 0.996 0.000
#> GSM52575     3  0.1004     0.8328 0.024 0.000 0.972 0.004
#> GSM52576     3  0.3497     0.7706 0.124 0.000 0.852 0.024
#> GSM52577     3  0.5021     0.6068 0.240 0.000 0.724 0.036
#> GSM52578     3  0.4707     0.6674 0.036 0.000 0.760 0.204
#> GSM52579     3  0.4245     0.6887 0.020 0.000 0.784 0.196
#> GSM52580     4  0.4088     0.7529 0.232 0.004 0.000 0.764
#> GSM52581     4  0.4088     0.7471 0.232 0.004 0.000 0.764
#> GSM52582     4  0.5705     0.5567 0.108 0.000 0.180 0.712
#> GSM52583     4  0.4697     0.6295 0.356 0.000 0.000 0.644
#> GSM52584     4  0.4955     0.7344 0.268 0.000 0.024 0.708
#> GSM52585     4  0.4194     0.7461 0.228 0.008 0.000 0.764
#> GSM52586     1  0.6548    -0.0639 0.496 0.064 0.004 0.436
#> GSM52587     4  0.5038     0.4047 0.012 0.336 0.000 0.652
#> GSM52588     1  0.4804     0.5909 0.780 0.000 0.072 0.148
#> GSM52589     1  0.6994     0.2710 0.560 0.000 0.152 0.288
#> GSM52590     1  0.7885     0.0850 0.444 0.004 0.272 0.280
#> GSM52591     1  0.4343     0.5417 0.732 0.000 0.004 0.264
#> GSM52592     1  0.0707     0.7512 0.980 0.000 0.000 0.020
#> GSM52593     1  0.0469     0.7512 0.988 0.000 0.000 0.012
#> GSM52594     1  0.0707     0.7509 0.980 0.000 0.000 0.020
#> GSM52595     1  0.0592     0.7515 0.984 0.000 0.000 0.016
#> GSM52596     1  0.0188     0.7504 0.996 0.000 0.000 0.004
#> GSM52597     1  0.4343     0.5316 0.732 0.000 0.004 0.264
#> GSM52598     1  0.1474     0.7395 0.948 0.000 0.000 0.052
#> GSM52599     1  0.0657     0.7483 0.984 0.000 0.004 0.012
#> GSM52600     1  0.0657     0.7508 0.984 0.000 0.004 0.012
#> GSM52601     1  0.1118     0.7454 0.964 0.000 0.000 0.036
#> GSM52602     3  0.5405     0.7094 0.040 0.004 0.700 0.256
#> GSM52603     3  0.6300     0.6783 0.032 0.044 0.660 0.264
#> GSM52604     3  0.5372     0.7122 0.032 0.008 0.704 0.256
#> GSM52605     3  0.5680     0.6917 0.040 0.008 0.676 0.276
#> GSM52606     3  0.0376     0.8380 0.004 0.000 0.992 0.004
#> GSM52607     3  0.0376     0.8380 0.004 0.000 0.992 0.004
#> GSM52608     3  0.0376     0.8380 0.004 0.000 0.992 0.004
#> GSM52609     3  0.0376     0.8380 0.004 0.000 0.992 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.2589     0.9166 0.000 0.900 0.044 0.008 0.048
#> GSM52557     2  0.1399     0.9418 0.000 0.952 0.000 0.028 0.020
#> GSM52558     2  0.1399     0.9418 0.000 0.952 0.000 0.028 0.020
#> GSM52559     2  0.0566     0.9512 0.000 0.984 0.000 0.004 0.012
#> GSM52560     2  0.0451     0.9497 0.000 0.988 0.000 0.008 0.004
#> GSM52561     2  0.3605     0.8189 0.012 0.832 0.000 0.120 0.036
#> GSM52562     2  0.1399     0.9418 0.000 0.952 0.000 0.028 0.020
#> GSM52563     2  0.1331     0.9479 0.000 0.952 0.000 0.008 0.040
#> GSM52564     1  0.8048    -0.0435 0.352 0.120 0.000 0.352 0.176
#> GSM52565     2  0.1484     0.9478 0.000 0.944 0.000 0.008 0.048
#> GSM52566     2  0.0798     0.9511 0.000 0.976 0.000 0.008 0.016
#> GSM52567     2  0.1408     0.9481 0.000 0.948 0.000 0.008 0.044
#> GSM52568     2  0.1195     0.9514 0.000 0.960 0.000 0.012 0.028
#> GSM52569     2  0.2006     0.9343 0.000 0.916 0.000 0.012 0.072
#> GSM52570     2  0.1701     0.9486 0.000 0.936 0.000 0.016 0.048
#> GSM52571     1  0.2633     0.7319 0.896 0.000 0.024 0.012 0.068
#> GSM52572     1  0.6585     0.1701 0.456 0.004 0.004 0.380 0.156
#> GSM52573     3  0.0703     0.9031 0.000 0.000 0.976 0.000 0.024
#> GSM52574     3  0.0609     0.9045 0.000 0.000 0.980 0.000 0.020
#> GSM52575     3  0.2060     0.8798 0.016 0.000 0.924 0.008 0.052
#> GSM52576     3  0.5112     0.6835 0.116 0.000 0.740 0.028 0.116
#> GSM52577     3  0.3456     0.8059 0.108 0.000 0.844 0.012 0.036
#> GSM52578     3  0.3736     0.8259 0.020 0.000 0.836 0.092 0.052
#> GSM52579     3  0.3065     0.8472 0.000 0.008 0.872 0.072 0.048
#> GSM52580     4  0.2344     0.7479 0.064 0.000 0.000 0.904 0.032
#> GSM52581     4  0.1648     0.7409 0.040 0.000 0.000 0.940 0.020
#> GSM52582     4  0.5633     0.6091 0.052 0.000 0.128 0.708 0.112
#> GSM52583     4  0.4563     0.6109 0.244 0.000 0.000 0.708 0.048
#> GSM52584     4  0.4038     0.7213 0.132 0.000 0.028 0.808 0.032
#> GSM52585     4  0.2376     0.7288 0.052 0.000 0.000 0.904 0.044
#> GSM52586     4  0.6916     0.1261 0.316 0.036 0.000 0.500 0.148
#> GSM52587     4  0.4425     0.5476 0.000 0.244 0.000 0.716 0.040
#> GSM52588     1  0.6174     0.5324 0.660 0.000 0.072 0.100 0.168
#> GSM52589     1  0.8136     0.1135 0.420 0.004 0.112 0.236 0.228
#> GSM52590     5  0.4182     0.7121 0.164 0.000 0.036 0.016 0.784
#> GSM52591     1  0.5886     0.4056 0.584 0.000 0.000 0.272 0.144
#> GSM52592     1  0.1630     0.7488 0.944 0.000 0.004 0.016 0.036
#> GSM52593     1  0.1564     0.7487 0.948 0.000 0.004 0.024 0.024
#> GSM52594     1  0.1743     0.7482 0.940 0.000 0.004 0.028 0.028
#> GSM52595     1  0.1646     0.7484 0.944 0.000 0.004 0.020 0.032
#> GSM52596     1  0.1653     0.7454 0.944 0.000 0.004 0.024 0.028
#> GSM52597     1  0.5491     0.4395 0.624 0.000 0.000 0.272 0.104
#> GSM52598     1  0.3694     0.6992 0.828 0.000 0.004 0.084 0.084
#> GSM52599     1  0.1731     0.7438 0.940 0.000 0.008 0.012 0.040
#> GSM52600     1  0.2086     0.7438 0.924 0.000 0.008 0.020 0.048
#> GSM52601     1  0.1173     0.7468 0.964 0.000 0.004 0.012 0.020
#> GSM52602     5  0.3462     0.9059 0.012 0.000 0.196 0.000 0.792
#> GSM52603     5  0.3692     0.8856 0.008 0.028 0.152 0.000 0.812
#> GSM52604     5  0.3462     0.9059 0.012 0.000 0.196 0.000 0.792
#> GSM52605     5  0.3475     0.9077 0.012 0.000 0.180 0.004 0.804
#> GSM52606     3  0.0000     0.9060 0.000 0.000 1.000 0.000 0.000
#> GSM52607     3  0.0771     0.9020 0.000 0.000 0.976 0.004 0.020
#> GSM52608     3  0.0404     0.9055 0.000 0.000 0.988 0.000 0.012
#> GSM52609     3  0.0162     0.9060 0.000 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.3645     0.7644 0.000 0.816 0.092 0.000 0.020 0.072
#> GSM52557     2  0.3109     0.8177 0.000 0.772 0.000 0.000 0.004 0.224
#> GSM52558     2  0.3276     0.8133 0.000 0.764 0.000 0.004 0.004 0.228
#> GSM52559     2  0.2070     0.8569 0.000 0.892 0.000 0.000 0.008 0.100
#> GSM52560     2  0.2146     0.8551 0.000 0.880 0.000 0.000 0.004 0.116
#> GSM52561     2  0.5655     0.6055 0.016 0.584 0.000 0.092 0.012 0.296
#> GSM52562     2  0.3081     0.8188 0.000 0.776 0.000 0.000 0.004 0.220
#> GSM52563     2  0.1584     0.8429 0.000 0.928 0.000 0.000 0.008 0.064
#> GSM52564     6  0.7602     0.5135 0.272 0.076 0.000 0.148 0.060 0.444
#> GSM52565     2  0.1701     0.8412 0.000 0.920 0.000 0.000 0.008 0.072
#> GSM52566     2  0.1958     0.8570 0.000 0.896 0.000 0.000 0.004 0.100
#> GSM52567     2  0.1265     0.8480 0.000 0.948 0.000 0.000 0.008 0.044
#> GSM52568     2  0.2048     0.8530 0.000 0.880 0.000 0.000 0.000 0.120
#> GSM52569     2  0.3031     0.8093 0.000 0.852 0.000 0.016 0.032 0.100
#> GSM52570     2  0.2442     0.8372 0.000 0.852 0.000 0.000 0.004 0.144
#> GSM52571     1  0.4892     0.6045 0.732 0.000 0.016 0.064 0.036 0.152
#> GSM52572     6  0.6754     0.5098 0.336 0.008 0.004 0.172 0.036 0.444
#> GSM52573     3  0.1257     0.8797 0.000 0.000 0.952 0.000 0.020 0.028
#> GSM52574     3  0.1074     0.8805 0.000 0.000 0.960 0.000 0.012 0.028
#> GSM52575     3  0.3027     0.8428 0.012 0.000 0.868 0.012 0.044 0.064
#> GSM52576     3  0.6051     0.6672 0.096 0.000 0.664 0.048 0.068 0.124
#> GSM52577     3  0.4766     0.7483 0.108 0.000 0.744 0.012 0.028 0.108
#> GSM52578     3  0.4971     0.7550 0.016 0.000 0.736 0.112 0.040 0.096
#> GSM52579     3  0.4258     0.7911 0.008 0.000 0.784 0.088 0.028 0.092
#> GSM52580     4  0.2039     0.7717 0.020 0.000 0.000 0.916 0.012 0.052
#> GSM52581     4  0.2266     0.7468 0.012 0.000 0.000 0.880 0.000 0.108
#> GSM52582     4  0.2711     0.7432 0.020 0.000 0.036 0.892 0.036 0.016
#> GSM52583     4  0.3201     0.6875 0.148 0.000 0.000 0.820 0.008 0.024
#> GSM52584     4  0.2670     0.7550 0.048 0.000 0.004 0.880 0.004 0.064
#> GSM52585     4  0.3168     0.6604 0.016 0.000 0.000 0.792 0.000 0.192
#> GSM52586     6  0.6853     0.5968 0.200 0.020 0.000 0.240 0.044 0.496
#> GSM52587     4  0.5336     0.4963 0.012 0.120 0.000 0.648 0.008 0.212
#> GSM52588     1  0.6433     0.4063 0.628 0.000 0.044 0.092 0.108 0.128
#> GSM52589     1  0.8442     0.0648 0.368 0.004 0.076 0.228 0.164 0.160
#> GSM52590     5  0.2585     0.8799 0.056 0.004 0.008 0.024 0.896 0.012
#> GSM52591     1  0.6537    -0.4488 0.456 0.000 0.000 0.116 0.076 0.352
#> GSM52592     1  0.3153     0.6528 0.848 0.000 0.000 0.028 0.028 0.096
#> GSM52593     1  0.1086     0.6593 0.964 0.000 0.000 0.012 0.012 0.012
#> GSM52594     1  0.1269     0.6558 0.956 0.000 0.000 0.012 0.020 0.012
#> GSM52595     1  0.1452     0.6547 0.948 0.000 0.000 0.012 0.020 0.020
#> GSM52596     1  0.1875     0.6551 0.928 0.000 0.000 0.032 0.020 0.020
#> GSM52597     1  0.5796    -0.4200 0.464 0.000 0.000 0.116 0.016 0.404
#> GSM52598     1  0.5089     0.5416 0.692 0.000 0.000 0.088 0.044 0.176
#> GSM52599     1  0.3961     0.6377 0.800 0.000 0.004 0.052 0.032 0.112
#> GSM52600     1  0.4128     0.6212 0.764 0.000 0.004 0.036 0.024 0.172
#> GSM52601     1  0.1909     0.6428 0.920 0.000 0.000 0.024 0.004 0.052
#> GSM52602     5  0.1285     0.9614 0.004 0.000 0.052 0.000 0.944 0.000
#> GSM52603     5  0.1340     0.9559 0.000 0.008 0.040 0.000 0.948 0.004
#> GSM52604     5  0.1285     0.9614 0.004 0.000 0.052 0.000 0.944 0.000
#> GSM52605     5  0.1152     0.9583 0.000 0.000 0.044 0.000 0.952 0.004
#> GSM52606     3  0.0000     0.8826 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52607     3  0.0767     0.8814 0.000 0.000 0.976 0.008 0.004 0.012
#> GSM52608     3  0.0717     0.8818 0.000 0.000 0.976 0.000 0.016 0.008
#> GSM52609     3  0.0508     0.8828 0.000 0.000 0.984 0.000 0.004 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) tissue(p) k
#> CV:skmeans 51         5.82e-08  9.41e-03 2
#> CV:skmeans 52         5.48e-11  4.78e-05 3
#> CV:skmeans 48         2.13e-10  1.46e-07 4
#> CV:skmeans 48         9.44e-10  4.99e-08 5
#> CV:skmeans 49         9.69e-09  1.42e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.800           0.906       0.944         0.4610 0.535   0.535
#> 3 3 0.814           0.891       0.952         0.3698 0.772   0.596
#> 4 4 0.719           0.847       0.892         0.0759 0.979   0.942
#> 5 5 0.828           0.869       0.914         0.0825 0.936   0.812
#> 6 6 0.758           0.693       0.834         0.0543 0.947   0.809

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0000      0.910 0.000 1.000
#> GSM52557     1  0.5946      0.858 0.856 0.144
#> GSM52558     1  0.3114      0.932 0.944 0.056
#> GSM52559     2  0.1414      0.912 0.020 0.980
#> GSM52560     2  0.4161      0.891 0.084 0.916
#> GSM52561     2  0.5059      0.878 0.112 0.888
#> GSM52562     1  0.3114      0.932 0.944 0.056
#> GSM52563     2  0.5178      0.865 0.116 0.884
#> GSM52564     1  0.0938      0.953 0.988 0.012
#> GSM52565     1  0.3114      0.932 0.944 0.056
#> GSM52566     2  0.1633      0.912 0.024 0.976
#> GSM52567     1  0.3114      0.932 0.944 0.056
#> GSM52568     1  0.9000      0.576 0.684 0.316
#> GSM52569     1  0.3114      0.932 0.944 0.056
#> GSM52570     1  0.3114      0.932 0.944 0.056
#> GSM52571     1  0.0376      0.954 0.996 0.004
#> GSM52572     1  0.0000      0.956 1.000 0.000
#> GSM52573     2  0.2948      0.932 0.052 0.948
#> GSM52574     2  0.3114      0.932 0.056 0.944
#> GSM52575     2  0.3114      0.932 0.056 0.944
#> GSM52576     2  0.9552      0.489 0.376 0.624
#> GSM52577     2  0.3114      0.932 0.056 0.944
#> GSM52578     2  0.2948      0.932 0.052 0.948
#> GSM52579     2  0.2778      0.932 0.048 0.952
#> GSM52580     1  0.0000      0.956 1.000 0.000
#> GSM52581     1  0.0000      0.956 1.000 0.000
#> GSM52582     2  0.7453      0.798 0.212 0.788
#> GSM52583     1  0.0000      0.956 1.000 0.000
#> GSM52584     1  0.0000      0.956 1.000 0.000
#> GSM52585     1  0.0672      0.954 0.992 0.008
#> GSM52586     1  0.0938      0.953 0.988 0.012
#> GSM52587     2  0.5294      0.878 0.120 0.880
#> GSM52588     1  0.3114      0.913 0.944 0.056
#> GSM52589     1  0.9552      0.303 0.624 0.376
#> GSM52590     1  0.0000      0.956 1.000 0.000
#> GSM52591     1  0.0000      0.956 1.000 0.000
#> GSM52592     1  0.0000      0.956 1.000 0.000
#> GSM52593     1  0.0000      0.956 1.000 0.000
#> GSM52594     1  0.0000      0.956 1.000 0.000
#> GSM52595     1  0.0000      0.956 1.000 0.000
#> GSM52596     1  0.0000      0.956 1.000 0.000
#> GSM52597     1  0.0000      0.956 1.000 0.000
#> GSM52598     1  0.0000      0.956 1.000 0.000
#> GSM52599     1  0.0000      0.956 1.000 0.000
#> GSM52600     1  0.1184      0.948 0.984 0.016
#> GSM52601     1  0.0000      0.956 1.000 0.000
#> GSM52602     1  0.1414      0.943 0.980 0.020
#> GSM52603     1  0.1843      0.947 0.972 0.028
#> GSM52604     1  0.2948      0.939 0.948 0.052
#> GSM52605     1  0.2603      0.939 0.956 0.044
#> GSM52606     2  0.2778      0.932 0.048 0.952
#> GSM52607     2  0.2948      0.932 0.052 0.948
#> GSM52608     2  0.3114      0.932 0.056 0.944
#> GSM52609     2  0.3114      0.932 0.056 0.944

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.3879      0.782 0.000 0.848 0.152
#> GSM52557     2  0.0000      0.934 0.000 1.000 0.000
#> GSM52558     2  0.5706      0.511 0.320 0.680 0.000
#> GSM52559     2  0.0000      0.934 0.000 1.000 0.000
#> GSM52560     2  0.0000      0.934 0.000 1.000 0.000
#> GSM52561     3  0.7011      0.674 0.092 0.188 0.720
#> GSM52562     2  0.0000      0.934 0.000 1.000 0.000
#> GSM52563     2  0.0000      0.934 0.000 1.000 0.000
#> GSM52564     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52565     2  0.0237      0.932 0.004 0.996 0.000
#> GSM52566     2  0.0000      0.934 0.000 1.000 0.000
#> GSM52567     2  0.0000      0.934 0.000 1.000 0.000
#> GSM52568     2  0.0000      0.934 0.000 1.000 0.000
#> GSM52569     2  0.3619      0.797 0.136 0.864 0.000
#> GSM52570     2  0.0000      0.934 0.000 1.000 0.000
#> GSM52571     1  0.1163      0.946 0.972 0.000 0.028
#> GSM52572     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52573     3  0.0000      0.903 0.000 0.000 1.000
#> GSM52574     3  0.0000      0.903 0.000 0.000 1.000
#> GSM52575     3  0.0000      0.903 0.000 0.000 1.000
#> GSM52576     3  0.5706      0.524 0.320 0.000 0.680
#> GSM52577     3  0.0592      0.898 0.012 0.000 0.988
#> GSM52578     3  0.0237      0.902 0.004 0.000 0.996
#> GSM52579     3  0.0237      0.902 0.004 0.000 0.996
#> GSM52580     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52581     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52582     3  0.4062      0.770 0.164 0.000 0.836
#> GSM52583     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52584     1  0.0237      0.963 0.996 0.000 0.004
#> GSM52585     1  0.0424      0.960 0.992 0.008 0.000
#> GSM52586     1  0.0424      0.960 0.992 0.008 0.000
#> GSM52587     3  0.7880      0.605 0.164 0.168 0.668
#> GSM52588     1  0.1860      0.924 0.948 0.000 0.052
#> GSM52589     1  0.5810      0.443 0.664 0.000 0.336
#> GSM52590     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52591     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52592     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52593     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52594     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52595     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52596     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52597     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52598     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52599     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52600     1  0.0237      0.962 0.996 0.000 0.004
#> GSM52601     1  0.0000      0.964 1.000 0.000 0.000
#> GSM52602     1  0.3551      0.841 0.868 0.000 0.132
#> GSM52603     1  0.2176      0.932 0.948 0.032 0.020
#> GSM52604     1  0.4178      0.790 0.828 0.000 0.172
#> GSM52605     1  0.2229      0.926 0.944 0.044 0.012
#> GSM52606     3  0.0000      0.903 0.000 0.000 1.000
#> GSM52607     3  0.0000      0.903 0.000 0.000 1.000
#> GSM52608     3  0.0000      0.903 0.000 0.000 1.000
#> GSM52609     3  0.0000      0.903 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.3219      0.673 0.000 0.836 0.164 0.000
#> GSM52557     4  0.4500      1.000 0.000 0.316 0.000 0.684
#> GSM52558     4  0.4500      1.000 0.000 0.316 0.000 0.684
#> GSM52559     2  0.0188      0.929 0.000 0.996 0.000 0.004
#> GSM52560     2  0.0188      0.929 0.000 0.996 0.000 0.004
#> GSM52561     3  0.5535      0.615 0.088 0.192 0.720 0.000
#> GSM52562     4  0.4500      1.000 0.000 0.316 0.000 0.684
#> GSM52563     2  0.0000      0.930 0.000 1.000 0.000 0.000
#> GSM52564     1  0.2999      0.882 0.864 0.004 0.000 0.132
#> GSM52565     2  0.0000      0.930 0.000 1.000 0.000 0.000
#> GSM52566     2  0.0188      0.929 0.000 0.996 0.000 0.004
#> GSM52567     2  0.0000      0.930 0.000 1.000 0.000 0.000
#> GSM52568     2  0.0188      0.929 0.000 0.996 0.000 0.004
#> GSM52569     2  0.3390      0.700 0.016 0.852 0.000 0.132
#> GSM52570     2  0.0000      0.930 0.000 1.000 0.000 0.000
#> GSM52571     1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM52572     1  0.2814      0.882 0.868 0.000 0.000 0.132
#> GSM52573     3  0.0000      0.869 0.000 0.000 1.000 0.000
#> GSM52574     3  0.0000      0.869 0.000 0.000 1.000 0.000
#> GSM52575     3  0.0000      0.869 0.000 0.000 1.000 0.000
#> GSM52576     3  0.4522      0.478 0.320 0.000 0.680 0.000
#> GSM52577     3  0.2125      0.830 0.076 0.000 0.920 0.004
#> GSM52578     3  0.2214      0.841 0.044 0.000 0.928 0.028
#> GSM52579     3  0.0188      0.867 0.004 0.000 0.996 0.000
#> GSM52580     1  0.2469      0.885 0.892 0.000 0.000 0.108
#> GSM52581     1  0.3444      0.871 0.816 0.000 0.000 0.184
#> GSM52582     3  0.5404      0.621 0.248 0.000 0.700 0.052
#> GSM52583     1  0.1557      0.883 0.944 0.000 0.000 0.056
#> GSM52584     1  0.3539      0.873 0.820 0.000 0.004 0.176
#> GSM52585     1  0.3444      0.871 0.816 0.000 0.000 0.184
#> GSM52586     1  0.3157      0.880 0.852 0.004 0.000 0.144
#> GSM52587     3  0.7178      0.610 0.088 0.136 0.668 0.108
#> GSM52588     1  0.1398      0.872 0.956 0.000 0.040 0.004
#> GSM52589     1  0.5047      0.423 0.668 0.000 0.316 0.016
#> GSM52590     1  0.3528      0.863 0.808 0.000 0.000 0.192
#> GSM52591     1  0.2814      0.882 0.868 0.000 0.000 0.132
#> GSM52592     1  0.0921      0.894 0.972 0.000 0.000 0.028
#> GSM52593     1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM52594     1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM52595     1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM52596     1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM52597     1  0.2814      0.882 0.868 0.000 0.000 0.132
#> GSM52598     1  0.0469      0.893 0.988 0.000 0.000 0.012
#> GSM52599     1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM52600     1  0.0376      0.890 0.992 0.000 0.004 0.004
#> GSM52601     1  0.0188      0.891 0.996 0.000 0.000 0.004
#> GSM52602     1  0.4804      0.800 0.780 0.000 0.072 0.148
#> GSM52603     1  0.5160      0.799 0.708 0.016 0.012 0.264
#> GSM52604     1  0.6037      0.733 0.688 0.000 0.156 0.156
#> GSM52605     1  0.5114      0.800 0.712 0.020 0.008 0.260
#> GSM52606     3  0.0000      0.869 0.000 0.000 1.000 0.000
#> GSM52607     3  0.0000      0.869 0.000 0.000 1.000 0.000
#> GSM52608     3  0.0000      0.869 0.000 0.000 1.000 0.000
#> GSM52609     3  0.0000      0.869 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.2424      0.772 0.000 0.868 0.132 0.000 0.000
#> GSM52557     4  0.3366      1.000 0.000 0.232 0.000 0.768 0.000
#> GSM52558     4  0.3366      1.000 0.000 0.232 0.000 0.768 0.000
#> GSM52559     2  0.0290      0.953 0.000 0.992 0.000 0.008 0.000
#> GSM52560     2  0.0290      0.953 0.000 0.992 0.000 0.008 0.000
#> GSM52561     3  0.4630      0.638 0.088 0.176 0.736 0.000 0.000
#> GSM52562     4  0.3366      1.000 0.000 0.232 0.000 0.768 0.000
#> GSM52563     2  0.0000      0.953 0.000 1.000 0.000 0.000 0.000
#> GSM52564     1  0.2067      0.901 0.924 0.004 0.000 0.044 0.028
#> GSM52565     2  0.0162      0.953 0.000 0.996 0.000 0.000 0.004
#> GSM52566     2  0.0290      0.953 0.000 0.992 0.000 0.008 0.000
#> GSM52567     2  0.0162      0.953 0.000 0.996 0.000 0.000 0.004
#> GSM52568     2  0.0290      0.953 0.000 0.992 0.000 0.008 0.000
#> GSM52569     2  0.2429      0.849 0.008 0.904 0.000 0.068 0.020
#> GSM52570     2  0.0162      0.953 0.000 0.996 0.000 0.000 0.004
#> GSM52571     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> GSM52572     1  0.2278      0.899 0.916 0.008 0.000 0.044 0.032
#> GSM52573     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000
#> GSM52574     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000
#> GSM52575     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000
#> GSM52576     3  0.3895      0.495 0.320 0.000 0.680 0.000 0.000
#> GSM52577     3  0.1341      0.839 0.056 0.000 0.944 0.000 0.000
#> GSM52578     3  0.2270      0.825 0.020 0.000 0.904 0.076 0.000
#> GSM52579     3  0.0324      0.865 0.004 0.000 0.992 0.004 0.000
#> GSM52580     1  0.3333      0.822 0.788 0.000 0.000 0.208 0.004
#> GSM52581     1  0.3750      0.814 0.756 0.000 0.000 0.232 0.012
#> GSM52582     3  0.5733      0.555 0.188 0.000 0.624 0.188 0.000
#> GSM52583     1  0.3003      0.825 0.812 0.000 0.000 0.188 0.000
#> GSM52584     1  0.3628      0.818 0.772 0.000 0.000 0.216 0.012
#> GSM52585     1  0.3750      0.814 0.756 0.000 0.000 0.232 0.012
#> GSM52586     1  0.3213      0.881 0.872 0.040 0.000 0.060 0.028
#> GSM52587     3  0.6041      0.589 0.032 0.120 0.644 0.204 0.000
#> GSM52588     1  0.0703      0.899 0.976 0.000 0.024 0.000 0.000
#> GSM52589     1  0.4425      0.487 0.680 0.000 0.296 0.024 0.000
#> GSM52590     1  0.3326      0.833 0.824 0.000 0.000 0.024 0.152
#> GSM52591     1  0.1907      0.901 0.928 0.000 0.000 0.044 0.028
#> GSM52592     1  0.0807      0.910 0.976 0.000 0.000 0.012 0.012
#> GSM52593     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> GSM52596     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> GSM52597     1  0.1907      0.901 0.928 0.000 0.000 0.044 0.028
#> GSM52598     1  0.0807      0.910 0.976 0.000 0.000 0.012 0.012
#> GSM52599     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> GSM52600     1  0.0609      0.909 0.980 0.000 0.000 0.020 0.000
#> GSM52601     1  0.0000      0.910 1.000 0.000 0.000 0.000 0.000
#> GSM52602     5  0.0912      0.970 0.016 0.000 0.012 0.000 0.972
#> GSM52603     5  0.0162      0.980 0.004 0.000 0.000 0.000 0.996
#> GSM52604     5  0.0671      0.976 0.004 0.000 0.016 0.000 0.980
#> GSM52605     5  0.0162      0.980 0.004 0.000 0.000 0.000 0.996
#> GSM52606     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000
#> GSM52607     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000
#> GSM52608     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000
#> GSM52609     3  0.0000      0.866 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.5361     0.6529 0.000 0.452 0.108 0.440 0.000 0.000
#> GSM52557     6  0.2135     0.9965 0.000 0.128 0.000 0.000 0.000 0.872
#> GSM52558     6  0.2092     0.9931 0.000 0.124 0.000 0.000 0.000 0.876
#> GSM52559     2  0.4152     0.7399 0.000 0.548 0.000 0.440 0.000 0.012
#> GSM52560     2  0.4152     0.7399 0.000 0.548 0.000 0.440 0.000 0.012
#> GSM52561     3  0.4505     0.6159 0.096 0.160 0.732 0.008 0.000 0.004
#> GSM52562     6  0.2135     0.9965 0.000 0.128 0.000 0.000 0.000 0.872
#> GSM52563     2  0.3833     0.7415 0.000 0.556 0.000 0.444 0.000 0.000
#> GSM52564     1  0.4632     0.5285 0.712 0.008 0.000 0.152 0.000 0.128
#> GSM52565     2  0.0000     0.6089 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52566     2  0.4062     0.7411 0.000 0.552 0.000 0.440 0.000 0.008
#> GSM52567     2  0.0000     0.6089 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52568     2  0.4067     0.7400 0.000 0.548 0.000 0.444 0.000 0.008
#> GSM52569     2  0.1983     0.5412 0.000 0.908 0.000 0.020 0.000 0.072
#> GSM52570     2  0.0000     0.6089 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52571     1  0.0260     0.7078 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM52572     1  0.4316     0.5473 0.728 0.000 0.000 0.144 0.000 0.128
#> GSM52573     3  0.0000     0.8324 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52574     3  0.0000     0.8324 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52575     3  0.0000     0.8324 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52576     3  0.3619     0.3665 0.316 0.000 0.680 0.004 0.000 0.000
#> GSM52577     3  0.1556     0.7895 0.080 0.000 0.920 0.000 0.000 0.000
#> GSM52578     3  0.2412     0.7788 0.028 0.000 0.880 0.092 0.000 0.000
#> GSM52579     3  0.0291     0.8306 0.004 0.000 0.992 0.004 0.000 0.000
#> GSM52580     4  0.3864     0.9195 0.480 0.000 0.000 0.520 0.000 0.000
#> GSM52581     4  0.3828     0.9468 0.440 0.000 0.000 0.560 0.000 0.000
#> GSM52582     3  0.5744     0.0634 0.168 0.000 0.424 0.408 0.000 0.000
#> GSM52583     1  0.3789    -0.6904 0.584 0.000 0.000 0.416 0.000 0.000
#> GSM52584     4  0.3851     0.9547 0.460 0.000 0.000 0.540 0.000 0.000
#> GSM52585     4  0.3838     0.9542 0.448 0.000 0.000 0.552 0.000 0.000
#> GSM52586     1  0.4459     0.5197 0.712 0.000 0.000 0.156 0.000 0.132
#> GSM52587     3  0.4896     0.3891 0.012 0.036 0.508 0.444 0.000 0.000
#> GSM52588     1  0.0000     0.7074 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52589     1  0.3555     0.3156 0.776 0.000 0.184 0.040 0.000 0.000
#> GSM52590     1  0.4705     0.3689 0.712 0.000 0.000 0.104 0.168 0.016
#> GSM52591     1  0.4387     0.5395 0.720 0.000 0.000 0.152 0.000 0.128
#> GSM52592     1  0.2218     0.6517 0.884 0.000 0.000 0.104 0.000 0.012
#> GSM52593     1  0.0146     0.7082 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM52594     1  0.0146     0.7082 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM52595     1  0.0146     0.7082 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM52596     1  0.0000     0.7074 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52597     1  0.4387     0.5395 0.720 0.000 0.000 0.152 0.000 0.128
#> GSM52598     1  0.2748     0.6404 0.848 0.000 0.000 0.128 0.000 0.024
#> GSM52599     1  0.0000     0.7074 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52600     1  0.2775     0.6383 0.856 0.000 0.000 0.040 0.000 0.104
#> GSM52601     1  0.0000     0.7074 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52602     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52603     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52604     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52605     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52606     3  0.0000     0.8324 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52607     3  0.0000     0.8324 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52608     3  0.0000     0.8324 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52609     3  0.0000     0.8324 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) tissue(p) k
#> CV:pam 52         8.43e-01  1.24e-02 2
#> CV:pam 53         3.26e-10  7.09e-05 3
#> CV:pam 52         2.69e-09  3.97e-07 4
#> CV:pam 52         1.11e-08  1.83e-09 5
#> CV:pam 48         1.97e-07  1.65e-10 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.447           0.872       0.804         0.3726 0.628   0.628
#> 3 3 0.347           0.450       0.639         0.6434 0.768   0.636
#> 4 4 0.653           0.720       0.848         0.1187 0.860   0.687
#> 5 5 0.709           0.765       0.859         0.1347 0.824   0.511
#> 6 6 0.785           0.725       0.846         0.0439 0.927   0.683

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.8386      1.000 0.268 0.732
#> GSM52557     2  0.8386      1.000 0.268 0.732
#> GSM52558     2  0.8386      1.000 0.268 0.732
#> GSM52559     2  0.8386      1.000 0.268 0.732
#> GSM52560     2  0.8386      1.000 0.268 0.732
#> GSM52561     1  0.5946      0.723 0.856 0.144
#> GSM52562     2  0.8386      1.000 0.268 0.732
#> GSM52563     2  0.8386      1.000 0.268 0.732
#> GSM52564     1  0.1843      0.866 0.972 0.028
#> GSM52565     2  0.8386      1.000 0.268 0.732
#> GSM52566     2  0.8386      1.000 0.268 0.732
#> GSM52567     2  0.8386      1.000 0.268 0.732
#> GSM52568     2  0.8386      1.000 0.268 0.732
#> GSM52569     2  0.8386      1.000 0.268 0.732
#> GSM52570     2  0.8386      1.000 0.268 0.732
#> GSM52571     1  0.8386      0.738 0.732 0.268
#> GSM52572     1  0.0672      0.878 0.992 0.008
#> GSM52573     1  0.0672      0.877 0.992 0.008
#> GSM52574     1  0.0672      0.877 0.992 0.008
#> GSM52575     1  0.0672      0.877 0.992 0.008
#> GSM52576     1  0.0938      0.877 0.988 0.012
#> GSM52577     1  0.3733      0.858 0.928 0.072
#> GSM52578     1  0.0672      0.877 0.992 0.008
#> GSM52579     1  0.0672      0.877 0.992 0.008
#> GSM52580     1  0.1633      0.875 0.976 0.024
#> GSM52581     1  0.1184      0.873 0.984 0.016
#> GSM52582     1  0.1843      0.876 0.972 0.028
#> GSM52583     1  0.4022      0.860 0.920 0.080
#> GSM52584     1  0.2603      0.871 0.956 0.044
#> GSM52585     1  0.1633      0.870 0.976 0.024
#> GSM52586     1  0.0376      0.877 0.996 0.004
#> GSM52587     1  0.2778      0.852 0.952 0.048
#> GSM52588     1  0.6148      0.816 0.848 0.152
#> GSM52589     1  0.5294      0.834 0.880 0.120
#> GSM52590     1  0.3733      0.845 0.928 0.072
#> GSM52591     1  0.0376      0.877 0.996 0.004
#> GSM52592     1  0.8267      0.744 0.740 0.260
#> GSM52593     1  0.8327      0.741 0.736 0.264
#> GSM52594     1  0.8386      0.738 0.732 0.268
#> GSM52595     1  0.8386      0.738 0.732 0.268
#> GSM52596     1  0.8386      0.738 0.732 0.268
#> GSM52597     1  0.0376      0.877 0.996 0.004
#> GSM52598     1  0.7376      0.781 0.792 0.208
#> GSM52599     1  0.8386      0.738 0.732 0.268
#> GSM52600     1  0.8386      0.738 0.732 0.268
#> GSM52601     1  0.7219      0.785 0.800 0.200
#> GSM52602     1  0.3431      0.835 0.936 0.064
#> GSM52603     1  0.3431      0.835 0.936 0.064
#> GSM52604     1  0.3431      0.835 0.936 0.064
#> GSM52605     1  0.3431      0.835 0.936 0.064
#> GSM52606     1  0.0672      0.877 0.992 0.008
#> GSM52607     1  0.0672      0.877 0.992 0.008
#> GSM52608     1  0.0672      0.877 0.992 0.008
#> GSM52609     1  0.0672      0.877 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.2096     0.8966 0.004 0.944 0.052
#> GSM52557     2  0.0237     0.9037 0.000 0.996 0.004
#> GSM52558     2  0.0237     0.9037 0.000 0.996 0.004
#> GSM52559     2  0.1860     0.8992 0.000 0.948 0.052
#> GSM52560     2  0.1860     0.8992 0.000 0.948 0.052
#> GSM52561     2  0.7223     0.0025 0.424 0.548 0.028
#> GSM52562     2  0.0237     0.9037 0.000 0.996 0.004
#> GSM52563     2  0.1860     0.8992 0.000 0.948 0.052
#> GSM52564     1  0.8976     0.3941 0.532 0.152 0.316
#> GSM52565     2  0.0892     0.9019 0.000 0.980 0.020
#> GSM52566     2  0.1860     0.8992 0.000 0.948 0.052
#> GSM52567     2  0.0892     0.9019 0.000 0.980 0.020
#> GSM52568     2  0.0000     0.9026 0.000 1.000 0.000
#> GSM52569     2  0.3826     0.8136 0.008 0.868 0.124
#> GSM52570     2  0.0892     0.9019 0.000 0.980 0.020
#> GSM52571     1  0.6154     0.4204 0.592 0.000 0.408
#> GSM52572     1  0.6208     0.4640 0.772 0.152 0.076
#> GSM52573     3  0.6307     0.1426 0.488 0.000 0.512
#> GSM52574     3  0.6308     0.1358 0.492 0.000 0.508
#> GSM52575     1  0.8000    -0.1076 0.528 0.064 0.408
#> GSM52576     1  0.5263     0.4331 0.828 0.084 0.088
#> GSM52577     1  0.3155     0.4602 0.916 0.040 0.044
#> GSM52578     1  0.6714     0.3587 0.748 0.112 0.140
#> GSM52579     1  0.8936    -0.0860 0.500 0.368 0.132
#> GSM52580     1  0.3752     0.4761 0.856 0.144 0.000
#> GSM52581     1  0.4802     0.4717 0.824 0.156 0.020
#> GSM52582     1  0.5276     0.4451 0.820 0.128 0.052
#> GSM52583     1  0.3896     0.4843 0.864 0.128 0.008
#> GSM52584     1  0.3500     0.4851 0.880 0.116 0.004
#> GSM52585     1  0.5486     0.4337 0.780 0.196 0.024
#> GSM52586     1  0.5875     0.4509 0.784 0.160 0.056
#> GSM52587     1  0.6737     0.0842 0.600 0.384 0.016
#> GSM52588     1  0.6836     0.4124 0.572 0.016 0.412
#> GSM52589     1  0.7085     0.4330 0.612 0.032 0.356
#> GSM52590     3  0.8085     0.2381 0.068 0.412 0.520
#> GSM52591     1  0.8666     0.4206 0.584 0.152 0.264
#> GSM52592     1  0.6168     0.4176 0.588 0.000 0.412
#> GSM52593     1  0.6079     0.4262 0.612 0.000 0.388
#> GSM52594     1  0.6154     0.4134 0.592 0.000 0.408
#> GSM52595     1  0.6126     0.4199 0.600 0.000 0.400
#> GSM52596     1  0.6140     0.4170 0.596 0.000 0.404
#> GSM52597     1  0.4453     0.4713 0.836 0.152 0.012
#> GSM52598     1  0.6527     0.4226 0.588 0.008 0.404
#> GSM52599     1  0.6154     0.4134 0.592 0.000 0.408
#> GSM52600     1  0.1860     0.4629 0.948 0.000 0.052
#> GSM52601     1  0.6824     0.4159 0.576 0.016 0.408
#> GSM52602     3  0.7080     0.2416 0.024 0.412 0.564
#> GSM52603     3  0.7145     0.2010 0.024 0.440 0.536
#> GSM52604     3  0.7091     0.2386 0.024 0.416 0.560
#> GSM52605     3  0.8046     0.2556 0.068 0.396 0.536
#> GSM52606     1  0.8489    -0.1255 0.496 0.092 0.412
#> GSM52607     1  0.8376    -0.1340 0.496 0.084 0.420
#> GSM52608     3  0.6307     0.1426 0.488 0.000 0.512
#> GSM52609     3  0.6307     0.1426 0.488 0.000 0.512

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.0376      0.825 0.000 0.992 0.004 0.004
#> GSM52557     2  0.0921      0.824 0.000 0.972 0.000 0.028
#> GSM52558     2  0.0921      0.824 0.000 0.972 0.000 0.028
#> GSM52559     2  0.0188      0.827 0.000 0.996 0.000 0.004
#> GSM52560     2  0.0188      0.827 0.000 0.996 0.000 0.004
#> GSM52561     2  0.8246     -0.140 0.404 0.420 0.124 0.052
#> GSM52562     2  0.0921      0.824 0.000 0.972 0.000 0.028
#> GSM52563     2  0.0188      0.827 0.000 0.996 0.000 0.004
#> GSM52564     1  0.4056      0.790 0.840 0.060 0.004 0.096
#> GSM52565     2  0.4250      0.620 0.000 0.724 0.000 0.276
#> GSM52566     2  0.0188      0.827 0.000 0.996 0.000 0.004
#> GSM52567     2  0.4406      0.575 0.000 0.700 0.000 0.300
#> GSM52568     2  0.0817      0.825 0.000 0.976 0.000 0.024
#> GSM52569     2  0.5204      0.419 0.012 0.612 0.000 0.376
#> GSM52570     2  0.3688      0.713 0.000 0.792 0.000 0.208
#> GSM52571     1  0.1209      0.817 0.964 0.000 0.032 0.004
#> GSM52572     1  0.4372      0.789 0.828 0.056 0.012 0.104
#> GSM52573     3  0.0188      0.847 0.004 0.000 0.996 0.000
#> GSM52574     3  0.0188      0.847 0.004 0.000 0.996 0.000
#> GSM52575     3  0.1302      0.822 0.044 0.000 0.956 0.000
#> GSM52576     1  0.5060      0.406 0.584 0.004 0.412 0.000
#> GSM52577     1  0.4925      0.293 0.572 0.000 0.428 0.000
#> GSM52578     3  0.5420      0.285 0.352 0.024 0.624 0.000
#> GSM52579     3  0.5337      0.512 0.260 0.044 0.696 0.000
#> GSM52580     1  0.6192      0.732 0.728 0.040 0.128 0.104
#> GSM52581     1  0.6762      0.712 0.692 0.056 0.136 0.116
#> GSM52582     1  0.7041      0.183 0.476 0.028 0.440 0.056
#> GSM52583     1  0.5052      0.774 0.796 0.028 0.116 0.060
#> GSM52584     1  0.5944      0.709 0.716 0.024 0.196 0.064
#> GSM52585     1  0.7006      0.703 0.672 0.056 0.136 0.136
#> GSM52586     1  0.4601      0.787 0.820 0.056 0.020 0.104
#> GSM52587     1  0.6926      0.691 0.684 0.120 0.128 0.068
#> GSM52588     1  0.0336      0.818 0.992 0.000 0.008 0.000
#> GSM52589     1  0.1174      0.822 0.968 0.012 0.020 0.000
#> GSM52590     4  0.5521      0.856 0.084 0.080 0.056 0.780
#> GSM52591     1  0.3009      0.804 0.892 0.056 0.000 0.052
#> GSM52592     1  0.0712      0.819 0.984 0.004 0.008 0.004
#> GSM52593     1  0.0779      0.818 0.980 0.000 0.016 0.004
#> GSM52594     1  0.1305      0.815 0.960 0.000 0.036 0.004
#> GSM52595     1  0.0895      0.818 0.976 0.000 0.020 0.004
#> GSM52596     1  0.1305      0.815 0.960 0.000 0.036 0.004
#> GSM52597     1  0.3796      0.792 0.848 0.056 0.000 0.096
#> GSM52598     1  0.0657      0.819 0.984 0.000 0.012 0.004
#> GSM52599     1  0.1004      0.817 0.972 0.000 0.024 0.004
#> GSM52600     1  0.1661      0.812 0.944 0.000 0.052 0.004
#> GSM52601     1  0.1545      0.815 0.952 0.000 0.040 0.008
#> GSM52602     4  0.4220      0.949 0.004 0.056 0.112 0.828
#> GSM52603     4  0.4245      0.947 0.008 0.056 0.104 0.832
#> GSM52604     4  0.4220      0.949 0.004 0.056 0.112 0.828
#> GSM52605     1  0.8157     -0.086 0.428 0.056 0.108 0.408
#> GSM52606     3  0.0188      0.845 0.004 0.000 0.996 0.000
#> GSM52607     3  0.0376      0.845 0.004 0.004 0.992 0.000
#> GSM52608     3  0.0188      0.847 0.004 0.000 0.996 0.000
#> GSM52609     3  0.0188      0.847 0.004 0.000 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.0324      0.863 0.000 0.992 0.004 0.000 0.004
#> GSM52557     2  0.1701      0.856 0.000 0.936 0.000 0.016 0.048
#> GSM52558     2  0.2228      0.852 0.000 0.912 0.000 0.040 0.048
#> GSM52559     2  0.0162      0.864 0.000 0.996 0.000 0.000 0.004
#> GSM52560     2  0.0162      0.864 0.000 0.996 0.000 0.000 0.004
#> GSM52561     2  0.5880      0.231 0.076 0.548 0.012 0.364 0.000
#> GSM52562     2  0.1701      0.856 0.000 0.936 0.000 0.016 0.048
#> GSM52563     2  0.0162      0.864 0.000 0.996 0.000 0.000 0.004
#> GSM52564     4  0.3196      0.817 0.192 0.000 0.004 0.804 0.000
#> GSM52565     2  0.4905      0.729 0.000 0.696 0.000 0.080 0.224
#> GSM52566     2  0.0162      0.864 0.000 0.996 0.000 0.000 0.004
#> GSM52567     2  0.4660      0.733 0.000 0.728 0.000 0.080 0.192
#> GSM52568     2  0.1357      0.858 0.000 0.948 0.000 0.004 0.048
#> GSM52569     2  0.4681      0.731 0.000 0.728 0.000 0.084 0.188
#> GSM52570     2  0.4486      0.778 0.000 0.748 0.000 0.080 0.172
#> GSM52571     1  0.0510      0.860 0.984 0.000 0.000 0.016 0.000
#> GSM52572     4  0.4166      0.817 0.160 0.000 0.004 0.780 0.056
#> GSM52573     3  0.0162      0.839 0.000 0.000 0.996 0.000 0.004
#> GSM52574     3  0.0162      0.839 0.000 0.000 0.996 0.000 0.004
#> GSM52575     3  0.1300      0.835 0.028 0.000 0.956 0.016 0.000
#> GSM52576     3  0.4867      0.207 0.432 0.000 0.544 0.024 0.000
#> GSM52577     3  0.4602      0.519 0.316 0.000 0.656 0.028 0.000
#> GSM52578     3  0.1800      0.821 0.048 0.000 0.932 0.020 0.000
#> GSM52579     3  0.1560      0.835 0.020 0.004 0.948 0.028 0.000
#> GSM52580     4  0.3639      0.793 0.184 0.000 0.024 0.792 0.000
#> GSM52581     4  0.2470      0.824 0.104 0.000 0.012 0.884 0.000
#> GSM52582     3  0.5299      0.595 0.212 0.000 0.668 0.120 0.000
#> GSM52583     1  0.4679      0.660 0.716 0.000 0.068 0.216 0.000
#> GSM52584     1  0.5688      0.357 0.572 0.000 0.100 0.328 0.000
#> GSM52585     4  0.2416      0.823 0.100 0.000 0.012 0.888 0.000
#> GSM52586     4  0.4002      0.820 0.144 0.000 0.004 0.796 0.056
#> GSM52587     4  0.5388      0.695 0.148 0.144 0.012 0.696 0.000
#> GSM52588     1  0.2871      0.817 0.872 0.000 0.040 0.088 0.000
#> GSM52589     1  0.3362      0.799 0.844 0.000 0.080 0.076 0.000
#> GSM52590     5  0.3368      0.795 0.120 0.000 0.020 0.016 0.844
#> GSM52591     4  0.5047      0.232 0.468 0.000 0.004 0.504 0.024
#> GSM52592     1  0.0703      0.859 0.976 0.000 0.000 0.024 0.000
#> GSM52593     1  0.0324      0.858 0.992 0.000 0.000 0.004 0.004
#> GSM52594     1  0.0451      0.856 0.988 0.000 0.000 0.008 0.004
#> GSM52595     1  0.0324      0.858 0.992 0.000 0.000 0.004 0.004
#> GSM52596     1  0.0451      0.856 0.988 0.000 0.000 0.008 0.004
#> GSM52597     4  0.4230      0.805 0.196 0.000 0.016 0.764 0.024
#> GSM52598     1  0.4464      0.502 0.684 0.000 0.028 0.288 0.000
#> GSM52599     1  0.0162      0.856 0.996 0.000 0.000 0.000 0.004
#> GSM52600     1  0.2228      0.844 0.912 0.000 0.040 0.048 0.000
#> GSM52601     1  0.2393      0.837 0.900 0.000 0.016 0.080 0.004
#> GSM52602     5  0.2300      0.874 0.024 0.000 0.072 0.000 0.904
#> GSM52603     5  0.1831      0.861 0.004 0.000 0.076 0.000 0.920
#> GSM52604     5  0.2300      0.874 0.024 0.000 0.072 0.000 0.904
#> GSM52605     5  0.5187      0.662 0.252 0.000 0.076 0.004 0.668
#> GSM52606     3  0.1041      0.836 0.004 0.000 0.964 0.032 0.000
#> GSM52607     3  0.0000      0.839 0.000 0.000 1.000 0.000 0.000
#> GSM52608     3  0.0162      0.839 0.000 0.000 0.996 0.000 0.004
#> GSM52609     3  0.0162      0.839 0.000 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.4024      0.403 0.000 0.592 0.004 0.004 0.000 0.400
#> GSM52557     6  0.2473      0.780 0.000 0.136 0.000 0.008 0.000 0.856
#> GSM52558     6  0.2473      0.780 0.000 0.136 0.000 0.008 0.000 0.856
#> GSM52559     2  0.3756      0.414 0.000 0.600 0.000 0.000 0.000 0.400
#> GSM52560     2  0.3756      0.414 0.000 0.600 0.000 0.000 0.000 0.400
#> GSM52561     4  0.3951      0.735 0.000 0.112 0.000 0.796 0.036 0.056
#> GSM52562     6  0.2473      0.780 0.000 0.136 0.000 0.008 0.000 0.856
#> GSM52563     2  0.3756      0.414 0.000 0.600 0.000 0.000 0.000 0.400
#> GSM52564     4  0.2195      0.869 0.024 0.000 0.000 0.912 0.036 0.028
#> GSM52565     2  0.1531      0.491 0.000 0.928 0.000 0.000 0.004 0.068
#> GSM52566     2  0.3756      0.414 0.000 0.600 0.000 0.000 0.000 0.400
#> GSM52567     2  0.0291      0.514 0.000 0.992 0.000 0.000 0.004 0.004
#> GSM52568     6  0.3986     -0.223 0.000 0.464 0.000 0.004 0.000 0.532
#> GSM52569     2  0.1138      0.503 0.000 0.960 0.000 0.012 0.024 0.004
#> GSM52570     2  0.1556      0.483 0.000 0.920 0.000 0.000 0.000 0.080
#> GSM52571     1  0.0146      0.850 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM52572     4  0.4196      0.807 0.084 0.000 0.000 0.780 0.036 0.100
#> GSM52573     3  0.0000      0.913 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52574     3  0.0000      0.913 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52575     3  0.0622      0.911 0.012 0.000 0.980 0.000 0.008 0.000
#> GSM52576     1  0.5072      0.189 0.524 0.000 0.424 0.020 0.008 0.024
#> GSM52577     3  0.4296      0.655 0.232 0.000 0.720 0.016 0.008 0.024
#> GSM52578     3  0.1604      0.896 0.008 0.000 0.944 0.016 0.008 0.024
#> GSM52579     3  0.1495      0.899 0.004 0.000 0.948 0.020 0.008 0.020
#> GSM52580     4  0.1781      0.850 0.060 0.000 0.000 0.924 0.008 0.008
#> GSM52581     4  0.0508      0.868 0.012 0.000 0.000 0.984 0.004 0.000
#> GSM52582     3  0.5210      0.624 0.196 0.000 0.672 0.104 0.004 0.024
#> GSM52583     1  0.3455      0.743 0.776 0.000 0.004 0.200 0.000 0.020
#> GSM52584     1  0.4467      0.460 0.592 0.000 0.004 0.376 0.000 0.028
#> GSM52585     4  0.0891      0.868 0.008 0.000 0.000 0.968 0.024 0.000
#> GSM52586     4  0.3011      0.836 0.012 0.000 0.000 0.852 0.036 0.100
#> GSM52587     4  0.2736      0.837 0.016 0.012 0.000 0.888 0.036 0.048
#> GSM52588     1  0.2434      0.830 0.896 0.000 0.032 0.056 0.000 0.016
#> GSM52589     1  0.3238      0.810 0.848 0.000 0.056 0.072 0.000 0.024
#> GSM52590     5  0.2814      0.860 0.080 0.000 0.052 0.004 0.864 0.000
#> GSM52591     1  0.5801      0.189 0.500 0.000 0.000 0.376 0.028 0.096
#> GSM52592     1  0.0260      0.850 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM52593     1  0.0146      0.849 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM52594     1  0.0146      0.849 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM52595     1  0.0146      0.849 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM52596     1  0.0146      0.849 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM52597     4  0.4764      0.716 0.172 0.000 0.000 0.712 0.024 0.092
#> GSM52598     1  0.3000      0.800 0.840 0.000 0.032 0.124 0.000 0.004
#> GSM52599     1  0.0146      0.849 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM52600     1  0.0713      0.848 0.972 0.000 0.000 0.028 0.000 0.000
#> GSM52601     1  0.2257      0.813 0.876 0.000 0.000 0.116 0.000 0.008
#> GSM52602     5  0.1387      0.925 0.000 0.000 0.068 0.000 0.932 0.000
#> GSM52603     5  0.1471      0.925 0.004 0.000 0.064 0.000 0.932 0.000
#> GSM52604     5  0.1387      0.925 0.000 0.000 0.068 0.000 0.932 0.000
#> GSM52605     5  0.3244      0.859 0.100 0.000 0.064 0.004 0.832 0.000
#> GSM52606     3  0.0520      0.911 0.000 0.000 0.984 0.008 0.008 0.000
#> GSM52607     3  0.0405      0.912 0.000 0.000 0.988 0.004 0.008 0.000
#> GSM52608     3  0.0000      0.913 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52609     3  0.0000      0.913 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) tissue(p) k
#> CV:mclust 54         2.67e-10  1.64e-04 2
#> CV:mclust 13               NA        NA 3
#> CV:mclust 47         3.60e-09  3.71e-06 4
#> CV:mclust 50         2.90e-09  3.79e-05 5
#> CV:mclust 43         7.17e-06  2.45e-10 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.815           0.873       0.950         0.4472 0.547   0.547
#> 3 3 0.842           0.856       0.931         0.4759 0.661   0.448
#> 4 4 0.694           0.615       0.801         0.1060 0.918   0.768
#> 5 5 0.732           0.662       0.786         0.0677 0.907   0.691
#> 6 6 0.864           0.775       0.870         0.0491 0.918   0.657

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0376      0.908 0.004 0.996
#> GSM52557     2  0.0000      0.910 0.000 1.000
#> GSM52558     2  0.0000      0.910 0.000 1.000
#> GSM52559     2  0.0000      0.910 0.000 1.000
#> GSM52560     2  0.0000      0.910 0.000 1.000
#> GSM52561     2  0.0000      0.910 0.000 1.000
#> GSM52562     2  0.0000      0.910 0.000 1.000
#> GSM52563     2  0.0000      0.910 0.000 1.000
#> GSM52564     2  0.9933      0.210 0.452 0.548
#> GSM52565     2  0.0000      0.910 0.000 1.000
#> GSM52566     2  0.0000      0.910 0.000 1.000
#> GSM52567     2  0.0000      0.910 0.000 1.000
#> GSM52568     2  0.0000      0.910 0.000 1.000
#> GSM52569     2  0.0000      0.910 0.000 1.000
#> GSM52570     2  0.0000      0.910 0.000 1.000
#> GSM52571     1  0.0000      0.958 1.000 0.000
#> GSM52572     1  0.7376      0.719 0.792 0.208
#> GSM52573     1  0.0000      0.958 1.000 0.000
#> GSM52574     1  0.0000      0.958 1.000 0.000
#> GSM52575     1  0.0000      0.958 1.000 0.000
#> GSM52576     1  0.0000      0.958 1.000 0.000
#> GSM52577     1  0.0000      0.958 1.000 0.000
#> GSM52578     1  0.0000      0.958 1.000 0.000
#> GSM52579     1  0.0000      0.958 1.000 0.000
#> GSM52580     1  0.1414      0.941 0.980 0.020
#> GSM52581     1  0.8763      0.558 0.704 0.296
#> GSM52582     1  0.0000      0.958 1.000 0.000
#> GSM52583     1  0.0000      0.958 1.000 0.000
#> GSM52584     1  0.0000      0.958 1.000 0.000
#> GSM52585     2  0.9815      0.305 0.420 0.580
#> GSM52586     2  0.9866      0.272 0.432 0.568
#> GSM52587     2  0.4431      0.835 0.092 0.908
#> GSM52588     1  0.0000      0.958 1.000 0.000
#> GSM52589     1  0.0000      0.958 1.000 0.000
#> GSM52590     1  0.0000      0.958 1.000 0.000
#> GSM52591     1  0.6712      0.765 0.824 0.176
#> GSM52592     1  0.0000      0.958 1.000 0.000
#> GSM52593     1  0.0000      0.958 1.000 0.000
#> GSM52594     1  0.0000      0.958 1.000 0.000
#> GSM52595     1  0.0000      0.958 1.000 0.000
#> GSM52596     1  0.0000      0.958 1.000 0.000
#> GSM52597     1  0.7674      0.694 0.776 0.224
#> GSM52598     1  0.0000      0.958 1.000 0.000
#> GSM52599     1  0.0000      0.958 1.000 0.000
#> GSM52600     1  0.0000      0.958 1.000 0.000
#> GSM52601     1  0.0000      0.958 1.000 0.000
#> GSM52602     1  0.0000      0.958 1.000 0.000
#> GSM52603     1  0.9552      0.342 0.624 0.376
#> GSM52604     1  0.0000      0.958 1.000 0.000
#> GSM52605     1  0.0000      0.958 1.000 0.000
#> GSM52606     1  0.0000      0.958 1.000 0.000
#> GSM52607     1  0.0000      0.958 1.000 0.000
#> GSM52608     1  0.0000      0.958 1.000 0.000
#> GSM52609     1  0.0000      0.958 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     3  0.6126      0.298 0.000 0.400 0.600
#> GSM52557     2  0.0892      0.979 0.020 0.980 0.000
#> GSM52558     2  0.1163      0.975 0.028 0.972 0.000
#> GSM52559     2  0.0747      0.975 0.000 0.984 0.016
#> GSM52560     2  0.0237      0.981 0.000 0.996 0.004
#> GSM52561     2  0.2356      0.932 0.072 0.928 0.000
#> GSM52562     2  0.0892      0.979 0.020 0.980 0.000
#> GSM52563     2  0.0237      0.981 0.000 0.996 0.004
#> GSM52564     1  0.2448      0.865 0.924 0.076 0.000
#> GSM52565     2  0.0475      0.982 0.004 0.992 0.004
#> GSM52566     2  0.0892      0.972 0.000 0.980 0.020
#> GSM52567     2  0.0237      0.981 0.000 0.996 0.004
#> GSM52568     2  0.0747      0.981 0.016 0.984 0.000
#> GSM52569     2  0.0661      0.981 0.004 0.988 0.008
#> GSM52570     2  0.0747      0.981 0.016 0.984 0.000
#> GSM52571     1  0.2796      0.874 0.908 0.000 0.092
#> GSM52572     1  0.1411      0.889 0.964 0.036 0.000
#> GSM52573     3  0.0000      0.907 0.000 0.000 1.000
#> GSM52574     3  0.0237      0.907 0.004 0.000 0.996
#> GSM52575     3  0.0237      0.907 0.004 0.000 0.996
#> GSM52576     3  0.2448      0.859 0.076 0.000 0.924
#> GSM52577     3  0.5678      0.505 0.316 0.000 0.684
#> GSM52578     3  0.1643      0.885 0.044 0.000 0.956
#> GSM52579     3  0.0237      0.907 0.004 0.000 0.996
#> GSM52580     1  0.0237      0.900 0.996 0.004 0.000
#> GSM52581     1  0.1031      0.894 0.976 0.024 0.000
#> GSM52582     1  0.6252      0.216 0.556 0.000 0.444
#> GSM52583     1  0.1529      0.907 0.960 0.000 0.040
#> GSM52584     1  0.1289      0.907 0.968 0.000 0.032
#> GSM52585     1  0.2625      0.857 0.916 0.084 0.000
#> GSM52586     1  0.4555      0.726 0.800 0.200 0.000
#> GSM52587     1  0.5859      0.464 0.656 0.344 0.000
#> GSM52588     1  0.2878      0.871 0.904 0.000 0.096
#> GSM52589     1  0.5591      0.576 0.696 0.000 0.304
#> GSM52590     3  0.6126      0.288 0.400 0.000 0.600
#> GSM52591     1  0.0424      0.899 0.992 0.008 0.000
#> GSM52592     1  0.1411      0.907 0.964 0.000 0.036
#> GSM52593     1  0.1529      0.907 0.960 0.000 0.040
#> GSM52594     1  0.1643      0.906 0.956 0.000 0.044
#> GSM52595     1  0.1529      0.907 0.960 0.000 0.040
#> GSM52596     1  0.1964      0.899 0.944 0.000 0.056
#> GSM52597     1  0.0592      0.898 0.988 0.012 0.000
#> GSM52598     1  0.0892      0.906 0.980 0.000 0.020
#> GSM52599     1  0.1643      0.906 0.956 0.000 0.044
#> GSM52600     1  0.1529      0.907 0.960 0.000 0.040
#> GSM52601     1  0.0892      0.906 0.980 0.000 0.020
#> GSM52602     3  0.0237      0.906 0.000 0.004 0.996
#> GSM52603     3  0.1643      0.876 0.000 0.044 0.956
#> GSM52604     3  0.0592      0.902 0.000 0.012 0.988
#> GSM52605     3  0.0000      0.907 0.000 0.000 1.000
#> GSM52606     3  0.0000      0.907 0.000 0.000 1.000
#> GSM52607     3  0.0424      0.904 0.000 0.008 0.992
#> GSM52608     3  0.0424      0.904 0.000 0.008 0.992
#> GSM52609     3  0.0237      0.907 0.004 0.000 0.996

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.6374     0.3158 0.000 0.592 0.324 0.084
#> GSM52557     2  0.4222     0.6864 0.000 0.728 0.000 0.272
#> GSM52558     2  0.4624     0.6242 0.000 0.660 0.000 0.340
#> GSM52559     2  0.1792     0.7682 0.000 0.932 0.000 0.068
#> GSM52560     2  0.2011     0.7678 0.000 0.920 0.000 0.080
#> GSM52561     2  0.4509     0.6634 0.004 0.708 0.000 0.288
#> GSM52562     2  0.4746     0.6143 0.000 0.632 0.000 0.368
#> GSM52563     2  0.1557     0.7502 0.000 0.944 0.000 0.056
#> GSM52564     1  0.2329     0.7652 0.916 0.012 0.000 0.072
#> GSM52565     2  0.2760     0.7252 0.000 0.872 0.000 0.128
#> GSM52566     2  0.1389     0.7669 0.000 0.952 0.000 0.048
#> GSM52567     2  0.2814     0.7230 0.000 0.868 0.000 0.132
#> GSM52568     2  0.2944     0.7625 0.004 0.868 0.000 0.128
#> GSM52569     2  0.2973     0.7148 0.000 0.856 0.000 0.144
#> GSM52570     2  0.4483     0.6549 0.004 0.712 0.000 0.284
#> GSM52571     1  0.2255     0.7556 0.920 0.000 0.012 0.068
#> GSM52572     1  0.4907     0.3422 0.580 0.000 0.000 0.420
#> GSM52573     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> GSM52574     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> GSM52575     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> GSM52576     3  0.1970     0.8135 0.060 0.000 0.932 0.008
#> GSM52577     3  0.2053     0.7981 0.072 0.000 0.924 0.004
#> GSM52578     3  0.1191     0.8532 0.004 0.004 0.968 0.024
#> GSM52579     3  0.0927     0.8583 0.000 0.008 0.976 0.016
#> GSM52580     1  0.4313     0.6129 0.736 0.000 0.004 0.260
#> GSM52581     1  0.4585     0.5125 0.668 0.000 0.000 0.332
#> GSM52582     1  0.7182     0.1098 0.512 0.004 0.356 0.128
#> GSM52583     1  0.1716     0.7780 0.936 0.000 0.000 0.064
#> GSM52584     1  0.4123     0.6551 0.772 0.000 0.008 0.220
#> GSM52585     4  0.5912    -0.2524 0.440 0.036 0.000 0.524
#> GSM52586     1  0.6275     0.1173 0.484 0.056 0.000 0.460
#> GSM52587     4  0.7849    -0.1029 0.268 0.352 0.000 0.380
#> GSM52588     1  0.1890     0.7696 0.936 0.000 0.008 0.056
#> GSM52589     1  0.4761     0.5410 0.768 0.000 0.048 0.184
#> GSM52590     4  0.7384     0.1326 0.428 0.104 0.016 0.452
#> GSM52591     1  0.0707     0.7957 0.980 0.000 0.000 0.020
#> GSM52592     1  0.0188     0.7966 0.996 0.000 0.004 0.000
#> GSM52593     1  0.0779     0.7936 0.980 0.000 0.004 0.016
#> GSM52594     1  0.0188     0.7966 0.996 0.000 0.004 0.000
#> GSM52595     1  0.1109     0.7893 0.968 0.000 0.004 0.028
#> GSM52596     1  0.1356     0.7862 0.960 0.000 0.008 0.032
#> GSM52597     1  0.3444     0.6852 0.816 0.000 0.000 0.184
#> GSM52598     1  0.0336     0.7965 0.992 0.000 0.000 0.008
#> GSM52599     1  0.1452     0.7842 0.956 0.000 0.008 0.036
#> GSM52600     1  0.0524     0.7967 0.988 0.000 0.004 0.008
#> GSM52601     1  0.1109     0.7929 0.968 0.000 0.004 0.028
#> GSM52602     4  0.8484    -0.0910 0.164 0.048 0.388 0.400
#> GSM52603     4  0.8669     0.0940 0.044 0.268 0.256 0.432
#> GSM52604     3  0.8108     0.0203 0.076 0.080 0.452 0.392
#> GSM52605     3  0.8166    -0.1137 0.168 0.028 0.416 0.388
#> GSM52606     3  0.0376     0.8654 0.000 0.004 0.992 0.004
#> GSM52607     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> GSM52608     3  0.0000     0.8681 0.000 0.000 1.000 0.000
#> GSM52609     3  0.0000     0.8681 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.7393     0.5038 0.000 0.524 0.220 0.160 0.096
#> GSM52557     2  0.3123     0.6154 0.000 0.828 0.000 0.160 0.012
#> GSM52558     2  0.3724     0.5594 0.000 0.776 0.000 0.204 0.020
#> GSM52559     2  0.0771     0.7144 0.000 0.976 0.000 0.004 0.020
#> GSM52560     2  0.0798     0.7138 0.000 0.976 0.000 0.008 0.016
#> GSM52561     2  0.2692     0.6666 0.016 0.884 0.000 0.092 0.008
#> GSM52562     2  0.4354     0.4960 0.000 0.712 0.000 0.256 0.032
#> GSM52563     2  0.4670     0.6840 0.000 0.724 0.000 0.200 0.076
#> GSM52564     1  0.1630     0.7716 0.944 0.004 0.000 0.036 0.016
#> GSM52565     2  0.5775     0.6249 0.000 0.600 0.000 0.264 0.136
#> GSM52566     2  0.0794     0.7159 0.000 0.972 0.000 0.000 0.028
#> GSM52567     2  0.5504     0.6533 0.000 0.644 0.000 0.224 0.132
#> GSM52568     2  0.4317     0.6886 0.008 0.748 0.000 0.212 0.032
#> GSM52569     2  0.5808     0.6338 0.000 0.608 0.000 0.232 0.160
#> GSM52570     4  0.6400    -0.4600 0.004 0.392 0.000 0.456 0.148
#> GSM52571     1  0.1697     0.7881 0.932 0.000 0.008 0.000 0.060
#> GSM52572     1  0.6290    -0.1652 0.452 0.020 0.000 0.440 0.088
#> GSM52573     3  0.0000     0.9771 0.000 0.000 1.000 0.000 0.000
#> GSM52574     3  0.0000     0.9771 0.000 0.000 1.000 0.000 0.000
#> GSM52575     3  0.0162     0.9750 0.000 0.000 0.996 0.000 0.004
#> GSM52576     3  0.1168     0.9451 0.032 0.000 0.960 0.000 0.008
#> GSM52577     3  0.2020     0.8596 0.100 0.000 0.900 0.000 0.000
#> GSM52578     3  0.0609     0.9647 0.000 0.000 0.980 0.020 0.000
#> GSM52579     3  0.0404     0.9710 0.000 0.000 0.988 0.012 0.000
#> GSM52580     4  0.6091     0.2432 0.444 0.048 0.000 0.472 0.036
#> GSM52581     4  0.6338     0.3450 0.400 0.088 0.000 0.488 0.024
#> GSM52582     4  0.8757     0.3585 0.304 0.060 0.096 0.388 0.152
#> GSM52583     1  0.5793    -0.0602 0.548 0.016 0.000 0.376 0.060
#> GSM52584     1  0.5783    -0.2478 0.488 0.012 0.004 0.448 0.048
#> GSM52585     4  0.4793     0.4816 0.232 0.068 0.000 0.700 0.000
#> GSM52586     4  0.7403     0.3410 0.236 0.156 0.000 0.516 0.092
#> GSM52587     4  0.6373     0.2491 0.100 0.392 0.000 0.488 0.020
#> GSM52588     1  0.1628     0.7906 0.936 0.000 0.008 0.000 0.056
#> GSM52589     1  0.5379     0.3793 0.632 0.000 0.012 0.056 0.300
#> GSM52590     5  0.2719     0.8075 0.144 0.004 0.000 0.000 0.852
#> GSM52591     1  0.0290     0.7999 0.992 0.000 0.000 0.008 0.000
#> GSM52592     1  0.0613     0.8055 0.984 0.000 0.004 0.004 0.008
#> GSM52593     1  0.0609     0.8072 0.980 0.000 0.000 0.000 0.020
#> GSM52594     1  0.0671     0.8070 0.980 0.000 0.004 0.000 0.016
#> GSM52595     1  0.1041     0.8049 0.964 0.000 0.004 0.000 0.032
#> GSM52596     1  0.1205     0.8016 0.956 0.000 0.004 0.000 0.040
#> GSM52597     1  0.3531     0.6185 0.816 0.000 0.000 0.148 0.036
#> GSM52598     1  0.0510     0.8073 0.984 0.000 0.000 0.000 0.016
#> GSM52599     1  0.1041     0.8049 0.964 0.000 0.004 0.000 0.032
#> GSM52600     1  0.0613     0.8024 0.984 0.000 0.004 0.008 0.004
#> GSM52601     1  0.1153     0.7866 0.964 0.000 0.004 0.024 0.008
#> GSM52602     5  0.3215     0.9210 0.056 0.000 0.092 0.000 0.852
#> GSM52603     5  0.2806     0.8838 0.008 0.024 0.076 0.004 0.888
#> GSM52604     5  0.3222     0.9166 0.036 0.004 0.096 0.004 0.860
#> GSM52605     5  0.3821     0.9099 0.064 0.004 0.104 0.004 0.824
#> GSM52606     3  0.0000     0.9771 0.000 0.000 1.000 0.000 0.000
#> GSM52607     3  0.0000     0.9771 0.000 0.000 1.000 0.000 0.000
#> GSM52608     3  0.0000     0.9771 0.000 0.000 1.000 0.000 0.000
#> GSM52609     3  0.0000     0.9771 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.6153      0.219 0.000 0.480 0.068 0.008 0.056 0.388
#> GSM52557     6  0.1867      0.706 0.000 0.064 0.000 0.020 0.000 0.916
#> GSM52558     6  0.2462      0.679 0.000 0.096 0.000 0.028 0.000 0.876
#> GSM52559     6  0.1075      0.730 0.000 0.048 0.000 0.000 0.000 0.952
#> GSM52560     6  0.1411      0.726 0.000 0.060 0.000 0.004 0.000 0.936
#> GSM52561     6  0.0520      0.731 0.000 0.008 0.000 0.008 0.000 0.984
#> GSM52562     6  0.2830      0.638 0.000 0.144 0.000 0.020 0.000 0.836
#> GSM52563     6  0.4227     -0.193 0.000 0.492 0.004 0.000 0.008 0.496
#> GSM52564     1  0.2271      0.890 0.908 0.056 0.000 0.012 0.016 0.008
#> GSM52565     2  0.5139      0.314 0.000 0.576 0.000 0.012 0.068 0.344
#> GSM52566     6  0.1204      0.728 0.000 0.056 0.000 0.000 0.000 0.944
#> GSM52567     2  0.5049      0.260 0.000 0.548 0.000 0.008 0.060 0.384
#> GSM52568     6  0.4790      0.144 0.000 0.376 0.000 0.036 0.012 0.576
#> GSM52569     2  0.5538      0.315 0.000 0.552 0.000 0.020 0.092 0.336
#> GSM52570     2  0.3525      0.318 0.000 0.816 0.000 0.080 0.008 0.096
#> GSM52571     1  0.1082      0.933 0.956 0.000 0.000 0.004 0.040 0.000
#> GSM52572     2  0.6947      0.128 0.304 0.444 0.004 0.200 0.028 0.020
#> GSM52573     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52574     3  0.0146      0.976 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM52575     3  0.0551      0.972 0.004 0.008 0.984 0.000 0.004 0.000
#> GSM52576     3  0.1686      0.928 0.052 0.008 0.932 0.004 0.004 0.000
#> GSM52577     3  0.1531      0.916 0.068 0.000 0.928 0.004 0.000 0.000
#> GSM52578     3  0.0922      0.965 0.004 0.000 0.968 0.024 0.000 0.004
#> GSM52579     3  0.0622      0.970 0.000 0.000 0.980 0.012 0.000 0.008
#> GSM52580     4  0.2699      0.916 0.108 0.000 0.000 0.864 0.008 0.020
#> GSM52581     4  0.2791      0.916 0.096 0.000 0.000 0.864 0.008 0.032
#> GSM52582     4  0.3379      0.899 0.060 0.008 0.012 0.856 0.016 0.048
#> GSM52583     4  0.2884      0.867 0.164 0.004 0.000 0.824 0.008 0.000
#> GSM52584     4  0.2531      0.902 0.128 0.004 0.000 0.860 0.008 0.000
#> GSM52585     4  0.1757      0.873 0.052 0.012 0.000 0.928 0.000 0.008
#> GSM52586     2  0.7694      0.136 0.148 0.436 0.000 0.216 0.028 0.172
#> GSM52587     4  0.2806      0.807 0.008 0.008 0.000 0.840 0.000 0.144
#> GSM52588     1  0.1003      0.939 0.964 0.004 0.000 0.004 0.028 0.000
#> GSM52589     1  0.5012      0.566 0.684 0.012 0.004 0.180 0.120 0.000
#> GSM52590     5  0.1168      0.957 0.028 0.016 0.000 0.000 0.956 0.000
#> GSM52591     1  0.0881      0.938 0.972 0.008 0.000 0.008 0.012 0.000
#> GSM52592     1  0.0000      0.948 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52593     1  0.0291      0.949 0.992 0.000 0.000 0.004 0.004 0.000
#> GSM52594     1  0.0146      0.949 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM52595     1  0.0405      0.949 0.988 0.000 0.000 0.004 0.008 0.000
#> GSM52596     1  0.0603      0.947 0.980 0.000 0.000 0.004 0.016 0.000
#> GSM52597     1  0.2726      0.861 0.884 0.052 0.000 0.044 0.016 0.004
#> GSM52598     1  0.0146      0.949 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM52599     1  0.0603      0.947 0.980 0.000 0.000 0.004 0.016 0.000
#> GSM52600     1  0.0146      0.949 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM52601     1  0.0363      0.943 0.988 0.000 0.000 0.000 0.012 0.000
#> GSM52602     5  0.0893      0.971 0.016 0.004 0.004 0.000 0.972 0.004
#> GSM52603     5  0.1312      0.969 0.008 0.004 0.020 0.000 0.956 0.012
#> GSM52604     5  0.0984      0.974 0.012 0.000 0.012 0.000 0.968 0.008
#> GSM52605     5  0.1760      0.958 0.020 0.000 0.028 0.004 0.936 0.012
#> GSM52606     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52607     3  0.0146      0.976 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM52608     3  0.0146      0.976 0.000 0.004 0.996 0.000 0.000 0.000
#> GSM52609     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) tissue(p) k
#> CV:NMF 50         1.64e-10  9.91e-04 2
#> CV:NMF 50         1.48e-10  1.35e-05 3
#> CV:NMF 43         3.98e-09  1.39e-04 4
#> CV:NMF 42         3.34e-08  1.57e-05 5
#> CV:NMF 45         8.37e-08  5.22e-11 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.942       0.972         0.4029 0.575   0.575
#> 3 3 0.587           0.358       0.738         0.3803 0.848   0.736
#> 4 4 0.811           0.791       0.861         0.2609 0.721   0.455
#> 5 5 0.788           0.815       0.873         0.0896 0.920   0.752
#> 6 6 0.769           0.741       0.812         0.0349 0.950   0.797

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0376      0.910 0.004 0.996
#> GSM52557     2  0.0938      0.909 0.012 0.988
#> GSM52558     2  0.0938      0.909 0.012 0.988
#> GSM52559     2  0.0376      0.910 0.004 0.996
#> GSM52560     2  0.0376      0.910 0.004 0.996
#> GSM52561     2  0.9580      0.488 0.380 0.620
#> GSM52562     2  0.0938      0.909 0.012 0.988
#> GSM52563     2  0.2948      0.886 0.052 0.948
#> GSM52564     2  0.9896      0.341 0.440 0.560
#> GSM52565     2  0.0000      0.908 0.000 1.000
#> GSM52566     2  0.0376      0.910 0.004 0.996
#> GSM52567     2  0.0376      0.910 0.004 0.996
#> GSM52568     2  0.2948      0.886 0.052 0.948
#> GSM52569     2  0.0376      0.910 0.004 0.996
#> GSM52570     2  0.0000      0.908 0.000 1.000
#> GSM52571     1  0.0000      0.996 1.000 0.000
#> GSM52572     1  0.0376      0.994 0.996 0.004
#> GSM52573     1  0.0672      0.993 0.992 0.008
#> GSM52574     1  0.0672      0.993 0.992 0.008
#> GSM52575     1  0.0000      0.996 1.000 0.000
#> GSM52576     1  0.0000      0.996 1.000 0.000
#> GSM52577     1  0.0000      0.996 1.000 0.000
#> GSM52578     1  0.0938      0.990 0.988 0.012
#> GSM52579     1  0.0938      0.990 0.988 0.012
#> GSM52580     1  0.0376      0.994 0.996 0.004
#> GSM52581     1  0.0376      0.994 0.996 0.004
#> GSM52582     1  0.0000      0.996 1.000 0.000
#> GSM52583     1  0.0000      0.996 1.000 0.000
#> GSM52584     1  0.0376      0.994 0.996 0.004
#> GSM52585     1  0.0376      0.994 0.996 0.004
#> GSM52586     1  0.0376      0.994 0.996 0.004
#> GSM52587     2  0.9580      0.488 0.380 0.620
#> GSM52588     1  0.0000      0.996 1.000 0.000
#> GSM52589     1  0.0000      0.996 1.000 0.000
#> GSM52590     1  0.0672      0.993 0.992 0.008
#> GSM52591     1  0.0376      0.994 0.996 0.004
#> GSM52592     1  0.0000      0.996 1.000 0.000
#> GSM52593     1  0.0000      0.996 1.000 0.000
#> GSM52594     1  0.0000      0.996 1.000 0.000
#> GSM52595     1  0.0000      0.996 1.000 0.000
#> GSM52596     1  0.0000      0.996 1.000 0.000
#> GSM52597     1  0.0376      0.994 0.996 0.004
#> GSM52598     1  0.0000      0.996 1.000 0.000
#> GSM52599     1  0.0000      0.996 1.000 0.000
#> GSM52600     1  0.0000      0.996 1.000 0.000
#> GSM52601     1  0.0000      0.996 1.000 0.000
#> GSM52602     1  0.0672      0.993 0.992 0.008
#> GSM52603     1  0.0672      0.993 0.992 0.008
#> GSM52604     1  0.0672      0.993 0.992 0.008
#> GSM52605     1  0.0672      0.993 0.992 0.008
#> GSM52606     1  0.0672      0.993 0.992 0.008
#> GSM52607     1  0.0672      0.993 0.992 0.008
#> GSM52608     1  0.0672      0.993 0.992 0.008
#> GSM52609     1  0.0672      0.993 0.992 0.008

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.1529      0.863 0.040 0.960 0.000
#> GSM52557     2  0.0424      0.863 0.008 0.992 0.000
#> GSM52558     2  0.0424      0.863 0.008 0.992 0.000
#> GSM52559     2  0.0892      0.863 0.020 0.980 0.000
#> GSM52560     2  0.0000      0.863 0.000 1.000 0.000
#> GSM52561     2  0.6796      0.566 0.368 0.612 0.020
#> GSM52562     2  0.0424      0.863 0.008 0.992 0.000
#> GSM52563     2  0.2550      0.851 0.056 0.932 0.012
#> GSM52564     2  0.8173      0.444 0.368 0.552 0.080
#> GSM52565     2  0.5988      0.736 0.368 0.632 0.000
#> GSM52566     2  0.0892      0.863 0.020 0.980 0.000
#> GSM52567     2  0.6079      0.726 0.388 0.612 0.000
#> GSM52568     2  0.2550      0.851 0.056 0.932 0.012
#> GSM52569     2  0.1529      0.863 0.040 0.960 0.000
#> GSM52570     2  0.6095      0.725 0.392 0.608 0.000
#> GSM52571     3  0.6252     -0.314 0.444 0.000 0.556
#> GSM52572     1  0.6168      0.907 0.588 0.000 0.412
#> GSM52573     3  0.0000      0.454 0.000 0.000 1.000
#> GSM52574     3  0.0000      0.454 0.000 0.000 1.000
#> GSM52575     3  0.6204     -0.248 0.424 0.000 0.576
#> GSM52576     3  0.6204     -0.248 0.424 0.000 0.576
#> GSM52577     3  0.6204     -0.248 0.424 0.000 0.576
#> GSM52578     3  0.0237      0.452 0.000 0.004 0.996
#> GSM52579     3  0.0237      0.452 0.000 0.004 0.996
#> GSM52580     1  0.6244      0.896 0.560 0.000 0.440
#> GSM52581     1  0.6244      0.896 0.560 0.000 0.440
#> GSM52582     3  0.6026     -0.143 0.376 0.000 0.624
#> GSM52583     3  0.6045     -0.151 0.380 0.000 0.620
#> GSM52584     3  0.6180     -0.281 0.416 0.000 0.584
#> GSM52585     1  0.6244      0.896 0.560 0.000 0.440
#> GSM52586     1  0.6168      0.907 0.588 0.000 0.412
#> GSM52587     2  0.6796      0.566 0.368 0.612 0.020
#> GSM52588     3  0.6244     -0.294 0.440 0.000 0.560
#> GSM52589     3  0.6204     -0.248 0.424 0.000 0.576
#> GSM52590     3  0.0424      0.452 0.008 0.000 0.992
#> GSM52591     1  0.6180      0.922 0.584 0.000 0.416
#> GSM52592     3  0.6274     -0.394 0.456 0.000 0.544
#> GSM52593     3  0.6244     -0.294 0.440 0.000 0.560
#> GSM52594     3  0.6244     -0.294 0.440 0.000 0.560
#> GSM52595     3  0.6244     -0.294 0.440 0.000 0.560
#> GSM52596     3  0.6244     -0.294 0.440 0.000 0.560
#> GSM52597     1  0.6180      0.922 0.584 0.000 0.416
#> GSM52598     3  0.6274     -0.394 0.456 0.000 0.544
#> GSM52599     3  0.6252     -0.314 0.444 0.000 0.556
#> GSM52600     3  0.6252     -0.314 0.444 0.000 0.556
#> GSM52601     3  0.6295     -0.506 0.472 0.000 0.528
#> GSM52602     3  0.0237      0.454 0.004 0.000 0.996
#> GSM52603     3  0.0237      0.454 0.004 0.000 0.996
#> GSM52604     3  0.0237      0.454 0.004 0.000 0.996
#> GSM52605     3  0.0237      0.454 0.004 0.000 0.996
#> GSM52606     3  0.0000      0.454 0.000 0.000 1.000
#> GSM52607     3  0.0000      0.454 0.000 0.000 1.000
#> GSM52608     3  0.0000      0.454 0.000 0.000 1.000
#> GSM52609     3  0.0000      0.454 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.4992      0.486 0.000 0.524 0.000 0.476
#> GSM52557     2  0.4916      0.614 0.000 0.576 0.000 0.424
#> GSM52558     2  0.4916      0.614 0.000 0.576 0.000 0.424
#> GSM52559     2  0.4981      0.578 0.000 0.536 0.000 0.464
#> GSM52560     2  0.4955      0.600 0.000 0.556 0.000 0.444
#> GSM52561     2  0.3649      0.353 0.204 0.796 0.000 0.000
#> GSM52562     2  0.4916      0.614 0.000 0.576 0.000 0.424
#> GSM52563     2  0.4564      0.597 0.000 0.672 0.000 0.328
#> GSM52564     2  0.4164      0.282 0.264 0.736 0.000 0.000
#> GSM52565     4  0.2589      0.950 0.000 0.116 0.000 0.884
#> GSM52566     2  0.4981      0.578 0.000 0.536 0.000 0.464
#> GSM52567     4  0.2281      0.971 0.000 0.096 0.000 0.904
#> GSM52568     2  0.4564      0.597 0.000 0.672 0.000 0.328
#> GSM52569     2  0.4992      0.486 0.000 0.524 0.000 0.476
#> GSM52570     4  0.2216      0.970 0.000 0.092 0.000 0.908
#> GSM52571     1  0.0844      0.876 0.980 0.004 0.012 0.004
#> GSM52572     1  0.4364      0.795 0.792 0.180 0.004 0.024
#> GSM52573     3  0.1022      0.984 0.032 0.000 0.968 0.000
#> GSM52574     3  0.1022      0.984 0.032 0.000 0.968 0.000
#> GSM52575     1  0.0895      0.874 0.976 0.004 0.020 0.000
#> GSM52576     1  0.0895      0.874 0.976 0.004 0.020 0.000
#> GSM52577     1  0.1109      0.872 0.968 0.004 0.028 0.000
#> GSM52578     3  0.1489      0.977 0.044 0.004 0.952 0.000
#> GSM52579     3  0.1489      0.977 0.044 0.004 0.952 0.000
#> GSM52580     1  0.7229      0.658 0.592 0.288 0.044 0.076
#> GSM52581     1  0.7229      0.658 0.592 0.288 0.044 0.076
#> GSM52582     1  0.7105      0.666 0.656 0.192 0.080 0.072
#> GSM52583     1  0.7040      0.669 0.660 0.192 0.080 0.068
#> GSM52584     1  0.7050      0.677 0.656 0.200 0.072 0.072
#> GSM52585     1  0.7229      0.658 0.592 0.288 0.044 0.076
#> GSM52586     1  0.4364      0.795 0.792 0.180 0.004 0.024
#> GSM52587     2  0.3649      0.353 0.204 0.796 0.000 0.000
#> GSM52588     1  0.0336      0.877 0.992 0.000 0.008 0.000
#> GSM52589     1  0.1004      0.874 0.972 0.004 0.024 0.000
#> GSM52590     3  0.1824      0.969 0.060 0.004 0.936 0.000
#> GSM52591     1  0.3894      0.818 0.832 0.140 0.004 0.024
#> GSM52592     1  0.1471      0.871 0.960 0.024 0.012 0.004
#> GSM52593     1  0.0336      0.877 0.992 0.000 0.008 0.000
#> GSM52594     1  0.0336      0.877 0.992 0.000 0.008 0.000
#> GSM52595     1  0.0336      0.877 0.992 0.000 0.008 0.000
#> GSM52596     1  0.0336      0.877 0.992 0.000 0.008 0.000
#> GSM52597     1  0.3894      0.818 0.832 0.140 0.004 0.024
#> GSM52598     1  0.1471      0.871 0.960 0.024 0.012 0.004
#> GSM52599     1  0.0844      0.876 0.980 0.004 0.012 0.004
#> GSM52600     1  0.0844      0.876 0.980 0.004 0.012 0.004
#> GSM52601     1  0.1968      0.865 0.940 0.044 0.008 0.008
#> GSM52602     3  0.1576      0.979 0.048 0.004 0.948 0.000
#> GSM52603     3  0.1576      0.979 0.048 0.004 0.948 0.000
#> GSM52604     3  0.1576      0.979 0.048 0.004 0.948 0.000
#> GSM52605     3  0.1576      0.979 0.048 0.004 0.948 0.000
#> GSM52606     3  0.1022      0.984 0.032 0.000 0.968 0.000
#> GSM52607     3  0.1022      0.984 0.032 0.000 0.968 0.000
#> GSM52608     3  0.1022      0.984 0.032 0.000 0.968 0.000
#> GSM52609     3  0.1022      0.984 0.032 0.000 0.968 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.4288      0.229 0.000 0.612 0.000 0.004 0.384
#> GSM52557     2  0.1410      0.640 0.000 0.940 0.000 0.000 0.060
#> GSM52558     2  0.1410      0.640 0.000 0.940 0.000 0.000 0.060
#> GSM52559     2  0.2674      0.597 0.000 0.856 0.000 0.004 0.140
#> GSM52560     2  0.1952      0.626 0.000 0.912 0.000 0.004 0.084
#> GSM52561     2  0.6361      0.448 0.180 0.632 0.000 0.136 0.052
#> GSM52562     2  0.1410      0.640 0.000 0.940 0.000 0.000 0.060
#> GSM52563     2  0.2047      0.636 0.012 0.928 0.000 0.020 0.040
#> GSM52564     2  0.6755      0.375 0.240 0.572 0.000 0.136 0.052
#> GSM52565     5  0.4084      0.943 0.000 0.328 0.000 0.004 0.668
#> GSM52566     2  0.2674      0.597 0.000 0.856 0.000 0.004 0.140
#> GSM52567     5  0.3707      0.948 0.000 0.284 0.000 0.000 0.716
#> GSM52568     2  0.1967      0.633 0.012 0.932 0.000 0.020 0.036
#> GSM52569     2  0.4150      0.224 0.000 0.612 0.000 0.000 0.388
#> GSM52570     5  0.3990      0.955 0.000 0.308 0.000 0.004 0.688
#> GSM52571     1  0.0510      0.901 0.984 0.000 0.000 0.016 0.000
#> GSM52572     1  0.4163      0.740 0.776 0.008 0.000 0.176 0.040
#> GSM52573     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000
#> GSM52574     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000
#> GSM52575     1  0.2586      0.890 0.892 0.000 0.012 0.084 0.012
#> GSM52576     1  0.2586      0.890 0.892 0.000 0.012 0.084 0.012
#> GSM52577     1  0.2727      0.888 0.888 0.000 0.020 0.080 0.012
#> GSM52578     3  0.0671      0.968 0.016 0.004 0.980 0.000 0.000
#> GSM52579     3  0.0671      0.968 0.016 0.004 0.980 0.000 0.000
#> GSM52580     4  0.1121      0.883 0.044 0.000 0.000 0.956 0.000
#> GSM52581     4  0.1121      0.883 0.044 0.000 0.000 0.956 0.000
#> GSM52582     4  0.3873      0.865 0.088 0.000 0.008 0.820 0.084
#> GSM52583     4  0.3928      0.867 0.092 0.000 0.008 0.816 0.084
#> GSM52584     4  0.3512      0.878 0.088 0.000 0.004 0.840 0.068
#> GSM52585     4  0.1121      0.883 0.044 0.000 0.000 0.956 0.000
#> GSM52586     1  0.4163      0.740 0.776 0.008 0.000 0.176 0.040
#> GSM52587     2  0.6361      0.448 0.180 0.632 0.000 0.136 0.052
#> GSM52588     1  0.1768      0.902 0.924 0.000 0.000 0.072 0.004
#> GSM52589     1  0.2811      0.879 0.876 0.000 0.012 0.100 0.012
#> GSM52590     3  0.1579      0.958 0.032 0.000 0.944 0.000 0.024
#> GSM52591     1  0.3387      0.799 0.836 0.004 0.000 0.128 0.032
#> GSM52592     1  0.0451      0.895 0.988 0.004 0.000 0.008 0.000
#> GSM52593     1  0.1768      0.902 0.924 0.000 0.000 0.072 0.004
#> GSM52594     1  0.1768      0.902 0.924 0.000 0.000 0.072 0.004
#> GSM52595     1  0.1768      0.902 0.924 0.000 0.000 0.072 0.004
#> GSM52596     1  0.1768      0.902 0.924 0.000 0.000 0.072 0.004
#> GSM52597     1  0.3387      0.799 0.836 0.004 0.000 0.128 0.032
#> GSM52598     1  0.0451      0.895 0.988 0.004 0.000 0.008 0.000
#> GSM52599     1  0.0510      0.901 0.984 0.000 0.000 0.016 0.000
#> GSM52600     1  0.0510      0.901 0.984 0.000 0.000 0.016 0.000
#> GSM52601     1  0.1356      0.890 0.956 0.004 0.000 0.028 0.012
#> GSM52602     3  0.1310      0.969 0.020 0.000 0.956 0.000 0.024
#> GSM52603     3  0.1310      0.969 0.020 0.000 0.956 0.000 0.024
#> GSM52604     3  0.1310      0.969 0.020 0.000 0.956 0.000 0.024
#> GSM52605     3  0.1310      0.969 0.020 0.000 0.956 0.000 0.024
#> GSM52606     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000
#> GSM52607     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000
#> GSM52608     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000
#> GSM52609     3  0.0000      0.977 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     5  0.6114     -0.332 0.000 0.312 0.000 0.004 0.432 0.252
#> GSM52557     6  0.0000      0.649 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52558     6  0.0000      0.649 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52559     6  0.3456      0.502 0.000 0.040 0.000 0.004 0.156 0.800
#> GSM52560     6  0.1010      0.632 0.000 0.000 0.000 0.004 0.036 0.960
#> GSM52561     6  0.7234      0.470 0.160 0.164 0.000 0.048 0.096 0.532
#> GSM52562     6  0.0000      0.649 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52563     6  0.3621      0.631 0.012 0.052 0.000 0.016 0.092 0.828
#> GSM52564     6  0.7561      0.397 0.220 0.164 0.000 0.048 0.096 0.472
#> GSM52565     2  0.3861      0.949 0.000 0.672 0.000 0.004 0.008 0.316
#> GSM52566     6  0.3456      0.502 0.000 0.040 0.000 0.004 0.156 0.800
#> GSM52567     2  0.3608      0.944 0.000 0.716 0.000 0.000 0.012 0.272
#> GSM52568     6  0.3582      0.624 0.012 0.056 0.000 0.016 0.084 0.832
#> GSM52569     5  0.5994     -0.334 0.000 0.316 0.000 0.000 0.432 0.252
#> GSM52570     2  0.3565      0.954 0.000 0.692 0.000 0.004 0.000 0.304
#> GSM52571     1  0.0603      0.896 0.980 0.004 0.000 0.016 0.000 0.000
#> GSM52572     1  0.4536      0.718 0.748 0.136 0.000 0.092 0.016 0.008
#> GSM52573     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52574     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52575     1  0.2508      0.885 0.884 0.016 0.000 0.084 0.016 0.000
#> GSM52576     1  0.2508      0.885 0.884 0.016 0.000 0.084 0.016 0.000
#> GSM52577     1  0.2710      0.884 0.880 0.016 0.008 0.080 0.016 0.000
#> GSM52578     3  0.0603      0.964 0.016 0.000 0.980 0.000 0.000 0.004
#> GSM52579     3  0.0603      0.964 0.016 0.000 0.980 0.000 0.000 0.004
#> GSM52580     4  0.2505      0.882 0.020 0.092 0.000 0.880 0.008 0.000
#> GSM52581     4  0.2505      0.882 0.020 0.092 0.000 0.880 0.008 0.000
#> GSM52582     4  0.2379      0.864 0.052 0.012 0.008 0.904 0.024 0.000
#> GSM52583     4  0.2359      0.864 0.056 0.012 0.008 0.904 0.020 0.000
#> GSM52584     4  0.1219      0.878 0.048 0.000 0.004 0.948 0.000 0.000
#> GSM52585     4  0.2505      0.882 0.020 0.092 0.000 0.880 0.008 0.000
#> GSM52586     1  0.4536      0.718 0.748 0.136 0.000 0.092 0.016 0.008
#> GSM52587     6  0.7234      0.470 0.160 0.164 0.000 0.048 0.096 0.532
#> GSM52588     1  0.1701      0.898 0.920 0.008 0.000 0.072 0.000 0.000
#> GSM52589     1  0.2709      0.875 0.868 0.016 0.000 0.100 0.016 0.000
#> GSM52590     5  0.4179      0.421 0.012 0.000 0.472 0.000 0.516 0.000
#> GSM52591     1  0.3395      0.797 0.828 0.096 0.000 0.068 0.004 0.004
#> GSM52592     1  0.0665      0.889 0.980 0.008 0.000 0.008 0.000 0.004
#> GSM52593     1  0.1701      0.898 0.920 0.008 0.000 0.072 0.000 0.000
#> GSM52594     1  0.1701      0.898 0.920 0.008 0.000 0.072 0.000 0.000
#> GSM52595     1  0.1701      0.898 0.920 0.008 0.000 0.072 0.000 0.000
#> GSM52596     1  0.1701      0.898 0.920 0.008 0.000 0.072 0.000 0.000
#> GSM52597     1  0.3395      0.797 0.828 0.096 0.000 0.068 0.004 0.004
#> GSM52598     1  0.0665      0.889 0.980 0.008 0.000 0.008 0.000 0.004
#> GSM52599     1  0.0603      0.896 0.980 0.004 0.000 0.016 0.000 0.000
#> GSM52600     1  0.0603      0.896 0.980 0.004 0.000 0.016 0.000 0.000
#> GSM52601     1  0.1381      0.887 0.952 0.020 0.000 0.020 0.004 0.004
#> GSM52602     5  0.3862      0.434 0.000 0.000 0.476 0.000 0.524 0.000
#> GSM52603     5  0.3862      0.434 0.000 0.000 0.476 0.000 0.524 0.000
#> GSM52604     5  0.3862      0.434 0.000 0.000 0.476 0.000 0.524 0.000
#> GSM52605     5  0.3862      0.434 0.000 0.000 0.476 0.000 0.524 0.000
#> GSM52606     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52607     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52608     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52609     3  0.0000      0.988 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) tissue(p) k
#> MAD:hclust 51         1.26e-11  1.59e-04 2
#> MAD:hclust 22         1.68e-04  3.50e-01 3
#> MAD:hclust 49         1.30e-10  7.03e-09 4
#> MAD:hclust 49         5.84e-10  1.39e-11 5
#> MAD:hclust 44         6.42e-09  5.17e-10 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.430           0.792       0.877         0.4383 0.591   0.591
#> 3 3 0.717           0.867       0.910         0.4430 0.728   0.553
#> 4 4 0.704           0.735       0.840         0.1372 0.916   0.763
#> 5 5 0.700           0.696       0.792         0.0723 0.983   0.936
#> 6 6 0.704           0.634       0.754         0.0527 0.910   0.668

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.1184      0.852 0.016 0.984
#> GSM52557     2  0.4690      0.942 0.100 0.900
#> GSM52558     2  0.4690      0.942 0.100 0.900
#> GSM52559     2  0.4431      0.937 0.092 0.908
#> GSM52560     2  0.4690      0.942 0.100 0.900
#> GSM52561     2  0.8016      0.767 0.244 0.756
#> GSM52562     2  0.4690      0.942 0.100 0.900
#> GSM52563     2  0.4690      0.942 0.100 0.900
#> GSM52564     1  0.4939      0.752 0.892 0.108
#> GSM52565     2  0.4690      0.942 0.100 0.900
#> GSM52566     2  0.4431      0.937 0.092 0.908
#> GSM52567     2  0.4690      0.942 0.100 0.900
#> GSM52568     2  0.4690      0.942 0.100 0.900
#> GSM52569     2  0.4562      0.940 0.096 0.904
#> GSM52570     2  0.4690      0.942 0.100 0.900
#> GSM52571     1  0.0672      0.836 0.992 0.008
#> GSM52572     1  0.0000      0.837 1.000 0.000
#> GSM52573     1  0.9460      0.634 0.636 0.364
#> GSM52574     1  0.9460      0.634 0.636 0.364
#> GSM52575     1  0.4161      0.812 0.916 0.084
#> GSM52576     1  0.4161      0.812 0.916 0.084
#> GSM52577     1  0.4022      0.814 0.920 0.080
#> GSM52578     1  0.9427      0.634 0.640 0.360
#> GSM52579     1  0.9427      0.634 0.640 0.360
#> GSM52580     1  0.4161      0.786 0.916 0.084
#> GSM52581     1  0.5178      0.754 0.884 0.116
#> GSM52582     1  0.4562      0.809 0.904 0.096
#> GSM52583     1  0.1184      0.830 0.984 0.016
#> GSM52584     1  0.1184      0.830 0.984 0.016
#> GSM52585     1  0.5178      0.754 0.884 0.116
#> GSM52586     1  0.3584      0.792 0.932 0.068
#> GSM52587     2  0.9970      0.121 0.468 0.532
#> GSM52588     1  0.0376      0.837 0.996 0.004
#> GSM52589     1  0.1843      0.832 0.972 0.028
#> GSM52590     1  0.3114      0.826 0.944 0.056
#> GSM52591     1  0.0000      0.837 1.000 0.000
#> GSM52592     1  0.0000      0.837 1.000 0.000
#> GSM52593     1  0.0000      0.837 1.000 0.000
#> GSM52594     1  0.0000      0.837 1.000 0.000
#> GSM52595     1  0.0000      0.837 1.000 0.000
#> GSM52596     1  0.0000      0.837 1.000 0.000
#> GSM52597     1  0.0000      0.837 1.000 0.000
#> GSM52598     1  0.0000      0.837 1.000 0.000
#> GSM52599     1  0.0000      0.837 1.000 0.000
#> GSM52600     1  0.0000      0.837 1.000 0.000
#> GSM52601     1  0.0000      0.837 1.000 0.000
#> GSM52602     1  0.9460      0.634 0.636 0.364
#> GSM52603     1  0.9460      0.634 0.636 0.364
#> GSM52604     1  0.9460      0.634 0.636 0.364
#> GSM52605     1  0.9460      0.634 0.636 0.364
#> GSM52606     1  0.9460      0.634 0.636 0.364
#> GSM52607     1  0.9460      0.634 0.636 0.364
#> GSM52608     1  0.9460      0.634 0.636 0.364
#> GSM52609     1  0.9460      0.634 0.636 0.364

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.1031      0.929 0.000 0.976 0.024
#> GSM52557     2  0.2680      0.910 0.068 0.924 0.008
#> GSM52558     2  0.2680      0.910 0.068 0.924 0.008
#> GSM52559     2  0.0424      0.935 0.000 0.992 0.008
#> GSM52560     2  0.0424      0.935 0.000 0.992 0.008
#> GSM52561     2  0.6647      0.224 0.452 0.540 0.008
#> GSM52562     2  0.2680      0.910 0.068 0.924 0.008
#> GSM52563     2  0.0000      0.935 0.000 1.000 0.000
#> GSM52564     1  0.1482      0.883 0.968 0.012 0.020
#> GSM52565     2  0.1163      0.932 0.000 0.972 0.028
#> GSM52566     2  0.0424      0.935 0.000 0.992 0.008
#> GSM52567     2  0.1163      0.932 0.000 0.972 0.028
#> GSM52568     2  0.0747      0.933 0.016 0.984 0.000
#> GSM52569     2  0.1163      0.932 0.000 0.972 0.028
#> GSM52570     2  0.1163      0.932 0.000 0.972 0.028
#> GSM52571     1  0.2878      0.907 0.904 0.000 0.096
#> GSM52572     1  0.0892      0.888 0.980 0.000 0.020
#> GSM52573     3  0.2280      0.952 0.052 0.008 0.940
#> GSM52574     3  0.2280      0.952 0.052 0.008 0.940
#> GSM52575     3  0.1964      0.948 0.056 0.000 0.944
#> GSM52576     1  0.6079      0.439 0.612 0.000 0.388
#> GSM52577     3  0.5397      0.639 0.280 0.000 0.720
#> GSM52578     3  0.3784      0.881 0.132 0.004 0.864
#> GSM52579     3  0.3784      0.881 0.132 0.004 0.864
#> GSM52580     1  0.1015      0.870 0.980 0.012 0.008
#> GSM52581     1  0.1015      0.870 0.980 0.012 0.008
#> GSM52582     1  0.4605      0.787 0.796 0.000 0.204
#> GSM52583     1  0.2448      0.900 0.924 0.000 0.076
#> GSM52584     1  0.2356      0.900 0.928 0.000 0.072
#> GSM52585     1  0.1015      0.870 0.980 0.012 0.008
#> GSM52586     1  0.1315      0.885 0.972 0.008 0.020
#> GSM52587     1  0.6811      0.136 0.580 0.404 0.016
#> GSM52588     1  0.2878      0.907 0.904 0.000 0.096
#> GSM52589     1  0.2959      0.906 0.900 0.000 0.100
#> GSM52590     1  0.6047      0.630 0.680 0.008 0.312
#> GSM52591     1  0.0892      0.888 0.980 0.000 0.020
#> GSM52592     1  0.2796      0.906 0.908 0.000 0.092
#> GSM52593     1  0.2878      0.907 0.904 0.000 0.096
#> GSM52594     1  0.2878      0.907 0.904 0.000 0.096
#> GSM52595     1  0.2878      0.907 0.904 0.000 0.096
#> GSM52596     1  0.2878      0.907 0.904 0.000 0.096
#> GSM52597     1  0.0892      0.888 0.980 0.000 0.020
#> GSM52598     1  0.2796      0.906 0.908 0.000 0.092
#> GSM52599     1  0.2878      0.907 0.904 0.000 0.096
#> GSM52600     1  0.2878      0.907 0.904 0.000 0.096
#> GSM52601     1  0.2796      0.907 0.908 0.000 0.092
#> GSM52602     3  0.2116      0.941 0.040 0.012 0.948
#> GSM52603     3  0.2116      0.941 0.040 0.012 0.948
#> GSM52604     3  0.2116      0.941 0.040 0.012 0.948
#> GSM52605     3  0.2116      0.941 0.040 0.012 0.948
#> GSM52606     3  0.2280      0.952 0.052 0.008 0.940
#> GSM52607     3  0.2280      0.952 0.052 0.008 0.940
#> GSM52608     3  0.2280      0.952 0.052 0.008 0.940
#> GSM52609     3  0.2280      0.952 0.052 0.008 0.940

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.1545     0.8702 0.000 0.952 0.008 0.040
#> GSM52557     2  0.4395     0.8214 0.016 0.776 0.004 0.204
#> GSM52558     2  0.4395     0.8214 0.016 0.776 0.004 0.204
#> GSM52559     2  0.1824     0.8772 0.000 0.936 0.004 0.060
#> GSM52560     2  0.2266     0.8751 0.000 0.912 0.004 0.084
#> GSM52561     2  0.6627     0.5739 0.112 0.616 0.004 0.268
#> GSM52562     2  0.4395     0.8214 0.016 0.776 0.004 0.204
#> GSM52563     2  0.0000     0.8771 0.000 1.000 0.000 0.000
#> GSM52564     1  0.3933     0.5642 0.792 0.008 0.000 0.200
#> GSM52565     2  0.2843     0.8595 0.000 0.892 0.020 0.088
#> GSM52566     2  0.1824     0.8772 0.000 0.936 0.004 0.060
#> GSM52567     2  0.2706     0.8570 0.000 0.900 0.020 0.080
#> GSM52568     2  0.2665     0.8698 0.008 0.900 0.004 0.088
#> GSM52569     2  0.2522     0.8574 0.000 0.908 0.016 0.076
#> GSM52570     2  0.3027     0.8599 0.004 0.888 0.020 0.088
#> GSM52571     1  0.0927     0.8327 0.976 0.000 0.016 0.008
#> GSM52572     1  0.2281     0.7496 0.904 0.000 0.000 0.096
#> GSM52573     3  0.1022     0.8382 0.032 0.000 0.968 0.000
#> GSM52574     3  0.1022     0.8382 0.032 0.000 0.968 0.000
#> GSM52575     3  0.1890     0.8260 0.056 0.000 0.936 0.008
#> GSM52576     1  0.4697     0.4062 0.696 0.000 0.296 0.008
#> GSM52577     3  0.5861     0.0725 0.476 0.000 0.492 0.032
#> GSM52578     3  0.4951     0.6786 0.044 0.000 0.744 0.212
#> GSM52579     3  0.4951     0.6786 0.044 0.000 0.744 0.212
#> GSM52580     4  0.4990     0.7837 0.352 0.008 0.000 0.640
#> GSM52581     4  0.4990     0.7837 0.352 0.008 0.000 0.640
#> GSM52582     4  0.6875     0.6536 0.388 0.000 0.108 0.504
#> GSM52583     1  0.4998    -0.6271 0.512 0.000 0.000 0.488
#> GSM52584     4  0.5000     0.5535 0.500 0.000 0.000 0.500
#> GSM52585     4  0.4990     0.7837 0.352 0.008 0.000 0.640
#> GSM52586     1  0.3791     0.5659 0.796 0.004 0.000 0.200
#> GSM52587     4  0.5823     0.4836 0.120 0.176 0.000 0.704
#> GSM52588     1  0.0779     0.8340 0.980 0.000 0.016 0.004
#> GSM52589     1  0.1059     0.8301 0.972 0.000 0.016 0.012
#> GSM52590     1  0.6484     0.4125 0.684 0.024 0.104 0.188
#> GSM52591     1  0.1637     0.7864 0.940 0.000 0.000 0.060
#> GSM52592     1  0.0592     0.8347 0.984 0.000 0.016 0.000
#> GSM52593     1  0.1059     0.8345 0.972 0.000 0.016 0.012
#> GSM52594     1  0.1059     0.8345 0.972 0.000 0.016 0.012
#> GSM52595     1  0.1059     0.8345 0.972 0.000 0.016 0.012
#> GSM52596     1  0.0927     0.8348 0.976 0.000 0.016 0.008
#> GSM52597     1  0.2149     0.7573 0.912 0.000 0.000 0.088
#> GSM52598     1  0.0779     0.8341 0.980 0.000 0.016 0.004
#> GSM52599     1  0.0927     0.8327 0.976 0.000 0.016 0.008
#> GSM52600     1  0.0927     0.8327 0.976 0.000 0.016 0.008
#> GSM52601     1  0.1059     0.8345 0.972 0.000 0.016 0.012
#> GSM52602     3  0.6017     0.7552 0.064 0.032 0.720 0.184
#> GSM52603     3  0.6017     0.7552 0.064 0.032 0.720 0.184
#> GSM52604     3  0.6017     0.7552 0.064 0.032 0.720 0.184
#> GSM52605     3  0.6017     0.7552 0.064 0.032 0.720 0.184
#> GSM52606     3  0.1022     0.8382 0.032 0.000 0.968 0.000
#> GSM52607     3  0.1022     0.8382 0.032 0.000 0.968 0.000
#> GSM52608     3  0.1022     0.8382 0.032 0.000 0.968 0.000
#> GSM52609     3  0.1022     0.8382 0.032 0.000 0.968 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4 p5
#> GSM52556     2  0.2616      0.776 0.000 0.888 0.000 0.036 NA
#> GSM52557     2  0.5276      0.733 0.004 0.692 0.000 0.160 NA
#> GSM52558     2  0.5276      0.733 0.004 0.692 0.000 0.160 NA
#> GSM52559     2  0.2448      0.793 0.000 0.892 0.000 0.020 NA
#> GSM52560     2  0.2959      0.790 0.000 0.864 0.000 0.036 NA
#> GSM52561     2  0.7110      0.461 0.044 0.496 0.000 0.292 NA
#> GSM52562     2  0.5276      0.733 0.004 0.692 0.000 0.160 NA
#> GSM52563     2  0.0693      0.793 0.000 0.980 0.000 0.008 NA
#> GSM52564     1  0.5476      0.482 0.632 0.004 0.000 0.276 NA
#> GSM52565     2  0.4192      0.741 0.000 0.736 0.000 0.032 NA
#> GSM52566     2  0.2448      0.793 0.000 0.892 0.000 0.020 NA
#> GSM52567     2  0.4163      0.741 0.000 0.740 0.000 0.032 NA
#> GSM52568     2  0.3442      0.790 0.000 0.836 0.000 0.060 NA
#> GSM52569     2  0.4337      0.741 0.000 0.744 0.000 0.052 NA
#> GSM52570     2  0.4192      0.741 0.000 0.736 0.000 0.032 NA
#> GSM52571     1  0.1864      0.793 0.924 0.000 0.004 0.004 NA
#> GSM52572     1  0.4177      0.682 0.772 0.000 0.000 0.164 NA
#> GSM52573     3  0.0889      0.760 0.012 0.004 0.976 0.004 NA
#> GSM52574     3  0.0889      0.760 0.012 0.004 0.976 0.004 NA
#> GSM52575     3  0.3224      0.706 0.044 0.000 0.864 0.012 NA
#> GSM52576     1  0.6279      0.336 0.564 0.000 0.308 0.024 NA
#> GSM52577     3  0.6840      0.152 0.372 0.000 0.472 0.040 NA
#> GSM52578     3  0.5706      0.582 0.028 0.004 0.684 0.192 NA
#> GSM52579     3  0.5706      0.582 0.028 0.004 0.684 0.192 NA
#> GSM52580     4  0.3053      0.807 0.164 0.000 0.000 0.828 NA
#> GSM52581     4  0.2813      0.805 0.168 0.000 0.000 0.832 NA
#> GSM52582     4  0.6184      0.730 0.208 0.000 0.076 0.644 NA
#> GSM52583     4  0.5229      0.690 0.324 0.000 0.000 0.612 NA
#> GSM52584     4  0.5124      0.730 0.288 0.000 0.000 0.644 NA
#> GSM52585     4  0.2813      0.805 0.168 0.000 0.000 0.832 NA
#> GSM52586     1  0.4865      0.560 0.684 0.000 0.000 0.252 NA
#> GSM52587     4  0.4477      0.555 0.028 0.116 0.000 0.788 NA
#> GSM52588     1  0.1934      0.792 0.928 0.000 0.004 0.016 NA
#> GSM52589     1  0.2932      0.758 0.864 0.000 0.004 0.020 NA
#> GSM52590     1  0.6686      0.113 0.432 0.004 0.116 0.020 NA
#> GSM52591     1  0.3710      0.707 0.808 0.000 0.000 0.144 NA
#> GSM52592     1  0.0833      0.806 0.976 0.000 0.004 0.004 NA
#> GSM52593     1  0.0932      0.805 0.972 0.000 0.004 0.020 NA
#> GSM52594     1  0.0932      0.805 0.972 0.000 0.004 0.020 NA
#> GSM52595     1  0.0932      0.805 0.972 0.000 0.004 0.020 NA
#> GSM52596     1  0.0854      0.803 0.976 0.000 0.004 0.008 NA
#> GSM52597     1  0.4049      0.688 0.780 0.000 0.000 0.164 NA
#> GSM52598     1  0.1768      0.797 0.924 0.000 0.004 0.000 NA
#> GSM52599     1  0.1864      0.793 0.924 0.000 0.004 0.004 NA
#> GSM52600     1  0.1864      0.793 0.924 0.000 0.004 0.004 NA
#> GSM52601     1  0.1173      0.803 0.964 0.000 0.004 0.020 NA
#> GSM52602     3  0.5190      0.595 0.012 0.004 0.548 0.016 NA
#> GSM52603     3  0.5268      0.595 0.012 0.004 0.548 0.020 NA
#> GSM52604     3  0.5190      0.595 0.012 0.004 0.548 0.016 NA
#> GSM52605     3  0.5268      0.595 0.012 0.004 0.548 0.020 NA
#> GSM52606     3  0.0727      0.760 0.012 0.004 0.980 0.000 NA
#> GSM52607     3  0.0566      0.761 0.012 0.004 0.984 0.000 NA
#> GSM52608     3  0.0566      0.761 0.012 0.004 0.984 0.000 NA
#> GSM52609     3  0.0566      0.761 0.012 0.004 0.984 0.000 NA

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     6   0.560    -0.5204 0.000 0.452 0.012 0.016 0.060 0.460
#> GSM52557     6   0.127     0.5905 0.000 0.000 0.000 0.060 0.000 0.940
#> GSM52558     6   0.127     0.5905 0.000 0.000 0.000 0.060 0.000 0.940
#> GSM52559     6   0.368     0.5043 0.000 0.144 0.008 0.016 0.028 0.804
#> GSM52560     6   0.261     0.5412 0.000 0.108 0.000 0.000 0.028 0.864
#> GSM52561     6   0.575     0.3657 0.028 0.092 0.012 0.192 0.016 0.660
#> GSM52562     6   0.127     0.5905 0.000 0.000 0.000 0.060 0.000 0.940
#> GSM52563     6   0.538    -0.1511 0.000 0.356 0.012 0.016 0.052 0.564
#> GSM52564     1   0.734     0.4876 0.536 0.096 0.020 0.196 0.028 0.124
#> GSM52565     2   0.359     0.9379 0.000 0.656 0.000 0.000 0.000 0.344
#> GSM52566     6   0.368     0.5043 0.000 0.144 0.008 0.016 0.028 0.804
#> GSM52567     2   0.352     0.9369 0.000 0.676 0.000 0.000 0.000 0.324
#> GSM52568     6   0.399     0.2455 0.000 0.240 0.004 0.016 0.012 0.728
#> GSM52569     2   0.418     0.9066 0.000 0.644 0.000 0.000 0.028 0.328
#> GSM52570     2   0.413     0.9097 0.000 0.632 0.004 0.004 0.008 0.352
#> GSM52571     1   0.297     0.8058 0.872 0.056 0.036 0.004 0.032 0.000
#> GSM52572     1   0.463     0.7424 0.768 0.068 0.016 0.116 0.024 0.008
#> GSM52573     3   0.394     0.6209 0.008 0.008 0.700 0.004 0.280 0.000
#> GSM52574     3   0.394     0.6209 0.008 0.008 0.700 0.004 0.280 0.000
#> GSM52575     3   0.544     0.4792 0.036 0.092 0.696 0.028 0.148 0.000
#> GSM52576     3   0.650    -0.0954 0.400 0.132 0.424 0.028 0.016 0.000
#> GSM52577     3   0.550     0.3053 0.200 0.116 0.648 0.032 0.004 0.000
#> GSM52578     3   0.570     0.4364 0.004 0.076 0.668 0.152 0.096 0.004
#> GSM52579     3   0.570     0.4364 0.004 0.076 0.668 0.152 0.096 0.004
#> GSM52580     4   0.152     0.8302 0.060 0.000 0.000 0.932 0.000 0.008
#> GSM52581     4   0.152     0.8302 0.060 0.000 0.000 0.932 0.000 0.008
#> GSM52582     4   0.481     0.7716 0.092 0.072 0.064 0.756 0.016 0.000
#> GSM52583     4   0.463     0.7710 0.160 0.052 0.032 0.744 0.012 0.000
#> GSM52584     4   0.446     0.7981 0.116 0.064 0.036 0.772 0.012 0.000
#> GSM52585     4   0.152     0.8302 0.060 0.000 0.000 0.932 0.000 0.008
#> GSM52586     1   0.605     0.6259 0.648 0.068 0.016 0.196 0.024 0.048
#> GSM52587     4   0.425     0.5585 0.000 0.032 0.004 0.708 0.008 0.248
#> GSM52588     1   0.466     0.7096 0.752 0.100 0.112 0.020 0.016 0.000
#> GSM52589     1   0.607     0.6236 0.640 0.148 0.136 0.032 0.044 0.000
#> GSM52590     5   0.415     0.4176 0.304 0.000 0.032 0.000 0.664 0.000
#> GSM52591     1   0.401     0.7593 0.804 0.060 0.004 0.104 0.020 0.008
#> GSM52592     1   0.145     0.8278 0.944 0.040 0.008 0.000 0.008 0.000
#> GSM52593     1   0.171     0.8266 0.940 0.020 0.020 0.008 0.012 0.000
#> GSM52594     1   0.171     0.8266 0.940 0.020 0.020 0.008 0.012 0.000
#> GSM52595     1   0.171     0.8266 0.940 0.020 0.020 0.008 0.012 0.000
#> GSM52596     1   0.162     0.8254 0.940 0.024 0.024 0.000 0.012 0.000
#> GSM52597     1   0.422     0.7555 0.792 0.064 0.008 0.108 0.020 0.008
#> GSM52598     1   0.259     0.8165 0.888 0.060 0.008 0.004 0.040 0.000
#> GSM52599     1   0.297     0.8058 0.872 0.056 0.036 0.004 0.032 0.000
#> GSM52600     1   0.297     0.8058 0.872 0.056 0.036 0.004 0.032 0.000
#> GSM52601     1   0.151     0.8261 0.948 0.024 0.008 0.008 0.012 0.000
#> GSM52602     5   0.254     0.8266 0.004 0.000 0.140 0.000 0.852 0.004
#> GSM52603     5   0.254     0.8266 0.004 0.000 0.140 0.000 0.852 0.004
#> GSM52604     5   0.254     0.8266 0.004 0.000 0.140 0.000 0.852 0.004
#> GSM52605     5   0.254     0.8266 0.004 0.000 0.140 0.000 0.852 0.004
#> GSM52606     3   0.351     0.6246 0.008 0.000 0.720 0.000 0.272 0.000
#> GSM52607     3   0.355     0.6231 0.008 0.000 0.712 0.000 0.280 0.000
#> GSM52608     3   0.355     0.6231 0.008 0.000 0.712 0.000 0.280 0.000
#> GSM52609     3   0.355     0.6231 0.008 0.000 0.712 0.000 0.280 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) tissue(p) k
#> MAD:kmeans 53         4.20e-11  2.27e-04 2
#> MAD:kmeans 51         9.34e-11  6.83e-06 3
#> MAD:kmeans 49         1.14e-09  3.95e-07 4
#> MAD:kmeans 49         1.30e-10  3.10e-07 5
#> MAD:kmeans 43         3.70e-08  4.66e-12 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.502           0.866       0.917         0.5063 0.491   0.491
#> 3 3 0.998           0.970       0.984         0.3247 0.755   0.541
#> 4 4 0.759           0.800       0.888         0.1108 0.912   0.739
#> 5 5 0.768           0.761       0.860         0.0637 0.945   0.792
#> 6 6 0.781           0.686       0.819         0.0417 0.984   0.925

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0000      0.875 0.000 1.000
#> GSM52557     2  0.0000      0.875 0.000 1.000
#> GSM52558     2  0.0000      0.875 0.000 1.000
#> GSM52559     2  0.0000      0.875 0.000 1.000
#> GSM52560     2  0.0000      0.875 0.000 1.000
#> GSM52561     2  0.4161      0.815 0.084 0.916
#> GSM52562     2  0.0000      0.875 0.000 1.000
#> GSM52563     2  0.0000      0.875 0.000 1.000
#> GSM52564     1  0.7883      0.762 0.764 0.236
#> GSM52565     2  0.0000      0.875 0.000 1.000
#> GSM52566     2  0.0000      0.875 0.000 1.000
#> GSM52567     2  0.0000      0.875 0.000 1.000
#> GSM52568     2  0.0000      0.875 0.000 1.000
#> GSM52569     2  0.0000      0.875 0.000 1.000
#> GSM52570     2  0.0000      0.875 0.000 1.000
#> GSM52571     1  0.0000      0.924 1.000 0.000
#> GSM52572     1  0.5629      0.848 0.868 0.132
#> GSM52573     2  0.7883      0.819 0.236 0.764
#> GSM52574     2  0.7883      0.819 0.236 0.764
#> GSM52575     1  0.0376      0.921 0.996 0.004
#> GSM52576     1  0.0000      0.924 1.000 0.000
#> GSM52577     1  0.0000      0.924 1.000 0.000
#> GSM52578     2  0.7815      0.821 0.232 0.768
#> GSM52579     2  0.5629      0.851 0.132 0.868
#> GSM52580     1  0.7883      0.762 0.764 0.236
#> GSM52581     1  0.7883      0.762 0.764 0.236
#> GSM52582     1  0.0000      0.924 1.000 0.000
#> GSM52583     1  0.0000      0.924 1.000 0.000
#> GSM52584     1  0.0000      0.924 1.000 0.000
#> GSM52585     1  0.7883      0.762 0.764 0.236
#> GSM52586     1  0.7883      0.762 0.764 0.236
#> GSM52587     2  0.2236      0.854 0.036 0.964
#> GSM52588     1  0.0000      0.924 1.000 0.000
#> GSM52589     1  0.0000      0.924 1.000 0.000
#> GSM52590     1  0.1414      0.908 0.980 0.020
#> GSM52591     1  0.6343      0.829 0.840 0.160
#> GSM52592     1  0.0000      0.924 1.000 0.000
#> GSM52593     1  0.0000      0.924 1.000 0.000
#> GSM52594     1  0.0000      0.924 1.000 0.000
#> GSM52595     1  0.0000      0.924 1.000 0.000
#> GSM52596     1  0.0000      0.924 1.000 0.000
#> GSM52597     1  0.6343      0.829 0.840 0.160
#> GSM52598     1  0.0000      0.924 1.000 0.000
#> GSM52599     1  0.0000      0.924 1.000 0.000
#> GSM52600     1  0.0000      0.924 1.000 0.000
#> GSM52601     1  0.0000      0.924 1.000 0.000
#> GSM52602     2  0.7883      0.819 0.236 0.764
#> GSM52603     2  0.7674      0.825 0.224 0.776
#> GSM52604     2  0.7883      0.819 0.236 0.764
#> GSM52605     2  0.7674      0.825 0.224 0.776
#> GSM52606     2  0.7883      0.819 0.236 0.764
#> GSM52607     2  0.7883      0.819 0.236 0.764
#> GSM52608     2  0.7883      0.819 0.236 0.764
#> GSM52609     2  0.7883      0.819 0.236 0.764

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2   0.129      0.965 0.000 0.968 0.032
#> GSM52557     2   0.000      0.998 0.000 1.000 0.000
#> GSM52558     2   0.000      0.998 0.000 1.000 0.000
#> GSM52559     2   0.000      0.998 0.000 1.000 0.000
#> GSM52560     2   0.000      0.998 0.000 1.000 0.000
#> GSM52561     2   0.000      0.998 0.000 1.000 0.000
#> GSM52562     2   0.000      0.998 0.000 1.000 0.000
#> GSM52563     2   0.000      0.998 0.000 1.000 0.000
#> GSM52564     1   0.400      0.836 0.840 0.160 0.000
#> GSM52565     2   0.000      0.998 0.000 1.000 0.000
#> GSM52566     2   0.000      0.998 0.000 1.000 0.000
#> GSM52567     2   0.000      0.998 0.000 1.000 0.000
#> GSM52568     2   0.000      0.998 0.000 1.000 0.000
#> GSM52569     2   0.000      0.998 0.000 1.000 0.000
#> GSM52570     2   0.000      0.998 0.000 1.000 0.000
#> GSM52571     1   0.000      0.974 1.000 0.000 0.000
#> GSM52572     1   0.000      0.974 1.000 0.000 0.000
#> GSM52573     3   0.000      0.979 0.000 0.000 1.000
#> GSM52574     3   0.000      0.979 0.000 0.000 1.000
#> GSM52575     3   0.000      0.979 0.000 0.000 1.000
#> GSM52576     3   0.245      0.922 0.076 0.000 0.924
#> GSM52577     3   0.129      0.958 0.032 0.000 0.968
#> GSM52578     3   0.000      0.979 0.000 0.000 1.000
#> GSM52579     3   0.000      0.979 0.000 0.000 1.000
#> GSM52580     1   0.254      0.924 0.920 0.080 0.000
#> GSM52581     1   0.263      0.921 0.916 0.084 0.000
#> GSM52582     3   0.226      0.925 0.068 0.000 0.932
#> GSM52583     1   0.000      0.974 1.000 0.000 0.000
#> GSM52584     1   0.000      0.974 1.000 0.000 0.000
#> GSM52585     1   0.263      0.921 0.916 0.084 0.000
#> GSM52586     1   0.207      0.939 0.940 0.060 0.000
#> GSM52587     2   0.000      0.998 0.000 1.000 0.000
#> GSM52588     1   0.000      0.974 1.000 0.000 0.000
#> GSM52589     1   0.236      0.912 0.928 0.000 0.072
#> GSM52590     3   0.362      0.853 0.136 0.000 0.864
#> GSM52591     1   0.000      0.974 1.000 0.000 0.000
#> GSM52592     1   0.000      0.974 1.000 0.000 0.000
#> GSM52593     1   0.000      0.974 1.000 0.000 0.000
#> GSM52594     1   0.000      0.974 1.000 0.000 0.000
#> GSM52595     1   0.000      0.974 1.000 0.000 0.000
#> GSM52596     1   0.000      0.974 1.000 0.000 0.000
#> GSM52597     1   0.000      0.974 1.000 0.000 0.000
#> GSM52598     1   0.000      0.974 1.000 0.000 0.000
#> GSM52599     1   0.000      0.974 1.000 0.000 0.000
#> GSM52600     1   0.000      0.974 1.000 0.000 0.000
#> GSM52601     1   0.000      0.974 1.000 0.000 0.000
#> GSM52602     3   0.000      0.979 0.000 0.000 1.000
#> GSM52603     3   0.000      0.979 0.000 0.000 1.000
#> GSM52604     3   0.000      0.979 0.000 0.000 1.000
#> GSM52605     3   0.000      0.979 0.000 0.000 1.000
#> GSM52606     3   0.000      0.979 0.000 0.000 1.000
#> GSM52607     3   0.000      0.979 0.000 0.000 1.000
#> GSM52608     3   0.000      0.979 0.000 0.000 1.000
#> GSM52609     3   0.000      0.979 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.0188      0.984 0.000 0.996 0.004 0.000
#> GSM52557     2  0.0188      0.986 0.000 0.996 0.000 0.004
#> GSM52558     2  0.0336      0.983 0.000 0.992 0.000 0.008
#> GSM52559     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> GSM52560     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> GSM52561     2  0.2760      0.842 0.000 0.872 0.000 0.128
#> GSM52562     2  0.0188      0.986 0.000 0.996 0.000 0.004
#> GSM52563     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> GSM52564     1  0.5188      0.625 0.716 0.044 0.000 0.240
#> GSM52565     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> GSM52566     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> GSM52567     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> GSM52568     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> GSM52569     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> GSM52570     2  0.0000      0.988 0.000 1.000 0.000 0.000
#> GSM52571     1  0.0817      0.874 0.976 0.000 0.000 0.024
#> GSM52572     1  0.3528      0.754 0.808 0.000 0.000 0.192
#> GSM52573     3  0.0000      0.828 0.000 0.000 1.000 0.000
#> GSM52574     3  0.0188      0.828 0.000 0.000 0.996 0.004
#> GSM52575     3  0.0927      0.825 0.008 0.000 0.976 0.016
#> GSM52576     3  0.5793      0.474 0.324 0.000 0.628 0.048
#> GSM52577     3  0.5022      0.580 0.264 0.000 0.708 0.028
#> GSM52578     3  0.3668      0.692 0.000 0.004 0.808 0.188
#> GSM52579     3  0.3852      0.685 0.000 0.008 0.800 0.192
#> GSM52580     4  0.3681      0.777 0.176 0.008 0.000 0.816
#> GSM52581     4  0.3768      0.776 0.184 0.008 0.000 0.808
#> GSM52582     4  0.4994      0.537 0.048 0.000 0.208 0.744
#> GSM52583     4  0.4454      0.668 0.308 0.000 0.000 0.692
#> GSM52584     4  0.4018      0.754 0.224 0.000 0.004 0.772
#> GSM52585     4  0.3852      0.772 0.192 0.008 0.000 0.800
#> GSM52586     1  0.4877      0.510 0.664 0.008 0.000 0.328
#> GSM52587     4  0.4933      0.162 0.000 0.432 0.000 0.568
#> GSM52588     1  0.2124      0.841 0.924 0.000 0.008 0.068
#> GSM52589     1  0.6377      0.419 0.632 0.000 0.112 0.256
#> GSM52590     3  0.7627      0.218 0.388 0.000 0.408 0.204
#> GSM52591     1  0.2760      0.809 0.872 0.000 0.000 0.128
#> GSM52592     1  0.0336      0.878 0.992 0.000 0.000 0.008
#> GSM52593     1  0.0188      0.878 0.996 0.000 0.000 0.004
#> GSM52594     1  0.0188      0.878 0.996 0.000 0.000 0.004
#> GSM52595     1  0.0188      0.878 0.996 0.000 0.000 0.004
#> GSM52596     1  0.0336      0.878 0.992 0.000 0.000 0.008
#> GSM52597     1  0.2868      0.803 0.864 0.000 0.000 0.136
#> GSM52598     1  0.1118      0.871 0.964 0.000 0.000 0.036
#> GSM52599     1  0.0817      0.874 0.976 0.000 0.000 0.024
#> GSM52600     1  0.0469      0.878 0.988 0.000 0.000 0.012
#> GSM52601     1  0.0336      0.877 0.992 0.000 0.000 0.008
#> GSM52602     3  0.3486      0.780 0.000 0.000 0.812 0.188
#> GSM52603     3  0.3486      0.780 0.000 0.000 0.812 0.188
#> GSM52604     3  0.3486      0.780 0.000 0.000 0.812 0.188
#> GSM52605     3  0.3486      0.780 0.000 0.000 0.812 0.188
#> GSM52606     3  0.0000      0.828 0.000 0.000 1.000 0.000
#> GSM52607     3  0.0000      0.828 0.000 0.000 1.000 0.000
#> GSM52608     3  0.0000      0.828 0.000 0.000 1.000 0.000
#> GSM52609     3  0.0000      0.828 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.0798      0.952 0.000 0.976 0.008 0.000 0.016
#> GSM52557     2  0.1310      0.946 0.000 0.956 0.000 0.020 0.024
#> GSM52558     2  0.1582      0.938 0.000 0.944 0.000 0.028 0.028
#> GSM52559     2  0.0510      0.958 0.000 0.984 0.000 0.000 0.016
#> GSM52560     2  0.0671      0.957 0.000 0.980 0.000 0.004 0.016
#> GSM52561     2  0.4793      0.632 0.000 0.708 0.000 0.216 0.076
#> GSM52562     2  0.1310      0.946 0.000 0.956 0.000 0.020 0.024
#> GSM52563     2  0.0162      0.959 0.000 0.996 0.000 0.000 0.004
#> GSM52564     1  0.6936      0.187 0.472 0.052 0.000 0.368 0.108
#> GSM52565     2  0.0404      0.957 0.000 0.988 0.000 0.000 0.012
#> GSM52566     2  0.0510      0.958 0.000 0.984 0.000 0.000 0.016
#> GSM52567     2  0.0510      0.956 0.000 0.984 0.000 0.000 0.016
#> GSM52568     2  0.0807      0.953 0.000 0.976 0.000 0.012 0.012
#> GSM52569     2  0.0510      0.956 0.000 0.984 0.000 0.000 0.016
#> GSM52570     2  0.0451      0.958 0.000 0.988 0.000 0.004 0.008
#> GSM52571     1  0.2426      0.779 0.900 0.000 0.000 0.036 0.064
#> GSM52572     1  0.5302      0.435 0.592 0.000 0.000 0.344 0.064
#> GSM52573     3  0.0703      0.867 0.000 0.000 0.976 0.000 0.024
#> GSM52574     3  0.0794      0.868 0.000 0.000 0.972 0.000 0.028
#> GSM52575     3  0.2786      0.824 0.020 0.000 0.884 0.012 0.084
#> GSM52576     3  0.6741      0.470 0.196 0.000 0.592 0.060 0.152
#> GSM52577     3  0.4244      0.753 0.084 0.000 0.796 0.012 0.108
#> GSM52578     3  0.3208      0.817 0.012 0.004 0.872 0.064 0.048
#> GSM52579     3  0.3115      0.818 0.000 0.020 0.876 0.056 0.048
#> GSM52580     4  0.1251      0.724 0.036 0.000 0.000 0.956 0.008
#> GSM52581     4  0.1082      0.721 0.028 0.000 0.000 0.964 0.008
#> GSM52582     4  0.5300      0.574 0.064 0.000 0.108 0.740 0.088
#> GSM52583     4  0.4321      0.548 0.252 0.000 0.004 0.720 0.024
#> GSM52584     4  0.3059      0.691 0.108 0.000 0.004 0.860 0.028
#> GSM52585     4  0.0703      0.721 0.024 0.000 0.000 0.976 0.000
#> GSM52586     4  0.5760     -0.208 0.456 0.008 0.000 0.472 0.064
#> GSM52587     4  0.5341      0.254 0.000 0.356 0.000 0.580 0.064
#> GSM52588     1  0.4639      0.680 0.772 0.000 0.032 0.056 0.140
#> GSM52589     1  0.7662      0.244 0.492 0.000 0.108 0.200 0.200
#> GSM52590     5  0.4038      0.767 0.088 0.000 0.088 0.012 0.812
#> GSM52591     1  0.4254      0.637 0.740 0.000 0.000 0.220 0.040
#> GSM52592     1  0.1996      0.790 0.928 0.000 0.004 0.032 0.036
#> GSM52593     1  0.1082      0.793 0.964 0.000 0.000 0.008 0.028
#> GSM52594     1  0.1195      0.792 0.960 0.000 0.000 0.012 0.028
#> GSM52595     1  0.1364      0.792 0.952 0.000 0.000 0.012 0.036
#> GSM52596     1  0.1670      0.786 0.936 0.000 0.000 0.012 0.052
#> GSM52597     1  0.4522      0.598 0.708 0.000 0.000 0.248 0.044
#> GSM52598     1  0.3269      0.766 0.848 0.000 0.000 0.096 0.056
#> GSM52599     1  0.2260      0.782 0.908 0.000 0.000 0.028 0.064
#> GSM52600     1  0.2426      0.786 0.900 0.000 0.000 0.036 0.064
#> GSM52601     1  0.1965      0.781 0.924 0.000 0.000 0.052 0.024
#> GSM52602     5  0.3480      0.933 0.000 0.000 0.248 0.000 0.752
#> GSM52603     5  0.3579      0.931 0.000 0.004 0.240 0.000 0.756
#> GSM52604     5  0.3480      0.933 0.000 0.000 0.248 0.000 0.752
#> GSM52605     5  0.3424      0.932 0.000 0.000 0.240 0.000 0.760
#> GSM52606     3  0.0162      0.873 0.000 0.000 0.996 0.000 0.004
#> GSM52607     3  0.0290      0.872 0.000 0.000 0.992 0.000 0.008
#> GSM52608     3  0.0404      0.872 0.000 0.000 0.988 0.000 0.012
#> GSM52609     3  0.0404      0.872 0.000 0.000 0.988 0.000 0.012

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.0891     0.8642 0.000 0.968 0.024 0.000 0.000 0.008
#> GSM52557     2  0.3624     0.8155 0.000 0.756 0.000 0.016 0.008 0.220
#> GSM52558     2  0.3861     0.8072 0.000 0.744 0.000 0.028 0.008 0.220
#> GSM52559     2  0.1615     0.8719 0.000 0.928 0.000 0.004 0.004 0.064
#> GSM52560     2  0.2163     0.8693 0.000 0.892 0.000 0.004 0.008 0.096
#> GSM52561     2  0.5928     0.3376 0.012 0.452 0.000 0.148 0.000 0.388
#> GSM52562     2  0.3624     0.8155 0.000 0.756 0.000 0.016 0.008 0.220
#> GSM52563     2  0.0000     0.8718 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52564     6  0.6086     0.5044 0.340 0.020 0.000 0.160 0.000 0.480
#> GSM52565     2  0.0865     0.8698 0.000 0.964 0.000 0.000 0.000 0.036
#> GSM52566     2  0.1788     0.8712 0.000 0.916 0.000 0.004 0.004 0.076
#> GSM52567     2  0.0632     0.8674 0.000 0.976 0.000 0.000 0.000 0.024
#> GSM52568     2  0.2833     0.8445 0.000 0.836 0.000 0.012 0.004 0.148
#> GSM52569     2  0.0935     0.8638 0.000 0.964 0.000 0.000 0.004 0.032
#> GSM52570     2  0.1285     0.8707 0.000 0.944 0.000 0.000 0.004 0.052
#> GSM52571     1  0.4221     0.5753 0.744 0.000 0.004 0.056 0.008 0.188
#> GSM52572     1  0.5998    -0.1638 0.540 0.000 0.008 0.128 0.020 0.304
#> GSM52573     3  0.1408     0.8528 0.000 0.000 0.944 0.000 0.036 0.020
#> GSM52574     3  0.1700     0.8499 0.000 0.000 0.928 0.000 0.048 0.024
#> GSM52575     3  0.3855     0.7825 0.004 0.000 0.796 0.020 0.044 0.136
#> GSM52576     3  0.6860     0.4325 0.116 0.000 0.516 0.040 0.052 0.276
#> GSM52577     3  0.5143     0.7097 0.088 0.000 0.704 0.008 0.040 0.160
#> GSM52578     3  0.4223     0.7716 0.008 0.004 0.788 0.052 0.028 0.120
#> GSM52579     3  0.4147     0.7742 0.004 0.004 0.792 0.060 0.028 0.112
#> GSM52580     4  0.1492     0.7694 0.024 0.000 0.000 0.940 0.000 0.036
#> GSM52581     4  0.2011     0.7581 0.020 0.000 0.000 0.912 0.004 0.064
#> GSM52582     4  0.3338     0.7257 0.012 0.000 0.044 0.856 0.048 0.040
#> GSM52583     4  0.3024     0.6748 0.116 0.000 0.000 0.844 0.008 0.032
#> GSM52584     4  0.2642     0.7465 0.032 0.000 0.000 0.884 0.020 0.064
#> GSM52585     4  0.1930     0.7600 0.036 0.000 0.000 0.916 0.000 0.048
#> GSM52586     6  0.6659     0.4564 0.360 0.000 0.004 0.248 0.024 0.364
#> GSM52587     4  0.5737     0.2221 0.000 0.196 0.000 0.500 0.000 0.304
#> GSM52588     1  0.5872     0.3140 0.632 0.000 0.020 0.056 0.072 0.220
#> GSM52589     1  0.8018     0.0329 0.376 0.000 0.096 0.184 0.064 0.280
#> GSM52590     5  0.1453     0.9155 0.040 0.000 0.008 0.000 0.944 0.008
#> GSM52591     1  0.4616     0.2091 0.688 0.000 0.000 0.064 0.012 0.236
#> GSM52592     1  0.2488     0.6077 0.864 0.000 0.000 0.004 0.008 0.124
#> GSM52593     1  0.1149     0.6243 0.960 0.000 0.000 0.008 0.008 0.024
#> GSM52594     1  0.1585     0.6200 0.940 0.000 0.000 0.012 0.012 0.036
#> GSM52595     1  0.1585     0.6203 0.940 0.000 0.000 0.012 0.012 0.036
#> GSM52596     1  0.2455     0.6072 0.888 0.000 0.000 0.016 0.016 0.080
#> GSM52597     1  0.4669     0.1611 0.648 0.000 0.004 0.064 0.000 0.284
#> GSM52598     1  0.4433     0.5500 0.720 0.000 0.004 0.052 0.012 0.212
#> GSM52599     1  0.3601     0.6035 0.792 0.000 0.000 0.040 0.008 0.160
#> GSM52600     1  0.4070     0.5873 0.752 0.000 0.004 0.044 0.008 0.192
#> GSM52601     1  0.2058     0.5902 0.908 0.000 0.000 0.012 0.008 0.072
#> GSM52602     5  0.1267     0.9752 0.000 0.000 0.060 0.000 0.940 0.000
#> GSM52603     5  0.1267     0.9752 0.000 0.000 0.060 0.000 0.940 0.000
#> GSM52604     5  0.1267     0.9752 0.000 0.000 0.060 0.000 0.940 0.000
#> GSM52605     5  0.1333     0.9695 0.000 0.000 0.048 0.008 0.944 0.000
#> GSM52606     3  0.0458     0.8595 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM52607     3  0.0458     0.8595 0.000 0.000 0.984 0.000 0.016 0.000
#> GSM52608     3  0.0692     0.8590 0.000 0.000 0.976 0.000 0.020 0.004
#> GSM52609     3  0.0458     0.8595 0.000 0.000 0.984 0.000 0.016 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) tissue(p) k
#> MAD:skmeans 54         2.66e-04  2.44e-03 2
#> MAD:skmeans 54         2.08e-10  1.21e-04 3
#> MAD:skmeans 50         7.12e-10  2.24e-07 4
#> MAD:skmeans 48         9.44e-10  1.61e-08 5
#> MAD:skmeans 45         1.45e-08  6.26e-10 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.958           0.946       0.972         0.4872 0.508   0.508
#> 3 3 0.835           0.893       0.954         0.3218 0.788   0.606
#> 4 4 0.929           0.909       0.964         0.0980 0.939   0.827
#> 5 5 0.822           0.722       0.873         0.0680 0.985   0.948
#> 6 6 0.783           0.748       0.840         0.0706 0.869   0.556

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0000      0.952 0.000 1.000
#> GSM52557     2  0.8327      0.656 0.264 0.736
#> GSM52558     1  0.4298      0.912 0.912 0.088
#> GSM52559     2  0.0000      0.952 0.000 1.000
#> GSM52560     2  0.0000      0.952 0.000 1.000
#> GSM52561     2  0.5059      0.872 0.112 0.888
#> GSM52562     1  0.1414      0.977 0.980 0.020
#> GSM52563     2  0.0672      0.949 0.008 0.992
#> GSM52564     1  0.0000      0.984 1.000 0.000
#> GSM52565     1  0.0938      0.979 0.988 0.012
#> GSM52566     2  0.0000      0.952 0.000 1.000
#> GSM52567     1  0.2043      0.972 0.968 0.032
#> GSM52568     2  0.9580      0.422 0.380 0.620
#> GSM52569     1  0.2236      0.970 0.964 0.036
#> GSM52570     1  0.0938      0.979 0.988 0.012
#> GSM52571     1  0.0000      0.984 1.000 0.000
#> GSM52572     1  0.0000      0.984 1.000 0.000
#> GSM52573     2  0.0938      0.949 0.012 0.988
#> GSM52574     2  0.0938      0.949 0.012 0.988
#> GSM52575     2  0.0938      0.949 0.012 0.988
#> GSM52576     2  0.4939      0.877 0.108 0.892
#> GSM52577     2  0.0938      0.949 0.012 0.988
#> GSM52578     2  0.0000      0.952 0.000 1.000
#> GSM52579     2  0.0000      0.952 0.000 1.000
#> GSM52580     1  0.0000      0.984 1.000 0.000
#> GSM52581     1  0.0000      0.984 1.000 0.000
#> GSM52582     2  0.0938      0.949 0.012 0.988
#> GSM52583     1  0.1633      0.973 0.976 0.024
#> GSM52584     1  0.0000      0.984 1.000 0.000
#> GSM52585     1  0.0000      0.984 1.000 0.000
#> GSM52586     1  0.0000      0.984 1.000 0.000
#> GSM52587     2  0.0000      0.952 0.000 1.000
#> GSM52588     1  0.3114      0.941 0.944 0.056
#> GSM52589     2  0.3584      0.914 0.068 0.932
#> GSM52590     1  0.1414      0.976 0.980 0.020
#> GSM52591     1  0.0000      0.984 1.000 0.000
#> GSM52592     1  0.0000      0.984 1.000 0.000
#> GSM52593     1  0.0000      0.984 1.000 0.000
#> GSM52594     1  0.0000      0.984 1.000 0.000
#> GSM52595     1  0.0000      0.984 1.000 0.000
#> GSM52596     1  0.0000      0.984 1.000 0.000
#> GSM52597     1  0.0000      0.984 1.000 0.000
#> GSM52598     1  0.0000      0.984 1.000 0.000
#> GSM52599     1  0.0000      0.984 1.000 0.000
#> GSM52600     1  0.0376      0.982 0.996 0.004
#> GSM52601     1  0.0000      0.984 1.000 0.000
#> GSM52602     1  0.4298      0.921 0.912 0.088
#> GSM52603     1  0.2236      0.970 0.964 0.036
#> GSM52604     1  0.2423      0.967 0.960 0.040
#> GSM52605     1  0.2236      0.970 0.964 0.036
#> GSM52606     2  0.0376      0.951 0.004 0.996
#> GSM52607     2  0.0000      0.952 0.000 1.000
#> GSM52608     2  0.0000      0.952 0.000 1.000
#> GSM52609     2  0.0000      0.952 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52557     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52558     2  0.5785      0.469 0.332 0.668 0.000
#> GSM52559     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52560     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52561     3  0.7890      0.203 0.056 0.432 0.512
#> GSM52562     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52563     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52564     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52565     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52566     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52567     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52568     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52569     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52570     2  0.0000      0.963 0.000 1.000 0.000
#> GSM52571     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52572     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52573     3  0.0000      0.900 0.000 0.000 1.000
#> GSM52574     3  0.0000      0.900 0.000 0.000 1.000
#> GSM52575     3  0.0000      0.900 0.000 0.000 1.000
#> GSM52576     3  0.4555      0.732 0.200 0.000 0.800
#> GSM52577     3  0.0592      0.893 0.012 0.000 0.988
#> GSM52578     3  0.0000      0.900 0.000 0.000 1.000
#> GSM52579     3  0.0747      0.891 0.000 0.016 0.984
#> GSM52580     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52581     1  0.0424      0.961 0.992 0.008 0.000
#> GSM52582     3  0.0000      0.900 0.000 0.000 1.000
#> GSM52583     1  0.0424      0.961 0.992 0.000 0.008
#> GSM52584     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52585     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52586     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52587     3  0.6215      0.293 0.000 0.428 0.572
#> GSM52588     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52589     3  0.4291      0.756 0.180 0.000 0.820
#> GSM52590     1  0.1643      0.934 0.956 0.044 0.000
#> GSM52591     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52592     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52593     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52594     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52595     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52596     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52597     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52598     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52599     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52600     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52601     1  0.0000      0.966 1.000 0.000 0.000
#> GSM52602     1  0.4915      0.783 0.804 0.012 0.184
#> GSM52603     1  0.4629      0.776 0.808 0.188 0.004
#> GSM52604     1  0.5473      0.802 0.808 0.052 0.140
#> GSM52605     1  0.4629      0.776 0.808 0.188 0.004
#> GSM52606     3  0.0000      0.900 0.000 0.000 1.000
#> GSM52607     3  0.0000      0.900 0.000 0.000 1.000
#> GSM52608     3  0.0000      0.900 0.000 0.000 1.000
#> GSM52609     3  0.0000      0.900 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52557     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52558     2  0.4661      0.423 0.348 0.652 0.000 0.000
#> GSM52559     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52560     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52561     3  0.6567      0.361 0.076 0.360 0.560 0.004
#> GSM52562     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52563     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52564     1  0.0376      0.977 0.992 0.004 0.000 0.004
#> GSM52565     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52566     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52567     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52568     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52569     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52570     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM52571     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52572     1  0.0188      0.979 0.996 0.000 0.000 0.004
#> GSM52573     3  0.0000      0.901 0.000 0.000 1.000 0.000
#> GSM52574     3  0.0000      0.901 0.000 0.000 1.000 0.000
#> GSM52575     3  0.0000      0.901 0.000 0.000 1.000 0.000
#> GSM52576     3  0.2647      0.780 0.120 0.000 0.880 0.000
#> GSM52577     3  0.0336      0.898 0.008 0.000 0.992 0.000
#> GSM52578     3  0.0000      0.901 0.000 0.000 1.000 0.000
#> GSM52579     3  0.0336      0.898 0.000 0.008 0.992 0.000
#> GSM52580     1  0.0469      0.975 0.988 0.000 0.000 0.012
#> GSM52581     1  0.0804      0.970 0.980 0.008 0.000 0.012
#> GSM52582     3  0.0469      0.896 0.000 0.000 0.988 0.012
#> GSM52583     1  0.0937      0.966 0.976 0.000 0.012 0.012
#> GSM52584     1  0.0469      0.975 0.988 0.000 0.000 0.012
#> GSM52585     1  0.0469      0.975 0.988 0.000 0.000 0.012
#> GSM52586     1  0.0188      0.979 0.996 0.000 0.000 0.004
#> GSM52587     3  0.5183      0.337 0.000 0.408 0.584 0.008
#> GSM52588     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52589     3  0.2589      0.793 0.116 0.000 0.884 0.000
#> GSM52590     1  0.4857      0.511 0.668 0.008 0.000 0.324
#> GSM52591     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52592     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52593     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52596     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52597     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52598     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52599     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52600     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52601     1  0.0000      0.980 1.000 0.000 0.000 0.000
#> GSM52602     4  0.0524      0.993 0.000 0.004 0.008 0.988
#> GSM52603     4  0.0469      0.993 0.000 0.012 0.000 0.988
#> GSM52604     4  0.0524      0.993 0.000 0.004 0.008 0.988
#> GSM52605     4  0.0469      0.993 0.000 0.012 0.000 0.988
#> GSM52606     3  0.0000      0.901 0.000 0.000 1.000 0.000
#> GSM52607     3  0.0000      0.901 0.000 0.000 1.000 0.000
#> GSM52608     3  0.0000      0.901 0.000 0.000 1.000 0.000
#> GSM52609     3  0.0000      0.901 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.1410      0.695 0.000 0.940 0.060 0.000 0.000
#> GSM52557     2  0.4307     -0.931 0.000 0.500 0.000 0.500 0.000
#> GSM52558     4  0.5173      0.858 0.040 0.460 0.000 0.500 0.000
#> GSM52559     2  0.2648      0.468 0.000 0.848 0.000 0.152 0.000
#> GSM52560     2  0.3707     -0.123 0.000 0.716 0.000 0.284 0.000
#> GSM52561     3  0.7547     -0.181 0.072 0.332 0.432 0.164 0.000
#> GSM52562     4  0.4307      0.847 0.000 0.500 0.000 0.500 0.000
#> GSM52563     2  0.0000      0.750 0.000 1.000 0.000 0.000 0.000
#> GSM52564     1  0.0566      0.863 0.984 0.004 0.000 0.012 0.000
#> GSM52565     2  0.1270      0.755 0.000 0.948 0.000 0.052 0.000
#> GSM52566     2  0.0290      0.746 0.000 0.992 0.000 0.008 0.000
#> GSM52567     2  0.1270      0.755 0.000 0.948 0.000 0.052 0.000
#> GSM52568     2  0.0290      0.746 0.000 0.992 0.000 0.008 0.000
#> GSM52569     2  0.1270      0.755 0.000 0.948 0.000 0.052 0.000
#> GSM52570     2  0.1270      0.755 0.000 0.948 0.000 0.052 0.000
#> GSM52571     1  0.0510      0.864 0.984 0.000 0.000 0.016 0.000
#> GSM52572     1  0.0404      0.864 0.988 0.000 0.000 0.012 0.000
#> GSM52573     3  0.0000      0.864 0.000 0.000 1.000 0.000 0.000
#> GSM52574     3  0.0000      0.864 0.000 0.000 1.000 0.000 0.000
#> GSM52575     3  0.0000      0.864 0.000 0.000 1.000 0.000 0.000
#> GSM52576     3  0.2280      0.761 0.120 0.000 0.880 0.000 0.000
#> GSM52577     3  0.0162      0.863 0.004 0.000 0.996 0.000 0.000
#> GSM52578     3  0.0162      0.863 0.000 0.000 0.996 0.004 0.000
#> GSM52579     3  0.0162      0.863 0.000 0.004 0.996 0.000 0.000
#> GSM52580     1  0.4249      0.573 0.568 0.000 0.000 0.432 0.000
#> GSM52581     1  0.4249      0.573 0.568 0.000 0.000 0.432 0.000
#> GSM52582     3  0.4227      0.485 0.000 0.000 0.580 0.420 0.000
#> GSM52583     1  0.4256      0.571 0.564 0.000 0.000 0.436 0.000
#> GSM52584     1  0.4249      0.573 0.568 0.000 0.000 0.432 0.000
#> GSM52585     1  0.4249      0.573 0.568 0.000 0.000 0.432 0.000
#> GSM52586     1  0.0404      0.864 0.988 0.000 0.000 0.012 0.000
#> GSM52587     3  0.5867      0.401 0.000 0.100 0.496 0.404 0.000
#> GSM52588     1  0.0510      0.864 0.984 0.000 0.000 0.016 0.000
#> GSM52589     3  0.2624      0.766 0.116 0.000 0.872 0.012 0.000
#> GSM52590     1  0.4268      0.338 0.556 0.000 0.000 0.000 0.444
#> GSM52591     1  0.0404      0.864 0.988 0.000 0.000 0.012 0.000
#> GSM52592     1  0.0404      0.864 0.988 0.000 0.000 0.012 0.000
#> GSM52593     1  0.0510      0.864 0.984 0.000 0.000 0.016 0.000
#> GSM52594     1  0.0510      0.864 0.984 0.000 0.000 0.016 0.000
#> GSM52595     1  0.0510      0.864 0.984 0.000 0.000 0.016 0.000
#> GSM52596     1  0.0510      0.864 0.984 0.000 0.000 0.016 0.000
#> GSM52597     1  0.0404      0.864 0.988 0.000 0.000 0.012 0.000
#> GSM52598     1  0.0404      0.864 0.988 0.000 0.000 0.012 0.000
#> GSM52599     1  0.0510      0.864 0.984 0.000 0.000 0.016 0.000
#> GSM52600     1  0.0404      0.864 0.988 0.000 0.000 0.012 0.000
#> GSM52601     1  0.0000      0.865 1.000 0.000 0.000 0.000 0.000
#> GSM52602     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM52603     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM52604     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM52605     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000
#> GSM52606     3  0.0000      0.864 0.000 0.000 1.000 0.000 0.000
#> GSM52607     3  0.0000      0.864 0.000 0.000 1.000 0.000 0.000
#> GSM52608     3  0.0000      0.864 0.000 0.000 1.000 0.000 0.000
#> GSM52609     3  0.0000      0.864 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4   p5    p6
#> GSM52556     2  0.4868     0.7600 0.000 0.592 0.076 0.000 0.00 0.332
#> GSM52557     6  0.0000     0.5839 0.000 0.000 0.000 0.000 0.00 1.000
#> GSM52558     6  0.0632     0.5756 0.000 0.024 0.000 0.000 0.00 0.976
#> GSM52559     6  0.3782    -0.3661 0.000 0.412 0.000 0.000 0.00 0.588
#> GSM52560     6  0.3151     0.2196 0.000 0.252 0.000 0.000 0.00 0.748
#> GSM52561     6  0.7995     0.2377 0.064 0.248 0.224 0.084 0.00 0.380
#> GSM52562     6  0.0000     0.5839 0.000 0.000 0.000 0.000 0.00 1.000
#> GSM52563     2  0.4199     0.8067 0.000 0.600 0.000 0.020 0.00 0.380
#> GSM52564     1  0.4775     0.7606 0.632 0.284 0.000 0.084 0.00 0.000
#> GSM52565     2  0.5000     0.8489 0.000 0.580 0.000 0.088 0.00 0.332
#> GSM52566     2  0.3774     0.7862 0.000 0.592 0.000 0.000 0.00 0.408
#> GSM52567     2  0.5000     0.8489 0.000 0.580 0.000 0.088 0.00 0.332
#> GSM52568     2  0.4219     0.7982 0.000 0.592 0.000 0.020 0.00 0.388
#> GSM52569     2  0.5000     0.8489 0.000 0.580 0.000 0.088 0.00 0.332
#> GSM52570     2  0.5000     0.8489 0.000 0.580 0.000 0.088 0.00 0.332
#> GSM52571     1  0.1075     0.7826 0.952 0.048 0.000 0.000 0.00 0.000
#> GSM52572     1  0.3330     0.8103 0.716 0.284 0.000 0.000 0.00 0.000
#> GSM52573     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.00 0.000
#> GSM52574     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.00 0.000
#> GSM52575     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.00 0.000
#> GSM52576     3  0.3593     0.7780 0.068 0.040 0.828 0.064 0.00 0.000
#> GSM52577     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.00 0.000
#> GSM52578     3  0.0146     0.9382 0.000 0.000 0.996 0.004 0.00 0.000
#> GSM52579     3  0.0260     0.9341 0.000 0.000 0.992 0.000 0.00 0.008
#> GSM52580     4  0.1714     0.8166 0.092 0.000 0.000 0.908 0.00 0.000
#> GSM52581     4  0.1663     0.8149 0.088 0.000 0.000 0.912 0.00 0.000
#> GSM52582     4  0.2562     0.7074 0.000 0.000 0.172 0.828 0.00 0.000
#> GSM52583     4  0.2562     0.8079 0.172 0.000 0.000 0.828 0.00 0.000
#> GSM52584     4  0.3563     0.5766 0.336 0.000 0.000 0.664 0.00 0.000
#> GSM52585     4  0.2562     0.8079 0.172 0.000 0.000 0.828 0.00 0.000
#> GSM52586     1  0.3330     0.8103 0.716 0.284 0.000 0.000 0.00 0.000
#> GSM52587     4  0.3161     0.7006 0.000 0.028 0.136 0.828 0.00 0.008
#> GSM52588     1  0.2660     0.7236 0.868 0.048 0.000 0.084 0.00 0.000
#> GSM52589     3  0.5784     0.4314 0.300 0.048 0.568 0.084 0.00 0.000
#> GSM52590     5  0.3828     0.0885 0.440 0.000 0.000 0.000 0.56 0.000
#> GSM52591     1  0.3330     0.8103 0.716 0.284 0.000 0.000 0.00 0.000
#> GSM52592     1  0.2003     0.8178 0.884 0.116 0.000 0.000 0.00 0.000
#> GSM52593     1  0.0000     0.7971 1.000 0.000 0.000 0.000 0.00 0.000
#> GSM52594     1  0.0000     0.7971 1.000 0.000 0.000 0.000 0.00 0.000
#> GSM52595     1  0.0000     0.7971 1.000 0.000 0.000 0.000 0.00 0.000
#> GSM52596     1  0.2136     0.7559 0.904 0.048 0.000 0.048 0.00 0.000
#> GSM52597     1  0.3330     0.8103 0.716 0.284 0.000 0.000 0.00 0.000
#> GSM52598     1  0.3547     0.8083 0.668 0.332 0.000 0.000 0.00 0.000
#> GSM52599     1  0.1141     0.7848 0.948 0.052 0.000 0.000 0.00 0.000
#> GSM52600     1  0.3547     0.8083 0.668 0.332 0.000 0.000 0.00 0.000
#> GSM52601     1  0.3151     0.8182 0.748 0.252 0.000 0.000 0.00 0.000
#> GSM52602     5  0.0000     0.8409 0.000 0.000 0.000 0.000 1.00 0.000
#> GSM52603     5  0.0000     0.8409 0.000 0.000 0.000 0.000 1.00 0.000
#> GSM52604     5  0.0000     0.8409 0.000 0.000 0.000 0.000 1.00 0.000
#> GSM52605     5  0.0000     0.8409 0.000 0.000 0.000 0.000 1.00 0.000
#> GSM52606     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.00 0.000
#> GSM52607     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.00 0.000
#> GSM52608     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.00 0.000
#> GSM52609     3  0.0000     0.9407 0.000 0.000 1.000 0.000 0.00 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) tissue(p) k
#> MAD:pam 53         5.44e-01  8.87e-03 2
#> MAD:pam 51         1.06e-10  4.68e-05 3
#> MAD:pam 51         5.74e-10  1.15e-07 4
#> MAD:pam 47         1.94e-08  1.44e-10 5
#> MAD:pam 49         2.39e-08  6.96e-13 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.743           0.799       0.915         0.3893 0.609   0.609
#> 3 3 0.411           0.773       0.795         0.5434 0.491   0.317
#> 4 4 0.684           0.797       0.866         0.1696 0.752   0.450
#> 5 5 0.899           0.904       0.945         0.0824 0.850   0.550
#> 6 6 0.816           0.768       0.848         0.0567 0.980   0.917

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2   0.000     0.9104 0.000 1.000
#> GSM52557     2   0.000     0.9104 0.000 1.000
#> GSM52558     2   0.000     0.9104 0.000 1.000
#> GSM52559     2   0.000     0.9104 0.000 1.000
#> GSM52560     2   0.000     0.9104 0.000 1.000
#> GSM52561     2   0.242     0.9189 0.040 0.960
#> GSM52562     2   0.000     0.9104 0.000 1.000
#> GSM52563     2   0.000     0.9104 0.000 1.000
#> GSM52564     2   0.881     0.5737 0.300 0.700
#> GSM52565     2   0.000     0.9104 0.000 1.000
#> GSM52566     2   0.000     0.9104 0.000 1.000
#> GSM52567     2   0.000     0.9104 0.000 1.000
#> GSM52568     2   0.000     0.9104 0.000 1.000
#> GSM52569     2   0.000     0.9104 0.000 1.000
#> GSM52570     2   0.000     0.9104 0.000 1.000
#> GSM52571     1   0.118     0.8572 0.984 0.016
#> GSM52572     1   0.992     0.1669 0.552 0.448
#> GSM52573     2   0.242     0.9189 0.040 0.960
#> GSM52574     2   0.242     0.9189 0.040 0.960
#> GSM52575     2   0.242     0.9189 0.040 0.960
#> GSM52576     2   0.295     0.9128 0.052 0.948
#> GSM52577     2   0.278     0.9153 0.048 0.952
#> GSM52578     2   0.242     0.9189 0.040 0.960
#> GSM52579     2   0.242     0.9189 0.040 0.960
#> GSM52580     2   0.714     0.7513 0.196 0.804
#> GSM52581     2   0.494     0.8604 0.108 0.892
#> GSM52582     2   0.242     0.9189 0.040 0.960
#> GSM52583     1   0.998     0.0790 0.528 0.472
#> GSM52584     2   0.969     0.3393 0.396 0.604
#> GSM52585     2   0.260     0.9169 0.044 0.956
#> GSM52586     2   0.988     0.2041 0.436 0.564
#> GSM52587     2   0.242     0.9189 0.040 0.960
#> GSM52588     1   0.278     0.8406 0.952 0.048
#> GSM52589     2   0.900     0.5464 0.316 0.684
#> GSM52590     2   0.204     0.9189 0.032 0.968
#> GSM52591     1   0.998     0.0677 0.524 0.476
#> GSM52592     1   0.000     0.8603 1.000 0.000
#> GSM52593     1   0.000     0.8603 1.000 0.000
#> GSM52594     1   0.000     0.8603 1.000 0.000
#> GSM52595     1   0.000     0.8603 1.000 0.000
#> GSM52596     1   0.000     0.8603 1.000 0.000
#> GSM52597     2   1.000    -0.0575 0.500 0.500
#> GSM52598     1   0.358     0.8251 0.932 0.068
#> GSM52599     1   0.000     0.8603 1.000 0.000
#> GSM52600     1   0.000     0.8603 1.000 0.000
#> GSM52601     1   0.141     0.8556 0.980 0.020
#> GSM52602     2   0.204     0.9189 0.032 0.968
#> GSM52603     2   0.204     0.9189 0.032 0.968
#> GSM52604     2   0.204     0.9189 0.032 0.968
#> GSM52605     2   0.204     0.9189 0.032 0.968
#> GSM52606     2   0.242     0.9189 0.040 0.960
#> GSM52607     2   0.242     0.9189 0.040 0.960
#> GSM52608     2   0.242     0.9189 0.040 0.960
#> GSM52609     2   0.242     0.9189 0.040 0.960

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.1031     0.9648 0.000 0.976 0.024
#> GSM52557     2  0.0475     0.9875 0.004 0.992 0.004
#> GSM52558     2  0.0475     0.9875 0.004 0.992 0.004
#> GSM52559     2  0.0000     0.9903 0.000 1.000 0.000
#> GSM52560     2  0.0000     0.9903 0.000 1.000 0.000
#> GSM52561     1  0.9294     0.5297 0.484 0.344 0.172
#> GSM52562     2  0.0475     0.9875 0.004 0.992 0.004
#> GSM52563     2  0.0000     0.9903 0.000 1.000 0.000
#> GSM52564     1  0.7960     0.7136 0.656 0.208 0.136
#> GSM52565     2  0.0424     0.9882 0.000 0.992 0.008
#> GSM52566     2  0.0000     0.9903 0.000 1.000 0.000
#> GSM52567     2  0.0424     0.9882 0.000 0.992 0.008
#> GSM52568     2  0.0475     0.9875 0.004 0.992 0.004
#> GSM52569     2  0.0424     0.9882 0.000 0.992 0.008
#> GSM52570     2  0.0424     0.9882 0.000 0.992 0.008
#> GSM52571     1  0.0237     0.7232 0.996 0.000 0.004
#> GSM52572     1  0.6087     0.7432 0.780 0.144 0.076
#> GSM52573     3  0.2846     0.7800 0.020 0.056 0.924
#> GSM52574     3  0.2846     0.7800 0.020 0.056 0.924
#> GSM52575     3  0.5791     0.8010 0.048 0.168 0.784
#> GSM52576     1  0.7878     0.7156 0.668 0.172 0.160
#> GSM52577     1  0.8122     0.7047 0.648 0.184 0.168
#> GSM52578     3  0.6522     0.7655 0.032 0.272 0.696
#> GSM52579     3  0.6161     0.7706 0.020 0.272 0.708
#> GSM52580     1  0.8379     0.6962 0.624 0.208 0.168
#> GSM52581     1  0.8379     0.6962 0.624 0.208 0.168
#> GSM52582     1  0.9535     0.4951 0.488 0.264 0.248
#> GSM52583     1  0.7777     0.7202 0.676 0.164 0.160
#> GSM52584     1  0.7878     0.7179 0.668 0.172 0.160
#> GSM52585     1  0.8933     0.6262 0.556 0.276 0.168
#> GSM52586     1  0.6266     0.7393 0.768 0.156 0.076
#> GSM52587     1  0.9267     0.5593 0.504 0.316 0.180
#> GSM52588     1  0.2384     0.7375 0.936 0.008 0.056
#> GSM52589     1  0.7562     0.7239 0.692 0.160 0.148
#> GSM52590     1  0.9776    -0.0192 0.388 0.232 0.380
#> GSM52591     1  0.6266     0.7393 0.768 0.156 0.076
#> GSM52592     1  0.0747     0.7286 0.984 0.000 0.016
#> GSM52593     1  0.0000     0.7231 1.000 0.000 0.000
#> GSM52594     1  0.0000     0.7231 1.000 0.000 0.000
#> GSM52595     1  0.0000     0.7231 1.000 0.000 0.000
#> GSM52596     1  0.0237     0.7232 0.996 0.000 0.004
#> GSM52597     1  0.6266     0.7404 0.768 0.156 0.076
#> GSM52598     1  0.2590     0.7368 0.924 0.004 0.072
#> GSM52599     1  0.0237     0.7232 0.996 0.000 0.004
#> GSM52600     1  0.1964     0.7211 0.944 0.000 0.056
#> GSM52601     1  0.0237     0.7232 0.996 0.000 0.004
#> GSM52602     3  0.7419     0.7486 0.088 0.232 0.680
#> GSM52603     3  0.7419     0.7486 0.088 0.232 0.680
#> GSM52604     3  0.7419     0.7486 0.088 0.232 0.680
#> GSM52605     3  0.7493     0.7457 0.092 0.232 0.676
#> GSM52606     3  0.5551     0.8039 0.020 0.212 0.768
#> GSM52607     3  0.5253     0.8088 0.020 0.188 0.792
#> GSM52608     3  0.2846     0.7800 0.020 0.056 0.924
#> GSM52609     3  0.2846     0.7800 0.020 0.056 0.924

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.2589      0.843 0.000 0.884 0.116 0.000
#> GSM52557     2  0.2197      0.923 0.000 0.916 0.004 0.080
#> GSM52558     2  0.2266      0.921 0.000 0.912 0.004 0.084
#> GSM52559     2  0.0000      0.953 0.000 1.000 0.000 0.000
#> GSM52560     2  0.0000      0.953 0.000 1.000 0.000 0.000
#> GSM52561     3  0.8020      0.612 0.232 0.112 0.572 0.084
#> GSM52562     2  0.2197      0.923 0.000 0.916 0.004 0.080
#> GSM52563     2  0.0000      0.953 0.000 1.000 0.000 0.000
#> GSM52564     3  0.7573      0.516 0.344 0.044 0.528 0.084
#> GSM52565     2  0.0469      0.950 0.000 0.988 0.000 0.012
#> GSM52566     2  0.0000      0.953 0.000 1.000 0.000 0.000
#> GSM52567     2  0.0707      0.947 0.000 0.980 0.000 0.020
#> GSM52568     2  0.2197      0.923 0.000 0.916 0.004 0.080
#> GSM52569     2  0.0336      0.951 0.000 0.992 0.000 0.008
#> GSM52570     2  0.0469      0.950 0.000 0.988 0.000 0.012
#> GSM52571     1  0.0000      0.869 1.000 0.000 0.000 0.000
#> GSM52572     1  0.4050      0.782 0.820 0.036 0.144 0.000
#> GSM52573     3  0.0188      0.750 0.000 0.004 0.996 0.000
#> GSM52574     3  0.0188      0.750 0.000 0.004 0.996 0.000
#> GSM52575     3  0.0657      0.757 0.004 0.012 0.984 0.000
#> GSM52576     3  0.5047      0.613 0.316 0.016 0.668 0.000
#> GSM52577     3  0.4711      0.690 0.236 0.024 0.740 0.000
#> GSM52578     3  0.1211      0.755 0.000 0.040 0.960 0.000
#> GSM52579     3  0.1302      0.754 0.000 0.044 0.956 0.000
#> GSM52580     3  0.7412      0.613 0.280 0.044 0.584 0.092
#> GSM52581     3  0.7388      0.613 0.280 0.040 0.584 0.096
#> GSM52582     3  0.1209      0.758 0.004 0.032 0.964 0.000
#> GSM52583     3  0.5400      0.539 0.372 0.020 0.608 0.000
#> GSM52584     3  0.5013      0.649 0.292 0.020 0.688 0.000
#> GSM52585     3  0.7388      0.613 0.280 0.040 0.584 0.096
#> GSM52586     1  0.6602      0.168 0.576 0.036 0.356 0.032
#> GSM52587     3  0.7898      0.607 0.116 0.208 0.592 0.084
#> GSM52588     1  0.2704      0.825 0.876 0.000 0.124 0.000
#> GSM52589     3  0.5452      0.407 0.428 0.016 0.556 0.000
#> GSM52590     4  0.2891      0.992 0.080 0.020 0.004 0.896
#> GSM52591     1  0.3999      0.787 0.824 0.036 0.140 0.000
#> GSM52592     1  0.1305      0.869 0.960 0.000 0.036 0.004
#> GSM52593     1  0.0188      0.867 0.996 0.000 0.000 0.004
#> GSM52594     1  0.0000      0.869 1.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.869 1.000 0.000 0.000 0.000
#> GSM52596     1  0.0336      0.868 0.992 0.000 0.008 0.000
#> GSM52597     1  0.4182      0.785 0.820 0.036 0.140 0.004
#> GSM52598     1  0.3052      0.816 0.860 0.000 0.136 0.004
#> GSM52599     1  0.0000      0.869 1.000 0.000 0.000 0.000
#> GSM52600     1  0.1716      0.838 0.936 0.000 0.064 0.000
#> GSM52601     1  0.0188      0.867 0.996 0.000 0.000 0.004
#> GSM52602     4  0.2778      0.994 0.080 0.016 0.004 0.900
#> GSM52603     4  0.2778      0.994 0.080 0.016 0.004 0.900
#> GSM52604     4  0.2778      0.994 0.080 0.016 0.004 0.900
#> GSM52605     4  0.3134      0.982 0.088 0.024 0.004 0.884
#> GSM52606     3  0.0707      0.757 0.000 0.020 0.980 0.000
#> GSM52607     3  0.0592      0.755 0.000 0.016 0.984 0.000
#> GSM52608     3  0.0188      0.750 0.000 0.004 0.996 0.000
#> GSM52609     3  0.0188      0.750 0.000 0.004 0.996 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.2127     0.8506 0.000 0.892 0.108 0.000 0.000
#> GSM52557     2  0.2732     0.8623 0.000 0.840 0.000 0.160 0.000
#> GSM52558     2  0.3424     0.7917 0.000 0.760 0.000 0.240 0.000
#> GSM52559     2  0.0000     0.9387 0.000 1.000 0.000 0.000 0.000
#> GSM52560     2  0.0162     0.9383 0.000 0.996 0.000 0.004 0.000
#> GSM52561     4  0.0727     0.6741 0.004 0.012 0.004 0.980 0.000
#> GSM52562     2  0.2773     0.8595 0.000 0.836 0.000 0.164 0.000
#> GSM52563     2  0.0000     0.9387 0.000 1.000 0.000 0.000 0.000
#> GSM52564     4  0.3586     0.8214 0.264 0.000 0.000 0.736 0.000
#> GSM52565     2  0.0510     0.9373 0.000 0.984 0.000 0.016 0.000
#> GSM52566     2  0.0000     0.9387 0.000 1.000 0.000 0.000 0.000
#> GSM52567     2  0.0510     0.9373 0.000 0.984 0.000 0.016 0.000
#> GSM52568     2  0.1043     0.9273 0.000 0.960 0.000 0.040 0.000
#> GSM52569     2  0.0510     0.9373 0.000 0.984 0.000 0.016 0.000
#> GSM52570     2  0.0510     0.9373 0.000 0.984 0.000 0.016 0.000
#> GSM52571     1  0.0162     0.9500 0.996 0.000 0.000 0.004 0.000
#> GSM52572     1  0.0794     0.9413 0.972 0.000 0.000 0.028 0.000
#> GSM52573     3  0.0000     0.9664 0.000 0.000 1.000 0.000 0.000
#> GSM52574     3  0.0000     0.9664 0.000 0.000 1.000 0.000 0.000
#> GSM52575     3  0.1638     0.9086 0.064 0.000 0.932 0.004 0.000
#> GSM52576     1  0.0671     0.9458 0.980 0.000 0.004 0.016 0.000
#> GSM52577     1  0.1300     0.9264 0.956 0.000 0.028 0.016 0.000
#> GSM52578     3  0.1124     0.9547 0.000 0.000 0.960 0.036 0.004
#> GSM52579     3  0.1952     0.9192 0.000 0.000 0.912 0.084 0.004
#> GSM52580     4  0.3689     0.8305 0.256 0.000 0.004 0.740 0.000
#> GSM52581     4  0.3689     0.8305 0.256 0.000 0.004 0.740 0.000
#> GSM52582     3  0.1671     0.9281 0.000 0.000 0.924 0.076 0.000
#> GSM52583     1  0.1197     0.9233 0.952 0.000 0.000 0.048 0.000
#> GSM52584     1  0.1544     0.9028 0.932 0.000 0.000 0.068 0.000
#> GSM52585     4  0.3333     0.8247 0.208 0.000 0.004 0.788 0.000
#> GSM52586     1  0.4235    -0.0246 0.576 0.000 0.000 0.424 0.000
#> GSM52587     4  0.0727     0.6741 0.004 0.012 0.004 0.980 0.000
#> GSM52588     1  0.0290     0.9493 0.992 0.000 0.000 0.008 0.000
#> GSM52589     1  0.0510     0.9469 0.984 0.000 0.000 0.016 0.000
#> GSM52590     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000
#> GSM52591     1  0.0794     0.9409 0.972 0.000 0.000 0.028 0.000
#> GSM52592     1  0.0162     0.9500 0.996 0.000 0.000 0.004 0.000
#> GSM52593     1  0.0162     0.9500 0.996 0.000 0.000 0.004 0.000
#> GSM52594     1  0.0162     0.9500 0.996 0.000 0.000 0.004 0.000
#> GSM52595     1  0.0162     0.9500 0.996 0.000 0.000 0.004 0.000
#> GSM52596     1  0.0162     0.9500 0.996 0.000 0.000 0.004 0.000
#> GSM52597     1  0.1410     0.9107 0.940 0.000 0.000 0.060 0.000
#> GSM52598     1  0.0290     0.9493 0.992 0.000 0.000 0.008 0.000
#> GSM52599     1  0.0162     0.9500 0.996 0.000 0.000 0.004 0.000
#> GSM52600     1  0.0000     0.9502 1.000 0.000 0.000 0.000 0.000
#> GSM52601     1  0.0162     0.9500 0.996 0.000 0.000 0.004 0.000
#> GSM52602     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000
#> GSM52603     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000
#> GSM52604     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000
#> GSM52605     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000
#> GSM52606     3  0.0290     0.9659 0.000 0.000 0.992 0.008 0.000
#> GSM52607     3  0.0324     0.9660 0.000 0.000 0.992 0.004 0.004
#> GSM52608     3  0.0000     0.9664 0.000 0.000 1.000 0.000 0.000
#> GSM52609     3  0.0000     0.9664 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.3385      0.810 0.000 0.788 0.032 0.000 0.000 0.180
#> GSM52557     2  0.1913      0.805 0.000 0.908 0.000 0.080 0.000 0.012
#> GSM52558     2  0.2112      0.797 0.000 0.896 0.000 0.088 0.000 0.016
#> GSM52559     2  0.2092      0.848 0.000 0.876 0.000 0.000 0.000 0.124
#> GSM52560     2  0.0260      0.832 0.000 0.992 0.000 0.008 0.000 0.000
#> GSM52561     4  0.0622      0.879 0.000 0.008 0.000 0.980 0.000 0.012
#> GSM52562     2  0.1913      0.805 0.000 0.908 0.000 0.080 0.000 0.012
#> GSM52563     2  0.2092      0.848 0.000 0.876 0.000 0.000 0.000 0.124
#> GSM52564     4  0.2945      0.804 0.156 0.000 0.000 0.824 0.000 0.020
#> GSM52565     2  0.3563      0.790 0.000 0.664 0.000 0.000 0.000 0.336
#> GSM52566     2  0.2092      0.848 0.000 0.876 0.000 0.000 0.000 0.124
#> GSM52567     2  0.3563      0.790 0.000 0.664 0.000 0.000 0.000 0.336
#> GSM52568     2  0.1812      0.807 0.000 0.912 0.000 0.080 0.000 0.008
#> GSM52569     2  0.3563      0.790 0.000 0.664 0.000 0.000 0.000 0.336
#> GSM52570     2  0.3563      0.790 0.000 0.664 0.000 0.000 0.000 0.336
#> GSM52571     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52572     1  0.2573      0.801 0.864 0.000 0.000 0.024 0.000 0.112
#> GSM52573     3  0.3868      0.740 0.000 0.000 0.504 0.000 0.000 0.496
#> GSM52574     3  0.3868      0.740 0.000 0.000 0.504 0.000 0.000 0.496
#> GSM52575     3  0.4009      0.634 0.028 0.000 0.684 0.000 0.000 0.288
#> GSM52576     1  0.4494      0.460 0.544 0.000 0.424 0.000 0.000 0.032
#> GSM52577     3  0.4499     -0.275 0.428 0.000 0.540 0.000 0.000 0.032
#> GSM52578     3  0.5312      0.588 0.000 0.000 0.608 0.152 0.004 0.236
#> GSM52579     3  0.5517      0.557 0.000 0.000 0.580 0.184 0.004 0.232
#> GSM52580     4  0.1327      0.916 0.064 0.000 0.000 0.936 0.000 0.000
#> GSM52581     4  0.1471      0.915 0.064 0.000 0.004 0.932 0.000 0.000
#> GSM52582     3  0.3102      0.436 0.000 0.000 0.816 0.156 0.000 0.028
#> GSM52583     1  0.4767      0.578 0.628 0.000 0.316 0.036 0.000 0.020
#> GSM52584     1  0.6172      0.359 0.476 0.000 0.336 0.164 0.000 0.024
#> GSM52585     4  0.1349      0.917 0.056 0.000 0.004 0.940 0.000 0.000
#> GSM52586     1  0.4892      0.526 0.640 0.000 0.000 0.248 0.000 0.112
#> GSM52587     4  0.1003      0.868 0.000 0.020 0.000 0.964 0.000 0.016
#> GSM52588     1  0.0260      0.856 0.992 0.000 0.008 0.000 0.000 0.000
#> GSM52589     1  0.4445      0.502 0.572 0.000 0.396 0.000 0.000 0.032
#> GSM52590     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52591     1  0.2491      0.803 0.868 0.000 0.000 0.020 0.000 0.112
#> GSM52592     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52593     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52596     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52597     1  0.2651      0.799 0.860 0.000 0.000 0.028 0.000 0.112
#> GSM52598     1  0.0260      0.857 0.992 0.000 0.000 0.000 0.000 0.008
#> GSM52599     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52600     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52601     1  0.0000      0.859 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52602     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52603     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52604     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52605     5  0.0000      1.000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52606     3  0.3819      0.708 0.000 0.000 0.672 0.012 0.000 0.316
#> GSM52607     3  0.3979      0.739 0.000 0.000 0.540 0.000 0.004 0.456
#> GSM52608     3  0.3869      0.740 0.000 0.000 0.500 0.000 0.000 0.500
#> GSM52609     3  0.3869      0.740 0.000 0.000 0.500 0.000 0.000 0.500

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) tissue(p) k
#> MAD:mclust 48         2.95e-02  2.57e-02 2
#> MAD:mclust 52         4.59e-10  1.88e-05 3
#> MAD:mclust 52         2.20e-09  1.38e-06 4
#> MAD:mclust 53         2.00e-09  4.20e-06 5
#> MAD:mclust 50         7.58e-09  1.53e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.850           0.881       0.952         0.4494 0.560   0.560
#> 3 3 0.856           0.892       0.948         0.4859 0.718   0.518
#> 4 4 0.664           0.683       0.812         0.0972 0.971   0.911
#> 5 5 0.765           0.810       0.862         0.0709 0.894   0.662
#> 6 6 0.879           0.799       0.887         0.0409 0.959   0.817

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0000      0.947 0.000 1.000
#> GSM52557     2  0.0000      0.947 0.000 1.000
#> GSM52558     2  0.0000      0.947 0.000 1.000
#> GSM52559     2  0.0000      0.947 0.000 1.000
#> GSM52560     2  0.0000      0.947 0.000 1.000
#> GSM52561     2  0.0000      0.947 0.000 1.000
#> GSM52562     2  0.0000      0.947 0.000 1.000
#> GSM52563     2  0.0000      0.947 0.000 1.000
#> GSM52564     1  0.9358      0.483 0.648 0.352
#> GSM52565     2  0.0000      0.947 0.000 1.000
#> GSM52566     2  0.0000      0.947 0.000 1.000
#> GSM52567     2  0.0000      0.947 0.000 1.000
#> GSM52568     2  0.0000      0.947 0.000 1.000
#> GSM52569     2  0.0000      0.947 0.000 1.000
#> GSM52570     2  0.0000      0.947 0.000 1.000
#> GSM52571     1  0.0000      0.947 1.000 0.000
#> GSM52572     1  0.0938      0.940 0.988 0.012
#> GSM52573     1  0.0000      0.947 1.000 0.000
#> GSM52574     1  0.0000      0.947 1.000 0.000
#> GSM52575     1  0.0000      0.947 1.000 0.000
#> GSM52576     1  0.0000      0.947 1.000 0.000
#> GSM52577     1  0.0000      0.947 1.000 0.000
#> GSM52578     1  0.0000      0.947 1.000 0.000
#> GSM52579     1  0.9815      0.294 0.580 0.420
#> GSM52580     1  0.6438      0.790 0.836 0.164
#> GSM52581     1  0.9286      0.499 0.656 0.344
#> GSM52582     1  0.0000      0.947 1.000 0.000
#> GSM52583     1  0.0000      0.947 1.000 0.000
#> GSM52584     1  0.0000      0.947 1.000 0.000
#> GSM52585     2  0.9815      0.204 0.420 0.580
#> GSM52586     1  0.9248      0.507 0.660 0.340
#> GSM52587     2  0.0000      0.947 0.000 1.000
#> GSM52588     1  0.0000      0.947 1.000 0.000
#> GSM52589     1  0.0000      0.947 1.000 0.000
#> GSM52590     1  0.0000      0.947 1.000 0.000
#> GSM52591     1  0.0672      0.942 0.992 0.008
#> GSM52592     1  0.0000      0.947 1.000 0.000
#> GSM52593     1  0.0000      0.947 1.000 0.000
#> GSM52594     1  0.0000      0.947 1.000 0.000
#> GSM52595     1  0.0000      0.947 1.000 0.000
#> GSM52596     1  0.0000      0.947 1.000 0.000
#> GSM52597     1  0.0000      0.947 1.000 0.000
#> GSM52598     1  0.0000      0.947 1.000 0.000
#> GSM52599     1  0.0000      0.947 1.000 0.000
#> GSM52600     1  0.0000      0.947 1.000 0.000
#> GSM52601     1  0.0000      0.947 1.000 0.000
#> GSM52602     1  0.0000      0.947 1.000 0.000
#> GSM52603     2  0.9393      0.424 0.356 0.644
#> GSM52604     1  0.1633      0.930 0.976 0.024
#> GSM52605     1  0.4298      0.875 0.912 0.088
#> GSM52606     1  0.0000      0.947 1.000 0.000
#> GSM52607     1  0.2423      0.919 0.960 0.040
#> GSM52608     1  0.0000      0.947 1.000 0.000
#> GSM52609     1  0.0000      0.947 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.6095      0.410 0.000 0.608 0.392
#> GSM52557     2  0.0237      0.956 0.000 0.996 0.004
#> GSM52558     2  0.0000      0.955 0.000 1.000 0.000
#> GSM52559     2  0.1529      0.943 0.000 0.960 0.040
#> GSM52560     2  0.0892      0.954 0.000 0.980 0.020
#> GSM52561     2  0.1031      0.940 0.024 0.976 0.000
#> GSM52562     2  0.0000      0.955 0.000 1.000 0.000
#> GSM52563     2  0.0747      0.955 0.000 0.984 0.016
#> GSM52564     1  0.3340      0.870 0.880 0.120 0.000
#> GSM52565     2  0.0592      0.956 0.000 0.988 0.012
#> GSM52566     2  0.1411      0.946 0.000 0.964 0.036
#> GSM52567     2  0.0747      0.955 0.000 0.984 0.016
#> GSM52568     2  0.0000      0.955 0.000 1.000 0.000
#> GSM52569     2  0.0892      0.954 0.000 0.980 0.020
#> GSM52570     2  0.0000      0.955 0.000 1.000 0.000
#> GSM52571     1  0.0892      0.939 0.980 0.000 0.020
#> GSM52572     1  0.0747      0.945 0.984 0.016 0.000
#> GSM52573     3  0.0592      0.921 0.012 0.000 0.988
#> GSM52574     3  0.0747      0.920 0.016 0.000 0.984
#> GSM52575     3  0.1031      0.917 0.024 0.000 0.976
#> GSM52576     3  0.3879      0.825 0.152 0.000 0.848
#> GSM52577     3  0.5254      0.683 0.264 0.000 0.736
#> GSM52578     3  0.0892      0.918 0.020 0.000 0.980
#> GSM52579     3  0.0000      0.920 0.000 0.000 1.000
#> GSM52580     1  0.1163      0.939 0.972 0.028 0.000
#> GSM52581     1  0.2711      0.899 0.912 0.088 0.000
#> GSM52582     3  0.4605      0.770 0.204 0.000 0.796
#> GSM52583     1  0.0000      0.948 1.000 0.000 0.000
#> GSM52584     1  0.0237      0.948 0.996 0.000 0.004
#> GSM52585     1  0.4931      0.724 0.768 0.232 0.000
#> GSM52586     1  0.2959      0.889 0.900 0.100 0.000
#> GSM52587     2  0.1964      0.911 0.056 0.944 0.000
#> GSM52588     1  0.0892      0.939 0.980 0.000 0.020
#> GSM52589     1  0.5678      0.465 0.684 0.000 0.316
#> GSM52590     3  0.6215      0.329 0.428 0.000 0.572
#> GSM52591     1  0.0747      0.945 0.984 0.016 0.000
#> GSM52592     1  0.0237      0.948 0.996 0.000 0.004
#> GSM52593     1  0.0000      0.948 1.000 0.000 0.000
#> GSM52594     1  0.0237      0.948 0.996 0.000 0.004
#> GSM52595     1  0.0000      0.948 1.000 0.000 0.000
#> GSM52596     1  0.0424      0.946 0.992 0.000 0.008
#> GSM52597     1  0.0747      0.945 0.984 0.016 0.000
#> GSM52598     1  0.0424      0.947 0.992 0.008 0.000
#> GSM52599     1  0.0237      0.948 0.996 0.000 0.004
#> GSM52600     1  0.0424      0.946 0.992 0.000 0.008
#> GSM52601     1  0.0000      0.948 1.000 0.000 0.000
#> GSM52602     3  0.0237      0.921 0.004 0.000 0.996
#> GSM52603     3  0.0000      0.920 0.000 0.000 1.000
#> GSM52604     3  0.0000      0.920 0.000 0.000 1.000
#> GSM52605     3  0.0661      0.918 0.004 0.008 0.988
#> GSM52606     3  0.0000      0.920 0.000 0.000 1.000
#> GSM52607     3  0.0000      0.920 0.000 0.000 1.000
#> GSM52608     3  0.0000      0.920 0.000 0.000 1.000
#> GSM52609     3  0.0592      0.921 0.012 0.000 0.988

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.5546      0.498 0.000 0.680 0.268 0.052
#> GSM52557     2  0.2345      0.822 0.000 0.900 0.000 0.100
#> GSM52558     2  0.3528      0.778 0.000 0.808 0.000 0.192
#> GSM52559     2  0.0657      0.835 0.000 0.984 0.004 0.012
#> GSM52560     2  0.1022      0.835 0.000 0.968 0.000 0.032
#> GSM52561     2  0.3711      0.789 0.024 0.836 0.000 0.140
#> GSM52562     2  0.2589      0.823 0.000 0.884 0.000 0.116
#> GSM52563     2  0.1867      0.830 0.000 0.928 0.000 0.072
#> GSM52564     1  0.3323      0.805 0.876 0.060 0.000 0.064
#> GSM52565     2  0.3486      0.788 0.000 0.812 0.000 0.188
#> GSM52566     2  0.0592      0.835 0.000 0.984 0.000 0.016
#> GSM52567     2  0.3626      0.785 0.000 0.812 0.004 0.184
#> GSM52568     2  0.3024      0.829 0.000 0.852 0.000 0.148
#> GSM52569     2  0.3428      0.798 0.000 0.844 0.012 0.144
#> GSM52570     2  0.3942      0.770 0.000 0.764 0.000 0.236
#> GSM52571     1  0.1820      0.820 0.944 0.000 0.020 0.036
#> GSM52572     1  0.4053      0.754 0.768 0.004 0.000 0.228
#> GSM52573     3  0.0336      0.738 0.000 0.000 0.992 0.008
#> GSM52574     3  0.0336      0.738 0.000 0.000 0.992 0.008
#> GSM52575     3  0.0524      0.740 0.008 0.000 0.988 0.004
#> GSM52576     3  0.2412      0.670 0.084 0.000 0.908 0.008
#> GSM52577     3  0.2799      0.639 0.108 0.000 0.884 0.008
#> GSM52578     3  0.2928      0.696 0.004 0.024 0.896 0.076
#> GSM52579     3  0.5678      0.501 0.000 0.112 0.716 0.172
#> GSM52580     1  0.5823      0.630 0.616 0.036 0.004 0.344
#> GSM52581     1  0.6453      0.592 0.580 0.072 0.004 0.344
#> GSM52582     3  0.7967      0.279 0.072 0.092 0.536 0.300
#> GSM52583     1  0.4485      0.721 0.740 0.000 0.012 0.248
#> GSM52584     1  0.5383      0.668 0.664 0.004 0.024 0.308
#> GSM52585     1  0.7111      0.485 0.500 0.136 0.000 0.364
#> GSM52586     1  0.5298      0.703 0.708 0.048 0.000 0.244
#> GSM52587     2  0.5632      0.565 0.020 0.620 0.008 0.352
#> GSM52588     1  0.1520      0.825 0.956 0.000 0.024 0.020
#> GSM52589     1  0.4849      0.631 0.772 0.000 0.164 0.064
#> GSM52590     4  0.7434      0.458 0.320 0.024 0.112 0.544
#> GSM52591     1  0.2011      0.814 0.920 0.000 0.000 0.080
#> GSM52592     1  0.0336      0.840 0.992 0.000 0.000 0.008
#> GSM52593     1  0.0336      0.839 0.992 0.000 0.000 0.008
#> GSM52594     1  0.0188      0.841 0.996 0.000 0.000 0.004
#> GSM52595     1  0.0895      0.834 0.976 0.000 0.004 0.020
#> GSM52596     1  0.1042      0.834 0.972 0.000 0.008 0.020
#> GSM52597     1  0.1867      0.832 0.928 0.000 0.000 0.072
#> GSM52598     1  0.0707      0.842 0.980 0.000 0.000 0.020
#> GSM52599     1  0.0188      0.841 0.996 0.000 0.000 0.004
#> GSM52600     1  0.0804      0.842 0.980 0.000 0.008 0.012
#> GSM52601     1  0.0707      0.840 0.980 0.000 0.000 0.020
#> GSM52602     3  0.6665     -0.496 0.040 0.024 0.516 0.420
#> GSM52603     4  0.7136      0.548 0.020 0.080 0.384 0.516
#> GSM52604     3  0.6510     -0.496 0.020 0.036 0.516 0.428
#> GSM52605     4  0.7335      0.509 0.044 0.056 0.432 0.468
#> GSM52606     3  0.1151      0.738 0.000 0.008 0.968 0.024
#> GSM52607     3  0.0376      0.743 0.000 0.004 0.992 0.004
#> GSM52608     3  0.0469      0.741 0.000 0.000 0.988 0.012
#> GSM52609     3  0.0657      0.743 0.000 0.004 0.984 0.012

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.4949      0.635 0.000 0.728 0.164 0.008 0.100
#> GSM52557     2  0.4404      0.671 0.000 0.684 0.000 0.292 0.024
#> GSM52558     2  0.5606      0.515 0.000 0.556 0.000 0.360 0.084
#> GSM52559     2  0.3449      0.778 0.000 0.836 0.004 0.120 0.040
#> GSM52560     2  0.3437      0.760 0.000 0.808 0.004 0.176 0.012
#> GSM52561     2  0.4088      0.685 0.004 0.712 0.000 0.276 0.008
#> GSM52562     2  0.5304      0.659 0.000 0.640 0.000 0.272 0.088
#> GSM52563     2  0.1731      0.768 0.000 0.932 0.004 0.004 0.060
#> GSM52564     1  0.1579      0.861 0.944 0.032 0.000 0.000 0.024
#> GSM52565     2  0.3702      0.728 0.000 0.820 0.000 0.084 0.096
#> GSM52566     2  0.3513      0.776 0.000 0.828 0.004 0.132 0.036
#> GSM52567     2  0.3639      0.717 0.000 0.812 0.000 0.044 0.144
#> GSM52568     2  0.2795      0.753 0.000 0.880 0.000 0.056 0.064
#> GSM52569     2  0.2707      0.735 0.000 0.860 0.000 0.008 0.132
#> GSM52570     2  0.5046      0.633 0.000 0.704 0.000 0.156 0.140
#> GSM52571     1  0.1956      0.870 0.928 0.000 0.008 0.012 0.052
#> GSM52572     1  0.6501      0.477 0.608 0.048 0.000 0.208 0.136
#> GSM52573     3  0.0162      0.983 0.000 0.000 0.996 0.000 0.004
#> GSM52574     3  0.0162      0.983 0.000 0.000 0.996 0.000 0.004
#> GSM52575     3  0.0290      0.981 0.000 0.000 0.992 0.000 0.008
#> GSM52576     3  0.1153      0.963 0.024 0.000 0.964 0.004 0.008
#> GSM52577     3  0.1041      0.957 0.032 0.000 0.964 0.004 0.000
#> GSM52578     3  0.0794      0.968 0.000 0.000 0.972 0.028 0.000
#> GSM52579     3  0.1116      0.962 0.000 0.004 0.964 0.028 0.004
#> GSM52580     4  0.3402      0.824 0.184 0.008 0.000 0.804 0.004
#> GSM52581     4  0.3402      0.824 0.184 0.008 0.000 0.804 0.004
#> GSM52582     4  0.4986      0.740 0.076 0.060 0.060 0.784 0.020
#> GSM52583     4  0.4747      0.646 0.332 0.000 0.000 0.636 0.032
#> GSM52584     4  0.4040      0.748 0.276 0.000 0.000 0.712 0.012
#> GSM52585     4  0.3053      0.789 0.128 0.008 0.000 0.852 0.012
#> GSM52586     1  0.6883      0.256 0.524 0.044 0.000 0.296 0.136
#> GSM52587     4  0.3300      0.520 0.000 0.204 0.000 0.792 0.004
#> GSM52588     1  0.1770      0.873 0.936 0.000 0.008 0.008 0.048
#> GSM52589     1  0.5000      0.659 0.736 0.000 0.052 0.036 0.176
#> GSM52590     5  0.3004      0.809 0.120 0.008 0.004 0.008 0.860
#> GSM52591     1  0.0693      0.881 0.980 0.000 0.000 0.008 0.012
#> GSM52592     1  0.0566      0.880 0.984 0.004 0.000 0.012 0.000
#> GSM52593     1  0.0794      0.884 0.972 0.000 0.000 0.000 0.028
#> GSM52594     1  0.0771      0.884 0.976 0.000 0.004 0.000 0.020
#> GSM52595     1  0.1205      0.880 0.956 0.000 0.000 0.004 0.040
#> GSM52596     1  0.1569      0.876 0.944 0.000 0.004 0.008 0.044
#> GSM52597     1  0.3005      0.813 0.884 0.028 0.000 0.040 0.048
#> GSM52598     1  0.1026      0.877 0.968 0.004 0.000 0.024 0.004
#> GSM52599     1  0.1243      0.882 0.960 0.000 0.004 0.008 0.028
#> GSM52600     1  0.0404      0.882 0.988 0.000 0.012 0.000 0.000
#> GSM52601     1  0.0162      0.881 0.996 0.000 0.000 0.004 0.000
#> GSM52602     5  0.3344      0.924 0.016 0.028 0.104 0.000 0.852
#> GSM52603     5  0.3169      0.920 0.000 0.060 0.084 0.000 0.856
#> GSM52604     5  0.3141      0.921 0.000 0.040 0.108 0.000 0.852
#> GSM52605     5  0.3302      0.924 0.020 0.044 0.072 0.000 0.864
#> GSM52606     3  0.0000      0.982 0.000 0.000 1.000 0.000 0.000
#> GSM52607     3  0.0162      0.981 0.000 0.000 0.996 0.000 0.004
#> GSM52608     3  0.0162      0.983 0.000 0.000 0.996 0.000 0.004
#> GSM52609     3  0.0162      0.983 0.000 0.000 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.2577      0.645 0.000 0.888 0.064 0.008 0.036 0.004
#> GSM52557     2  0.4952      0.569 0.000 0.632 0.000 0.116 0.000 0.252
#> GSM52558     6  0.5560     -0.366 0.000 0.420 0.000 0.136 0.000 0.444
#> GSM52559     2  0.3293      0.690 0.000 0.812 0.000 0.048 0.000 0.140
#> GSM52560     2  0.4293      0.653 0.000 0.716 0.000 0.084 0.000 0.200
#> GSM52561     2  0.5113      0.599 0.012 0.652 0.000 0.092 0.004 0.240
#> GSM52562     2  0.5029      0.417 0.000 0.544 0.000 0.080 0.000 0.376
#> GSM52563     2  0.0146      0.697 0.000 0.996 0.000 0.004 0.000 0.000
#> GSM52564     1  0.3056      0.825 0.856 0.084 0.000 0.008 0.004 0.048
#> GSM52565     2  0.2575      0.644 0.000 0.880 0.000 0.004 0.044 0.072
#> GSM52566     2  0.3819      0.674 0.000 0.764 0.000 0.064 0.000 0.172
#> GSM52567     2  0.2468      0.651 0.000 0.888 0.000 0.004 0.048 0.060
#> GSM52568     2  0.1588      0.690 0.000 0.924 0.000 0.004 0.000 0.072
#> GSM52569     2  0.2519      0.652 0.000 0.888 0.000 0.008 0.048 0.056
#> GSM52570     6  0.4453      0.106 0.004 0.452 0.000 0.000 0.020 0.524
#> GSM52571     1  0.0964      0.943 0.968 0.000 0.000 0.016 0.012 0.004
#> GSM52572     6  0.3933      0.427 0.220 0.000 0.000 0.032 0.008 0.740
#> GSM52573     3  0.0405      0.978 0.000 0.000 0.988 0.000 0.008 0.004
#> GSM52574     3  0.0291      0.978 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM52575     3  0.0696      0.972 0.008 0.000 0.980 0.004 0.004 0.004
#> GSM52576     3  0.1872      0.908 0.064 0.000 0.920 0.004 0.004 0.008
#> GSM52577     3  0.0363      0.978 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM52578     3  0.0935      0.967 0.000 0.000 0.964 0.004 0.000 0.032
#> GSM52579     3  0.0935      0.968 0.000 0.000 0.964 0.004 0.000 0.032
#> GSM52580     4  0.0713      0.875 0.028 0.000 0.000 0.972 0.000 0.000
#> GSM52581     4  0.0547      0.874 0.020 0.000 0.000 0.980 0.000 0.000
#> GSM52582     4  0.0964      0.868 0.016 0.000 0.012 0.968 0.004 0.000
#> GSM52583     4  0.1958      0.821 0.100 0.000 0.000 0.896 0.004 0.000
#> GSM52584     4  0.1588      0.848 0.072 0.000 0.004 0.924 0.000 0.000
#> GSM52585     4  0.1265      0.854 0.008 0.000 0.000 0.948 0.000 0.044
#> GSM52586     6  0.3432      0.459 0.104 0.004 0.000 0.064 0.004 0.824
#> GSM52587     4  0.4838      0.427 0.000 0.192 0.000 0.676 0.004 0.128
#> GSM52588     1  0.0551      0.948 0.984 0.000 0.000 0.008 0.004 0.004
#> GSM52589     1  0.3419      0.774 0.812 0.000 0.008 0.148 0.028 0.004
#> GSM52590     5  0.0951      0.975 0.020 0.008 0.000 0.000 0.968 0.004
#> GSM52591     1  0.1675      0.924 0.936 0.000 0.000 0.008 0.032 0.024
#> GSM52592     1  0.0909      0.944 0.968 0.000 0.000 0.012 0.000 0.020
#> GSM52593     1  0.0146      0.949 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM52594     1  0.0405      0.949 0.988 0.000 0.000 0.008 0.000 0.004
#> GSM52595     1  0.0551      0.950 0.984 0.000 0.000 0.008 0.004 0.004
#> GSM52596     1  0.0260      0.949 0.992 0.000 0.000 0.008 0.000 0.000
#> GSM52597     1  0.2302      0.862 0.872 0.000 0.000 0.008 0.000 0.120
#> GSM52598     1  0.1194      0.939 0.956 0.000 0.000 0.008 0.004 0.032
#> GSM52599     1  0.0363      0.949 0.988 0.000 0.000 0.012 0.000 0.000
#> GSM52600     1  0.0291      0.949 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM52601     1  0.0622      0.946 0.980 0.000 0.000 0.008 0.000 0.012
#> GSM52602     5  0.0551      0.982 0.008 0.000 0.004 0.000 0.984 0.004
#> GSM52603     5  0.0260      0.974 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM52604     5  0.0405      0.982 0.008 0.000 0.004 0.000 0.988 0.000
#> GSM52605     5  0.0777      0.971 0.024 0.000 0.000 0.000 0.972 0.004
#> GSM52606     3  0.0000      0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52607     3  0.0363      0.978 0.000 0.000 0.988 0.000 0.000 0.012
#> GSM52608     3  0.0000      0.980 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52609     3  0.0000      0.980 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) tissue(p) k
#> MAD:NMF 49         2.58e-10  1.50e-03 2
#> MAD:NMF 51         9.47e-10  9.04e-05 3
#> MAD:NMF 48         1.83e-08  1.37e-06 4
#> MAD:NMF 52         1.23e-09  7.85e-09 5
#> MAD:NMF 48         1.02e-08  4.69e-10 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.782           0.939       0.948         0.3034 0.628   0.628
#> 3 3 0.980           0.979       0.986         0.3160 0.975   0.960
#> 4 4 0.878           0.851       0.928         0.2630 0.897   0.828
#> 5 5 0.995           0.950       0.976         0.1070 0.906   0.815
#> 6 6 0.769           0.880       0.920         0.0885 1.000   1.000

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2   0.625      0.793 0.156 0.844
#> GSM52557     2   0.966      0.695 0.392 0.608
#> GSM52558     2   0.966      0.695 0.392 0.608
#> GSM52559     2   0.963      0.700 0.388 0.612
#> GSM52560     2   0.781      0.800 0.232 0.768
#> GSM52561     1   0.000      1.000 1.000 0.000
#> GSM52562     2   0.966      0.695 0.392 0.608
#> GSM52563     2   0.781      0.800 0.232 0.768
#> GSM52564     1   0.000      1.000 1.000 0.000
#> GSM52565     2   0.000      0.755 0.000 1.000
#> GSM52566     2   0.963      0.700 0.388 0.612
#> GSM52567     2   0.000      0.755 0.000 1.000
#> GSM52568     2   0.781      0.800 0.232 0.768
#> GSM52569     2   0.000      0.755 0.000 1.000
#> GSM52570     2   0.000      0.755 0.000 1.000
#> GSM52571     1   0.000      1.000 1.000 0.000
#> GSM52572     1   0.000      1.000 1.000 0.000
#> GSM52573     1   0.000      1.000 1.000 0.000
#> GSM52574     1   0.000      1.000 1.000 0.000
#> GSM52575     1   0.000      1.000 1.000 0.000
#> GSM52576     1   0.000      1.000 1.000 0.000
#> GSM52577     1   0.000      1.000 1.000 0.000
#> GSM52578     1   0.000      1.000 1.000 0.000
#> GSM52579     1   0.000      1.000 1.000 0.000
#> GSM52580     1   0.000      1.000 1.000 0.000
#> GSM52581     1   0.000      1.000 1.000 0.000
#> GSM52582     1   0.000      1.000 1.000 0.000
#> GSM52583     1   0.000      1.000 1.000 0.000
#> GSM52584     1   0.000      1.000 1.000 0.000
#> GSM52585     1   0.000      1.000 1.000 0.000
#> GSM52586     1   0.000      1.000 1.000 0.000
#> GSM52587     1   0.000      1.000 1.000 0.000
#> GSM52588     1   0.000      1.000 1.000 0.000
#> GSM52589     1   0.000      1.000 1.000 0.000
#> GSM52590     1   0.000      1.000 1.000 0.000
#> GSM52591     1   0.000      1.000 1.000 0.000
#> GSM52592     1   0.000      1.000 1.000 0.000
#> GSM52593     1   0.000      1.000 1.000 0.000
#> GSM52594     1   0.000      1.000 1.000 0.000
#> GSM52595     1   0.000      1.000 1.000 0.000
#> GSM52596     1   0.000      1.000 1.000 0.000
#> GSM52597     1   0.000      1.000 1.000 0.000
#> GSM52598     1   0.000      1.000 1.000 0.000
#> GSM52599     1   0.000      1.000 1.000 0.000
#> GSM52600     1   0.000      1.000 1.000 0.000
#> GSM52601     1   0.000      1.000 1.000 0.000
#> GSM52602     1   0.000      1.000 1.000 0.000
#> GSM52603     1   0.000      1.000 1.000 0.000
#> GSM52604     1   0.000      1.000 1.000 0.000
#> GSM52605     1   0.000      1.000 1.000 0.000
#> GSM52606     1   0.000      1.000 1.000 0.000
#> GSM52607     1   0.000      1.000 1.000 0.000
#> GSM52608     1   0.000      1.000 1.000 0.000
#> GSM52609     1   0.000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.4931      0.793 0.000 0.768 0.232
#> GSM52557     2  0.0237      0.904 0.004 0.996 0.000
#> GSM52558     2  0.0237      0.904 0.004 0.996 0.000
#> GSM52559     2  0.0000      0.904 0.000 1.000 0.000
#> GSM52560     2  0.3941      0.871 0.000 0.844 0.156
#> GSM52561     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52562     2  0.0237      0.904 0.004 0.996 0.000
#> GSM52563     2  0.3941      0.871 0.000 0.844 0.156
#> GSM52564     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52565     3  0.0000      1.000 0.000 0.000 1.000
#> GSM52566     2  0.0000      0.904 0.000 1.000 0.000
#> GSM52567     3  0.0000      1.000 0.000 0.000 1.000
#> GSM52568     2  0.3941      0.871 0.000 0.844 0.156
#> GSM52569     3  0.0000      1.000 0.000 0.000 1.000
#> GSM52570     3  0.0000      1.000 0.000 0.000 1.000
#> GSM52571     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52572     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52573     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52574     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52575     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52576     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52577     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52578     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52579     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52580     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52581     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52582     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52583     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52584     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52585     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52586     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52587     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52588     1  0.0424      0.992 0.992 0.008 0.000
#> GSM52589     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52590     1  0.0424      0.992 0.992 0.008 0.000
#> GSM52591     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52592     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52593     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52594     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52595     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52596     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52597     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52598     1  0.0424      0.992 0.992 0.008 0.000
#> GSM52599     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52600     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52601     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52602     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52603     1  0.0424      0.992 0.992 0.008 0.000
#> GSM52604     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52605     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52606     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52607     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52608     1  0.0000      0.999 1.000 0.000 0.000
#> GSM52609     1  0.0000      0.999 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.2586      0.784 0.000 0.912 0.048 0.040
#> GSM52557     2  0.4072      0.875 0.000 0.748 0.252 0.000
#> GSM52558     2  0.4072      0.875 0.000 0.748 0.252 0.000
#> GSM52559     2  0.4040      0.875 0.000 0.752 0.248 0.000
#> GSM52560     2  0.0469      0.837 0.000 0.988 0.000 0.012
#> GSM52561     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52562     2  0.4072      0.875 0.000 0.748 0.252 0.000
#> GSM52563     2  0.0469      0.837 0.000 0.988 0.000 0.012
#> GSM52564     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52565     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM52566     2  0.4040      0.875 0.000 0.752 0.248 0.000
#> GSM52567     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM52568     2  0.0469      0.837 0.000 0.988 0.000 0.012
#> GSM52569     4  0.1389      0.966 0.000 0.000 0.048 0.952
#> GSM52570     4  0.0000      0.989 0.000 0.000 0.000 1.000
#> GSM52571     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52572     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52573     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52574     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52575     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52576     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52577     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52578     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52579     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52580     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52581     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52582     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52583     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52584     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52585     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52586     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52587     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52588     3  0.4477      0.986 0.312 0.000 0.688 0.000
#> GSM52589     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52590     3  0.4477      0.986 0.312 0.000 0.688 0.000
#> GSM52591     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52592     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52593     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52596     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52597     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52598     3  0.4477      0.986 0.312 0.000 0.688 0.000
#> GSM52599     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52600     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52601     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52602     1  0.4994     -0.512 0.520 0.000 0.480 0.000
#> GSM52603     3  0.4331      0.956 0.288 0.000 0.712 0.000
#> GSM52604     1  0.4994     -0.512 0.520 0.000 0.480 0.000
#> GSM52605     1  0.4994     -0.512 0.520 0.000 0.480 0.000
#> GSM52606     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52607     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52608     1  0.0000      0.941 1.000 0.000 0.000 0.000
#> GSM52609     1  0.0000      0.941 1.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     3  0.0000      0.892 0.000 0.000 1.000 0.000 0.000
#> GSM52557     2  0.0162      0.997 0.000 0.996 0.000 0.000 0.004
#> GSM52558     2  0.0162      0.997 0.000 0.996 0.000 0.000 0.004
#> GSM52559     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM52560     3  0.2516      0.901 0.000 0.140 0.860 0.000 0.000
#> GSM52561     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52562     2  0.0162      0.997 0.000 0.996 0.000 0.000 0.004
#> GSM52563     3  0.1671      0.947 0.000 0.076 0.924 0.000 0.000
#> GSM52564     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52565     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM52566     2  0.0000      0.996 0.000 1.000 0.000 0.000 0.000
#> GSM52567     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM52568     3  0.1671      0.947 0.000 0.076 0.924 0.000 0.000
#> GSM52569     4  0.1671      0.936 0.000 0.000 0.076 0.924 0.000
#> GSM52570     4  0.0000      0.979 0.000 0.000 0.000 1.000 0.000
#> GSM52571     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52572     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52573     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52574     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52575     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52576     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52577     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52578     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52579     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52580     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52581     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52582     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52583     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52584     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52585     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52586     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52587     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52588     5  0.0794      0.708 0.028 0.000 0.000 0.000 0.972
#> GSM52589     1  0.0162      0.995 0.996 0.000 0.000 0.000 0.004
#> GSM52590     5  0.0794      0.708 0.028 0.000 0.000 0.000 0.972
#> GSM52591     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52592     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52593     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52596     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52597     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52598     5  0.0794      0.708 0.028 0.000 0.000 0.000 0.972
#> GSM52599     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52600     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52601     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52602     5  0.3707      0.658 0.284 0.000 0.000 0.000 0.716
#> GSM52603     5  0.0000      0.667 0.000 0.000 0.000 0.000 1.000
#> GSM52604     5  0.3707      0.658 0.284 0.000 0.000 0.000 0.716
#> GSM52605     5  0.3707      0.658 0.284 0.000 0.000 0.000 0.716
#> GSM52606     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52607     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52608     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000
#> GSM52609     1  0.0000      1.000 1.000 0.000 0.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2 p3    p4    p5    p6
#> GSM52556     4  0.1501      0.929 0.000 0.000 NA 0.924 0.000 0.000
#> GSM52557     6  0.0000      0.976 0.000 0.000 NA 0.000 0.000 1.000
#> GSM52558     6  0.0000      0.976 0.000 0.000 NA 0.000 0.000 1.000
#> GSM52559     6  0.2003      0.906 0.000 0.000 NA 0.000 0.000 0.884
#> GSM52560     4  0.1500      0.936 0.000 0.000 NA 0.936 0.000 0.012
#> GSM52561     1  0.0146      0.937 0.996 0.000 NA 0.000 0.000 0.000
#> GSM52562     6  0.0000      0.976 0.000 0.000 NA 0.000 0.000 1.000
#> GSM52563     4  0.0000      0.962 0.000 0.000 NA 1.000 0.000 0.000
#> GSM52564     1  0.0146      0.937 0.996 0.000 NA 0.000 0.000 0.000
#> GSM52565     2  0.0000      0.979 0.000 1.000 NA 0.000 0.000 0.000
#> GSM52566     6  0.0146      0.975 0.000 0.000 NA 0.000 0.000 0.996
#> GSM52567     2  0.0000      0.979 0.000 1.000 NA 0.000 0.000 0.000
#> GSM52568     4  0.0000      0.962 0.000 0.000 NA 1.000 0.000 0.000
#> GSM52569     2  0.1501      0.936 0.000 0.924 NA 0.000 0.000 0.000
#> GSM52570     2  0.0000      0.979 0.000 1.000 NA 0.000 0.000 0.000
#> GSM52571     1  0.0260      0.936 0.992 0.000 NA 0.000 0.000 0.000
#> GSM52572     1  0.1245      0.927 0.952 0.000 NA 0.000 0.016 0.000
#> GSM52573     1  0.2378      0.857 0.848 0.000 NA 0.000 0.000 0.000
#> GSM52574     1  0.2378      0.857 0.848 0.000 NA 0.000 0.000 0.000
#> GSM52575     1  0.1387      0.916 0.932 0.000 NA 0.000 0.000 0.000
#> GSM52576     1  0.1387      0.916 0.932 0.000 NA 0.000 0.000 0.000
#> GSM52577     1  0.2527      0.865 0.868 0.000 NA 0.000 0.024 0.000
#> GSM52578     1  0.1327      0.921 0.936 0.000 NA 0.000 0.000 0.000
#> GSM52579     1  0.1327      0.921 0.936 0.000 NA 0.000 0.000 0.000
#> GSM52580     1  0.0000      0.937 1.000 0.000 NA 0.000 0.000 0.000
#> GSM52581     1  0.0000      0.937 1.000 0.000 NA 0.000 0.000 0.000
#> GSM52582     1  0.0000      0.937 1.000 0.000 NA 0.000 0.000 0.000
#> GSM52583     1  0.0000      0.937 1.000 0.000 NA 0.000 0.000 0.000
#> GSM52584     1  0.0146      0.937 0.996 0.000 NA 0.000 0.004 0.000
#> GSM52585     1  0.0458      0.934 0.984 0.000 NA 0.000 0.000 0.000
#> GSM52586     1  0.0146      0.937 0.996 0.000 NA 0.000 0.000 0.000
#> GSM52587     1  0.0146      0.937 0.996 0.000 NA 0.000 0.000 0.000
#> GSM52588     5  0.0146      0.630 0.004 0.000 NA 0.000 0.996 0.000
#> GSM52589     1  0.3699      0.533 0.660 0.000 NA 0.000 0.004 0.000
#> GSM52590     5  0.0146      0.630 0.004 0.000 NA 0.000 0.996 0.000
#> GSM52591     1  0.1245      0.927 0.952 0.000 NA 0.000 0.016 0.000
#> GSM52592     1  0.2527      0.865 0.868 0.000 NA 0.000 0.024 0.000
#> GSM52593     1  0.0000      0.937 1.000 0.000 NA 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.937 1.000 0.000 NA 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.937 1.000 0.000 NA 0.000 0.000 0.000
#> GSM52596     1  0.0000      0.937 1.000 0.000 NA 0.000 0.000 0.000
#> GSM52597     1  0.1245      0.927 0.952 0.000 NA 0.000 0.016 0.000
#> GSM52598     5  0.1615      0.600 0.004 0.000 NA 0.000 0.928 0.004
#> GSM52599     1  0.1075      0.920 0.952 0.000 NA 0.000 0.000 0.000
#> GSM52600     1  0.0632      0.932 0.976 0.000 NA 0.000 0.000 0.000
#> GSM52601     1  0.0914      0.932 0.968 0.000 NA 0.000 0.016 0.000
#> GSM52602     5  0.5812      0.626 0.192 0.000 NA 0.000 0.460 0.000
#> GSM52603     5  0.3351      0.613 0.000 0.000 NA 0.000 0.712 0.000
#> GSM52604     5  0.5812      0.626 0.192 0.000 NA 0.000 0.460 0.000
#> GSM52605     5  0.5812      0.626 0.192 0.000 NA 0.000 0.460 0.000
#> GSM52606     1  0.2378      0.857 0.848 0.000 NA 0.000 0.000 0.000
#> GSM52607     1  0.2378      0.857 0.848 0.000 NA 0.000 0.000 0.000
#> GSM52608     1  0.2378      0.857 0.848 0.000 NA 0.000 0.000 0.000
#> GSM52609     1  0.2378      0.857 0.848 0.000 NA 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) tissue(p) k
#> ATC:hclust 54         2.67e-10  1.64e-04 2
#> ATC:hclust 54         2.15e-10  2.67e-07 3
#> ATC:hclust 51         4.14e-09  5.29e-05 4
#> ATC:hclust 54         4.78e-09  5.06e-10 5
#> ATC:hclust 54         4.78e-09  5.06e-10 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.960       0.981         0.3291 0.648   0.648
#> 3 3 0.587           0.746       0.866         0.5576 0.887   0.829
#> 4 4 0.587           0.786       0.864         0.2651 0.776   0.605
#> 5 5 0.602           0.602       0.759         0.1374 0.978   0.938
#> 6 6 0.645           0.472       0.721         0.0839 0.825   0.494

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2   0.000      0.904 0.000 1.000
#> GSM52557     2   0.936      0.553 0.352 0.648
#> GSM52558     1   0.000      1.000 1.000 0.000
#> GSM52559     2   0.000      0.904 0.000 1.000
#> GSM52560     2   0.000      0.904 0.000 1.000
#> GSM52561     1   0.000      1.000 1.000 0.000
#> GSM52562     2   0.925      0.577 0.340 0.660
#> GSM52563     2   0.000      0.904 0.000 1.000
#> GSM52564     1   0.000      1.000 1.000 0.000
#> GSM52565     2   0.000      0.904 0.000 1.000
#> GSM52566     2   0.925      0.577 0.340 0.660
#> GSM52567     2   0.000      0.904 0.000 1.000
#> GSM52568     2   0.000      0.904 0.000 1.000
#> GSM52569     2   0.000      0.904 0.000 1.000
#> GSM52570     2   0.000      0.904 0.000 1.000
#> GSM52571     1   0.000      1.000 1.000 0.000
#> GSM52572     1   0.000      1.000 1.000 0.000
#> GSM52573     1   0.000      1.000 1.000 0.000
#> GSM52574     1   0.000      1.000 1.000 0.000
#> GSM52575     1   0.000      1.000 1.000 0.000
#> GSM52576     1   0.000      1.000 1.000 0.000
#> GSM52577     1   0.000      1.000 1.000 0.000
#> GSM52578     1   0.000      1.000 1.000 0.000
#> GSM52579     1   0.000      1.000 1.000 0.000
#> GSM52580     1   0.000      1.000 1.000 0.000
#> GSM52581     1   0.000      1.000 1.000 0.000
#> GSM52582     1   0.000      1.000 1.000 0.000
#> GSM52583     1   0.000      1.000 1.000 0.000
#> GSM52584     1   0.000      1.000 1.000 0.000
#> GSM52585     1   0.000      1.000 1.000 0.000
#> GSM52586     1   0.000      1.000 1.000 0.000
#> GSM52587     1   0.000      1.000 1.000 0.000
#> GSM52588     1   0.000      1.000 1.000 0.000
#> GSM52589     1   0.000      1.000 1.000 0.000
#> GSM52590     1   0.000      1.000 1.000 0.000
#> GSM52591     1   0.000      1.000 1.000 0.000
#> GSM52592     1   0.000      1.000 1.000 0.000
#> GSM52593     1   0.000      1.000 1.000 0.000
#> GSM52594     1   0.000      1.000 1.000 0.000
#> GSM52595     1   0.000      1.000 1.000 0.000
#> GSM52596     1   0.000      1.000 1.000 0.000
#> GSM52597     1   0.000      1.000 1.000 0.000
#> GSM52598     1   0.000      1.000 1.000 0.000
#> GSM52599     1   0.000      1.000 1.000 0.000
#> GSM52600     1   0.000      1.000 1.000 0.000
#> GSM52601     1   0.000      1.000 1.000 0.000
#> GSM52602     1   0.000      1.000 1.000 0.000
#> GSM52603     1   0.000      1.000 1.000 0.000
#> GSM52604     1   0.000      1.000 1.000 0.000
#> GSM52605     1   0.000      1.000 1.000 0.000
#> GSM52606     1   0.000      1.000 1.000 0.000
#> GSM52607     1   0.000      1.000 1.000 0.000
#> GSM52608     1   0.000      1.000 1.000 0.000
#> GSM52609     1   0.000      1.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.4178     0.8113 0.000 0.828 0.172
#> GSM52557     3  0.5977     0.5959 0.020 0.252 0.728
#> GSM52558     3  0.5058     0.5136 0.244 0.000 0.756
#> GSM52559     3  0.6062     0.2691 0.000 0.384 0.616
#> GSM52560     2  0.4974     0.7283 0.000 0.764 0.236
#> GSM52561     1  0.3412     0.7991 0.876 0.000 0.124
#> GSM52562     3  0.5977     0.5959 0.020 0.252 0.728
#> GSM52563     2  0.4178     0.8113 0.000 0.828 0.172
#> GSM52564     1  0.0237     0.8598 0.996 0.000 0.004
#> GSM52565     2  0.0000     0.8978 0.000 1.000 0.000
#> GSM52566     3  0.5977     0.5959 0.020 0.252 0.728
#> GSM52567     2  0.0000     0.8978 0.000 1.000 0.000
#> GSM52568     2  0.0000     0.8978 0.000 1.000 0.000
#> GSM52569     2  0.0000     0.8978 0.000 1.000 0.000
#> GSM52570     2  0.0000     0.8978 0.000 1.000 0.000
#> GSM52571     1  0.0424     0.8591 0.992 0.000 0.008
#> GSM52572     1  0.0237     0.8598 0.996 0.000 0.004
#> GSM52573     1  0.5968     0.6158 0.636 0.000 0.364
#> GSM52574     1  0.5968     0.6158 0.636 0.000 0.364
#> GSM52575     1  0.5178     0.6932 0.744 0.000 0.256
#> GSM52576     1  0.0000     0.8602 1.000 0.000 0.000
#> GSM52577     1  0.0000     0.8602 1.000 0.000 0.000
#> GSM52578     1  0.3412     0.7991 0.876 0.000 0.124
#> GSM52579     1  0.3412     0.7991 0.876 0.000 0.124
#> GSM52580     1  0.0000     0.8602 1.000 0.000 0.000
#> GSM52581     1  0.0000     0.8602 1.000 0.000 0.000
#> GSM52582     1  0.0000     0.8602 1.000 0.000 0.000
#> GSM52583     1  0.0000     0.8602 1.000 0.000 0.000
#> GSM52584     1  0.0424     0.8591 0.992 0.000 0.008
#> GSM52585     1  0.0237     0.8598 0.996 0.000 0.004
#> GSM52586     1  0.0237     0.8598 0.996 0.000 0.004
#> GSM52587     1  0.3412     0.7991 0.876 0.000 0.124
#> GSM52588     1  0.0592     0.8577 0.988 0.000 0.012
#> GSM52589     1  0.0592     0.8577 0.988 0.000 0.012
#> GSM52590     3  0.5138     0.4249 0.252 0.000 0.748
#> GSM52591     1  0.0424     0.8591 0.992 0.000 0.008
#> GSM52592     1  0.0424     0.8591 0.992 0.000 0.008
#> GSM52593     1  0.0000     0.8602 1.000 0.000 0.000
#> GSM52594     1  0.0000     0.8602 1.000 0.000 0.000
#> GSM52595     1  0.0000     0.8602 1.000 0.000 0.000
#> GSM52596     1  0.0000     0.8602 1.000 0.000 0.000
#> GSM52597     1  0.0424     0.8591 0.992 0.000 0.008
#> GSM52598     1  0.6286    -0.0556 0.536 0.000 0.464
#> GSM52599     1  0.0424     0.8591 0.992 0.000 0.008
#> GSM52600     1  0.0424     0.8591 0.992 0.000 0.008
#> GSM52601     1  0.0237     0.8598 0.996 0.000 0.004
#> GSM52602     1  0.6045     0.6003 0.620 0.000 0.380
#> GSM52603     3  0.1411     0.5360 0.036 0.000 0.964
#> GSM52604     1  0.6095     0.5828 0.608 0.000 0.392
#> GSM52605     1  0.6026     0.6021 0.624 0.000 0.376
#> GSM52606     1  0.5968     0.6158 0.636 0.000 0.364
#> GSM52607     1  0.5968     0.6158 0.636 0.000 0.364
#> GSM52608     1  0.5988     0.6119 0.632 0.000 0.368
#> GSM52609     1  0.5968     0.6158 0.636 0.000 0.364

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.5569    0.63691 0.000 0.660 0.044 0.296
#> GSM52557     4  0.1610    0.97162 0.000 0.032 0.016 0.952
#> GSM52558     4  0.1059    0.93461 0.012 0.000 0.016 0.972
#> GSM52559     4  0.1637    0.93850 0.000 0.060 0.000 0.940
#> GSM52560     2  0.6031    0.42181 0.000 0.536 0.044 0.420
#> GSM52561     1  0.4175    0.72980 0.784 0.000 0.200 0.016
#> GSM52562     4  0.1610    0.97162 0.000 0.032 0.016 0.952
#> GSM52563     2  0.5569    0.63691 0.000 0.660 0.044 0.296
#> GSM52564     1  0.1474    0.87902 0.948 0.000 0.052 0.000
#> GSM52565     2  0.0469    0.81784 0.000 0.988 0.012 0.000
#> GSM52566     4  0.1488    0.97042 0.000 0.032 0.012 0.956
#> GSM52567     2  0.0469    0.81784 0.000 0.988 0.012 0.000
#> GSM52568     2  0.1489    0.80967 0.000 0.952 0.044 0.004
#> GSM52569     2  0.0000    0.81790 0.000 1.000 0.000 0.000
#> GSM52570     2  0.0469    0.81784 0.000 0.988 0.012 0.000
#> GSM52571     1  0.2282    0.87833 0.924 0.000 0.052 0.024
#> GSM52572     1  0.0804    0.88477 0.980 0.000 0.008 0.012
#> GSM52573     3  0.3852    0.83680 0.180 0.000 0.808 0.012
#> GSM52574     3  0.3852    0.83680 0.180 0.000 0.808 0.012
#> GSM52575     3  0.4511    0.76044 0.268 0.000 0.724 0.008
#> GSM52576     1  0.2363    0.88252 0.920 0.000 0.056 0.024
#> GSM52577     1  0.1913    0.88121 0.940 0.000 0.040 0.020
#> GSM52578     1  0.4468    0.68059 0.752 0.000 0.232 0.016
#> GSM52579     1  0.4468    0.68059 0.752 0.000 0.232 0.016
#> GSM52580     1  0.1938    0.87732 0.936 0.000 0.052 0.012
#> GSM52581     1  0.2021    0.87566 0.932 0.000 0.056 0.012
#> GSM52582     1  0.2021    0.87566 0.932 0.000 0.056 0.012
#> GSM52583     1  0.2021    0.87566 0.932 0.000 0.056 0.012
#> GSM52584     1  0.1256    0.88074 0.964 0.000 0.008 0.028
#> GSM52585     1  0.1209    0.88330 0.964 0.000 0.032 0.004
#> GSM52586     1  0.1305    0.88394 0.960 0.000 0.036 0.004
#> GSM52587     1  0.4175    0.72980 0.784 0.000 0.200 0.016
#> GSM52588     1  0.3910    0.78904 0.820 0.000 0.156 0.024
#> GSM52589     1  0.2670    0.86440 0.904 0.000 0.072 0.024
#> GSM52590     3  0.6261    0.00214 0.056 0.000 0.504 0.440
#> GSM52591     1  0.1820    0.88035 0.944 0.000 0.036 0.020
#> GSM52592     1  0.3384    0.82870 0.860 0.000 0.116 0.024
#> GSM52593     1  0.1635    0.87931 0.948 0.000 0.044 0.008
#> GSM52594     1  0.1890    0.87632 0.936 0.000 0.056 0.008
#> GSM52595     1  0.1890    0.87632 0.936 0.000 0.056 0.008
#> GSM52596     1  0.1890    0.87632 0.936 0.000 0.056 0.008
#> GSM52597     1  0.2002    0.87834 0.936 0.000 0.044 0.020
#> GSM52598     1  0.7154    0.01381 0.436 0.000 0.132 0.432
#> GSM52599     1  0.1151    0.88022 0.968 0.000 0.008 0.024
#> GSM52600     1  0.2282    0.87420 0.924 0.000 0.052 0.024
#> GSM52601     1  0.1545    0.88055 0.952 0.000 0.040 0.008
#> GSM52602     3  0.2342    0.76660 0.080 0.000 0.912 0.008
#> GSM52603     3  0.5372   -0.02417 0.012 0.000 0.544 0.444
#> GSM52604     3  0.2198    0.75784 0.072 0.000 0.920 0.008
#> GSM52605     3  0.3545    0.82844 0.164 0.000 0.828 0.008
#> GSM52606     3  0.3925    0.83686 0.176 0.000 0.808 0.016
#> GSM52607     3  0.3925    0.83686 0.176 0.000 0.808 0.016
#> GSM52608     3  0.3790    0.83536 0.164 0.000 0.820 0.016
#> GSM52609     3  0.3925    0.83686 0.176 0.000 0.808 0.016

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.6394     0.2906 0.000 0.496 0.020 0.380 0.104
#> GSM52557     4  0.0290     0.8582 0.000 0.008 0.000 0.992 0.000
#> GSM52558     4  0.0854     0.8339 0.008 0.000 0.004 0.976 0.012
#> GSM52559     4  0.0290     0.8582 0.000 0.008 0.000 0.992 0.000
#> GSM52560     4  0.6387    -0.2408 0.000 0.404 0.020 0.476 0.100
#> GSM52561     1  0.6593     0.3986 0.464 0.000 0.252 0.000 0.284
#> GSM52562     4  0.0290     0.8582 0.000 0.008 0.000 0.992 0.000
#> GSM52563     2  0.6394     0.2906 0.000 0.496 0.020 0.380 0.104
#> GSM52564     1  0.4801     0.6110 0.668 0.000 0.048 0.000 0.284
#> GSM52565     2  0.0290     0.7865 0.000 0.992 0.008 0.000 0.000
#> GSM52566     4  0.0290     0.8582 0.000 0.008 0.000 0.992 0.000
#> GSM52567     2  0.0290     0.7865 0.000 0.992 0.008 0.000 0.000
#> GSM52568     2  0.2669     0.7632 0.000 0.876 0.020 0.000 0.104
#> GSM52569     2  0.1670     0.7821 0.000 0.936 0.012 0.000 0.052
#> GSM52570     2  0.0290     0.7865 0.000 0.992 0.008 0.000 0.000
#> GSM52571     1  0.2959     0.6746 0.864 0.000 0.036 0.000 0.100
#> GSM52572     1  0.2136     0.7006 0.904 0.000 0.008 0.000 0.088
#> GSM52573     3  0.1662     0.8376 0.056 0.000 0.936 0.004 0.004
#> GSM52574     3  0.1662     0.8376 0.056 0.000 0.936 0.004 0.004
#> GSM52575     3  0.3169     0.7112 0.140 0.000 0.840 0.004 0.016
#> GSM52576     1  0.1831     0.6794 0.920 0.000 0.076 0.000 0.004
#> GSM52577     1  0.1992     0.6647 0.924 0.000 0.044 0.000 0.032
#> GSM52578     1  0.6754     0.2836 0.396 0.000 0.332 0.000 0.272
#> GSM52579     1  0.6754     0.2836 0.396 0.000 0.332 0.000 0.272
#> GSM52580     1  0.5246     0.6525 0.596 0.000 0.060 0.000 0.344
#> GSM52581     1  0.5289     0.6520 0.596 0.000 0.064 0.000 0.340
#> GSM52582     1  0.5260     0.6549 0.604 0.000 0.064 0.000 0.332
#> GSM52583     1  0.4890     0.6742 0.680 0.000 0.064 0.000 0.256
#> GSM52584     1  0.1608     0.6833 0.928 0.000 0.000 0.000 0.072
#> GSM52585     1  0.4157     0.6417 0.716 0.000 0.020 0.000 0.264
#> GSM52586     1  0.3993     0.6670 0.756 0.000 0.028 0.000 0.216
#> GSM52587     1  0.6593     0.3986 0.464 0.000 0.252 0.000 0.284
#> GSM52588     1  0.4276     0.0824 0.616 0.000 0.004 0.000 0.380
#> GSM52589     1  0.2470     0.6239 0.884 0.000 0.012 0.000 0.104
#> GSM52590     5  0.7304     0.4566 0.288 0.000 0.048 0.192 0.472
#> GSM52591     1  0.0609     0.6720 0.980 0.000 0.000 0.000 0.020
#> GSM52592     1  0.2561     0.5741 0.856 0.000 0.000 0.000 0.144
#> GSM52593     1  0.4640     0.6775 0.696 0.000 0.048 0.000 0.256
#> GSM52594     1  0.4890     0.6742 0.680 0.000 0.064 0.000 0.256
#> GSM52595     1  0.4890     0.6742 0.680 0.000 0.064 0.000 0.256
#> GSM52596     1  0.4890     0.6742 0.680 0.000 0.064 0.000 0.256
#> GSM52597     1  0.1205     0.6651 0.956 0.000 0.004 0.000 0.040
#> GSM52598     1  0.6585    -0.4377 0.440 0.000 0.004 0.180 0.376
#> GSM52599     1  0.1965     0.6824 0.904 0.000 0.000 0.000 0.096
#> GSM52600     1  0.1121     0.6624 0.956 0.000 0.000 0.000 0.044
#> GSM52601     1  0.4573     0.6777 0.700 0.000 0.044 0.000 0.256
#> GSM52602     3  0.4948     0.3021 0.024 0.000 0.612 0.008 0.356
#> GSM52603     5  0.6714     0.2753 0.004 0.000 0.328 0.220 0.448
#> GSM52604     3  0.4904     0.2650 0.020 0.000 0.604 0.008 0.368
#> GSM52605     3  0.3758     0.7514 0.056 0.000 0.824 0.008 0.112
#> GSM52606     3  0.1502     0.8369 0.056 0.000 0.940 0.000 0.004
#> GSM52607     3  0.1341     0.8377 0.056 0.000 0.944 0.000 0.000
#> GSM52608     3  0.1571     0.8348 0.060 0.000 0.936 0.000 0.004
#> GSM52609     3  0.1502     0.8369 0.056 0.000 0.940 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.5843     0.2033 0.052 0.508 0.012 0.000 0.040 0.388
#> GSM52557     6  0.0000     0.8721 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52558     6  0.0363     0.8623 0.012 0.000 0.000 0.000 0.000 0.988
#> GSM52559     6  0.0291     0.8705 0.000 0.000 0.004 0.000 0.004 0.992
#> GSM52560     6  0.5921    -0.1376 0.048 0.404 0.012 0.000 0.048 0.488
#> GSM52561     1  0.5408     0.4429 0.600 0.000 0.212 0.184 0.004 0.000
#> GSM52562     6  0.0000     0.8721 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52563     2  0.5843     0.2033 0.052 0.508 0.012 0.000 0.040 0.388
#> GSM52564     1  0.4390     0.4081 0.676 0.000 0.048 0.272 0.004 0.000
#> GSM52565     2  0.2164     0.7509 0.068 0.900 0.000 0.000 0.032 0.000
#> GSM52566     6  0.0146     0.8718 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM52567     2  0.2164     0.7509 0.068 0.900 0.000 0.000 0.032 0.000
#> GSM52568     2  0.2426     0.7165 0.048 0.896 0.012 0.000 0.044 0.000
#> GSM52569     2  0.0551     0.7444 0.004 0.984 0.004 0.000 0.008 0.000
#> GSM52570     2  0.2164     0.7509 0.068 0.900 0.000 0.000 0.032 0.000
#> GSM52571     4  0.4659     0.3651 0.260 0.000 0.000 0.656 0.084 0.000
#> GSM52572     4  0.4326     0.0502 0.404 0.000 0.000 0.572 0.024 0.000
#> GSM52573     3  0.1296     0.8388 0.004 0.000 0.952 0.032 0.012 0.000
#> GSM52574     3  0.1296     0.8388 0.004 0.000 0.952 0.032 0.012 0.000
#> GSM52575     3  0.2794     0.7163 0.004 0.000 0.840 0.144 0.012 0.000
#> GSM52576     4  0.5625     0.1261 0.356 0.000 0.032 0.536 0.076 0.000
#> GSM52577     1  0.5986     0.1270 0.472 0.000 0.044 0.396 0.088 0.000
#> GSM52578     1  0.5853     0.3468 0.532 0.000 0.320 0.124 0.024 0.000
#> GSM52579     1  0.5853     0.3468 0.532 0.000 0.320 0.124 0.024 0.000
#> GSM52580     4  0.3081     0.5081 0.152 0.000 0.012 0.824 0.012 0.000
#> GSM52581     4  0.3081     0.5081 0.152 0.000 0.012 0.824 0.012 0.000
#> GSM52582     4  0.3095     0.5164 0.144 0.000 0.012 0.828 0.016 0.000
#> GSM52583     4  0.1409     0.6172 0.032 0.000 0.012 0.948 0.008 0.000
#> GSM52584     4  0.4913     0.3401 0.296 0.000 0.000 0.612 0.092 0.000
#> GSM52585     1  0.3883     0.3278 0.656 0.000 0.000 0.332 0.012 0.000
#> GSM52586     1  0.4815     0.2014 0.532 0.000 0.032 0.424 0.012 0.000
#> GSM52587     1  0.5408     0.4429 0.600 0.000 0.212 0.184 0.004 0.000
#> GSM52588     5  0.5418     0.1902 0.352 0.000 0.000 0.128 0.520 0.000
#> GSM52589     1  0.5602     0.2202 0.536 0.000 0.000 0.276 0.188 0.000
#> GSM52590     5  0.3328     0.5120 0.052 0.000 0.016 0.024 0.856 0.052
#> GSM52591     4  0.5069    -0.0669 0.440 0.000 0.000 0.484 0.076 0.000
#> GSM52592     1  0.5697     0.1685 0.492 0.000 0.000 0.332 0.176 0.000
#> GSM52593     4  0.0291     0.6312 0.000 0.000 0.004 0.992 0.004 0.000
#> GSM52594     4  0.0777     0.6311 0.000 0.000 0.024 0.972 0.004 0.000
#> GSM52595     4  0.0777     0.6311 0.000 0.000 0.024 0.972 0.004 0.000
#> GSM52596     4  0.0777     0.6311 0.000 0.000 0.024 0.972 0.004 0.000
#> GSM52597     1  0.5034     0.1111 0.520 0.000 0.000 0.404 0.076 0.000
#> GSM52598     5  0.6097     0.3016 0.292 0.000 0.000 0.120 0.540 0.048
#> GSM52599     4  0.4781     0.3211 0.296 0.000 0.000 0.624 0.080 0.000
#> GSM52600     1  0.5209     0.0736 0.492 0.000 0.000 0.416 0.092 0.000
#> GSM52601     4  0.0291     0.6312 0.000 0.000 0.004 0.992 0.004 0.000
#> GSM52602     3  0.4127     0.1608 0.004 0.000 0.508 0.004 0.484 0.000
#> GSM52603     5  0.3608     0.3677 0.000 0.000 0.148 0.000 0.788 0.064
#> GSM52604     5  0.3998    -0.3562 0.004 0.000 0.492 0.000 0.504 0.000
#> GSM52605     3  0.3844     0.5334 0.004 0.000 0.676 0.008 0.312 0.000
#> GSM52606     3  0.0692     0.8435 0.004 0.000 0.976 0.020 0.000 0.000
#> GSM52607     3  0.0692     0.8435 0.004 0.000 0.976 0.020 0.000 0.000
#> GSM52608     3  0.0692     0.8435 0.004 0.000 0.976 0.020 0.000 0.000
#> GSM52609     3  0.0692     0.8435 0.004 0.000 0.976 0.020 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) tissue(p) k
#> ATC:kmeans 54         2.40e-09  1.64e-04 2
#> ATC:kmeans 51         7.31e-09  9.08e-06 3
#> ATC:kmeans 50         7.25e-09  1.42e-07 4
#> ATC:kmeans 41         7.04e-08  2.32e-06 5
#> ATC:kmeans 28         1.25e-05  5.40e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.973       0.991         0.4327 0.575   0.575
#> 3 3 0.996           0.966       0.981         0.5103 0.765   0.592
#> 4 4 0.744           0.814       0.881         0.1099 0.936   0.814
#> 5 5 0.695           0.704       0.820         0.0656 0.956   0.848
#> 6 6 0.738           0.588       0.777         0.0459 0.982   0.927

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0000     1.0000 0.000 1.000
#> GSM52557     2  0.0000     1.0000 0.000 1.000
#> GSM52558     2  0.0000     1.0000 0.000 1.000
#> GSM52559     2  0.0000     1.0000 0.000 1.000
#> GSM52560     2  0.0000     1.0000 0.000 1.000
#> GSM52561     1  0.0000     0.9866 1.000 0.000
#> GSM52562     2  0.0000     1.0000 0.000 1.000
#> GSM52563     2  0.0000     1.0000 0.000 1.000
#> GSM52564     1  0.0000     0.9866 1.000 0.000
#> GSM52565     2  0.0000     1.0000 0.000 1.000
#> GSM52566     2  0.0000     1.0000 0.000 1.000
#> GSM52567     2  0.0000     1.0000 0.000 1.000
#> GSM52568     2  0.0000     1.0000 0.000 1.000
#> GSM52569     2  0.0000     1.0000 0.000 1.000
#> GSM52570     2  0.0000     1.0000 0.000 1.000
#> GSM52571     1  0.0000     0.9866 1.000 0.000
#> GSM52572     1  0.0000     0.9866 1.000 0.000
#> GSM52573     1  0.0000     0.9866 1.000 0.000
#> GSM52574     1  0.0000     0.9866 1.000 0.000
#> GSM52575     1  0.0000     0.9866 1.000 0.000
#> GSM52576     1  0.0000     0.9866 1.000 0.000
#> GSM52577     1  0.0000     0.9866 1.000 0.000
#> GSM52578     1  0.0000     0.9866 1.000 0.000
#> GSM52579     1  0.0000     0.9866 1.000 0.000
#> GSM52580     1  0.0000     0.9866 1.000 0.000
#> GSM52581     1  0.0000     0.9866 1.000 0.000
#> GSM52582     1  0.0000     0.9866 1.000 0.000
#> GSM52583     1  0.0000     0.9866 1.000 0.000
#> GSM52584     1  0.0000     0.9866 1.000 0.000
#> GSM52585     1  0.0000     0.9866 1.000 0.000
#> GSM52586     1  0.0000     0.9866 1.000 0.000
#> GSM52587     1  0.0000     0.9866 1.000 0.000
#> GSM52588     1  0.0376     0.9828 0.996 0.004
#> GSM52589     1  0.0000     0.9866 1.000 0.000
#> GSM52590     2  0.0000     1.0000 0.000 1.000
#> GSM52591     1  0.0000     0.9866 1.000 0.000
#> GSM52592     1  0.0000     0.9866 1.000 0.000
#> GSM52593     1  0.0000     0.9866 1.000 0.000
#> GSM52594     1  0.0000     0.9866 1.000 0.000
#> GSM52595     1  0.0000     0.9866 1.000 0.000
#> GSM52596     1  0.0000     0.9866 1.000 0.000
#> GSM52597     1  0.0000     0.9866 1.000 0.000
#> GSM52598     2  0.0000     1.0000 0.000 1.000
#> GSM52599     1  0.0000     0.9866 1.000 0.000
#> GSM52600     1  0.0000     0.9866 1.000 0.000
#> GSM52601     1  0.0000     0.9866 1.000 0.000
#> GSM52602     1  0.0000     0.9866 1.000 0.000
#> GSM52603     2  0.0000     1.0000 0.000 1.000
#> GSM52604     1  0.9996     0.0468 0.512 0.488
#> GSM52605     1  0.0000     0.9866 1.000 0.000
#> GSM52606     1  0.0000     0.9866 1.000 0.000
#> GSM52607     1  0.0000     0.9866 1.000 0.000
#> GSM52608     1  0.0000     0.9866 1.000 0.000
#> GSM52609     1  0.0000     0.9866 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52557     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52558     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52559     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52560     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52561     3  0.5216      0.714 0.260 0.000 0.740
#> GSM52562     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52563     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52564     1  0.0424      0.988 0.992 0.000 0.008
#> GSM52565     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52566     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52567     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52568     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52569     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52570     2  0.0000      0.997 0.000 1.000 0.000
#> GSM52571     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52572     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52573     3  0.0424      0.934 0.008 0.000 0.992
#> GSM52574     3  0.0424      0.934 0.008 0.000 0.992
#> GSM52575     3  0.2448      0.898 0.076 0.000 0.924
#> GSM52576     1  0.2165      0.928 0.936 0.000 0.064
#> GSM52577     1  0.0892      0.977 0.980 0.000 0.020
#> GSM52578     3  0.2878      0.893 0.096 0.000 0.904
#> GSM52579     3  0.2711      0.897 0.088 0.000 0.912
#> GSM52580     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52581     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52582     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52583     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52584     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52585     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52586     1  0.0747      0.981 0.984 0.000 0.016
#> GSM52587     3  0.5291      0.701 0.268 0.000 0.732
#> GSM52588     1  0.0424      0.988 0.992 0.000 0.008
#> GSM52589     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52590     2  0.0424      0.993 0.000 0.992 0.008
#> GSM52591     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52592     1  0.0424      0.988 0.992 0.000 0.008
#> GSM52593     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52594     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52595     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52596     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52597     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52598     2  0.0424      0.993 0.000 0.992 0.008
#> GSM52599     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52600     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52601     1  0.0000      0.994 1.000 0.000 0.000
#> GSM52602     3  0.0000      0.928 0.000 0.000 1.000
#> GSM52603     2  0.1289      0.972 0.000 0.968 0.032
#> GSM52604     3  0.0000      0.928 0.000 0.000 1.000
#> GSM52605     3  0.0424      0.934 0.008 0.000 0.992
#> GSM52606     3  0.0424      0.934 0.008 0.000 0.992
#> GSM52607     3  0.0424      0.934 0.008 0.000 0.992
#> GSM52608     3  0.0424      0.934 0.008 0.000 0.992
#> GSM52609     3  0.0424      0.934 0.008 0.000 0.992

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM52557     2  0.0592      0.932 0.000 0.984 0.000 0.016
#> GSM52558     2  0.0592      0.932 0.000 0.984 0.000 0.016
#> GSM52559     2  0.0469      0.933 0.000 0.988 0.000 0.012
#> GSM52560     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM52561     4  0.5180      0.832 0.064 0.000 0.196 0.740
#> GSM52562     2  0.0592      0.932 0.000 0.984 0.000 0.016
#> GSM52563     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM52564     4  0.5221      0.725 0.208 0.000 0.060 0.732
#> GSM52565     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM52566     2  0.0592      0.932 0.000 0.984 0.000 0.016
#> GSM52567     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM52568     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM52569     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM52570     2  0.0000      0.935 0.000 1.000 0.000 0.000
#> GSM52571     1  0.0804      0.834 0.980 0.000 0.008 0.012
#> GSM52572     1  0.2408      0.835 0.896 0.000 0.000 0.104
#> GSM52573     3  0.0469      0.919 0.012 0.000 0.988 0.000
#> GSM52574     3  0.0469      0.919 0.012 0.000 0.988 0.000
#> GSM52575     3  0.2281      0.830 0.096 0.000 0.904 0.000
#> GSM52576     1  0.3300      0.745 0.848 0.000 0.144 0.008
#> GSM52577     1  0.3697      0.756 0.852 0.000 0.100 0.048
#> GSM52578     4  0.5249      0.801 0.044 0.000 0.248 0.708
#> GSM52579     4  0.5219      0.804 0.044 0.000 0.244 0.712
#> GSM52580     1  0.4950      0.434 0.620 0.000 0.004 0.376
#> GSM52581     1  0.4776      0.444 0.624 0.000 0.000 0.376
#> GSM52582     1  0.4250      0.643 0.724 0.000 0.000 0.276
#> GSM52583     1  0.2408      0.835 0.896 0.000 0.000 0.104
#> GSM52584     1  0.0707      0.846 0.980 0.000 0.000 0.020
#> GSM52585     4  0.4855      0.434 0.352 0.000 0.004 0.644
#> GSM52586     1  0.5756      0.373 0.592 0.000 0.036 0.372
#> GSM52587     4  0.5180      0.832 0.064 0.000 0.196 0.740
#> GSM52588     1  0.4194      0.628 0.764 0.000 0.008 0.228
#> GSM52589     1  0.2345      0.828 0.900 0.000 0.000 0.100
#> GSM52590     2  0.4475      0.751 0.004 0.748 0.008 0.240
#> GSM52591     1  0.0707      0.843 0.980 0.000 0.000 0.020
#> GSM52592     1  0.1211      0.824 0.960 0.000 0.000 0.040
#> GSM52593     1  0.2081      0.843 0.916 0.000 0.000 0.084
#> GSM52594     1  0.2149      0.841 0.912 0.000 0.000 0.088
#> GSM52595     1  0.2149      0.841 0.912 0.000 0.000 0.088
#> GSM52596     1  0.2149      0.841 0.912 0.000 0.000 0.088
#> GSM52597     1  0.1211      0.842 0.960 0.000 0.000 0.040
#> GSM52598     2  0.6619      0.636 0.120 0.640 0.008 0.232
#> GSM52599     1  0.0469      0.843 0.988 0.000 0.000 0.012
#> GSM52600     1  0.0469      0.837 0.988 0.000 0.000 0.012
#> GSM52601     1  0.1716      0.846 0.936 0.000 0.000 0.064
#> GSM52602     3  0.3636      0.823 0.008 0.000 0.820 0.172
#> GSM52603     2  0.6745      0.569 0.000 0.604 0.152 0.244
#> GSM52604     3  0.3688      0.787 0.000 0.000 0.792 0.208
#> GSM52605     3  0.2542      0.884 0.012 0.000 0.904 0.084
#> GSM52606     3  0.0524      0.918 0.008 0.000 0.988 0.004
#> GSM52607     3  0.0336      0.919 0.008 0.000 0.992 0.000
#> GSM52608     3  0.0336      0.919 0.008 0.000 0.992 0.000
#> GSM52609     3  0.0524      0.918 0.008 0.000 0.988 0.004

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.0000     0.8656 0.000 1.000 0.000 0.000 0.000
#> GSM52557     2  0.4555     0.7525 0.000 0.732 0.004 0.052 0.212
#> GSM52558     2  0.4555     0.7525 0.000 0.732 0.004 0.052 0.212
#> GSM52559     2  0.4003     0.7825 0.000 0.780 0.004 0.036 0.180
#> GSM52560     2  0.0324     0.8636 0.000 0.992 0.000 0.004 0.004
#> GSM52561     4  0.3395     0.7578 0.048 0.000 0.104 0.844 0.004
#> GSM52562     2  0.4555     0.7525 0.000 0.732 0.004 0.052 0.212
#> GSM52563     2  0.0000     0.8656 0.000 1.000 0.000 0.000 0.000
#> GSM52564     4  0.3310     0.7012 0.136 0.000 0.024 0.836 0.004
#> GSM52565     2  0.0000     0.8656 0.000 1.000 0.000 0.000 0.000
#> GSM52566     2  0.4221     0.7744 0.000 0.764 0.004 0.044 0.188
#> GSM52567     2  0.0000     0.8656 0.000 1.000 0.000 0.000 0.000
#> GSM52568     2  0.0000     0.8656 0.000 1.000 0.000 0.000 0.000
#> GSM52569     2  0.0000     0.8656 0.000 1.000 0.000 0.000 0.000
#> GSM52570     2  0.0000     0.8656 0.000 1.000 0.000 0.000 0.000
#> GSM52571     1  0.2733     0.7599 0.888 0.000 0.016 0.016 0.080
#> GSM52572     1  0.3262     0.7589 0.840 0.000 0.000 0.124 0.036
#> GSM52573     3  0.0162     0.8684 0.004 0.000 0.996 0.000 0.000
#> GSM52574     3  0.0162     0.8684 0.004 0.000 0.996 0.000 0.000
#> GSM52575     3  0.1544     0.8180 0.068 0.000 0.932 0.000 0.000
#> GSM52576     1  0.5066     0.5194 0.656 0.000 0.296 0.020 0.028
#> GSM52577     1  0.6221     0.5539 0.656 0.000 0.172 0.088 0.084
#> GSM52578     4  0.4311     0.6809 0.020 0.000 0.264 0.712 0.004
#> GSM52579     4  0.4268     0.7032 0.024 0.000 0.244 0.728 0.004
#> GSM52580     1  0.4546     0.5600 0.688 0.000 0.008 0.284 0.020
#> GSM52581     1  0.4568     0.5555 0.684 0.000 0.008 0.288 0.020
#> GSM52582     1  0.4285     0.6561 0.752 0.000 0.008 0.208 0.032
#> GSM52583     1  0.2615     0.7641 0.892 0.000 0.008 0.080 0.020
#> GSM52584     1  0.1981     0.7819 0.924 0.000 0.000 0.028 0.048
#> GSM52585     4  0.4744     0.1389 0.408 0.000 0.000 0.572 0.020
#> GSM52586     1  0.4866     0.4649 0.620 0.000 0.016 0.352 0.012
#> GSM52587     4  0.3395     0.7587 0.048 0.000 0.104 0.844 0.004
#> GSM52588     5  0.5539     0.0812 0.324 0.000 0.004 0.076 0.596
#> GSM52589     1  0.5414     0.6176 0.660 0.000 0.000 0.140 0.200
#> GSM52590     5  0.5505     0.3170 0.000 0.452 0.000 0.064 0.484
#> GSM52591     1  0.2278     0.7706 0.908 0.000 0.000 0.032 0.060
#> GSM52592     1  0.4733     0.4786 0.624 0.000 0.000 0.028 0.348
#> GSM52593     1  0.1408     0.7812 0.948 0.000 0.008 0.044 0.000
#> GSM52594     1  0.1408     0.7812 0.948 0.000 0.008 0.044 0.000
#> GSM52595     1  0.1408     0.7812 0.948 0.000 0.008 0.044 0.000
#> GSM52596     1  0.1408     0.7812 0.948 0.000 0.008 0.044 0.000
#> GSM52597     1  0.4732     0.6543 0.716 0.000 0.000 0.076 0.208
#> GSM52598     5  0.5324     0.5052 0.072 0.232 0.000 0.016 0.680
#> GSM52599     1  0.1914     0.7722 0.924 0.000 0.000 0.016 0.060
#> GSM52600     1  0.4197     0.6304 0.728 0.000 0.000 0.028 0.244
#> GSM52601     1  0.0955     0.7831 0.968 0.000 0.000 0.028 0.004
#> GSM52602     3  0.5240     0.6334 0.004 0.000 0.664 0.080 0.252
#> GSM52603     5  0.6711     0.4264 0.000 0.236 0.080 0.096 0.588
#> GSM52604     3  0.5245     0.5966 0.000 0.000 0.640 0.080 0.280
#> GSM52605     3  0.4490     0.7252 0.004 0.000 0.756 0.072 0.168
#> GSM52606     3  0.0671     0.8662 0.004 0.000 0.980 0.016 0.000
#> GSM52607     3  0.0566     0.8680 0.004 0.000 0.984 0.012 0.000
#> GSM52608     3  0.0566     0.8680 0.004 0.000 0.984 0.012 0.000
#> GSM52609     3  0.0671     0.8662 0.004 0.000 0.980 0.016 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.0000     0.7573 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52557     2  0.5443     0.5858 0.000 0.560 0.000 0.048 0.348 0.044
#> GSM52558     2  0.5443     0.5858 0.000 0.560 0.000 0.048 0.348 0.044
#> GSM52559     2  0.5344     0.6045 0.000 0.592 0.000 0.048 0.316 0.044
#> GSM52560     2  0.0520     0.7532 0.000 0.984 0.000 0.000 0.008 0.008
#> GSM52561     4  0.1864     0.7561 0.032 0.000 0.040 0.924 0.000 0.004
#> GSM52562     2  0.5443     0.5858 0.000 0.560 0.000 0.048 0.348 0.044
#> GSM52563     2  0.0000     0.7573 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52564     4  0.2195     0.7309 0.068 0.000 0.012 0.904 0.000 0.016
#> GSM52565     2  0.0000     0.7573 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52566     2  0.5384     0.5988 0.000 0.580 0.000 0.048 0.328 0.044
#> GSM52567     2  0.0000     0.7573 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52568     2  0.0000     0.7573 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52569     2  0.0000     0.7573 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52570     2  0.0000     0.7573 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52571     1  0.3282     0.6261 0.808 0.000 0.016 0.000 0.012 0.164
#> GSM52572     1  0.4189     0.6273 0.760 0.000 0.000 0.072 0.016 0.152
#> GSM52573     3  0.0146     0.7965 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM52574     3  0.0146     0.7965 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM52575     3  0.1606     0.7531 0.056 0.000 0.932 0.000 0.008 0.004
#> GSM52576     1  0.5553     0.3536 0.572 0.000 0.296 0.004 0.008 0.120
#> GSM52577     1  0.7076     0.0732 0.436 0.000 0.168 0.116 0.000 0.280
#> GSM52578     4  0.4032     0.6979 0.016 0.000 0.152 0.780 0.008 0.044
#> GSM52579     4  0.3665     0.7079 0.008 0.000 0.140 0.804 0.008 0.040
#> GSM52580     1  0.4437     0.6074 0.732 0.000 0.000 0.148 0.008 0.112
#> GSM52581     1  0.4465     0.6064 0.728 0.000 0.000 0.156 0.008 0.108
#> GSM52582     1  0.4024     0.6302 0.772 0.000 0.000 0.092 0.008 0.128
#> GSM52583     1  0.2605     0.6720 0.864 0.000 0.000 0.028 0.000 0.108
#> GSM52584     1  0.3966     0.6477 0.728 0.000 0.000 0.028 0.008 0.236
#> GSM52585     4  0.5938    -0.0900 0.404 0.000 0.000 0.436 0.012 0.148
#> GSM52586     1  0.5105     0.5612 0.664 0.000 0.004 0.224 0.016 0.092
#> GSM52587     4  0.1719     0.7555 0.032 0.000 0.032 0.932 0.000 0.004
#> GSM52588     6  0.5235     0.4335 0.124 0.004 0.000 0.024 0.172 0.676
#> GSM52589     1  0.5845     0.1084 0.480 0.000 0.008 0.048 0.048 0.416
#> GSM52590     5  0.5658     0.5617 0.000 0.348 0.000 0.004 0.504 0.144
#> GSM52591     1  0.2909     0.6540 0.828 0.000 0.000 0.012 0.004 0.156
#> GSM52592     6  0.3910     0.2123 0.328 0.000 0.004 0.008 0.000 0.660
#> GSM52593     1  0.0653     0.7022 0.980 0.000 0.000 0.004 0.004 0.012
#> GSM52594     1  0.0291     0.7024 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM52595     1  0.0146     0.7024 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM52596     1  0.0291     0.7025 0.992 0.000 0.000 0.004 0.000 0.004
#> GSM52597     1  0.4887     0.2367 0.536 0.000 0.000 0.044 0.008 0.412
#> GSM52598     6  0.5897     0.1713 0.024 0.144 0.000 0.008 0.232 0.592
#> GSM52599     1  0.2772     0.6375 0.816 0.000 0.000 0.000 0.004 0.180
#> GSM52600     1  0.4217     0.0898 0.524 0.000 0.004 0.000 0.008 0.464
#> GSM52601     1  0.0858     0.6994 0.968 0.000 0.000 0.000 0.004 0.028
#> GSM52602     3  0.3860     0.3187 0.000 0.000 0.528 0.000 0.472 0.000
#> GSM52603     5  0.4906     0.5674 0.000 0.132 0.064 0.000 0.724 0.080
#> GSM52604     3  0.3868     0.2755 0.000 0.000 0.508 0.000 0.492 0.000
#> GSM52605     3  0.3737     0.4472 0.000 0.000 0.608 0.000 0.392 0.000
#> GSM52606     3  0.0937     0.7944 0.000 0.000 0.960 0.040 0.000 0.000
#> GSM52607     3  0.0632     0.7984 0.000 0.000 0.976 0.024 0.000 0.000
#> GSM52608     3  0.0790     0.7972 0.000 0.000 0.968 0.032 0.000 0.000
#> GSM52609     3  0.0937     0.7944 0.000 0.000 0.960 0.040 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) tissue(p) k
#> ATC:skmeans 53         1.19e-07  0.005502 2
#> ATC:skmeans 54         9.01e-08  0.000993 3
#> ATC:skmeans 50         3.76e-07  0.000255 4
#> ATC:skmeans 48         1.37e-08  0.003197 5
#> ATC:skmeans 42         2.01e-07  0.000359 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 6.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.924           0.963       0.983         0.2663 0.743   0.743
#> 3 3 0.558           0.800       0.847         0.8299 0.809   0.747
#> 4 4 0.820           0.883       0.950         0.3873 0.755   0.575
#> 5 5 0.707           0.645       0.815         0.0879 0.962   0.886
#> 6 6 0.943           0.904       0.963         0.0821 0.869   0.588

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 6
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2   0.163      0.946 0.024 0.976
#> GSM52557     1   0.388      0.910 0.924 0.076
#> GSM52558     1   0.000      0.985 1.000 0.000
#> GSM52559     1   0.714      0.760 0.804 0.196
#> GSM52560     2   0.000      0.962 0.000 1.000
#> GSM52561     1   0.000      0.985 1.000 0.000
#> GSM52562     1   0.689      0.778 0.816 0.184
#> GSM52563     2   0.781      0.691 0.232 0.768
#> GSM52564     1   0.000      0.985 1.000 0.000
#> GSM52565     2   0.000      0.962 0.000 1.000
#> GSM52566     1   0.689      0.778 0.816 0.184
#> GSM52567     2   0.000      0.962 0.000 1.000
#> GSM52568     2   0.000      0.962 0.000 1.000
#> GSM52569     2   0.000      0.962 0.000 1.000
#> GSM52570     2   0.000      0.962 0.000 1.000
#> GSM52571     1   0.000      0.985 1.000 0.000
#> GSM52572     1   0.000      0.985 1.000 0.000
#> GSM52573     1   0.000      0.985 1.000 0.000
#> GSM52574     1   0.000      0.985 1.000 0.000
#> GSM52575     1   0.000      0.985 1.000 0.000
#> GSM52576     1   0.000      0.985 1.000 0.000
#> GSM52577     1   0.000      0.985 1.000 0.000
#> GSM52578     1   0.000      0.985 1.000 0.000
#> GSM52579     1   0.000      0.985 1.000 0.000
#> GSM52580     1   0.000      0.985 1.000 0.000
#> GSM52581     1   0.000      0.985 1.000 0.000
#> GSM52582     1   0.000      0.985 1.000 0.000
#> GSM52583     1   0.000      0.985 1.000 0.000
#> GSM52584     1   0.000      0.985 1.000 0.000
#> GSM52585     1   0.000      0.985 1.000 0.000
#> GSM52586     1   0.000      0.985 1.000 0.000
#> GSM52587     1   0.000      0.985 1.000 0.000
#> GSM52588     1   0.000      0.985 1.000 0.000
#> GSM52589     1   0.000      0.985 1.000 0.000
#> GSM52590     1   0.000      0.985 1.000 0.000
#> GSM52591     1   0.000      0.985 1.000 0.000
#> GSM52592     1   0.000      0.985 1.000 0.000
#> GSM52593     1   0.000      0.985 1.000 0.000
#> GSM52594     1   0.000      0.985 1.000 0.000
#> GSM52595     1   0.000      0.985 1.000 0.000
#> GSM52596     1   0.000      0.985 1.000 0.000
#> GSM52597     1   0.000      0.985 1.000 0.000
#> GSM52598     1   0.000      0.985 1.000 0.000
#> GSM52599     1   0.000      0.985 1.000 0.000
#> GSM52600     1   0.000      0.985 1.000 0.000
#> GSM52601     1   0.000      0.985 1.000 0.000
#> GSM52602     1   0.000      0.985 1.000 0.000
#> GSM52603     1   0.000      0.985 1.000 0.000
#> GSM52604     1   0.000      0.985 1.000 0.000
#> GSM52605     1   0.000      0.985 1.000 0.000
#> GSM52606     1   0.000      0.985 1.000 0.000
#> GSM52607     1   0.000      0.985 1.000 0.000
#> GSM52608     1   0.000      0.985 1.000 0.000
#> GSM52609     1   0.000      0.985 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.0592      0.583 0.012 0.988 0.000
#> GSM52557     2  0.3879      0.761 0.152 0.848 0.000
#> GSM52558     2  0.5988      0.564 0.368 0.632 0.000
#> GSM52559     2  0.3752      0.758 0.144 0.856 0.000
#> GSM52560     2  0.0000      0.551 0.000 1.000 0.000
#> GSM52561     1  0.5650      0.742 0.688 0.000 0.312
#> GSM52562     2  0.3879      0.761 0.152 0.848 0.000
#> GSM52563     2  0.1753      0.650 0.048 0.952 0.000
#> GSM52564     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52565     3  0.5988      1.000 0.000 0.368 0.632
#> GSM52566     2  0.3879      0.761 0.152 0.848 0.000
#> GSM52567     3  0.5988      1.000 0.000 0.368 0.632
#> GSM52568     3  0.5988      1.000 0.000 0.368 0.632
#> GSM52569     3  0.5988      1.000 0.000 0.368 0.632
#> GSM52570     3  0.5988      1.000 0.000 0.368 0.632
#> GSM52571     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52572     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52573     1  0.5988      0.714 0.632 0.000 0.368
#> GSM52574     1  0.5988      0.714 0.632 0.000 0.368
#> GSM52575     1  0.5988      0.714 0.632 0.000 0.368
#> GSM52576     1  0.0424      0.851 0.992 0.000 0.008
#> GSM52577     1  0.3551      0.817 0.868 0.000 0.132
#> GSM52578     1  0.5465      0.750 0.712 0.000 0.288
#> GSM52579     1  0.5988      0.714 0.632 0.000 0.368
#> GSM52580     1  0.0592      0.851 0.988 0.000 0.012
#> GSM52581     1  0.0424      0.851 0.992 0.000 0.008
#> GSM52582     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52583     1  0.1964      0.844 0.944 0.000 0.056
#> GSM52584     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52585     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52586     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52587     1  0.5706      0.738 0.680 0.000 0.320
#> GSM52588     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52589     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52590     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52591     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52592     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52593     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52594     1  0.3116      0.830 0.892 0.000 0.108
#> GSM52595     1  0.2066      0.843 0.940 0.000 0.060
#> GSM52596     1  0.3038      0.831 0.896 0.000 0.104
#> GSM52597     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52598     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52599     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52600     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52601     1  0.0000      0.852 1.000 0.000 0.000
#> GSM52602     1  0.3551      0.823 0.868 0.000 0.132
#> GSM52603     2  0.6168      0.516 0.412 0.588 0.000
#> GSM52604     1  0.5591      0.751 0.696 0.000 0.304
#> GSM52605     1  0.5988      0.714 0.632 0.000 0.368
#> GSM52606     1  0.5988      0.714 0.632 0.000 0.368
#> GSM52607     1  0.5988      0.714 0.632 0.000 0.368
#> GSM52608     1  0.5988      0.714 0.632 0.000 0.368
#> GSM52609     1  0.5988      0.714 0.632 0.000 0.368

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3 p4
#> GSM52556     2   0.000      0.990 0.000 1.000 0.000  0
#> GSM52557     2   0.000      0.990 0.000 1.000 0.000  0
#> GSM52558     2   0.000      0.990 0.000 1.000 0.000  0
#> GSM52559     2   0.000      0.990 0.000 1.000 0.000  0
#> GSM52560     2   0.000      0.990 0.000 1.000 0.000  0
#> GSM52561     3   0.357      0.721 0.196 0.000 0.804  0
#> GSM52562     2   0.000      0.990 0.000 1.000 0.000  0
#> GSM52563     2   0.000      0.990 0.000 1.000 0.000  0
#> GSM52564     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52565     4   0.000      1.000 0.000 0.000 0.000  1
#> GSM52566     2   0.000      0.990 0.000 1.000 0.000  0
#> GSM52567     4   0.000      1.000 0.000 0.000 0.000  1
#> GSM52568     4   0.000      1.000 0.000 0.000 0.000  1
#> GSM52569     4   0.000      1.000 0.000 0.000 0.000  1
#> GSM52570     4   0.000      1.000 0.000 0.000 0.000  1
#> GSM52571     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52572     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52573     3   0.000      0.908 0.000 0.000 1.000  0
#> GSM52574     3   0.000      0.908 0.000 0.000 1.000  0
#> GSM52575     3   0.000      0.908 0.000 0.000 1.000  0
#> GSM52576     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52577     1   0.433      0.539 0.712 0.000 0.288  0
#> GSM52578     3   0.456      0.549 0.328 0.000 0.672  0
#> GSM52579     3   0.000      0.908 0.000 0.000 1.000  0
#> GSM52580     1   0.172      0.881 0.936 0.000 0.064  0
#> GSM52581     1   0.241      0.850 0.896 0.000 0.104  0
#> GSM52582     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52583     1   0.416      0.672 0.736 0.000 0.264  0
#> GSM52584     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52585     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52586     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52587     3   0.147      0.871 0.052 0.000 0.948  0
#> GSM52588     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52589     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52590     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52591     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52592     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52593     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52594     1   0.485      0.422 0.600 0.000 0.400  0
#> GSM52595     1   0.331      0.787 0.828 0.000 0.172  0
#> GSM52596     1   0.484      0.431 0.604 0.000 0.396  0
#> GSM52597     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52598     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52599     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52600     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52601     1   0.000      0.920 1.000 0.000 0.000  0
#> GSM52602     1   0.365      0.745 0.796 0.000 0.204  0
#> GSM52603     2   0.147      0.920 0.052 0.948 0.000  0
#> GSM52604     3   0.365      0.705 0.204 0.000 0.796  0
#> GSM52605     3   0.000      0.908 0.000 0.000 1.000  0
#> GSM52606     3   0.000      0.908 0.000 0.000 1.000  0
#> GSM52607     3   0.000      0.908 0.000 0.000 1.000  0
#> GSM52608     3   0.000      0.908 0.000 0.000 1.000  0
#> GSM52609     3   0.000      0.908 0.000 0.000 1.000  0

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     4   0.430     0.0580 0.000 0.000 0.000 0.512 0.488
#> GSM52557     5   0.000     0.9633 0.000 0.000 0.000 0.000 1.000
#> GSM52558     5   0.000     0.9633 0.000 0.000 0.000 0.000 1.000
#> GSM52559     5   0.000     0.9633 0.000 0.000 0.000 0.000 1.000
#> GSM52560     4   0.431     0.0484 0.000 0.000 0.000 0.508 0.492
#> GSM52561     3   0.307     0.7096 0.196 0.000 0.804 0.000 0.000
#> GSM52562     5   0.000     0.9633 0.000 0.000 0.000 0.000 1.000
#> GSM52563     4   0.430     0.0580 0.000 0.000 0.000 0.512 0.488
#> GSM52564     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52565     2   0.000     0.9001 0.000 1.000 0.000 0.000 0.000
#> GSM52566     5   0.000     0.9633 0.000 0.000 0.000 0.000 1.000
#> GSM52567     2   0.000     0.9001 0.000 1.000 0.000 0.000 0.000
#> GSM52568     4   0.430    -0.5083 0.000 0.488 0.000 0.512 0.000
#> GSM52569     2   0.375     0.6391 0.000 0.708 0.000 0.292 0.000
#> GSM52570     2   0.000     0.9001 0.000 1.000 0.000 0.000 0.000
#> GSM52571     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52572     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52573     3   0.000     0.9067 0.000 0.000 1.000 0.000 0.000
#> GSM52574     3   0.000     0.9067 0.000 0.000 1.000 0.000 0.000
#> GSM52575     3   0.218     0.8160 0.112 0.000 0.888 0.000 0.000
#> GSM52576     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52577     4   0.652    -0.5963 0.404 0.000 0.192 0.404 0.000
#> GSM52578     3   0.501     0.5487 0.224 0.000 0.688 0.088 0.000
#> GSM52579     3   0.000     0.9067 0.000 0.000 1.000 0.000 0.000
#> GSM52580     1   0.134     0.4799 0.944 0.000 0.056 0.000 0.000
#> GSM52581     1   0.207     0.4432 0.896 0.000 0.104 0.000 0.000
#> GSM52582     1   0.000     0.5112 1.000 0.000 0.000 0.000 0.000
#> GSM52583     1   0.311     0.3419 0.800 0.000 0.200 0.000 0.000
#> GSM52584     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52585     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52586     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52587     3   0.127     0.8739 0.052 0.000 0.948 0.000 0.000
#> GSM52588     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52589     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52590     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52591     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52592     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52593     1   0.000     0.5112 1.000 0.000 0.000 0.000 0.000
#> GSM52594     1   0.327     0.3168 0.780 0.000 0.220 0.000 0.000
#> GSM52595     1   0.218     0.4361 0.888 0.000 0.112 0.000 0.000
#> GSM52596     1   0.321     0.3276 0.788 0.000 0.212 0.000 0.000
#> GSM52597     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52598     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52599     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52600     1   0.430     0.7134 0.512 0.000 0.000 0.488 0.000
#> GSM52601     1   0.000     0.5112 1.000 0.000 0.000 0.000 0.000
#> GSM52602     1   0.217     0.4752 0.908 0.000 0.076 0.016 0.000
#> GSM52603     5   0.196     0.8069 0.076 0.000 0.000 0.008 0.916
#> GSM52604     3   0.247     0.8133 0.104 0.000 0.884 0.012 0.000
#> GSM52605     3   0.000     0.9067 0.000 0.000 1.000 0.000 0.000
#> GSM52606     3   0.000     0.9067 0.000 0.000 1.000 0.000 0.000
#> GSM52607     3   0.000     0.9067 0.000 0.000 1.000 0.000 0.000
#> GSM52608     3   0.000     0.9067 0.000 0.000 1.000 0.000 0.000
#> GSM52609     3   0.000     0.9067 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.0146     0.8659 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM52557     6  0.0000     0.9715 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52558     6  0.0000     0.9715 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52559     6  0.0000     0.9715 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52560     2  0.0260     0.8637 0.000 0.992 0.000 0.000 0.000 0.008
#> GSM52561     3  0.2762     0.7275 0.196 0.000 0.804 0.000 0.000 0.000
#> GSM52562     6  0.0000     0.9715 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52563     2  0.0146     0.8659 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM52564     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52565     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52566     6  0.0000     0.9715 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52567     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52568     2  0.0146     0.8640 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM52569     2  0.3868     0.0342 0.000 0.508 0.000 0.000 0.492 0.000
#> GSM52570     5  0.0000     1.0000 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM52571     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52572     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52573     3  0.0000     0.9022 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52574     3  0.0000     0.9022 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52575     3  0.3151     0.6451 0.000 0.000 0.748 0.252 0.000 0.000
#> GSM52576     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52577     1  0.3101     0.6379 0.756 0.000 0.244 0.000 0.000 0.000
#> GSM52578     3  0.3446     0.5736 0.308 0.000 0.692 0.000 0.000 0.000
#> GSM52579     3  0.0000     0.9022 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52580     4  0.0146     0.9688 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM52581     4  0.0146     0.9688 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM52582     4  0.0146     0.9688 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM52583     4  0.0146     0.9688 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM52584     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52585     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52586     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52587     3  0.1141     0.8741 0.052 0.000 0.948 0.000 0.000 0.000
#> GSM52588     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52589     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52590     1  0.0146     0.9777 0.996 0.004 0.000 0.000 0.000 0.000
#> GSM52591     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52592     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52593     4  0.0146     0.9688 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM52594     4  0.0146     0.9688 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM52595     4  0.0146     0.9688 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM52596     4  0.0146     0.9688 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM52597     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52598     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52599     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52600     1  0.0000     0.9811 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM52601     4  0.0146     0.9688 0.004 0.000 0.000 0.996 0.000 0.000
#> GSM52602     4  0.2902     0.6900 0.196 0.004 0.000 0.800 0.000 0.000
#> GSM52603     6  0.1897     0.8529 0.084 0.004 0.000 0.004 0.000 0.908
#> GSM52604     3  0.1732     0.8541 0.072 0.004 0.920 0.004 0.000 0.000
#> GSM52605     3  0.0291     0.8986 0.000 0.004 0.992 0.004 0.000 0.000
#> GSM52606     3  0.0000     0.9022 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52607     3  0.0000     0.9022 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52608     3  0.0000     0.9022 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52609     3  0.0000     0.9022 0.000 0.000 1.000 0.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) tissue(p) k
#> ATC:pam 54         6.37e-06  1.64e-04 2
#> ATC:pam 54         1.96e-09  1.44e-06 3
#> ATC:pam 52         2.22e-08  3.31e-06 4
#> ATC:pam 42         3.61e-06  2.40e-05 5
#> ATC:pam 53         2.24e-07  3.47e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.997       0.999         0.3745 0.628   0.628
#> 3 3 0.913           0.893       0.958         0.6556 0.757   0.612
#> 4 4 0.851           0.857       0.945         0.0668 0.875   0.702
#> 5 5 0.843           0.911       0.943         0.0889 0.963   0.888
#> 6 6 0.787           0.815       0.888         0.0374 0.964   0.882

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0000      1.000 0.000 1.000
#> GSM52557     2  0.0000      1.000 0.000 1.000
#> GSM52558     2  0.0000      1.000 0.000 1.000
#> GSM52559     2  0.0000      1.000 0.000 1.000
#> GSM52560     2  0.0000      1.000 0.000 1.000
#> GSM52561     1  0.0672      0.991 0.992 0.008
#> GSM52562     2  0.0000      1.000 0.000 1.000
#> GSM52563     2  0.0000      1.000 0.000 1.000
#> GSM52564     1  0.0000      0.998 1.000 0.000
#> GSM52565     2  0.0000      1.000 0.000 1.000
#> GSM52566     2  0.0000      1.000 0.000 1.000
#> GSM52567     2  0.0000      1.000 0.000 1.000
#> GSM52568     2  0.0000      1.000 0.000 1.000
#> GSM52569     2  0.0000      1.000 0.000 1.000
#> GSM52570     2  0.0000      1.000 0.000 1.000
#> GSM52571     1  0.0000      0.998 1.000 0.000
#> GSM52572     1  0.0000      0.998 1.000 0.000
#> GSM52573     1  0.0000      0.998 1.000 0.000
#> GSM52574     1  0.0000      0.998 1.000 0.000
#> GSM52575     1  0.0000      0.998 1.000 0.000
#> GSM52576     1  0.0000      0.998 1.000 0.000
#> GSM52577     1  0.0000      0.998 1.000 0.000
#> GSM52578     1  0.0000      0.998 1.000 0.000
#> GSM52579     1  0.2236      0.964 0.964 0.036
#> GSM52580     1  0.0000      0.998 1.000 0.000
#> GSM52581     1  0.0000      0.998 1.000 0.000
#> GSM52582     1  0.0000      0.998 1.000 0.000
#> GSM52583     1  0.0000      0.998 1.000 0.000
#> GSM52584     1  0.0000      0.998 1.000 0.000
#> GSM52585     1  0.0000      0.998 1.000 0.000
#> GSM52586     1  0.0000      0.998 1.000 0.000
#> GSM52587     1  0.2236      0.964 0.964 0.036
#> GSM52588     1  0.0000      0.998 1.000 0.000
#> GSM52589     1  0.0000      0.998 1.000 0.000
#> GSM52590     1  0.0000      0.998 1.000 0.000
#> GSM52591     1  0.0000      0.998 1.000 0.000
#> GSM52592     1  0.0000      0.998 1.000 0.000
#> GSM52593     1  0.0000      0.998 1.000 0.000
#> GSM52594     1  0.0000      0.998 1.000 0.000
#> GSM52595     1  0.0000      0.998 1.000 0.000
#> GSM52596     1  0.0000      0.998 1.000 0.000
#> GSM52597     1  0.0000      0.998 1.000 0.000
#> GSM52598     1  0.0000      0.998 1.000 0.000
#> GSM52599     1  0.0000      0.998 1.000 0.000
#> GSM52600     1  0.0000      0.998 1.000 0.000
#> GSM52601     1  0.0000      0.998 1.000 0.000
#> GSM52602     1  0.0000      0.998 1.000 0.000
#> GSM52603     1  0.0000      0.998 1.000 0.000
#> GSM52604     1  0.0000      0.998 1.000 0.000
#> GSM52605     1  0.0000      0.998 1.000 0.000
#> GSM52606     1  0.0000      0.998 1.000 0.000
#> GSM52607     1  0.0000      0.998 1.000 0.000
#> GSM52608     1  0.0000      0.998 1.000 0.000
#> GSM52609     1  0.0000      0.998 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52557     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52558     2  0.6793      0.028 0.452 0.536 0.012
#> GSM52559     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52560     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52561     1  0.6473      0.512 0.652 0.332 0.016
#> GSM52562     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52563     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52564     1  0.1774      0.921 0.960 0.024 0.016
#> GSM52565     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52566     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52567     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52568     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52569     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52570     2  0.0000      0.948 0.000 1.000 0.000
#> GSM52571     1  0.0237      0.942 0.996 0.000 0.004
#> GSM52572     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52573     3  0.0000      0.965 0.000 0.000 1.000
#> GSM52574     3  0.0000      0.965 0.000 0.000 1.000
#> GSM52575     3  0.1163      0.937 0.028 0.000 0.972
#> GSM52576     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52577     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52578     1  0.6217      0.623 0.712 0.264 0.024
#> GSM52579     1  0.6357      0.509 0.652 0.336 0.012
#> GSM52580     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52581     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52582     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52583     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52584     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52585     1  0.1482      0.926 0.968 0.020 0.012
#> GSM52586     1  0.1163      0.927 0.972 0.000 0.028
#> GSM52587     1  0.6473      0.512 0.652 0.332 0.016
#> GSM52588     1  0.0424      0.941 0.992 0.000 0.008
#> GSM52589     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52590     3  0.7677      0.510 0.092 0.252 0.656
#> GSM52591     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52592     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52593     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52594     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52595     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52596     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52597     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52598     1  0.0424      0.941 0.992 0.000 0.008
#> GSM52599     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52600     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52601     1  0.0000      0.945 1.000 0.000 0.000
#> GSM52602     3  0.0000      0.965 0.000 0.000 1.000
#> GSM52603     3  0.0000      0.965 0.000 0.000 1.000
#> GSM52604     3  0.0000      0.965 0.000 0.000 1.000
#> GSM52605     3  0.0000      0.965 0.000 0.000 1.000
#> GSM52606     3  0.0000      0.965 0.000 0.000 1.000
#> GSM52607     3  0.0000      0.965 0.000 0.000 1.000
#> GSM52608     3  0.0000      0.965 0.000 0.000 1.000
#> GSM52609     3  0.0000      0.965 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.1302      0.762 0.000 0.956 0.000 0.044
#> GSM52557     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> GSM52558     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> GSM52559     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> GSM52560     2  0.1302      0.762 0.000 0.956 0.000 0.044
#> GSM52561     2  0.4632      0.517 0.308 0.688 0.000 0.004
#> GSM52562     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> GSM52563     2  0.1302      0.762 0.000 0.956 0.000 0.044
#> GSM52564     1  0.1398      0.940 0.956 0.040 0.000 0.004
#> GSM52565     4  0.0188      0.791 0.000 0.004 0.000 0.996
#> GSM52566     2  0.0000      0.787 0.000 1.000 0.000 0.000
#> GSM52567     4  0.0188      0.791 0.000 0.004 0.000 0.996
#> GSM52568     4  0.4804      0.563 0.000 0.384 0.000 0.616
#> GSM52569     4  0.4804      0.562 0.000 0.384 0.000 0.616
#> GSM52570     4  0.0188      0.791 0.000 0.004 0.000 0.996
#> GSM52571     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52572     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> GSM52573     3  0.0000      0.936 0.000 0.000 1.000 0.000
#> GSM52574     3  0.0000      0.936 0.000 0.000 1.000 0.000
#> GSM52575     3  0.3172      0.707 0.160 0.000 0.840 0.000
#> GSM52576     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52577     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> GSM52578     1  0.2777      0.863 0.888 0.104 0.004 0.004
#> GSM52579     2  0.4632      0.517 0.308 0.688 0.000 0.004
#> GSM52580     1  0.0376      0.969 0.992 0.004 0.000 0.004
#> GSM52581     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52582     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52583     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52584     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> GSM52585     1  0.1109      0.951 0.968 0.028 0.000 0.004
#> GSM52586     1  0.1004      0.954 0.972 0.024 0.000 0.004
#> GSM52587     2  0.4632      0.517 0.308 0.688 0.000 0.004
#> GSM52588     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52589     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> GSM52590     1  0.5523      0.274 0.596 0.380 0.024 0.000
#> GSM52591     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52592     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52593     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52594     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52595     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52596     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52597     1  0.0188      0.972 0.996 0.000 0.000 0.004
#> GSM52598     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52599     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52600     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52601     1  0.0000      0.973 1.000 0.000 0.000 0.000
#> GSM52602     3  0.0000      0.936 0.000 0.000 1.000 0.000
#> GSM52603     3  0.4406      0.521 0.000 0.300 0.700 0.000
#> GSM52604     3  0.0000      0.936 0.000 0.000 1.000 0.000
#> GSM52605     3  0.0000      0.936 0.000 0.000 1.000 0.000
#> GSM52606     3  0.0188      0.933 0.000 0.004 0.996 0.000
#> GSM52607     3  0.0000      0.936 0.000 0.000 1.000 0.000
#> GSM52608     3  0.0000      0.936 0.000 0.000 1.000 0.000
#> GSM52609     3  0.0000      0.936 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.2020      0.865 0.000 0.900 0.000 0.000 0.100
#> GSM52557     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> GSM52558     2  0.4201      0.258 0.000 0.592 0.000 0.408 0.000
#> GSM52559     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> GSM52560     2  0.2020      0.865 0.000 0.900 0.000 0.000 0.100
#> GSM52561     4  0.0510      0.969 0.000 0.016 0.000 0.984 0.000
#> GSM52562     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> GSM52563     2  0.2020      0.865 0.000 0.900 0.000 0.000 0.100
#> GSM52564     1  0.3424      0.817 0.760 0.000 0.000 0.240 0.000
#> GSM52565     5  0.0000      0.978 0.000 0.000 0.000 0.000 1.000
#> GSM52566     2  0.0000      0.889 0.000 1.000 0.000 0.000 0.000
#> GSM52567     5  0.0000      0.978 0.000 0.000 0.000 0.000 1.000
#> GSM52568     5  0.1671      0.910 0.000 0.076 0.000 0.000 0.924
#> GSM52569     5  0.0000      0.978 0.000 0.000 0.000 0.000 1.000
#> GSM52570     5  0.0000      0.978 0.000 0.000 0.000 0.000 1.000
#> GSM52571     1  0.0671      0.922 0.980 0.000 0.004 0.016 0.000
#> GSM52572     1  0.2852      0.877 0.828 0.000 0.000 0.172 0.000
#> GSM52573     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000
#> GSM52574     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000
#> GSM52575     3  0.3011      0.788 0.140 0.000 0.844 0.016 0.000
#> GSM52576     1  0.0162      0.924 0.996 0.000 0.000 0.004 0.000
#> GSM52577     1  0.2966      0.871 0.816 0.000 0.000 0.184 0.000
#> GSM52578     4  0.0609      0.939 0.020 0.000 0.000 0.980 0.000
#> GSM52579     4  0.0880      0.971 0.000 0.032 0.000 0.968 0.000
#> GSM52580     1  0.2891      0.875 0.824 0.000 0.000 0.176 0.000
#> GSM52581     1  0.2074      0.911 0.896 0.000 0.000 0.104 0.000
#> GSM52582     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM52583     1  0.0000      0.923 1.000 0.000 0.000 0.000 0.000
#> GSM52584     1  0.2127      0.904 0.892 0.000 0.000 0.108 0.000
#> GSM52585     1  0.3143      0.855 0.796 0.000 0.000 0.204 0.000
#> GSM52586     1  0.3143      0.855 0.796 0.000 0.000 0.204 0.000
#> GSM52587     4  0.0880      0.971 0.000 0.032 0.000 0.968 0.000
#> GSM52588     1  0.0162      0.921 0.996 0.000 0.000 0.004 0.000
#> GSM52589     1  0.2329      0.902 0.876 0.000 0.000 0.124 0.000
#> GSM52590     1  0.0324      0.922 0.992 0.000 0.004 0.004 0.000
#> GSM52591     1  0.0880      0.927 0.968 0.000 0.000 0.032 0.000
#> GSM52592     1  0.0290      0.923 0.992 0.000 0.000 0.008 0.000
#> GSM52593     1  0.1410      0.921 0.940 0.000 0.000 0.060 0.000
#> GSM52594     1  0.0404      0.925 0.988 0.000 0.000 0.012 0.000
#> GSM52595     1  0.0609      0.926 0.980 0.000 0.000 0.020 0.000
#> GSM52596     1  0.0609      0.926 0.980 0.000 0.000 0.020 0.000
#> GSM52597     1  0.2891      0.875 0.824 0.000 0.000 0.176 0.000
#> GSM52598     1  0.0162      0.921 0.996 0.000 0.000 0.004 0.000
#> GSM52599     1  0.1478      0.919 0.936 0.000 0.000 0.064 0.000
#> GSM52600     1  0.0609      0.927 0.980 0.000 0.000 0.020 0.000
#> GSM52601     1  0.0510      0.926 0.984 0.000 0.000 0.016 0.000
#> GSM52602     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000
#> GSM52603     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000
#> GSM52604     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000
#> GSM52605     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000
#> GSM52606     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000
#> GSM52607     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000
#> GSM52608     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000
#> GSM52609     3  0.0000      0.981 0.000 0.000 1.000 0.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     5  0.3916      0.903 0.000 0.064 0.000 0.000 0.752 0.184
#> GSM52557     6  0.0000      0.857 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52558     6  0.3944      0.315 0.004 0.000 0.000 0.428 0.000 0.568
#> GSM52559     6  0.0260      0.851 0.000 0.000 0.000 0.000 0.008 0.992
#> GSM52560     5  0.3858      0.873 0.000 0.044 0.000 0.000 0.740 0.216
#> GSM52561     4  0.0937      0.695 0.000 0.000 0.000 0.960 0.000 0.040
#> GSM52562     6  0.0000      0.857 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52563     5  0.3916      0.903 0.000 0.064 0.000 0.000 0.752 0.184
#> GSM52564     4  0.4463     -0.207 0.456 0.000 0.000 0.516 0.028 0.000
#> GSM52565     2  0.0000      0.947 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52566     6  0.0000      0.857 0.000 0.000 0.000 0.000 0.000 1.000
#> GSM52567     2  0.0000      0.947 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52568     5  0.3791      0.705 0.000 0.236 0.000 0.000 0.732 0.032
#> GSM52569     2  0.2362      0.820 0.000 0.860 0.000 0.000 0.136 0.004
#> GSM52570     2  0.0000      0.947 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52571     1  0.1887      0.860 0.924 0.000 0.016 0.012 0.048 0.000
#> GSM52572     1  0.3345      0.781 0.776 0.000 0.000 0.204 0.020 0.000
#> GSM52573     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52574     3  0.0000      0.949 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM52575     3  0.3047      0.812 0.084 0.000 0.848 0.004 0.064 0.000
#> GSM52576     1  0.1297      0.870 0.948 0.000 0.000 0.012 0.040 0.000
#> GSM52577     1  0.2730      0.804 0.808 0.000 0.000 0.192 0.000 0.000
#> GSM52578     4  0.1745      0.670 0.068 0.000 0.000 0.920 0.000 0.012
#> GSM52579     4  0.1327      0.686 0.000 0.000 0.000 0.936 0.000 0.064
#> GSM52580     1  0.3023      0.791 0.784 0.000 0.000 0.212 0.004 0.000
#> GSM52581     1  0.3062      0.817 0.816 0.000 0.000 0.160 0.024 0.000
#> GSM52582     1  0.1049      0.877 0.960 0.000 0.000 0.032 0.008 0.000
#> GSM52583     1  0.0622      0.872 0.980 0.000 0.000 0.012 0.008 0.000
#> GSM52584     1  0.2572      0.842 0.852 0.000 0.000 0.136 0.012 0.000
#> GSM52585     1  0.3950      0.700 0.696 0.000 0.000 0.276 0.028 0.000
#> GSM52586     1  0.4571      0.294 0.536 0.000 0.004 0.432 0.028 0.000
#> GSM52587     4  0.1327      0.686 0.000 0.000 0.000 0.936 0.000 0.064
#> GSM52588     1  0.1863      0.858 0.920 0.000 0.004 0.016 0.060 0.000
#> GSM52589     1  0.1958      0.859 0.896 0.000 0.004 0.100 0.000 0.000
#> GSM52590     1  0.3777      0.780 0.820 0.032 0.048 0.008 0.092 0.000
#> GSM52591     1  0.0865      0.875 0.964 0.000 0.000 0.036 0.000 0.000
#> GSM52592     1  0.1769      0.860 0.924 0.000 0.004 0.012 0.060 0.000
#> GSM52593     1  0.0937      0.874 0.960 0.000 0.000 0.040 0.000 0.000
#> GSM52594     1  0.0458      0.872 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM52595     1  0.0458      0.872 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM52596     1  0.0458      0.872 0.984 0.000 0.000 0.016 0.000 0.000
#> GSM52597     1  0.3424      0.778 0.772 0.000 0.000 0.204 0.024 0.000
#> GSM52598     1  0.1769      0.856 0.924 0.000 0.004 0.012 0.060 0.000
#> GSM52599     1  0.2266      0.857 0.880 0.000 0.000 0.108 0.012 0.000
#> GSM52600     1  0.1434      0.876 0.940 0.000 0.000 0.048 0.012 0.000
#> GSM52601     1  0.0993      0.875 0.964 0.000 0.000 0.024 0.012 0.000
#> GSM52602     3  0.0972      0.942 0.008 0.000 0.964 0.000 0.028 0.000
#> GSM52603     3  0.1116      0.940 0.008 0.000 0.960 0.004 0.028 0.000
#> GSM52604     3  0.0891      0.943 0.008 0.000 0.968 0.000 0.024 0.000
#> GSM52605     3  0.0260      0.949 0.000 0.000 0.992 0.000 0.008 0.000
#> GSM52606     3  0.1387      0.939 0.000 0.000 0.932 0.000 0.068 0.000
#> GSM52607     3  0.1387      0.939 0.000 0.000 0.932 0.000 0.068 0.000
#> GSM52608     3  0.1387      0.939 0.000 0.000 0.932 0.000 0.068 0.000
#> GSM52609     3  0.1387      0.939 0.000 0.000 0.932 0.000 0.068 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) tissue(p) k
#> ATC:mclust 54         2.67e-10  1.64e-04 2
#> ATC:mclust 53         3.73e-10  1.73e-05 3
#> ATC:mclust 53         9.68e-09  4.34e-07 4
#> ATC:mclust 53         5.85e-09  4.97e-10 5
#> ATC:mclust 51         5.55e-09  1.10e-12 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 21168 rows and 54 columns.
#>   Top rows (1000, 2000, 3000, 4000, 5000) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.961           0.925       0.973         0.3081 0.717   0.717
#> 3 3 0.715           0.835       0.929         0.8170 0.697   0.587
#> 4 4 0.755           0.814       0.900         0.2488 0.753   0.506
#> 5 5 0.716           0.754       0.854         0.0637 0.924   0.767
#> 6 6 0.642           0.511       0.750         0.0618 0.945   0.808

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM52556     2  0.0672    0.97112 0.008 0.992
#> GSM52557     1  0.8386    0.61679 0.732 0.268
#> GSM52558     1  0.0000    0.97013 1.000 0.000
#> GSM52559     2  0.6623    0.78326 0.172 0.828
#> GSM52560     2  0.0000    0.97461 0.000 1.000
#> GSM52561     1  0.0000    0.97013 1.000 0.000
#> GSM52562     1  1.0000   -0.00743 0.500 0.500
#> GSM52563     2  0.0938    0.96838 0.012 0.988
#> GSM52564     1  0.0000    0.97013 1.000 0.000
#> GSM52565     2  0.0000    0.97461 0.000 1.000
#> GSM52566     1  0.9996    0.03947 0.512 0.488
#> GSM52567     2  0.0000    0.97461 0.000 1.000
#> GSM52568     2  0.0000    0.97461 0.000 1.000
#> GSM52569     2  0.0000    0.97461 0.000 1.000
#> GSM52570     2  0.0000    0.97461 0.000 1.000
#> GSM52571     1  0.0000    0.97013 1.000 0.000
#> GSM52572     1  0.0000    0.97013 1.000 0.000
#> GSM52573     1  0.0000    0.97013 1.000 0.000
#> GSM52574     1  0.0000    0.97013 1.000 0.000
#> GSM52575     1  0.0000    0.97013 1.000 0.000
#> GSM52576     1  0.0000    0.97013 1.000 0.000
#> GSM52577     1  0.0000    0.97013 1.000 0.000
#> GSM52578     1  0.0000    0.97013 1.000 0.000
#> GSM52579     1  0.0000    0.97013 1.000 0.000
#> GSM52580     1  0.0000    0.97013 1.000 0.000
#> GSM52581     1  0.0000    0.97013 1.000 0.000
#> GSM52582     1  0.0000    0.97013 1.000 0.000
#> GSM52583     1  0.0000    0.97013 1.000 0.000
#> GSM52584     1  0.0000    0.97013 1.000 0.000
#> GSM52585     1  0.0000    0.97013 1.000 0.000
#> GSM52586     1  0.0000    0.97013 1.000 0.000
#> GSM52587     1  0.0000    0.97013 1.000 0.000
#> GSM52588     1  0.0000    0.97013 1.000 0.000
#> GSM52589     1  0.0000    0.97013 1.000 0.000
#> GSM52590     1  0.0000    0.97013 1.000 0.000
#> GSM52591     1  0.0000    0.97013 1.000 0.000
#> GSM52592     1  0.0000    0.97013 1.000 0.000
#> GSM52593     1  0.0000    0.97013 1.000 0.000
#> GSM52594     1  0.0000    0.97013 1.000 0.000
#> GSM52595     1  0.0000    0.97013 1.000 0.000
#> GSM52596     1  0.0000    0.97013 1.000 0.000
#> GSM52597     1  0.0000    0.97013 1.000 0.000
#> GSM52598     1  0.0000    0.97013 1.000 0.000
#> GSM52599     1  0.0000    0.97013 1.000 0.000
#> GSM52600     1  0.0000    0.97013 1.000 0.000
#> GSM52601     1  0.0000    0.97013 1.000 0.000
#> GSM52602     1  0.0000    0.97013 1.000 0.000
#> GSM52603     1  0.0000    0.97013 1.000 0.000
#> GSM52604     1  0.0000    0.97013 1.000 0.000
#> GSM52605     1  0.0000    0.97013 1.000 0.000
#> GSM52606     1  0.0000    0.97013 1.000 0.000
#> GSM52607     1  0.0000    0.97013 1.000 0.000
#> GSM52608     1  0.0000    0.97013 1.000 0.000
#> GSM52609     1  0.0000    0.97013 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM52556     3  0.5291      0.531 0.000 0.268 0.732
#> GSM52557     3  0.0237      0.867 0.000 0.004 0.996
#> GSM52558     3  0.1411      0.847 0.000 0.036 0.964
#> GSM52559     3  0.0424      0.866 0.000 0.008 0.992
#> GSM52560     2  0.6204      0.375 0.000 0.576 0.424
#> GSM52561     3  0.0592      0.867 0.012 0.000 0.988
#> GSM52562     3  0.1031      0.857 0.000 0.024 0.976
#> GSM52563     2  0.5988      0.463 0.000 0.632 0.368
#> GSM52564     1  0.6204      0.213 0.576 0.000 0.424
#> GSM52565     2  0.0000      0.859 0.000 1.000 0.000
#> GSM52566     3  0.0000      0.867 0.000 0.000 1.000
#> GSM52567     2  0.0000      0.859 0.000 1.000 0.000
#> GSM52568     2  0.0000      0.859 0.000 1.000 0.000
#> GSM52569     2  0.0000      0.859 0.000 1.000 0.000
#> GSM52570     2  0.0000      0.859 0.000 1.000 0.000
#> GSM52571     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52572     1  0.0237      0.933 0.996 0.000 0.004
#> GSM52573     1  0.4452      0.780 0.808 0.000 0.192
#> GSM52574     1  0.4605      0.766 0.796 0.000 0.204
#> GSM52575     1  0.3038      0.865 0.896 0.000 0.104
#> GSM52576     1  0.0237      0.933 0.996 0.000 0.004
#> GSM52577     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52578     3  0.6095      0.364 0.392 0.000 0.608
#> GSM52579     3  0.0000      0.867 0.000 0.000 1.000
#> GSM52580     1  0.0237      0.933 0.996 0.000 0.004
#> GSM52581     1  0.0592      0.929 0.988 0.000 0.012
#> GSM52582     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52583     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52584     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52585     1  0.1753      0.904 0.952 0.000 0.048
#> GSM52586     1  0.2066      0.895 0.940 0.000 0.060
#> GSM52587     3  0.0592      0.867 0.012 0.000 0.988
#> GSM52588     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52589     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52590     1  0.0592      0.930 0.988 0.012 0.000
#> GSM52591     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52592     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52593     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52594     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52595     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52596     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52597     1  0.0747      0.926 0.984 0.000 0.016
#> GSM52598     1  0.0237      0.933 0.996 0.000 0.004
#> GSM52599     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52600     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52601     1  0.0000      0.934 1.000 0.000 0.000
#> GSM52602     1  0.3619      0.837 0.864 0.000 0.136
#> GSM52603     1  0.5919      0.643 0.712 0.012 0.276
#> GSM52604     1  0.4654      0.762 0.792 0.000 0.208
#> GSM52605     1  0.4654      0.763 0.792 0.000 0.208
#> GSM52606     3  0.2165      0.845 0.064 0.000 0.936
#> GSM52607     3  0.3116      0.806 0.108 0.000 0.892
#> GSM52608     3  0.3267      0.797 0.116 0.000 0.884
#> GSM52609     3  0.2448      0.837 0.076 0.000 0.924

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM52556     2  0.6373   0.529984 0.000 0.636 0.116 0.248
#> GSM52557     4  0.1211   0.899097 0.000 0.000 0.040 0.960
#> GSM52558     4  0.2124   0.849194 0.068 0.000 0.008 0.924
#> GSM52559     4  0.2271   0.884943 0.000 0.008 0.076 0.916
#> GSM52560     4  0.4910   0.593902 0.000 0.276 0.020 0.704
#> GSM52561     4  0.1635   0.880016 0.044 0.000 0.008 0.948
#> GSM52562     4  0.1305   0.899386 0.000 0.004 0.036 0.960
#> GSM52563     2  0.3583   0.754314 0.000 0.816 0.004 0.180
#> GSM52564     1  0.4401   0.641020 0.724 0.000 0.004 0.272
#> GSM52565     2  0.0000   0.902563 0.000 1.000 0.000 0.000
#> GSM52566     4  0.2081   0.883592 0.000 0.000 0.084 0.916
#> GSM52567     2  0.0000   0.902563 0.000 1.000 0.000 0.000
#> GSM52568     2  0.0524   0.898890 0.000 0.988 0.004 0.008
#> GSM52569     2  0.0000   0.902563 0.000 1.000 0.000 0.000
#> GSM52570     2  0.0000   0.902563 0.000 1.000 0.000 0.000
#> GSM52571     1  0.4401   0.635455 0.724 0.000 0.272 0.004
#> GSM52572     1  0.0779   0.907628 0.980 0.000 0.004 0.016
#> GSM52573     3  0.1209   0.833333 0.032 0.000 0.964 0.004
#> GSM52574     3  0.1302   0.831987 0.044 0.000 0.956 0.000
#> GSM52575     3  0.2714   0.791986 0.112 0.000 0.884 0.004
#> GSM52576     3  0.5168   0.000486 0.492 0.000 0.504 0.004
#> GSM52577     1  0.2271   0.895365 0.916 0.000 0.076 0.008
#> GSM52578     1  0.7520   0.217201 0.492 0.000 0.228 0.280
#> GSM52579     4  0.2546   0.876479 0.008 0.000 0.092 0.900
#> GSM52580     1  0.1305   0.896946 0.960 0.000 0.004 0.036
#> GSM52581     1  0.1305   0.896310 0.960 0.000 0.004 0.036
#> GSM52582     1  0.0817   0.913165 0.976 0.000 0.024 0.000
#> GSM52583     1  0.1118   0.912326 0.964 0.000 0.036 0.000
#> GSM52584     1  0.0000   0.910369 1.000 0.000 0.000 0.000
#> GSM52585     1  0.2466   0.857409 0.900 0.000 0.004 0.096
#> GSM52586     1  0.2714   0.844819 0.884 0.000 0.004 0.112
#> GSM52587     4  0.1706   0.885367 0.036 0.000 0.016 0.948
#> GSM52588     1  0.2888   0.848921 0.872 0.000 0.124 0.004
#> GSM52589     1  0.1902   0.903788 0.932 0.000 0.064 0.004
#> GSM52590     3  0.6344   0.596053 0.208 0.124 0.664 0.004
#> GSM52591     1  0.0804   0.911882 0.980 0.000 0.012 0.008
#> GSM52592     1  0.1305   0.912163 0.960 0.000 0.036 0.004
#> GSM52593     1  0.1474   0.908076 0.948 0.000 0.052 0.000
#> GSM52594     1  0.1211   0.911719 0.960 0.000 0.040 0.000
#> GSM52595     1  0.1474   0.908691 0.948 0.000 0.052 0.000
#> GSM52596     1  0.1302   0.910678 0.956 0.000 0.044 0.000
#> GSM52597     1  0.1489   0.892038 0.952 0.000 0.004 0.044
#> GSM52598     1  0.1388   0.910905 0.960 0.000 0.028 0.012
#> GSM52599     1  0.1022   0.913333 0.968 0.000 0.032 0.000
#> GSM52600     1  0.1716   0.902343 0.936 0.000 0.064 0.000
#> GSM52601     1  0.0376   0.910405 0.992 0.000 0.004 0.004
#> GSM52602     3  0.2266   0.811309 0.084 0.000 0.912 0.004
#> GSM52603     3  0.1118   0.833133 0.036 0.000 0.964 0.000
#> GSM52604     3  0.0817   0.831226 0.024 0.000 0.976 0.000
#> GSM52605     3  0.1118   0.833652 0.036 0.000 0.964 0.000
#> GSM52606     3  0.4262   0.620058 0.008 0.000 0.756 0.236
#> GSM52607     3  0.2342   0.787051 0.008 0.000 0.912 0.080
#> GSM52608     3  0.2271   0.791164 0.008 0.000 0.916 0.076
#> GSM52609     3  0.3626   0.682709 0.004 0.000 0.812 0.184

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM52556     2  0.5462      0.365 0.000 0.532 0.420 0.024 0.024
#> GSM52557     4  0.0798      0.881 0.000 0.000 0.016 0.976 0.008
#> GSM52558     4  0.1799      0.871 0.012 0.000 0.028 0.940 0.020
#> GSM52559     4  0.1117      0.878 0.000 0.000 0.016 0.964 0.020
#> GSM52560     4  0.1518      0.859 0.000 0.048 0.004 0.944 0.004
#> GSM52561     4  0.5159      0.749 0.084 0.000 0.188 0.712 0.016
#> GSM52562     4  0.0579      0.878 0.000 0.000 0.008 0.984 0.008
#> GSM52563     2  0.3264      0.800 0.000 0.820 0.164 0.016 0.000
#> GSM52564     1  0.4534      0.738 0.764 0.000 0.164 0.056 0.016
#> GSM52565     2  0.0000      0.898 0.000 1.000 0.000 0.000 0.000
#> GSM52566     4  0.3318      0.815 0.000 0.000 0.180 0.808 0.012
#> GSM52567     2  0.0000      0.898 0.000 1.000 0.000 0.000 0.000
#> GSM52568     2  0.0451      0.896 0.000 0.988 0.008 0.004 0.000
#> GSM52569     2  0.0404      0.895 0.000 0.988 0.012 0.000 0.000
#> GSM52570     2  0.0000      0.898 0.000 1.000 0.000 0.000 0.000
#> GSM52571     1  0.4494      0.482 0.608 0.000 0.012 0.000 0.380
#> GSM52572     1  0.0771      0.879 0.976 0.000 0.020 0.000 0.004
#> GSM52573     5  0.4522      0.475 0.024 0.000 0.316 0.000 0.660
#> GSM52574     5  0.4800      0.336 0.028 0.000 0.368 0.000 0.604
#> GSM52575     5  0.3454      0.744 0.064 0.000 0.100 0.000 0.836
#> GSM52576     1  0.5518      0.362 0.544 0.000 0.072 0.000 0.384
#> GSM52577     1  0.3141      0.806 0.832 0.000 0.152 0.000 0.016
#> GSM52578     3  0.3944      0.447 0.212 0.000 0.764 0.004 0.020
#> GSM52579     3  0.3857      0.510 0.048 0.000 0.812 0.132 0.008
#> GSM52580     1  0.1908      0.854 0.908 0.000 0.092 0.000 0.000
#> GSM52581     1  0.1894      0.859 0.920 0.000 0.072 0.000 0.008
#> GSM52582     1  0.1168      0.880 0.960 0.000 0.032 0.000 0.008
#> GSM52583     1  0.1041      0.880 0.964 0.000 0.004 0.000 0.032
#> GSM52584     1  0.1117      0.880 0.964 0.000 0.016 0.000 0.020
#> GSM52585     1  0.2927      0.835 0.880 0.000 0.080 0.020 0.020
#> GSM52586     1  0.3871      0.790 0.824 0.000 0.040 0.112 0.024
#> GSM52587     4  0.4715      0.783 0.060 0.000 0.188 0.740 0.012
#> GSM52588     1  0.3562      0.766 0.788 0.000 0.016 0.000 0.196
#> GSM52589     1  0.4629      0.640 0.688 0.000 0.020 0.012 0.280
#> GSM52590     5  0.2464      0.675 0.092 0.004 0.012 0.000 0.892
#> GSM52591     1  0.0000      0.879 1.000 0.000 0.000 0.000 0.000
#> GSM52592     1  0.1872      0.868 0.928 0.000 0.020 0.000 0.052
#> GSM52593     1  0.1168      0.880 0.960 0.000 0.008 0.000 0.032
#> GSM52594     1  0.1117      0.880 0.964 0.000 0.020 0.000 0.016
#> GSM52595     1  0.1485      0.879 0.948 0.000 0.032 0.000 0.020
#> GSM52596     1  0.1106      0.881 0.964 0.000 0.012 0.000 0.024
#> GSM52597     1  0.1701      0.872 0.944 0.000 0.028 0.012 0.016
#> GSM52598     1  0.4970      0.691 0.708 0.000 0.024 0.040 0.228
#> GSM52599     1  0.0912      0.879 0.972 0.000 0.012 0.000 0.016
#> GSM52600     1  0.2331      0.856 0.900 0.000 0.020 0.000 0.080
#> GSM52601     1  0.0404      0.879 0.988 0.000 0.012 0.000 0.000
#> GSM52602     5  0.2228      0.754 0.048 0.000 0.040 0.000 0.912
#> GSM52603     5  0.2228      0.694 0.012 0.000 0.004 0.076 0.908
#> GSM52604     5  0.2526      0.746 0.012 0.000 0.080 0.012 0.896
#> GSM52605     5  0.3399      0.707 0.020 0.000 0.168 0.000 0.812
#> GSM52606     3  0.3777      0.634 0.004 0.000 0.784 0.020 0.192
#> GSM52607     3  0.4353      0.540 0.004 0.000 0.660 0.008 0.328
#> GSM52608     3  0.4537      0.404 0.000 0.000 0.592 0.012 0.396
#> GSM52609     3  0.4508      0.616 0.004 0.000 0.708 0.032 0.256

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM52556     2  0.6333     0.4485 0.000 0.456 0.296 0.232 0.008 0.008
#> GSM52557     6  0.1434     0.7771 0.000 0.000 0.000 0.048 0.012 0.940
#> GSM52558     6  0.1812     0.7692 0.004 0.000 0.008 0.060 0.004 0.924
#> GSM52559     6  0.1635     0.7748 0.000 0.000 0.020 0.020 0.020 0.940
#> GSM52560     6  0.2554     0.7497 0.000 0.032 0.044 0.024 0.004 0.896
#> GSM52561     6  0.6343     0.3254 0.092 0.000 0.072 0.392 0.000 0.444
#> GSM52562     6  0.0405     0.7749 0.000 0.000 0.000 0.004 0.008 0.988
#> GSM52563     2  0.4834     0.6881 0.000 0.656 0.064 0.268 0.004 0.008
#> GSM52564     4  0.4965     0.0000 0.368 0.000 0.012 0.576 0.004 0.040
#> GSM52565     2  0.0000     0.8389 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52566     6  0.4928     0.6500 0.000 0.000 0.068 0.268 0.016 0.648
#> GSM52567     2  0.0000     0.8389 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM52568     2  0.3481     0.7429 0.000 0.772 0.004 0.208 0.004 0.012
#> GSM52569     2  0.0520     0.8365 0.000 0.984 0.000 0.008 0.008 0.000
#> GSM52570     2  0.0146     0.8387 0.000 0.996 0.004 0.000 0.000 0.000
#> GSM52571     1  0.4938     0.2951 0.568 0.000 0.000 0.076 0.356 0.000
#> GSM52572     1  0.3795     0.5208 0.788 0.000 0.096 0.112 0.004 0.000
#> GSM52573     3  0.4118     0.2503 0.008 0.000 0.592 0.004 0.396 0.000
#> GSM52574     3  0.4178     0.1774 0.008 0.000 0.560 0.004 0.428 0.000
#> GSM52575     5  0.4950     0.3546 0.036 0.000 0.348 0.024 0.592 0.000
#> GSM52576     1  0.6731    -0.1611 0.380 0.000 0.376 0.052 0.192 0.000
#> GSM52577     3  0.5232    -0.0433 0.428 0.000 0.504 0.052 0.012 0.004
#> GSM52578     3  0.4354     0.3135 0.240 0.000 0.692 0.068 0.000 0.000
#> GSM52579     3  0.5288     0.3570 0.156 0.000 0.680 0.128 0.004 0.032
#> GSM52580     1  0.4467     0.3086 0.712 0.000 0.092 0.192 0.004 0.000
#> GSM52581     1  0.4074     0.4166 0.740 0.000 0.028 0.212 0.020 0.000
#> GSM52582     1  0.3270     0.5798 0.844 0.000 0.040 0.088 0.028 0.000
#> GSM52583     1  0.3427     0.5932 0.840 0.000 0.044 0.060 0.056 0.000
#> GSM52584     1  0.1708     0.6220 0.932 0.000 0.040 0.024 0.004 0.000
#> GSM52585     1  0.3953     0.4684 0.788 0.000 0.092 0.108 0.004 0.008
#> GSM52586     1  0.5412     0.2423 0.680 0.000 0.052 0.112 0.004 0.152
#> GSM52587     6  0.5942     0.4066 0.056 0.000 0.068 0.404 0.000 0.472
#> GSM52588     1  0.5121     0.3618 0.608 0.000 0.004 0.104 0.284 0.000
#> GSM52589     1  0.6159     0.2164 0.592 0.000 0.028 0.056 0.256 0.068
#> GSM52590     5  0.2882     0.5527 0.120 0.004 0.000 0.028 0.848 0.000
#> GSM52591     1  0.1116     0.6206 0.960 0.000 0.008 0.028 0.004 0.000
#> GSM52592     1  0.4154     0.5525 0.776 0.000 0.024 0.116 0.084 0.000
#> GSM52593     1  0.2918     0.6075 0.856 0.000 0.004 0.052 0.088 0.000
#> GSM52594     1  0.1693     0.6178 0.936 0.000 0.032 0.020 0.012 0.000
#> GSM52595     1  0.3038     0.6036 0.856 0.000 0.012 0.060 0.072 0.000
#> GSM52596     1  0.2462     0.6207 0.892 0.000 0.012 0.032 0.064 0.000
#> GSM52597     1  0.3928     0.5099 0.760 0.000 0.020 0.192 0.028 0.000
#> GSM52598     1  0.6277     0.2262 0.524 0.000 0.004 0.168 0.272 0.032
#> GSM52599     1  0.1116     0.6282 0.960 0.000 0.004 0.028 0.008 0.000
#> GSM52600     1  0.4849     0.4100 0.648 0.000 0.000 0.112 0.240 0.000
#> GSM52601     1  0.2288     0.6159 0.900 0.000 0.016 0.068 0.016 0.000
#> GSM52602     5  0.2566     0.7292 0.008 0.000 0.112 0.012 0.868 0.000
#> GSM52603     5  0.3617     0.6731 0.008 0.000 0.036 0.040 0.832 0.084
#> GSM52604     5  0.2632     0.7138 0.000 0.000 0.164 0.004 0.832 0.000
#> GSM52605     5  0.3802     0.6526 0.000 0.000 0.208 0.044 0.748 0.000
#> GSM52606     3  0.3485     0.5230 0.032 0.000 0.824 0.020 0.120 0.004
#> GSM52607     3  0.3838     0.4667 0.000 0.000 0.732 0.020 0.240 0.008
#> GSM52608     3  0.3772     0.4214 0.000 0.000 0.692 0.004 0.296 0.008
#> GSM52609     3  0.3056     0.5159 0.012 0.000 0.820 0.000 0.160 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) tissue(p) k
#> ATC:NMF 52         1.22e-07  1.14e-04 2
#> ATC:NMF 50         9.75e-08  6.52e-07 3
#> ATC:NMF 52         1.20e-08  9.11e-07 4
#> ATC:NMF 47         9.98e-08  1.18e-07 5
#> ATC:NMF 32         1.91e-06  6.28e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0