cola Report for GDS1059

Date: 2019-12-25 20:17:11 CET, cola version: 1.3.2

Document is loading...


Summary

All available functions which can be applied to this res_list object:

res_list
#> A 'ConsensusPartitionList' object with 24 methods.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows are extracted by 'SD, CV, MAD, ATC' methods.
#>   Subgroups are detected by 'hclust, kmeans, skmeans, pam, mclust, NMF' method.
#>   Number of partitions are tried for k = 2, 3, 4, 5, 6.
#>   Performed in total 30000 partitions by row resampling.
#> 
#> Following methods can be applied to this 'ConsensusPartitionList' object:
#>  [1] "cola_report"           "collect_classes"       "collect_plots"         "collect_stats"        
#>  [5] "colnames"              "functional_enrichment" "get_anno_col"          "get_anno"             
#>  [9] "get_classes"           "get_matrix"            "get_membership"        "get_stats"            
#> [13] "is_best_k"             "is_stable_k"           "ncol"                  "nrow"                 
#> [17] "rownames"              "show"                  "suggest_best_k"        "test_to_known_factors"
#> [21] "top_rows_heatmap"      "top_rows_overlap"     
#> 
#> You can get result for a single method by, e.g. object["SD", "hclust"] or object["SD:hclust"]
#> or a subset of methods by object[c("SD", "CV")], c("hclust", "kmeans")]

The call of run_all_consensus_partition_methods() was:

#> run_all_consensus_partition_methods(data = mat, mc.cores = 4, anno = anno)

Dimension of the input matrix:

mat = get_matrix(res_list)
dim(mat)
#> [1] 7957   58

Density distribution

The density distribution for each sample is visualized as in one column in the following heatmap. The clustering is based on the distance which is the Kolmogorov-Smirnov statistic between two distributions.

library(ComplexHeatmap)
densityHeatmap(mat, top_annotation = HeatmapAnnotation(df = get_anno(res_list), 
    col = get_anno_col(res_list)), ylab = "value", cluster_columns = TRUE, show_column_names = FALSE,
    mc.cores = 4)

plot of chunk density-heatmap

Suggest the best k

Folowing table shows the best k (number of partitions) for each combination of top-value methods and partition methods. Clicking on the method name in the table goes to the section for a single combination of methods.

The cola vignette explains the definition of the metrics used for determining the best number of partitions.

suggest_best_k(res_list)
The best k 1-PAC Mean silhouette Concordance Optional k
ATC:kmeans 2 1.000 0.963 0.987 **
ATC:pam 2 1.000 0.990 0.996 **
ATC:NMF 2 0.966 0.962 0.983 **
SD:pam 2 0.964 0.941 0.976 **
CV:pam 2 0.963 0.936 0.966 **
SD:mclust 3 0.944 0.931 0.961 *
MAD:mclust 3 0.939 0.931 0.964 *
ATC:skmeans 3 0.935 0.918 0.965 * 2
MAD:pam 2 0.928 0.931 0.973 *
CV:skmeans 3 0.896 0.896 0.954
SD:skmeans 3 0.890 0.913 0.962
MAD:skmeans 3 0.886 0.921 0.964
CV:mclust 3 0.877 0.934 0.961
SD:kmeans 3 0.820 0.847 0.918
CV:NMF 3 0.756 0.833 0.925
MAD:NMF 3 0.730 0.852 0.931
SD:NMF 3 0.719 0.841 0.933
MAD:kmeans 3 0.714 0.831 0.896
CV:kmeans 3 0.688 0.808 0.904
ATC:mclust 4 0.622 0.746 0.860
CV:hclust 5 0.478 0.619 0.744
ATC:hclust 3 0.414 0.633 0.815
MAD:hclust 4 0.362 0.578 0.746
SD:hclust 3 0.196 0.503 0.688

**: 1-PAC > 0.95, *: 1-PAC > 0.9

CDF of consensus matrices

Cumulative distribution function curves of consensus matrix for all methods.

collect_plots(res_list, fun = plot_ecdf)

plot of chunk collect-plots

Consensus heatmap

Consensus heatmaps for all methods. (What is a consensus heatmap?)

collect_plots(res_list, k = 2, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-1

collect_plots(res_list, k = 3, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-2

collect_plots(res_list, k = 4, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-3

collect_plots(res_list, k = 5, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-4

collect_plots(res_list, k = 6, fun = consensus_heatmap, mc.cores = 4)

plot of chunk tab-collect-consensus-heatmap-5

Membership heatmap

Membership heatmaps for all methods. (What is a membership heatmap?)

collect_plots(res_list, k = 2, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-1

collect_plots(res_list, k = 3, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-2

collect_plots(res_list, k = 4, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-3

collect_plots(res_list, k = 5, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-4

collect_plots(res_list, k = 6, fun = membership_heatmap, mc.cores = 4)

plot of chunk tab-collect-membership-heatmap-5

Signature heatmap

Signature heatmaps for all methods. (What is a signature heatmap?)

Note in following heatmaps, rows are scaled.

collect_plots(res_list, k = 2, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-1

collect_plots(res_list, k = 3, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-2

collect_plots(res_list, k = 4, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-3

collect_plots(res_list, k = 5, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-4

collect_plots(res_list, k = 6, fun = get_signatures, mc.cores = 4)

plot of chunk tab-collect-get-signatures-5

Statistics table

The statistics used for measuring the stability of consensus partitioning. (How are they defined?)

get_stats(res_list, k = 2)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      2 0.405           0.743       0.863          0.451 0.552   0.552
#> CV:NMF      2 0.355           0.772       0.870          0.463 0.564   0.564
#> MAD:NMF     2 0.322           0.665       0.801          0.488 0.506   0.506
#> ATC:NMF     2 0.966           0.962       0.983          0.391 0.610   0.610
#> SD:skmeans  2 0.318           0.565       0.808          0.501 0.501   0.501
#> CV:skmeans  2 0.321           0.564       0.814          0.499 0.501   0.501
#> MAD:skmeans 2 0.492           0.756       0.886          0.503 0.501   0.501
#> ATC:skmeans 2 0.999           0.949       0.980          0.497 0.506   0.506
#> SD:mclust   2 0.460           0.844       0.903          0.349 0.610   0.610
#> CV:mclust   2 0.332           0.798       0.861          0.368 0.610   0.610
#> MAD:mclust  2 0.403           0.859       0.889          0.368 0.610   0.610
#> ATC:mclust  2 0.762           0.860       0.937          0.274 0.710   0.710
#> SD:kmeans   2 0.252           0.634       0.768          0.422 0.687   0.687
#> CV:kmeans   2 0.246           0.684       0.830          0.416 0.687   0.687
#> MAD:kmeans  2 0.258           0.495       0.704          0.446 0.627   0.627
#> ATC:kmeans  2 1.000           0.963       0.987          0.337 0.666   0.666
#> SD:pam      2 0.964           0.941       0.976          0.248 0.758   0.758
#> CV:pam      2 0.963           0.936       0.966          0.252 0.733   0.733
#> MAD:pam     2 0.928           0.931       0.973          0.272 0.733   0.733
#> ATC:pam     2 1.000           0.990       0.996          0.266 0.733   0.733
#> SD:hclust   2 0.258           0.723       0.854          0.253 0.784   0.784
#> CV:hclust   2 0.264           0.570       0.807          0.353 0.646   0.646
#> MAD:hclust  2 0.249           0.694       0.840          0.247 0.900   0.900
#> ATC:hclust  2 0.731           0.907       0.955          0.333 0.687   0.687
get_stats(res_list, k = 3)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      3 0.719           0.841       0.933          0.463 0.675   0.463
#> CV:NMF      3 0.756           0.833       0.925          0.429 0.683   0.479
#> MAD:NMF     3 0.730           0.852       0.931          0.358 0.659   0.421
#> ATC:NMF     3 0.657           0.761       0.895          0.539 0.745   0.596
#> SD:skmeans  3 0.890           0.913       0.962          0.343 0.658   0.416
#> CV:skmeans  3 0.896           0.896       0.954          0.347 0.658   0.416
#> MAD:skmeans 3 0.886           0.921       0.964          0.334 0.658   0.416
#> ATC:skmeans 3 0.935           0.918       0.965          0.311 0.792   0.609
#> SD:mclust   3 0.944           0.931       0.961          0.539 0.538   0.399
#> CV:mclust   3 0.877           0.934       0.961          0.482 0.538   0.399
#> MAD:mclust  3 0.939           0.931       0.964          0.479 0.542   0.400
#> ATC:mclust  3 0.367           0.497       0.709          0.958 0.681   0.576
#> SD:kmeans   3 0.820           0.847       0.918          0.480 0.652   0.509
#> CV:kmeans   3 0.688           0.808       0.904          0.503 0.652   0.509
#> MAD:kmeans  3 0.714           0.831       0.896          0.412 0.687   0.517
#> ATC:kmeans  3 0.595           0.761       0.880          0.766 0.687   0.548
#> SD:pam      3 0.535           0.709       0.871          1.350 0.623   0.516
#> CV:pam      3 0.365           0.575       0.820          1.290 0.616   0.494
#> MAD:pam     3 0.565           0.756       0.886          1.212 0.570   0.451
#> ATC:pam     3 0.473           0.607       0.783          1.058 0.691   0.579
#> SD:hclust   3 0.196           0.503       0.688          1.047 0.560   0.457
#> CV:hclust   3 0.213           0.385       0.719          0.357 0.784   0.687
#> MAD:hclust  3 0.147           0.494       0.686          1.206 0.525   0.482
#> ATC:hclust  3 0.414           0.633       0.815          0.628 0.670   0.533
get_stats(res_list, k = 4)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      4 0.631           0.690       0.849          0.121 0.835   0.572
#> CV:NMF      4 0.659           0.706       0.843          0.117 0.869   0.648
#> MAD:NMF     4 0.655           0.677       0.845          0.119 0.868   0.640
#> ATC:NMF     4 0.661           0.789       0.888          0.143 0.815   0.591
#> SD:skmeans  4 0.645           0.703       0.843          0.118 0.882   0.661
#> CV:skmeans  4 0.607           0.677       0.823          0.118 0.915   0.744
#> MAD:skmeans 4 0.660           0.708       0.848          0.121 0.883   0.665
#> ATC:skmeans 4 0.768           0.770       0.901          0.118 0.833   0.577
#> SD:mclust   4 0.669           0.708       0.823          0.248 0.895   0.775
#> CV:mclust   4 0.733           0.788       0.863          0.246 0.822   0.619
#> MAD:mclust  4 0.673           0.710       0.846          0.241 0.815   0.604
#> ATC:mclust  4 0.622           0.746       0.860          0.306 0.659   0.385
#> SD:kmeans   4 0.574           0.479       0.761          0.144 0.940   0.842
#> CV:kmeans   4 0.543           0.507       0.745          0.148 0.907   0.765
#> MAD:kmeans  4 0.579           0.522       0.761          0.139 0.915   0.779
#> ATC:kmeans  4 0.603           0.733       0.834          0.206 0.752   0.460
#> SD:pam      4 0.551           0.634       0.778          0.197 0.771   0.520
#> CV:pam      4 0.643           0.784       0.881          0.230 0.731   0.439
#> MAD:pam     4 0.533           0.673       0.819          0.180 0.894   0.736
#> ATC:pam     4 0.549           0.587       0.827          0.252 0.796   0.571
#> SD:hclust   4 0.319           0.535       0.670          0.200 0.862   0.688
#> CV:hclust   4 0.340           0.562       0.757          0.330 0.712   0.496
#> MAD:hclust  4 0.362           0.578       0.746          0.208 0.851   0.681
#> ATC:hclust  4 0.419           0.505       0.754          0.182 0.883   0.731
get_stats(res_list, k = 5)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      5 0.688           0.640       0.824         0.0812 0.897   0.642
#> CV:NMF      5 0.663           0.629       0.797         0.0811 0.872   0.578
#> MAD:NMF     5 0.669           0.579       0.802         0.0764 0.860   0.541
#> ATC:NMF     5 0.606           0.587       0.792         0.1030 0.871   0.626
#> SD:skmeans  5 0.658           0.623       0.754         0.0647 0.950   0.807
#> CV:skmeans  5 0.623           0.546       0.744         0.0670 0.935   0.756
#> MAD:skmeans 5 0.681           0.600       0.770         0.0653 0.940   0.774
#> ATC:skmeans 5 0.639           0.580       0.736         0.0685 0.855   0.548
#> SD:mclust   5 0.731           0.669       0.845         0.1260 0.868   0.643
#> CV:mclust   5 0.582           0.556       0.714         0.0922 0.895   0.662
#> MAD:mclust  5 0.688           0.718       0.835         0.1148 0.839   0.541
#> ATC:mclust  5 0.630           0.603       0.757         0.0983 0.915   0.710
#> SD:kmeans   5 0.566           0.515       0.710         0.0832 0.887   0.669
#> CV:kmeans   5 0.550           0.469       0.713         0.0798 0.850   0.563
#> MAD:kmeans  5 0.574           0.458       0.708         0.0838 0.849   0.577
#> ATC:kmeans  5 0.711           0.679       0.826         0.0873 0.889   0.624
#> SD:pam      5 0.648           0.635       0.817         0.1151 0.817   0.476
#> CV:pam      5 0.677           0.723       0.778         0.0932 0.890   0.645
#> MAD:pam     5 0.671           0.664       0.821         0.0971 0.881   0.620
#> ATC:pam     5 0.657           0.686       0.855         0.1026 0.822   0.509
#> SD:hclust   5 0.427           0.434       0.683         0.1529 0.822   0.550
#> CV:hclust   5 0.478           0.619       0.744         0.1290 0.920   0.773
#> MAD:hclust  5 0.471           0.461       0.708         0.1191 0.864   0.622
#> ATC:hclust  5 0.484           0.587       0.755         0.0977 0.894   0.718
get_stats(res_list, k = 6)
#>             k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> SD:NMF      6 0.739           0.595       0.788         0.0366 0.927   0.684
#> CV:NMF      6 0.716           0.638       0.788         0.0386 0.909   0.613
#> MAD:NMF     6 0.708           0.553       0.780         0.0391 0.895   0.565
#> ATC:NMF     6 0.571           0.437       0.698         0.0563 0.892   0.600
#> SD:skmeans  6 0.661           0.492       0.719         0.0399 0.989   0.950
#> CV:skmeans  6 0.644           0.425       0.671         0.0385 0.978   0.901
#> MAD:skmeans 6 0.666           0.591       0.740         0.0402 0.953   0.784
#> ATC:skmeans 6 0.684           0.608       0.788         0.0381 0.955   0.806
#> SD:mclust   6 0.761           0.669       0.795         0.0592 0.902   0.628
#> CV:mclust   6 0.630           0.647       0.769         0.0589 0.806   0.383
#> MAD:mclust  6 0.761           0.731       0.797         0.0558 0.941   0.774
#> ATC:mclust  6 0.710           0.588       0.763         0.0647 0.892   0.563
#> SD:kmeans   6 0.619           0.486       0.670         0.0504 0.921   0.698
#> CV:kmeans   6 0.621           0.392       0.640         0.0524 0.840   0.460
#> MAD:kmeans  6 0.638           0.467       0.657         0.0452 0.878   0.565
#> ATC:kmeans  6 0.745           0.595       0.776         0.0443 0.929   0.702
#> SD:pam      6 0.700           0.673       0.806         0.0478 0.920   0.663
#> CV:pam      6 0.762           0.755       0.859         0.0468 0.935   0.725
#> MAD:pam     6 0.731           0.757       0.848         0.0481 0.910   0.628
#> ATC:pam     6 0.669           0.641       0.820         0.0456 0.895   0.603
#> SD:hclust   6 0.506           0.615       0.696         0.0650 0.874   0.583
#> CV:hclust   6 0.532           0.545       0.724         0.0551 0.977   0.920
#> MAD:hclust  6 0.528           0.582       0.743         0.0618 0.920   0.710
#> ATC:hclust  6 0.596           0.273       0.611         0.0691 0.785   0.413

Following heatmap plots the partition for each combination of methods and the lightness correspond to the silhouette scores for samples in each method. On top the consensus subgroup is inferred from all methods by taking the mean silhouette scores as weight.

collect_stats(res_list, k = 2)

plot of chunk tab-collect-stats-from-consensus-partition-list-1

collect_stats(res_list, k = 3)

plot of chunk tab-collect-stats-from-consensus-partition-list-2

collect_stats(res_list, k = 4)

plot of chunk tab-collect-stats-from-consensus-partition-list-3

collect_stats(res_list, k = 5)

plot of chunk tab-collect-stats-from-consensus-partition-list-4

collect_stats(res_list, k = 6)

plot of chunk tab-collect-stats-from-consensus-partition-list-5

Partition from all methods

Collect partitions from all methods:

collect_classes(res_list, k = 2)

plot of chunk tab-collect-classes-from-consensus-partition-list-1

collect_classes(res_list, k = 3)

plot of chunk tab-collect-classes-from-consensus-partition-list-2

collect_classes(res_list, k = 4)

plot of chunk tab-collect-classes-from-consensus-partition-list-3

collect_classes(res_list, k = 5)

plot of chunk tab-collect-classes-from-consensus-partition-list-4

collect_classes(res_list, k = 6)

plot of chunk tab-collect-classes-from-consensus-partition-list-5

Top rows overlap

Overlap of top rows from different top-row methods:

top_rows_overlap(res_list, top_n = 796, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-1

top_rows_overlap(res_list, top_n = 1592, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-2

top_rows_overlap(res_list, top_n = 2387, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-3

top_rows_overlap(res_list, top_n = 3182, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-4

top_rows_overlap(res_list, top_n = 3978, method = "euler")

plot of chunk tab-top-rows-overlap-by-euler-5

Also visualize the correspondance of rankings between different top-row methods:

top_rows_overlap(res_list, top_n = 796, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-1

top_rows_overlap(res_list, top_n = 1592, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-2

top_rows_overlap(res_list, top_n = 2387, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-3

top_rows_overlap(res_list, top_n = 3182, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-4

top_rows_overlap(res_list, top_n = 3978, method = "correspondance")

plot of chunk tab-top-rows-overlap-by-correspondance-5

Heatmaps of the top rows:

top_rows_heatmap(res_list, top_n = 796)

plot of chunk tab-top-rows-heatmap-1

top_rows_heatmap(res_list, top_n = 1592)

plot of chunk tab-top-rows-heatmap-2

top_rows_heatmap(res_list, top_n = 2387)

plot of chunk tab-top-rows-heatmap-3

top_rows_heatmap(res_list, top_n = 3182)

plot of chunk tab-top-rows-heatmap-4

top_rows_heatmap(res_list, top_n = 3978)

plot of chunk tab-top-rows-heatmap-5

Test to known annotations

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res_list, k = 2)
#>              n disease.state(p) other(p) k
#> SD:NMF      54         8.43e-03 1.44e-02 2
#> CV:NMF      53         1.87e-02 3.18e-02 2
#> MAD:NMF     53         5.22e-02 2.89e-02 2
#> ATC:NMF     58         3.53e-03 4.44e-03 2
#> SD:skmeans  36               NA 1.00e-01 2
#> CV:skmeans  41         1.03e-01 9.00e-03 2
#> MAD:skmeans 49         5.97e-02 3.02e-03 2
#> ATC:skmeans 56         6.12e-02 8.71e-02 2
#> SD:mclust   58         3.53e-03 5.72e-03 2
#> CV:mclust   58         3.53e-03 5.72e-03 2
#> MAD:mclust  58         3.53e-03 5.72e-03 2
#> ATC:mclust  52         3.17e-05 2.25e-05 2
#> SD:kmeans   46         1.81e-03 5.12e-04 2
#> CV:kmeans   54         5.32e-04 2.65e-04 2
#> MAD:kmeans  33         3.91e-03 1.97e-03 2
#> ATC:kmeans  57         7.23e-04 2.01e-04 2
#> SD:pam      56         2.52e-06 1.21e-06 2
#> CV:pam      57         1.15e-05 7.82e-06 2
#> MAD:pam     56         1.41e-05 9.91e-06 2
#> ATC:pam     58         3.78e-05 1.94e-05 2
#> SD:hclust   54         4.37e-07 1.50e-07 2
#> CV:hclust   45         4.84e-06 2.77e-06 2
#> MAD:hclust  50               NA 9.79e-01 2
#> ATC:hclust  57         1.36e-04 5.93e-05 2
test_to_known_factors(res_list, k = 3)
#>              n disease.state(p) other(p) k
#> SD:NMF      54         5.21e-04 9.28e-04 3
#> CV:NMF      53         6.17e-04 1.37e-03 3
#> MAD:NMF     56         1.56e-03 1.74e-03 3
#> ATC:NMF     51         3.74e-04 3.30e-04 3
#> SD:skmeans  57         4.04e-03 8.90e-03 3
#> CV:skmeans  56         4.59e-03 1.58e-02 3
#> MAD:skmeans 57         4.04e-03 8.90e-03 3
#> ATC:skmeans 56         1.51e-02 7.19e-02 3
#> SD:mclust   57         4.19e-13 2.62e-11 3
#> CV:mclust   58         2.54e-13 2.01e-11 3
#> MAD:mclust  58         2.54e-13 1.24e-11 3
#> ATC:mclust  46         1.03e-10 2.18e-08 3
#> SD:kmeans   53         2.55e-05 5.85e-05 3
#> CV:kmeans   53         5.19e-06 6.73e-06 3
#> MAD:kmeans  53         5.19e-06 1.28e-05 3
#> ATC:kmeans  52         3.19e-05 8.23e-04 3
#> SD:pam      48         2.33e-07 1.98e-06 3
#> CV:pam      44         8.89e-07 6.45e-06 3
#> MAD:pam     51         8.53e-08 6.79e-07 3
#> ATC:pam     50         5.00e-05 3.66e-04 3
#> SD:hclust   41         1.25e-09 8.15e-08 3
#> CV:hclust   27         9.26e-06 5.89e-06 3
#> MAD:hclust  31               NA 5.33e-01 3
#> ATC:hclust  44         1.92e-04 2.11e-03 3
test_to_known_factors(res_list, k = 4)
#>              n disease.state(p) other(p) k
#> SD:NMF      50         5.87e-04 8.72e-03 4
#> CV:NMF      50         5.87e-04 1.43e-02 4
#> MAD:NMF     48         8.61e-04 1.10e-02 4
#> ATC:NMF     53         2.95e-06 9.37e-05 4
#> SD:skmeans  48         8.30e-03 9.30e-03 4
#> CV:skmeans  49         7.18e-03 1.35e-02 4
#> MAD:skmeans 51         2.76e-03 6.36e-03 4
#> ATC:skmeans 50         1.74e-02 1.19e-02 4
#> SD:mclust   55         6.87e-12 1.18e-10 4
#> CV:mclust   55         6.87e-12 1.78e-09 4
#> MAD:mclust  54         1.12e-11 2.21e-09 4
#> ATC:mclust  51         4.89e-11 5.94e-10 4
#> SD:kmeans   30         1.75e-03 2.29e-04 4
#> CV:kmeans   39         3.76e-05 1.42e-04 4
#> MAD:kmeans  42         8.32e-05 1.15e-04 4
#> ATC:kmeans  52         2.71e-05 5.49e-05 4
#> SD:pam      44         3.87e-06 3.51e-05 4
#> CV:pam      54         1.51e-07 9.26e-07 4
#> MAD:pam     50         5.54e-07 2.17e-06 4
#> ATC:pam     42         3.02e-04 5.94e-04 4
#> SD:hclust   45               NA 7.29e-01 4
#> CV:hclust   41               NA 7.46e-01 4
#> MAD:hclust  50         5.87e-04 1.13e-02 4
#> ATC:hclust  36         1.17e-03 3.99e-03 4
test_to_known_factors(res_list, k = 5)
#>              n disease.state(p) other(p) k
#> SD:NMF      46         1.23e-03 1.07e-02 5
#> CV:NMF      41         3.36e-03 2.64e-03 5
#> MAD:NMF     38         6.11e-03 4.54e-03 5
#> ATC:NMF     41         2.49e-04 1.65e-03 5
#> SD:skmeans  41         7.09e-03 3.28e-02 5
#> CV:skmeans  39         1.16e-02 5.26e-02 5
#> MAD:skmeans 41         7.09e-03 2.47e-02 5
#> ATC:skmeans 40         6.00e-02 1.02e-01 5
#> SD:mclust   46         2.46e-09 1.61e-07 5
#> CV:mclust   45         3.98e-09 6.60e-08 5
#> MAD:mclust  48         9.44e-10 6.22e-08 5
#> ATC:mclust  41         2.69e-08 8.43e-07 5
#> SD:kmeans   31         8.50e-07 2.00e-06 5
#> CV:kmeans   32         5.23e-07 6.08e-06 5
#> MAD:kmeans  27         1.37e-06 4.20e-06 5
#> ATC:kmeans  46         7.10e-06 1.55e-04 5
#> SD:pam      43         1.81e-05 3.77e-04 5
#> CV:pam      53         7.84e-07 2.69e-06 5
#> MAD:pam     51         1.47e-06 1.02e-05 5
#> ATC:pam     50         6.55e-08 9.24e-07 5
#> SD:hclust   30         1.38e-06 3.49e-05 5
#> CV:hclust   50         3.61e-10 1.76e-07 5
#> MAD:hclust  37         2.46e-04 1.63e-03 5
#> ATC:hclust  45         5.42e-04 4.80e-03 5
test_to_known_factors(res_list, k = 6)
#>              n disease.state(p) other(p) k
#> SD:NMF      38         2.40e-03 1.33e-02 6
#> CV:NMF      46         1.23e-03 5.92e-03 6
#> MAD:NMF     33         6.93e-03 3.58e-02 6
#> ATC:NMF     29         1.23e-02 9.43e-03 6
#> SD:skmeans  33         3.32e-02 1.82e-01 6
#> CV:skmeans  28         1.99e-02 2.35e-02 6
#> MAD:skmeans 40         9.12e-03 4.58e-02 6
#> ATC:skmeans 47         6.36e-03 2.53e-02 6
#> SD:mclust   43         1.03e-08 3.45e-07 6
#> CV:mclust   46         9.08e-09 9.54e-07 6
#> MAD:mclust  50         1.39e-09 1.18e-07 6
#> ATC:mclust  42         1.67e-08 3.70e-07 6
#> SD:kmeans   29         7.82e-06 1.06e-05 6
#> CV:kmeans   20         4.54e-05 3.79e-04 6
#> MAD:kmeans  28         3.63e-06 8.04e-06 6
#> ATC:kmeans  45         9.71e-06 1.97e-04 6
#> SD:pam      47         5.68e-09 1.47e-06 6
#> CV:pam      52         5.39e-10 4.01e-08 6
#> MAD:pam     54         2.10e-10 9.86e-09 6
#> ATC:pam     47         5.68e-09 1.20e-07 6
#> SD:hclust   48         3.55e-09 1.23e-06 6
#> CV:hclust   44         6.42e-09 2.16e-06 6
#> MAD:hclust  42         4.01e-09 1.78e-07 6
#> ATC:hclust  20               NA 4.13e-01 6

Results for each method


SD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "hclust"]
# you can also extract it by
# res = res_list["SD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'SD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.258           0.723       0.854          0.253 0.784   0.784
#> 3 3 0.196           0.503       0.688          1.047 0.560   0.457
#> 4 4 0.319           0.535       0.670          0.200 0.862   0.688
#> 5 5 0.427           0.434       0.683          0.153 0.822   0.550
#> 6 6 0.506           0.615       0.696          0.065 0.874   0.583

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.9754      0.668 0.408 0.592
#> GSM39874     2  0.9754      0.668 0.408 0.592
#> GSM39875     2  0.9754      0.668 0.408 0.592
#> GSM39876     2  0.9754      0.668 0.408 0.592
#> GSM39831     1  0.0000      0.814 1.000 0.000
#> GSM39819     1  0.5519      0.791 0.872 0.128
#> GSM39820     1  0.5737      0.788 0.864 0.136
#> GSM39821     1  0.0000      0.814 1.000 0.000
#> GSM39822     1  0.7883      0.684 0.764 0.236
#> GSM39823     1  0.9087      0.514 0.676 0.324
#> GSM39824     1  0.9710      0.251 0.600 0.400
#> GSM39825     1  0.1414      0.817 0.980 0.020
#> GSM39826     1  0.0376      0.815 0.996 0.004
#> GSM39827     1  0.4690      0.805 0.900 0.100
#> GSM39846     1  0.9427      0.406 0.640 0.360
#> GSM39847     1  0.0000      0.814 1.000 0.000
#> GSM39848     2  0.5059      0.588 0.112 0.888
#> GSM39849     1  0.7376      0.727 0.792 0.208
#> GSM39850     1  0.0376      0.815 0.996 0.004
#> GSM39851     1  0.0000      0.814 1.000 0.000
#> GSM39855     2  0.9850      0.462 0.428 0.572
#> GSM39856     1  0.9323      0.446 0.652 0.348
#> GSM39858     1  0.8327      0.643 0.736 0.264
#> GSM39859     1  0.7674      0.708 0.776 0.224
#> GSM39862     1  0.6247      0.652 0.844 0.156
#> GSM39863     1  0.0000      0.814 1.000 0.000
#> GSM39865     1  0.8813      0.569 0.700 0.300
#> GSM39866     1  0.2423      0.821 0.960 0.040
#> GSM39867     1  0.4431      0.797 0.908 0.092
#> GSM39869     1  0.8327      0.611 0.736 0.264
#> GSM39870     1  0.5629      0.789 0.868 0.132
#> GSM39871     1  0.6531      0.768 0.832 0.168
#> GSM39872     1  0.4690      0.792 0.900 0.100
#> GSM39828     1  0.0376      0.814 0.996 0.004
#> GSM39829     1  0.5294      0.797 0.880 0.120
#> GSM39830     1  0.4431      0.809 0.908 0.092
#> GSM39832     1  0.0000      0.814 1.000 0.000
#> GSM39833     1  0.7219      0.745 0.800 0.200
#> GSM39834     1  0.2043      0.820 0.968 0.032
#> GSM39835     1  0.3584      0.799 0.932 0.068
#> GSM39836     1  0.0376      0.815 0.996 0.004
#> GSM39837     1  0.7883      0.684 0.764 0.236
#> GSM39838     1  0.8081      0.663 0.752 0.248
#> GSM39839     1  0.5519      0.791 0.872 0.128
#> GSM39840     1  0.0000      0.814 1.000 0.000
#> GSM39841     1  0.1843      0.817 0.972 0.028
#> GSM39842     1  0.0000      0.814 1.000 0.000
#> GSM39843     1  0.0000      0.814 1.000 0.000
#> GSM39844     1  0.0000      0.814 1.000 0.000
#> GSM39845     1  0.5737      0.788 0.864 0.136
#> GSM39852     1  0.0938      0.815 0.988 0.012
#> GSM39853     1  0.7883      0.684 0.764 0.236
#> GSM39854     1  0.4431      0.797 0.908 0.092
#> GSM39857     1  0.9087      0.514 0.676 0.324
#> GSM39860     2  0.0000      0.524 0.000 1.000
#> GSM39861     1  0.6438      0.771 0.836 0.164
#> GSM39864     1  0.2423      0.821 0.960 0.040
#> GSM39868     1  0.2043      0.820 0.968 0.032

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.6102     0.5504 0.008 0.672 0.320
#> GSM39874     2  0.6102     0.5504 0.008 0.672 0.320
#> GSM39875     2  0.6102     0.5504 0.008 0.672 0.320
#> GSM39876     2  0.6102     0.5504 0.008 0.672 0.320
#> GSM39831     1  0.1636     0.7188 0.964 0.016 0.020
#> GSM39819     3  0.6521     0.5642 0.496 0.004 0.500
#> GSM39820     1  0.6521    -0.5845 0.504 0.004 0.492
#> GSM39821     1  0.2492     0.7228 0.936 0.016 0.048
#> GSM39822     2  0.9952     0.3998 0.332 0.376 0.292
#> GSM39823     3  0.5553     0.7090 0.272 0.004 0.724
#> GSM39824     3  0.4634     0.5688 0.164 0.012 0.824
#> GSM39825     1  0.3030     0.7047 0.904 0.004 0.092
#> GSM39826     1  0.4413     0.6912 0.860 0.036 0.104
#> GSM39827     1  0.6191     0.5778 0.776 0.140 0.084
#> GSM39846     3  0.5012     0.6405 0.204 0.008 0.788
#> GSM39847     1  0.2492     0.7228 0.936 0.016 0.048
#> GSM39848     2  0.6467     0.3869 0.008 0.604 0.388
#> GSM39849     3  0.6975     0.6808 0.356 0.028 0.616
#> GSM39850     1  0.4413     0.6912 0.860 0.036 0.104
#> GSM39851     1  0.1015     0.7213 0.980 0.008 0.012
#> GSM39855     3  0.5042     0.1747 0.060 0.104 0.836
#> GSM39856     3  0.5156     0.6577 0.216 0.008 0.776
#> GSM39858     3  0.5560     0.7199 0.300 0.000 0.700
#> GSM39859     3  0.6111     0.6891 0.396 0.000 0.604
#> GSM39862     1  0.7340     0.4524 0.676 0.076 0.248
#> GSM39863     1  0.1636     0.7188 0.964 0.016 0.020
#> GSM39865     2  0.9922     0.3874 0.304 0.396 0.300
#> GSM39866     1  0.3325     0.7071 0.904 0.020 0.076
#> GSM39867     1  0.9295     0.0853 0.524 0.252 0.224
#> GSM39869     2  0.9908     0.3816 0.332 0.392 0.276
#> GSM39870     1  0.6421    -0.3964 0.572 0.004 0.424
#> GSM39871     3  0.6468     0.6473 0.444 0.004 0.552
#> GSM39872     1  0.6688    -0.0475 0.580 0.012 0.408
#> GSM39828     1  0.2096     0.7211 0.944 0.004 0.052
#> GSM39829     1  0.6518    -0.5642 0.512 0.004 0.484
#> GSM39830     1  0.4504     0.5001 0.804 0.000 0.196
#> GSM39832     1  0.1919     0.7187 0.956 0.020 0.024
#> GSM39833     3  0.8743     0.5289 0.372 0.116 0.512
#> GSM39834     1  0.3966     0.7040 0.876 0.024 0.100
#> GSM39835     1  0.7862     0.4496 0.668 0.184 0.148
#> GSM39836     1  0.3765     0.7081 0.888 0.028 0.084
#> GSM39837     2  0.9952     0.3998 0.332 0.376 0.292
#> GSM39838     1  0.9767    -0.2205 0.428 0.328 0.244
#> GSM39839     3  0.6521     0.5642 0.496 0.004 0.500
#> GSM39840     1  0.1337     0.7207 0.972 0.012 0.016
#> GSM39841     1  0.2297     0.7154 0.944 0.036 0.020
#> GSM39842     1  0.1919     0.7187 0.956 0.020 0.024
#> GSM39843     1  0.0892     0.7194 0.980 0.000 0.020
#> GSM39844     1  0.1919     0.7187 0.956 0.020 0.024
#> GSM39845     3  0.6521     0.5618 0.496 0.004 0.500
#> GSM39852     1  0.2902     0.7198 0.920 0.016 0.064
#> GSM39853     2  0.9952     0.3998 0.332 0.376 0.292
#> GSM39854     1  0.9295     0.0853 0.524 0.252 0.224
#> GSM39857     3  0.5443     0.7064 0.260 0.004 0.736
#> GSM39860     2  0.6299     0.2589 0.000 0.524 0.476
#> GSM39861     3  0.6483     0.6358 0.452 0.004 0.544
#> GSM39864     1  0.3183     0.7074 0.908 0.016 0.076
#> GSM39868     1  0.3966     0.7040 0.876 0.024 0.100

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0524      0.441 0.000 0.988 0.004 0.008
#> GSM39874     2  0.0524      0.441 0.000 0.988 0.004 0.008
#> GSM39875     2  0.0524      0.441 0.000 0.988 0.004 0.008
#> GSM39876     2  0.0524      0.441 0.000 0.988 0.004 0.008
#> GSM39831     1  0.4360      0.669 0.744 0.000 0.248 0.008
#> GSM39819     3  0.2814      0.684 0.132 0.000 0.868 0.000
#> GSM39820     3  0.2921      0.677 0.140 0.000 0.860 0.000
#> GSM39821     1  0.4632      0.674 0.688 0.004 0.308 0.000
#> GSM39822     2  0.6028      0.607 0.388 0.572 0.032 0.008
#> GSM39823     3  0.4571      0.684 0.072 0.004 0.808 0.116
#> GSM39824     3  0.5507      0.558 0.044 0.028 0.748 0.180
#> GSM39825     1  0.5311      0.619 0.596 0.004 0.392 0.008
#> GSM39826     1  0.4706      0.637 0.748 0.028 0.224 0.000
#> GSM39827     1  0.7569      0.592 0.556 0.188 0.240 0.016
#> GSM39846     3  0.5135      0.618 0.048 0.028 0.784 0.140
#> GSM39847     1  0.4632      0.674 0.688 0.004 0.308 0.000
#> GSM39848     4  0.4631      0.582 0.004 0.260 0.008 0.728
#> GSM39849     3  0.4801      0.679 0.136 0.020 0.800 0.044
#> GSM39850     1  0.4706      0.637 0.748 0.028 0.224 0.000
#> GSM39851     1  0.4304      0.673 0.716 0.000 0.284 0.000
#> GSM39855     3  0.6596      0.175 0.032 0.032 0.556 0.380
#> GSM39856     3  0.4846      0.633 0.044 0.028 0.804 0.124
#> GSM39858     3  0.3640      0.709 0.036 0.028 0.876 0.060
#> GSM39859     3  0.3485      0.713 0.076 0.004 0.872 0.048
#> GSM39862     1  0.7019      0.371 0.524 0.000 0.344 0.132
#> GSM39863     1  0.4360      0.669 0.744 0.000 0.248 0.008
#> GSM39865     2  0.7811      0.542 0.364 0.488 0.036 0.112
#> GSM39866     1  0.5835      0.647 0.608 0.008 0.356 0.028
#> GSM39867     1  0.6303     -0.245 0.600 0.344 0.028 0.028
#> GSM39869     2  0.7800      0.509 0.400 0.440 0.020 0.140
#> GSM39870     3  0.3907      0.561 0.232 0.000 0.768 0.000
#> GSM39871     3  0.2520      0.710 0.088 0.004 0.904 0.004
#> GSM39872     3  0.6020      0.204 0.384 0.000 0.568 0.048
#> GSM39828     1  0.4697      0.659 0.644 0.000 0.356 0.000
#> GSM39829     3  0.3024      0.669 0.148 0.000 0.852 0.000
#> GSM39830     3  0.4992     -0.353 0.476 0.000 0.524 0.000
#> GSM39832     1  0.4253      0.659 0.776 0.000 0.208 0.016
#> GSM39833     3  0.7763      0.448 0.200 0.172 0.584 0.044
#> GSM39834     1  0.5076      0.647 0.712 0.004 0.260 0.024
#> GSM39835     1  0.5436      0.174 0.756 0.172 0.036 0.036
#> GSM39836     1  0.4262      0.653 0.756 0.008 0.236 0.000
#> GSM39837     2  0.6028      0.607 0.388 0.572 0.032 0.008
#> GSM39838     1  0.7972     -0.414 0.436 0.420 0.072 0.072
#> GSM39839     3  0.2814      0.684 0.132 0.000 0.868 0.000
#> GSM39840     1  0.4391      0.672 0.740 0.000 0.252 0.008
#> GSM39841     1  0.5268      0.671 0.724 0.024 0.236 0.016
#> GSM39842     1  0.4253      0.659 0.776 0.000 0.208 0.016
#> GSM39843     1  0.4500      0.666 0.684 0.000 0.316 0.000
#> GSM39844     1  0.4253      0.659 0.776 0.000 0.208 0.016
#> GSM39845     3  0.2814      0.684 0.132 0.000 0.868 0.000
#> GSM39852     1  0.4857      0.666 0.668 0.000 0.324 0.008
#> GSM39853     2  0.6028      0.607 0.388 0.572 0.032 0.008
#> GSM39854     1  0.6303     -0.245 0.600 0.344 0.028 0.028
#> GSM39857     3  0.4353      0.679 0.060 0.004 0.820 0.116
#> GSM39860     4  0.1584      0.678 0.000 0.012 0.036 0.952
#> GSM39861     3  0.2651      0.706 0.096 0.004 0.896 0.004
#> GSM39864     1  0.5835      0.646 0.608 0.008 0.356 0.028
#> GSM39868     1  0.5076      0.647 0.712 0.004 0.260 0.024

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.0579     0.6389 0.984 0.000 0.008 0.000 0.008
#> GSM39819     3  0.4201     0.6750 0.328 0.000 0.664 0.008 0.000
#> GSM39820     3  0.4592     0.6591 0.332 0.000 0.644 0.024 0.000
#> GSM39821     4  0.4744    -0.2299 0.476 0.000 0.016 0.508 0.000
#> GSM39822     4  0.4567     0.0768 0.004 0.448 0.000 0.544 0.004
#> GSM39823     3  0.4005     0.6796 0.072 0.000 0.828 0.044 0.056
#> GSM39824     3  0.2653     0.5803 0.000 0.000 0.880 0.024 0.096
#> GSM39825     1  0.5702     0.3732 0.520 0.000 0.072 0.404 0.004
#> GSM39826     4  0.4268     0.1507 0.344 0.000 0.008 0.648 0.000
#> GSM39827     1  0.6892     0.1616 0.488 0.172 0.012 0.320 0.008
#> GSM39846     3  0.2433     0.6252 0.012 0.000 0.908 0.024 0.056
#> GSM39847     4  0.4744    -0.2299 0.476 0.000 0.016 0.508 0.000
#> GSM39848     5  0.5061     0.5289 0.000 0.240 0.036 0.028 0.696
#> GSM39849     3  0.4081     0.6678 0.080 0.000 0.812 0.092 0.016
#> GSM39850     4  0.4268     0.1507 0.344 0.000 0.008 0.648 0.000
#> GSM39851     1  0.2674     0.6254 0.868 0.000 0.012 0.120 0.000
#> GSM39855     3  0.4173     0.3461 0.000 0.000 0.688 0.012 0.300
#> GSM39856     3  0.2727     0.6361 0.024 0.000 0.896 0.024 0.056
#> GSM39858     3  0.3710     0.7034 0.144 0.000 0.808 0.000 0.048
#> GSM39859     3  0.4702     0.7107 0.256 0.000 0.700 0.008 0.036
#> GSM39862     4  0.7900    -0.0220 0.264 0.000 0.216 0.424 0.096
#> GSM39863     1  0.0579     0.6389 0.984 0.000 0.008 0.000 0.008
#> GSM39865     4  0.6450     0.0999 0.008 0.376 0.008 0.496 0.112
#> GSM39866     1  0.5672     0.3548 0.528 0.000 0.032 0.412 0.028
#> GSM39867     4  0.6008     0.2719 0.156 0.204 0.004 0.628 0.008
#> GSM39869     4  0.6971     0.1190 0.048 0.292 0.004 0.532 0.124
#> GSM39870     3  0.5616     0.4515 0.384 0.000 0.536 0.080 0.000
#> GSM39871     3  0.3861     0.7116 0.264 0.000 0.728 0.008 0.000
#> GSM39872     3  0.7158     0.0676 0.256 0.000 0.424 0.300 0.020
#> GSM39828     1  0.4898     0.4255 0.592 0.000 0.032 0.376 0.000
#> GSM39829     3  0.4524     0.6588 0.336 0.000 0.644 0.020 0.000
#> GSM39830     1  0.4677     0.2594 0.664 0.000 0.300 0.036 0.000
#> GSM39832     1  0.2522     0.5679 0.880 0.000 0.000 0.108 0.012
#> GSM39833     3  0.7006     0.3927 0.060 0.112 0.588 0.224 0.016
#> GSM39834     4  0.5355     0.0190 0.404 0.000 0.024 0.552 0.020
#> GSM39835     4  0.6054    -0.0884 0.404 0.000 0.036 0.512 0.048
#> GSM39836     4  0.4482     0.0818 0.376 0.000 0.012 0.612 0.000
#> GSM39837     4  0.4567     0.0768 0.004 0.448 0.000 0.544 0.004
#> GSM39838     4  0.7406     0.2470 0.116 0.364 0.008 0.448 0.064
#> GSM39839     3  0.4201     0.6750 0.328 0.000 0.664 0.008 0.000
#> GSM39840     1  0.1243     0.6412 0.960 0.000 0.008 0.028 0.004
#> GSM39841     1  0.1884     0.6299 0.940 0.020 0.008 0.024 0.008
#> GSM39842     1  0.2522     0.5679 0.880 0.000 0.000 0.108 0.012
#> GSM39843     1  0.3550     0.6002 0.796 0.000 0.020 0.184 0.000
#> GSM39844     1  0.2522     0.5679 0.880 0.000 0.000 0.108 0.012
#> GSM39845     3  0.4522     0.6758 0.316 0.000 0.660 0.024 0.000
#> GSM39852     1  0.5192     0.2264 0.492 0.000 0.032 0.472 0.004
#> GSM39853     4  0.4567     0.0768 0.004 0.448 0.000 0.544 0.004
#> GSM39854     4  0.6008     0.2719 0.156 0.204 0.004 0.628 0.008
#> GSM39857     3  0.3605     0.6771 0.072 0.000 0.848 0.024 0.056
#> GSM39860     5  0.1341     0.6424 0.000 0.000 0.056 0.000 0.944
#> GSM39861     3  0.3980     0.7021 0.284 0.000 0.708 0.008 0.000
#> GSM39864     1  0.5665     0.3610 0.528 0.000 0.036 0.412 0.024
#> GSM39868     4  0.5355     0.0190 0.404 0.000 0.024 0.552 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     1  0.3819     0.7147 0.672 0.000 0.012 0.316 0.000 0.000
#> GSM39819     3  0.4563     0.6781 0.136 0.000 0.700 0.164 0.000 0.000
#> GSM39820     3  0.4729     0.6605 0.128 0.000 0.676 0.196 0.000 0.000
#> GSM39821     4  0.1434     0.6914 0.012 0.000 0.000 0.940 0.048 0.000
#> GSM39822     5  0.5102     0.7868 0.000 0.228 0.000 0.148 0.624 0.000
#> GSM39823     3  0.2970     0.6828 0.004 0.000 0.860 0.060 0.004 0.072
#> GSM39824     3  0.2320     0.6073 0.000 0.000 0.864 0.000 0.004 0.132
#> GSM39825     4  0.3400     0.5943 0.092 0.000 0.064 0.832 0.008 0.004
#> GSM39826     4  0.3043     0.5923 0.008 0.000 0.000 0.792 0.200 0.000
#> GSM39827     4  0.6033     0.2865 0.132 0.024 0.004 0.560 0.276 0.004
#> GSM39846     3  0.2113     0.6433 0.000 0.000 0.896 0.008 0.004 0.092
#> GSM39847     4  0.1434     0.6914 0.012 0.000 0.000 0.940 0.048 0.000
#> GSM39848     6  0.4604     0.5917 0.004 0.180 0.004 0.000 0.100 0.712
#> GSM39849     3  0.2889     0.6601 0.068 0.000 0.868 0.016 0.048 0.000
#> GSM39850     4  0.3043     0.5923 0.008 0.000 0.000 0.792 0.200 0.000
#> GSM39851     1  0.4751     0.5173 0.536 0.000 0.012 0.424 0.028 0.000
#> GSM39855     3  0.3699     0.3840 0.000 0.000 0.660 0.000 0.004 0.336
#> GSM39856     3  0.1956     0.6509 0.000 0.000 0.908 0.008 0.004 0.080
#> GSM39858     3  0.3932     0.7110 0.056 0.000 0.812 0.064 0.004 0.064
#> GSM39859     3  0.5080     0.7089 0.100 0.000 0.704 0.144 0.000 0.052
#> GSM39862     4  0.5895     0.4729 0.008 0.000 0.224 0.616 0.052 0.100
#> GSM39863     1  0.3819     0.7147 0.672 0.000 0.012 0.316 0.000 0.000
#> GSM39865     5  0.6585     0.7124 0.004 0.188 0.004 0.140 0.568 0.096
#> GSM39866     4  0.3678     0.6030 0.104 0.000 0.020 0.824 0.036 0.016
#> GSM39867     5  0.4702     0.7027 0.120 0.016 0.000 0.148 0.716 0.000
#> GSM39869     5  0.6723     0.7158 0.040 0.116 0.000 0.128 0.596 0.120
#> GSM39870     3  0.5045     0.4814 0.084 0.000 0.552 0.364 0.000 0.000
#> GSM39871     3  0.3930     0.7126 0.092 0.000 0.764 0.144 0.000 0.000
#> GSM39872     3  0.5772    -0.0579 0.032 0.000 0.460 0.436 0.068 0.004
#> GSM39828     4  0.3858     0.4553 0.196 0.000 0.032 0.760 0.012 0.000
#> GSM39829     3  0.4737     0.6660 0.132 0.000 0.676 0.192 0.000 0.000
#> GSM39830     1  0.6085     0.2616 0.392 0.000 0.320 0.288 0.000 0.000
#> GSM39832     1  0.3510     0.7134 0.772 0.000 0.008 0.204 0.016 0.000
#> GSM39833     3  0.6152     0.3979 0.048 0.036 0.624 0.072 0.216 0.004
#> GSM39834     4  0.3828     0.6466 0.040 0.000 0.020 0.796 0.140 0.004
#> GSM39835     1  0.3765    -0.1779 0.596 0.000 0.000 0.000 0.404 0.000
#> GSM39836     4  0.2558     0.6288 0.004 0.000 0.000 0.840 0.156 0.000
#> GSM39837     5  0.5102     0.7868 0.000 0.228 0.000 0.148 0.624 0.000
#> GSM39838     5  0.6744     0.6100 0.004 0.180 0.004 0.284 0.480 0.048
#> GSM39839     3  0.4563     0.6781 0.136 0.000 0.700 0.164 0.000 0.000
#> GSM39840     1  0.3940     0.6885 0.640 0.000 0.012 0.348 0.000 0.000
#> GSM39841     1  0.4808     0.7083 0.644 0.004 0.012 0.300 0.036 0.004
#> GSM39842     1  0.3510     0.7134 0.772 0.000 0.008 0.204 0.016 0.000
#> GSM39843     4  0.4863    -0.4243 0.460 0.000 0.016 0.496 0.028 0.000
#> GSM39844     1  0.3510     0.7134 0.772 0.000 0.008 0.204 0.016 0.000
#> GSM39845     3  0.4589     0.6796 0.132 0.000 0.696 0.172 0.000 0.000
#> GSM39852     4  0.2057     0.6750 0.044 0.000 0.016 0.920 0.016 0.004
#> GSM39853     5  0.5102     0.7868 0.000 0.228 0.000 0.148 0.624 0.000
#> GSM39854     5  0.4702     0.7027 0.120 0.016 0.000 0.148 0.716 0.000
#> GSM39857     3  0.2762     0.6811 0.004 0.000 0.876 0.040 0.008 0.072
#> GSM39860     6  0.0146     0.6552 0.000 0.000 0.004 0.000 0.000 0.996
#> GSM39861     3  0.4148     0.7033 0.108 0.000 0.744 0.148 0.000 0.000
#> GSM39864     4  0.3893     0.5876 0.116 0.000 0.024 0.808 0.036 0.016
#> GSM39868     4  0.3828     0.6466 0.040 0.000 0.020 0.796 0.140 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) other(p) k
#> SD:hclust 54         4.37e-07 1.50e-07 2
#> SD:hclust 41         1.25e-09 8.15e-08 3
#> SD:hclust 45               NA 7.29e-01 4
#> SD:hclust 30         1.38e-06 3.49e-05 5
#> SD:hclust 48         3.55e-09 1.23e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "kmeans"]
# you can also extract it by
# res = res_list["SD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'SD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.252           0.634       0.768         0.4220 0.687   0.687
#> 3 3 0.820           0.847       0.918         0.4799 0.652   0.509
#> 4 4 0.574           0.479       0.761         0.1440 0.940   0.842
#> 5 5 0.566           0.515       0.710         0.0832 0.887   0.669
#> 6 6 0.619           0.486       0.670         0.0504 0.921   0.698

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.5629    0.85917 0.132 0.868
#> GSM39874     2  0.5629    0.85917 0.132 0.868
#> GSM39875     2  0.5629    0.85917 0.132 0.868
#> GSM39876     2  0.5629    0.85917 0.132 0.868
#> GSM39831     1  0.0000    0.74268 1.000 0.000
#> GSM39819     1  0.8267    0.64919 0.740 0.260
#> GSM39820     1  0.8267    0.64919 0.740 0.260
#> GSM39821     1  0.0672    0.74019 0.992 0.008
#> GSM39822     2  0.7745    0.78200 0.228 0.772
#> GSM39823     1  0.9983    0.41125 0.524 0.476
#> GSM39824     2  0.5737    0.65781 0.136 0.864
#> GSM39825     1  0.8443    0.64092 0.728 0.272
#> GSM39826     1  0.0672    0.74019 0.992 0.008
#> GSM39827     1  0.0672    0.74019 0.992 0.008
#> GSM39846     1  0.9983    0.41125 0.524 0.476
#> GSM39847     1  0.0376    0.74202 0.996 0.004
#> GSM39848     2  0.7453    0.79569 0.212 0.788
#> GSM39849     1  0.9983    0.41125 0.524 0.476
#> GSM39850     1  0.0672    0.74019 0.992 0.008
#> GSM39851     1  0.0376    0.74202 0.996 0.004
#> GSM39855     2  0.5737    0.65781 0.136 0.864
#> GSM39856     1  0.9983    0.41125 0.524 0.476
#> GSM39858     1  0.9954    0.43786 0.540 0.460
#> GSM39859     1  0.9954    0.43786 0.540 0.460
#> GSM39862     1  0.8555    0.53789 0.720 0.280
#> GSM39863     1  0.0000    0.74268 1.000 0.000
#> GSM39865     2  0.5408    0.85528 0.124 0.876
#> GSM39866     1  0.1414    0.74143 0.980 0.020
#> GSM39867     1  0.6712    0.55833 0.824 0.176
#> GSM39869     2  0.7883    0.77075 0.236 0.764
#> GSM39870     1  0.8267    0.64919 0.740 0.260
#> GSM39871     1  0.9954    0.43786 0.540 0.460
#> GSM39872     1  0.9970    0.42529 0.532 0.468
#> GSM39828     1  0.0672    0.74298 0.992 0.008
#> GSM39829     1  0.8016    0.65686 0.756 0.244
#> GSM39830     1  0.5294    0.70815 0.880 0.120
#> GSM39832     1  0.0376    0.74202 0.996 0.004
#> GSM39833     1  0.5737    0.67877 0.864 0.136
#> GSM39834     1  0.0672    0.74298 0.992 0.008
#> GSM39835     1  0.4562    0.66714 0.904 0.096
#> GSM39836     1  0.0376    0.74202 0.996 0.004
#> GSM39837     1  0.9661    0.04218 0.608 0.392
#> GSM39838     1  0.9732    0.00326 0.596 0.404
#> GSM39839     1  0.8267    0.64919 0.740 0.260
#> GSM39840     1  0.0376    0.74202 0.996 0.004
#> GSM39841     1  0.1633    0.72928 0.976 0.024
#> GSM39842     1  0.0376    0.74202 0.996 0.004
#> GSM39843     1  0.0938    0.74274 0.988 0.012
#> GSM39844     1  0.0376    0.74202 0.996 0.004
#> GSM39845     1  0.9580    0.54413 0.620 0.380
#> GSM39852     1  0.0000    0.74268 1.000 0.000
#> GSM39853     1  0.9661    0.04218 0.608 0.392
#> GSM39854     1  0.7219    0.52004 0.800 0.200
#> GSM39857     1  0.9983    0.41125 0.524 0.476
#> GSM39860     2  0.3879    0.72699 0.076 0.924
#> GSM39861     1  0.9580    0.54413 0.620 0.380
#> GSM39864     1  0.0672    0.74298 0.992 0.008
#> GSM39868     1  0.3879    0.72576 0.924 0.076

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.1751      0.927 0.012 0.960 0.028
#> GSM39874     2  0.1751      0.927 0.012 0.960 0.028
#> GSM39875     2  0.1751      0.927 0.012 0.960 0.028
#> GSM39876     2  0.1751      0.927 0.012 0.960 0.028
#> GSM39831     1  0.1585      0.911 0.964 0.008 0.028
#> GSM39819     3  0.2878      0.882 0.096 0.000 0.904
#> GSM39820     3  0.2878      0.882 0.096 0.000 0.904
#> GSM39821     1  0.1182      0.910 0.976 0.012 0.012
#> GSM39822     2  0.2743      0.914 0.052 0.928 0.020
#> GSM39823     3  0.1620      0.917 0.012 0.024 0.964
#> GSM39824     3  0.1620      0.895 0.012 0.024 0.964
#> GSM39825     3  0.2682      0.893 0.076 0.004 0.920
#> GSM39826     1  0.0592      0.906 0.988 0.012 0.000
#> GSM39827     1  0.1482      0.910 0.968 0.020 0.012
#> GSM39846     3  0.1337      0.918 0.012 0.016 0.972
#> GSM39847     1  0.1182      0.910 0.976 0.012 0.012
#> GSM39848     2  0.3406      0.895 0.068 0.904 0.028
#> GSM39849     3  0.1337      0.918 0.012 0.016 0.972
#> GSM39850     1  0.0592      0.906 0.988 0.012 0.000
#> GSM39851     1  0.1163      0.911 0.972 0.000 0.028
#> GSM39855     3  0.1620      0.895 0.012 0.024 0.964
#> GSM39856     3  0.1337      0.918 0.012 0.016 0.972
#> GSM39858     3  0.0592      0.921 0.012 0.000 0.988
#> GSM39859     3  0.0592      0.921 0.012 0.000 0.988
#> GSM39862     1  0.7230      0.422 0.616 0.040 0.344
#> GSM39863     1  0.1585      0.911 0.964 0.008 0.028
#> GSM39865     2  0.2434      0.922 0.024 0.940 0.036
#> GSM39866     1  0.1832      0.909 0.956 0.008 0.036
#> GSM39867     1  0.2680      0.871 0.924 0.068 0.008
#> GSM39869     2  0.2187      0.920 0.028 0.948 0.024
#> GSM39870     3  0.2878      0.882 0.096 0.000 0.904
#> GSM39871     3  0.0592      0.921 0.012 0.000 0.988
#> GSM39872     3  0.1905      0.915 0.016 0.028 0.956
#> GSM39828     1  0.1267      0.911 0.972 0.004 0.024
#> GSM39829     3  0.2959      0.880 0.100 0.000 0.900
#> GSM39830     3  0.6267      0.226 0.452 0.000 0.548
#> GSM39832     1  0.1751      0.911 0.960 0.012 0.028
#> GSM39833     1  0.1337      0.904 0.972 0.012 0.016
#> GSM39834     1  0.2297      0.904 0.944 0.020 0.036
#> GSM39835     1  0.1585      0.896 0.964 0.028 0.008
#> GSM39836     1  0.0592      0.906 0.988 0.012 0.000
#> GSM39837     1  0.6669      0.142 0.524 0.468 0.008
#> GSM39838     1  0.6404      0.466 0.644 0.344 0.012
#> GSM39839     3  0.2878      0.882 0.096 0.000 0.904
#> GSM39840     1  0.1453      0.912 0.968 0.008 0.024
#> GSM39841     1  0.1585      0.911 0.964 0.008 0.028
#> GSM39842     1  0.1751      0.911 0.960 0.012 0.028
#> GSM39843     1  0.1163      0.911 0.972 0.000 0.028
#> GSM39844     1  0.1751      0.911 0.960 0.012 0.028
#> GSM39845     3  0.0592      0.921 0.012 0.000 0.988
#> GSM39852     1  0.1315      0.908 0.972 0.020 0.008
#> GSM39853     1  0.6669      0.163 0.524 0.468 0.008
#> GSM39854     1  0.2680      0.871 0.924 0.068 0.008
#> GSM39857     3  0.1620      0.917 0.012 0.024 0.964
#> GSM39860     2  0.6404      0.521 0.012 0.644 0.344
#> GSM39861     3  0.0592      0.921 0.012 0.000 0.988
#> GSM39864     1  0.1751      0.910 0.960 0.012 0.028
#> GSM39868     1  0.2339      0.894 0.940 0.012 0.048

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0469     0.7942 0.000 0.988 0.012 0.000
#> GSM39874     2  0.0469     0.7942 0.000 0.988 0.012 0.000
#> GSM39875     2  0.0469     0.7942 0.000 0.988 0.012 0.000
#> GSM39876     2  0.0469     0.7942 0.000 0.988 0.012 0.000
#> GSM39831     4  0.4925    -0.4690 0.428 0.000 0.000 0.572
#> GSM39819     3  0.3764     0.8195 0.116 0.000 0.844 0.040
#> GSM39820     3  0.3734     0.8213 0.108 0.000 0.848 0.044
#> GSM39821     4  0.0000     0.4438 0.000 0.000 0.000 1.000
#> GSM39822     2  0.5321     0.7854 0.296 0.672 0.000 0.032
#> GSM39823     3  0.1118     0.8553 0.036 0.000 0.964 0.000
#> GSM39824     3  0.3726     0.7083 0.212 0.000 0.788 0.000
#> GSM39825     3  0.5350     0.6994 0.060 0.008 0.744 0.188
#> GSM39826     4  0.0592     0.4386 0.016 0.000 0.000 0.984
#> GSM39827     4  0.3486     0.1838 0.188 0.000 0.000 0.812
#> GSM39846     3  0.0336     0.8613 0.008 0.000 0.992 0.000
#> GSM39847     4  0.0592     0.4491 0.016 0.000 0.000 0.984
#> GSM39848     2  0.6919     0.6689 0.368 0.516 0.000 0.116
#> GSM39849     3  0.1792     0.8432 0.068 0.000 0.932 0.000
#> GSM39850     4  0.0469     0.4394 0.012 0.000 0.000 0.988
#> GSM39851     4  0.3688     0.2048 0.208 0.000 0.000 0.792
#> GSM39855     3  0.4053     0.6846 0.228 0.004 0.768 0.000
#> GSM39856     3  0.0469     0.8608 0.012 0.000 0.988 0.000
#> GSM39858     3  0.0336     0.8613 0.008 0.000 0.992 0.000
#> GSM39859     3  0.0188     0.8616 0.004 0.000 0.996 0.000
#> GSM39862     4  0.7031     0.1687 0.408 0.012 0.084 0.496
#> GSM39863     4  0.4925    -0.4690 0.428 0.000 0.000 0.572
#> GSM39865     2  0.5228     0.7839 0.312 0.664 0.000 0.024
#> GSM39866     4  0.5012     0.0821 0.320 0.008 0.004 0.668
#> GSM39867     4  0.5257    -0.4963 0.444 0.008 0.000 0.548
#> GSM39869     2  0.4868     0.7892 0.304 0.684 0.000 0.012
#> GSM39870     3  0.3734     0.8213 0.108 0.000 0.848 0.044
#> GSM39871     3  0.0000     0.8614 0.000 0.000 1.000 0.000
#> GSM39872     3  0.4963     0.7489 0.136 0.012 0.788 0.064
#> GSM39828     4  0.2408     0.4248 0.104 0.000 0.000 0.896
#> GSM39829     3  0.4015     0.8124 0.116 0.000 0.832 0.052
#> GSM39830     3  0.7381     0.2684 0.180 0.000 0.492 0.328
#> GSM39832     1  0.4994     0.7355 0.520 0.000 0.000 0.480
#> GSM39833     4  0.3074     0.3778 0.152 0.000 0.000 0.848
#> GSM39834     4  0.4240     0.3773 0.200 0.012 0.004 0.784
#> GSM39835     1  0.5163     0.3940 0.516 0.004 0.000 0.480
#> GSM39836     4  0.0817     0.4501 0.024 0.000 0.000 0.976
#> GSM39837     4  0.6794     0.0832 0.116 0.328 0.000 0.556
#> GSM39838     4  0.6653     0.1953 0.328 0.104 0.000 0.568
#> GSM39839     3  0.3764     0.8195 0.116 0.000 0.844 0.040
#> GSM39840     4  0.4624    -0.2394 0.340 0.000 0.000 0.660
#> GSM39841     4  0.4948    -0.5261 0.440 0.000 0.000 0.560
#> GSM39842     1  0.4907     0.6999 0.580 0.000 0.000 0.420
#> GSM39843     4  0.3400     0.2778 0.180 0.000 0.000 0.820
#> GSM39844     1  0.4994     0.7355 0.520 0.000 0.000 0.480
#> GSM39845     3  0.0469     0.8623 0.012 0.000 0.988 0.000
#> GSM39852     4  0.2124     0.4443 0.068 0.008 0.000 0.924
#> GSM39853     4  0.7717    -0.1309 0.264 0.288 0.000 0.448
#> GSM39854     4  0.5257    -0.4750 0.444 0.008 0.000 0.548
#> GSM39857     3  0.1118     0.8553 0.036 0.000 0.964 0.000
#> GSM39860     2  0.8165     0.4970 0.352 0.392 0.244 0.012
#> GSM39861     3  0.0895     0.8599 0.020 0.000 0.976 0.004
#> GSM39864     4  0.4814     0.0911 0.316 0.008 0.000 0.676
#> GSM39868     4  0.4377     0.3822 0.188 0.008 0.016 0.788

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.4251    1.00000 0.000 0.624 0.004 0.000 0.372
#> GSM39874     2  0.4251    1.00000 0.000 0.624 0.004 0.000 0.372
#> GSM39875     2  0.4251    1.00000 0.000 0.624 0.004 0.000 0.372
#> GSM39876     2  0.4251    1.00000 0.000 0.624 0.004 0.000 0.372
#> GSM39831     1  0.5633    0.40926 0.580 0.080 0.004 0.336 0.000
#> GSM39819     3  0.5326    0.69360 0.124 0.120 0.724 0.032 0.000
#> GSM39820     3  0.5145    0.70017 0.116 0.112 0.740 0.032 0.000
#> GSM39821     4  0.1300    0.58011 0.028 0.000 0.000 0.956 0.016
#> GSM39822     5  0.2935    0.39694 0.004 0.016 0.000 0.120 0.860
#> GSM39823     3  0.2665    0.74197 0.020 0.048 0.900 0.000 0.032
#> GSM39824     3  0.5975    0.42651 0.056 0.056 0.632 0.000 0.256
#> GSM39825     3  0.5746    0.59402 0.012 0.060 0.692 0.196 0.040
#> GSM39826     4  0.1560    0.57133 0.028 0.004 0.000 0.948 0.020
#> GSM39827     4  0.4569    0.44268 0.160 0.036 0.000 0.768 0.036
#> GSM39846     3  0.0613    0.77312 0.004 0.008 0.984 0.000 0.004
#> GSM39847     4  0.1278    0.58254 0.020 0.004 0.000 0.960 0.016
#> GSM39848     5  0.5172    0.47053 0.064 0.116 0.000 0.072 0.748
#> GSM39849     3  0.3572    0.72781 0.068 0.076 0.844 0.000 0.012
#> GSM39850     4  0.1560    0.57133 0.028 0.004 0.000 0.948 0.020
#> GSM39851     4  0.5255    0.28278 0.284 0.068 0.004 0.644 0.000
#> GSM39855     3  0.6550    0.29907 0.060 0.080 0.564 0.000 0.296
#> GSM39856     3  0.0613    0.77312 0.004 0.008 0.984 0.000 0.004
#> GSM39858     3  0.0324    0.77478 0.004 0.004 0.992 0.000 0.000
#> GSM39859     3  0.0000    0.77522 0.000 0.000 1.000 0.000 0.000
#> GSM39862     5  0.8798    0.25338 0.108 0.168 0.052 0.276 0.396
#> GSM39863     1  0.5633    0.40926 0.580 0.080 0.004 0.336 0.000
#> GSM39865     5  0.1364    0.44085 0.000 0.012 0.000 0.036 0.952
#> GSM39866     4  0.7466    0.07515 0.356 0.172 0.008 0.424 0.040
#> GSM39867     1  0.6362    0.41173 0.560 0.012 0.000 0.268 0.160
#> GSM39869     5  0.1808    0.40925 0.004 0.020 0.000 0.040 0.936
#> GSM39870     3  0.5145    0.70017 0.116 0.112 0.740 0.032 0.000
#> GSM39871     3  0.0162    0.77513 0.000 0.004 0.996 0.000 0.000
#> GSM39872     3  0.7905    0.40799 0.096 0.164 0.564 0.088 0.088
#> GSM39828     4  0.4023    0.52061 0.144 0.048 0.004 0.800 0.004
#> GSM39829     3  0.5474    0.68782 0.128 0.116 0.716 0.040 0.000
#> GSM39830     3  0.8047    0.25604 0.184 0.148 0.436 0.232 0.000
#> GSM39832     1  0.3205    0.60435 0.816 0.004 0.000 0.176 0.004
#> GSM39833     4  0.5302    0.50444 0.104 0.076 0.004 0.748 0.068
#> GSM39834     4  0.7482    0.39163 0.200 0.160 0.020 0.552 0.068
#> GSM39835     1  0.6561    0.39476 0.624 0.072 0.000 0.144 0.160
#> GSM39836     4  0.1623    0.58045 0.020 0.016 0.000 0.948 0.016
#> GSM39837     4  0.5745    0.00445 0.036 0.028 0.000 0.520 0.416
#> GSM39838     4  0.5925    0.03151 0.020 0.060 0.000 0.520 0.400
#> GSM39839     3  0.5326    0.69360 0.124 0.120 0.724 0.032 0.000
#> GSM39840     4  0.5747   -0.21293 0.460 0.072 0.004 0.464 0.000
#> GSM39841     1  0.5988    0.41321 0.580 0.084 0.004 0.320 0.012
#> GSM39842     1  0.3022    0.58578 0.848 0.012 0.000 0.136 0.004
#> GSM39843     4  0.5180    0.31958 0.260 0.072 0.004 0.664 0.000
#> GSM39844     1  0.3205    0.60435 0.816 0.004 0.000 0.176 0.004
#> GSM39845     3  0.0324    0.77478 0.004 0.004 0.992 0.000 0.000
#> GSM39852     4  0.3997    0.54626 0.040 0.072 0.000 0.828 0.060
#> GSM39853     5  0.7386   -0.01354 0.236 0.036 0.000 0.312 0.416
#> GSM39854     1  0.6422    0.40504 0.552 0.012 0.000 0.268 0.168
#> GSM39857     3  0.2897    0.73565 0.020 0.052 0.888 0.000 0.040
#> GSM39860     5  0.6851    0.34388 0.080 0.148 0.160 0.004 0.608
#> GSM39861     3  0.0955    0.77288 0.004 0.028 0.968 0.000 0.000
#> GSM39864     4  0.7414    0.05794 0.376 0.160 0.008 0.416 0.040
#> GSM39868     4  0.7552    0.39587 0.184 0.160 0.032 0.560 0.064

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     1  0.5438     0.4545 0.624 0.000 0.000 0.236 0.024 0.116
#> GSM39819     3  0.6427     0.5575 0.076 0.000 0.592 0.020 0.112 0.200
#> GSM39820     3  0.5939     0.5829 0.052 0.000 0.636 0.020 0.096 0.196
#> GSM39821     4  0.0622     0.6857 0.012 0.000 0.000 0.980 0.000 0.008
#> GSM39822     5  0.5774     0.4921 0.000 0.256 0.000 0.164 0.564 0.016
#> GSM39823     3  0.2978     0.6508 0.008 0.000 0.856 0.000 0.052 0.084
#> GSM39824     3  0.5650     0.3347 0.016 0.000 0.584 0.000 0.248 0.152
#> GSM39825     3  0.5343     0.4001 0.004 0.000 0.636 0.096 0.020 0.244
#> GSM39826     4  0.0951     0.6861 0.020 0.000 0.000 0.968 0.004 0.008
#> GSM39827     4  0.5024     0.4602 0.176 0.000 0.000 0.700 0.064 0.060
#> GSM39846     3  0.0547     0.7069 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM39847     4  0.0622     0.6828 0.008 0.000 0.000 0.980 0.000 0.012
#> GSM39848     5  0.5879     0.4298 0.016 0.096 0.000 0.040 0.620 0.228
#> GSM39849     3  0.5061     0.5665 0.056 0.000 0.684 0.000 0.056 0.204
#> GSM39850     4  0.0951     0.6861 0.020 0.000 0.000 0.968 0.004 0.008
#> GSM39851     4  0.5023     0.3672 0.256 0.000 0.000 0.652 0.024 0.068
#> GSM39855     3  0.6055     0.1789 0.016 0.000 0.492 0.000 0.316 0.176
#> GSM39856     3  0.0632     0.7074 0.000 0.000 0.976 0.000 0.000 0.024
#> GSM39858     3  0.0291     0.7123 0.000 0.000 0.992 0.000 0.004 0.004
#> GSM39859     3  0.0000     0.7109 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM39862     6  0.6316    -0.0102 0.028 0.000 0.020 0.104 0.360 0.488
#> GSM39863     1  0.5438     0.4545 0.624 0.000 0.000 0.236 0.024 0.116
#> GSM39865     5  0.4281     0.5207 0.000 0.244 0.000 0.020 0.708 0.028
#> GSM39866     6  0.6638     0.1348 0.336 0.000 0.004 0.244 0.024 0.392
#> GSM39867     1  0.6352     0.2281 0.532 0.004 0.000 0.176 0.248 0.040
#> GSM39869     5  0.4323     0.5116 0.012 0.248 0.000 0.020 0.708 0.012
#> GSM39870     3  0.5939     0.5829 0.052 0.000 0.636 0.020 0.096 0.196
#> GSM39871     3  0.0891     0.7119 0.000 0.000 0.968 0.000 0.024 0.008
#> GSM39872     6  0.5583     0.0822 0.020 0.000 0.352 0.032 0.036 0.560
#> GSM39828     4  0.4354     0.4543 0.044 0.000 0.000 0.704 0.012 0.240
#> GSM39829     3  0.6447     0.5035 0.056 0.000 0.556 0.024 0.096 0.268
#> GSM39830     3  0.8173     0.2620 0.104 0.000 0.396 0.124 0.120 0.256
#> GSM39832     1  0.1765     0.5534 0.904 0.000 0.000 0.096 0.000 0.000
#> GSM39833     4  0.6163     0.4574 0.068 0.004 0.012 0.628 0.120 0.168
#> GSM39834     6  0.5278     0.4379 0.072 0.000 0.000 0.244 0.040 0.644
#> GSM39835     1  0.6056     0.2251 0.564 0.000 0.000 0.036 0.184 0.216
#> GSM39836     4  0.1333     0.6641 0.000 0.000 0.000 0.944 0.008 0.048
#> GSM39837     4  0.6344    -0.0555 0.012 0.192 0.000 0.504 0.276 0.016
#> GSM39838     5  0.6266     0.2859 0.000 0.036 0.000 0.356 0.464 0.144
#> GSM39839     3  0.6427     0.5575 0.076 0.000 0.592 0.020 0.112 0.200
#> GSM39840     1  0.5560     0.1017 0.468 0.000 0.000 0.436 0.024 0.072
#> GSM39841     1  0.6159     0.4432 0.564 0.000 0.000 0.248 0.064 0.124
#> GSM39842     1  0.1857     0.5084 0.928 0.000 0.000 0.032 0.012 0.028
#> GSM39843     4  0.5035     0.3932 0.236 0.000 0.000 0.664 0.028 0.072
#> GSM39844     1  0.1765     0.5534 0.904 0.000 0.000 0.096 0.000 0.000
#> GSM39845     3  0.0508     0.7126 0.000 0.000 0.984 0.000 0.004 0.012
#> GSM39852     4  0.4136     0.3346 0.004 0.000 0.000 0.692 0.032 0.272
#> GSM39853     5  0.8136     0.1545 0.220 0.180 0.000 0.280 0.292 0.028
#> GSM39854     1  0.6423     0.2111 0.520 0.004 0.000 0.188 0.248 0.040
#> GSM39857     3  0.3269     0.6352 0.008 0.000 0.832 0.000 0.052 0.108
#> GSM39860     5  0.6732     0.2687 0.024 0.068 0.132 0.000 0.548 0.228
#> GSM39861     3  0.1720     0.7046 0.000 0.000 0.928 0.000 0.032 0.040
#> GSM39864     6  0.6457     0.1549 0.332 0.000 0.004 0.256 0.012 0.396
#> GSM39868     6  0.5268     0.4251 0.060 0.000 0.000 0.272 0.040 0.628

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) other(p) k
#> SD:kmeans 46         1.81e-03 5.12e-04 2
#> SD:kmeans 53         2.55e-05 5.85e-05 3
#> SD:kmeans 30         1.75e-03 2.29e-04 4
#> SD:kmeans 31         8.50e-07 2.00e-06 5
#> SD:kmeans 29         7.82e-06 1.06e-05 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "skmeans"]
# you can also extract it by
# res = res_list["SD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'SD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.318           0.565       0.808         0.5005 0.501   0.501
#> 3 3 0.890           0.913       0.962         0.3429 0.658   0.416
#> 4 4 0.645           0.703       0.843         0.1179 0.882   0.661
#> 5 5 0.658           0.623       0.754         0.0647 0.950   0.807
#> 6 6 0.661           0.492       0.719         0.0399 0.989   0.950

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.9608      0.429 0.384 0.616
#> GSM39874     2  0.9608      0.429 0.384 0.616
#> GSM39875     2  0.9608      0.429 0.384 0.616
#> GSM39876     2  0.9608      0.429 0.384 0.616
#> GSM39831     1  0.0000      0.724 1.000 0.000
#> GSM39819     1  0.9850      0.329 0.572 0.428
#> GSM39820     1  0.9850      0.329 0.572 0.428
#> GSM39821     1  0.0376      0.723 0.996 0.004
#> GSM39822     2  0.9635      0.424 0.388 0.612
#> GSM39823     2  0.5059      0.666 0.112 0.888
#> GSM39824     2  0.0000      0.656 0.000 1.000
#> GSM39825     2  0.8327      0.485 0.264 0.736
#> GSM39826     1  0.5408      0.653 0.876 0.124
#> GSM39827     1  0.2603      0.706 0.956 0.044
#> GSM39846     2  0.5059      0.666 0.112 0.888
#> GSM39847     1  0.0000      0.724 1.000 0.000
#> GSM39848     2  0.9635      0.424 0.388 0.612
#> GSM39849     2  0.4431      0.667 0.092 0.908
#> GSM39850     1  0.5059      0.662 0.888 0.112
#> GSM39851     1  0.0000      0.724 1.000 0.000
#> GSM39855     2  0.0000      0.656 0.000 1.000
#> GSM39856     2  0.5059      0.666 0.112 0.888
#> GSM39858     2  0.6801      0.615 0.180 0.820
#> GSM39859     2  0.6801      0.615 0.180 0.820
#> GSM39862     2  0.3584      0.638 0.068 0.932
#> GSM39863     1  0.0000      0.724 1.000 0.000
#> GSM39865     2  0.9608      0.429 0.384 0.616
#> GSM39866     1  0.9358      0.430 0.648 0.352
#> GSM39867     1  0.5059      0.662 0.888 0.112
#> GSM39869     2  0.9795      0.373 0.416 0.584
#> GSM39870     1  0.9850      0.329 0.572 0.428
#> GSM39871     2  0.5629      0.654 0.132 0.868
#> GSM39872     2  0.5059      0.666 0.112 0.888
#> GSM39828     1  0.1414      0.716 0.980 0.020
#> GSM39829     1  0.9795      0.349 0.584 0.416
#> GSM39830     1  0.9608      0.395 0.616 0.384
#> GSM39832     1  0.0000      0.724 1.000 0.000
#> GSM39833     2  0.9775      0.381 0.412 0.588
#> GSM39834     1  0.9000      0.472 0.684 0.316
#> GSM39835     1  0.9661      0.158 0.608 0.392
#> GSM39836     1  0.5059      0.662 0.888 0.112
#> GSM39837     1  0.6801      0.598 0.820 0.180
#> GSM39838     1  0.9087      0.349 0.676 0.324
#> GSM39839     1  0.9850      0.329 0.572 0.428
#> GSM39840     1  0.0000      0.724 1.000 0.000
#> GSM39841     1  0.0000      0.724 1.000 0.000
#> GSM39842     1  0.0000      0.724 1.000 0.000
#> GSM39843     1  0.0938      0.720 0.988 0.012
#> GSM39844     1  0.0000      0.724 1.000 0.000
#> GSM39845     2  0.6801      0.615 0.180 0.820
#> GSM39852     1  0.1843      0.714 0.972 0.028
#> GSM39853     1  0.6801      0.598 0.820 0.180
#> GSM39854     1  0.6801      0.598 0.820 0.180
#> GSM39857     2  0.5059      0.666 0.112 0.888
#> GSM39860     2  0.0000      0.656 0.000 1.000
#> GSM39861     2  0.6801      0.615 0.180 0.820
#> GSM39864     1  0.9552      0.405 0.624 0.376
#> GSM39868     1  0.9608      0.395 0.616 0.384

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39874     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39875     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39876     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39831     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39819     3  0.0747     0.9685 0.016 0.000 0.984
#> GSM39820     3  0.0747     0.9685 0.016 0.000 0.984
#> GSM39821     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39822     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39823     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39824     3  0.0892     0.9618 0.000 0.020 0.980
#> GSM39825     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39826     1  0.0424     0.9505 0.992 0.008 0.000
#> GSM39827     1  0.1289     0.9321 0.968 0.032 0.000
#> GSM39846     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39847     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39848     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39849     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39850     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39851     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39855     3  0.2711     0.8931 0.000 0.088 0.912
#> GSM39856     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39858     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39859     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39862     2  0.6805     0.5988 0.268 0.688 0.044
#> GSM39863     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39865     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39866     1  0.0592     0.9472 0.988 0.000 0.012
#> GSM39867     1  0.6305     0.0473 0.516 0.484 0.000
#> GSM39869     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39870     3  0.0747     0.9685 0.016 0.000 0.984
#> GSM39871     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39872     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39828     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39829     3  0.1163     0.9590 0.028 0.000 0.972
#> GSM39830     3  0.4931     0.7072 0.232 0.000 0.768
#> GSM39832     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39833     2  0.1919     0.9156 0.024 0.956 0.020
#> GSM39834     1  0.3797     0.8696 0.892 0.056 0.052
#> GSM39835     2  0.3340     0.8411 0.120 0.880 0.000
#> GSM39836     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39837     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39838     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39839     3  0.0592     0.9705 0.012 0.000 0.988
#> GSM39840     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39841     1  0.4605     0.7278 0.796 0.204 0.000
#> GSM39842     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39843     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39844     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39845     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39852     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39853     2  0.0000     0.9376 0.000 1.000 0.000
#> GSM39854     2  0.4555     0.7358 0.200 0.800 0.000
#> GSM39857     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39860     2  0.4842     0.6964 0.000 0.776 0.224
#> GSM39861     3  0.0000     0.9754 0.000 0.000 1.000
#> GSM39864     1  0.0000     0.9552 1.000 0.000 0.000
#> GSM39868     1  0.1529     0.9237 0.960 0.000 0.040

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> GSM39831     1  0.0592      0.695 0.984 0.000 0.000 0.016
#> GSM39819     3  0.3836      0.797 0.168 0.000 0.816 0.016
#> GSM39820     3  0.3853      0.801 0.160 0.000 0.820 0.020
#> GSM39821     4  0.3610      0.754 0.200 0.000 0.000 0.800
#> GSM39822     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> GSM39823     3  0.1716      0.863 0.000 0.000 0.936 0.064
#> GSM39824     3  0.3168      0.836 0.000 0.060 0.884 0.056
#> GSM39825     3  0.3217      0.808 0.012 0.000 0.860 0.128
#> GSM39826     4  0.3539      0.758 0.176 0.004 0.000 0.820
#> GSM39827     1  0.4252      0.472 0.744 0.004 0.000 0.252
#> GSM39846     3  0.0336      0.874 0.000 0.000 0.992 0.008
#> GSM39847     4  0.3649      0.753 0.204 0.000 0.000 0.796
#> GSM39848     2  0.1716      0.879 0.000 0.936 0.000 0.064
#> GSM39849     3  0.1661      0.865 0.000 0.004 0.944 0.052
#> GSM39850     4  0.3528      0.759 0.192 0.000 0.000 0.808
#> GSM39851     1  0.4961     -0.196 0.552 0.000 0.000 0.448
#> GSM39855     3  0.4336      0.775 0.000 0.128 0.812 0.060
#> GSM39856     3  0.0707      0.872 0.000 0.000 0.980 0.020
#> GSM39858     3  0.0000      0.873 0.000 0.000 1.000 0.000
#> GSM39859     3  0.0000      0.873 0.000 0.000 1.000 0.000
#> GSM39862     4  0.5149      0.523 0.008 0.092 0.124 0.776
#> GSM39863     1  0.0592      0.695 0.984 0.000 0.000 0.016
#> GSM39865     2  0.0469      0.906 0.000 0.988 0.000 0.012
#> GSM39866     1  0.4119      0.589 0.796 0.004 0.012 0.188
#> GSM39867     1  0.5906      0.462 0.644 0.292 0.000 0.064
#> GSM39869     2  0.0000      0.909 0.000 1.000 0.000 0.000
#> GSM39870     3  0.4105      0.799 0.156 0.000 0.812 0.032
#> GSM39871     3  0.0336      0.874 0.000 0.000 0.992 0.008
#> GSM39872     3  0.4475      0.719 0.008 0.004 0.748 0.240
#> GSM39828     4  0.4103      0.709 0.256 0.000 0.000 0.744
#> GSM39829     3  0.4225      0.778 0.184 0.000 0.792 0.024
#> GSM39830     3  0.7359      0.314 0.312 0.000 0.504 0.184
#> GSM39832     1  0.0336      0.698 0.992 0.000 0.000 0.008
#> GSM39833     2  0.7058      0.579 0.096 0.648 0.048 0.208
#> GSM39834     4  0.6127      0.395 0.288 0.008 0.060 0.644
#> GSM39835     1  0.6635      0.241 0.524 0.388 0.000 0.088
#> GSM39836     4  0.3074      0.758 0.152 0.000 0.000 0.848
#> GSM39837     2  0.1256      0.895 0.008 0.964 0.000 0.028
#> GSM39838     2  0.3266      0.783 0.000 0.832 0.000 0.168
#> GSM39839     3  0.3790      0.800 0.164 0.000 0.820 0.016
#> GSM39840     1  0.4134      0.404 0.740 0.000 0.000 0.260
#> GSM39841     1  0.1706      0.689 0.948 0.036 0.000 0.016
#> GSM39842     1  0.0336      0.698 0.992 0.000 0.000 0.008
#> GSM39843     4  0.4999      0.258 0.492 0.000 0.000 0.508
#> GSM39844     1  0.0336      0.698 0.992 0.000 0.000 0.008
#> GSM39845     3  0.0188      0.873 0.000 0.000 0.996 0.004
#> GSM39852     4  0.2530      0.733 0.112 0.000 0.000 0.888
#> GSM39853     2  0.1610      0.884 0.032 0.952 0.000 0.016
#> GSM39854     1  0.6650      0.156 0.484 0.432 0.000 0.084
#> GSM39857     3  0.2011      0.857 0.000 0.000 0.920 0.080
#> GSM39860     2  0.6552      0.540 0.000 0.628 0.228 0.144
#> GSM39861     3  0.0188      0.874 0.000 0.000 0.996 0.004
#> GSM39864     1  0.3074      0.628 0.848 0.000 0.000 0.152
#> GSM39868     4  0.5691      0.425 0.304 0.000 0.048 0.648

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0162      0.862 0.004 0.996 0.000 0.000 0.000
#> GSM39874     2  0.0162      0.862 0.004 0.996 0.000 0.000 0.000
#> GSM39875     2  0.0162      0.862 0.004 0.996 0.000 0.000 0.000
#> GSM39876     2  0.0162      0.862 0.004 0.996 0.000 0.000 0.000
#> GSM39831     1  0.2370      0.726 0.904 0.000 0.000 0.040 0.056
#> GSM39819     3  0.4622      0.656 0.068 0.000 0.756 0.012 0.164
#> GSM39820     3  0.4512      0.658 0.048 0.000 0.760 0.016 0.176
#> GSM39821     4  0.1357      0.792 0.048 0.000 0.000 0.948 0.004
#> GSM39822     2  0.0162      0.861 0.000 0.996 0.000 0.000 0.004
#> GSM39823     3  0.3715      0.589 0.000 0.000 0.736 0.004 0.260
#> GSM39824     3  0.5148      0.493 0.004 0.052 0.660 0.004 0.280
#> GSM39825     3  0.5522      0.471 0.024 0.000 0.680 0.084 0.212
#> GSM39826     4  0.1365      0.785 0.040 0.004 0.000 0.952 0.004
#> GSM39827     1  0.5126      0.511 0.636 0.000 0.000 0.300 0.064
#> GSM39846     3  0.1704      0.719 0.000 0.000 0.928 0.004 0.068
#> GSM39847     4  0.1281      0.789 0.032 0.000 0.000 0.956 0.012
#> GSM39848     2  0.3885      0.607 0.000 0.724 0.000 0.008 0.268
#> GSM39849     3  0.4108      0.556 0.000 0.008 0.684 0.000 0.308
#> GSM39850     4  0.1357      0.789 0.048 0.000 0.000 0.948 0.004
#> GSM39851     4  0.4963      0.448 0.352 0.000 0.000 0.608 0.040
#> GSM39855     3  0.5887      0.380 0.004 0.104 0.596 0.004 0.292
#> GSM39856     3  0.2074      0.702 0.000 0.000 0.896 0.000 0.104
#> GSM39858     3  0.0703      0.727 0.000 0.000 0.976 0.000 0.024
#> GSM39859     3  0.0794      0.725 0.000 0.000 0.972 0.000 0.028
#> GSM39862     5  0.5470      0.455 0.000 0.044 0.044 0.236 0.676
#> GSM39863     1  0.2504      0.722 0.896 0.000 0.000 0.040 0.064
#> GSM39865     2  0.1205      0.850 0.000 0.956 0.000 0.004 0.040
#> GSM39866     1  0.6704      0.455 0.568 0.008 0.028 0.132 0.264
#> GSM39867     1  0.4843      0.651 0.772 0.104 0.000 0.056 0.068
#> GSM39869     2  0.1282      0.850 0.000 0.952 0.000 0.004 0.044
#> GSM39870     3  0.4774      0.650 0.056 0.000 0.744 0.020 0.180
#> GSM39871     3  0.1410      0.720 0.000 0.000 0.940 0.000 0.060
#> GSM39872     5  0.4524      0.226 0.000 0.000 0.336 0.020 0.644
#> GSM39828     4  0.4647      0.678 0.092 0.000 0.000 0.736 0.172
#> GSM39829     3  0.4938      0.630 0.064 0.000 0.716 0.012 0.208
#> GSM39830     3  0.7812      0.288 0.188 0.000 0.476 0.128 0.208
#> GSM39832     1  0.1012      0.737 0.968 0.000 0.000 0.020 0.012
#> GSM39833     2  0.7931      0.275 0.056 0.508 0.044 0.228 0.164
#> GSM39834     5  0.6206      0.406 0.164 0.004 0.012 0.208 0.612
#> GSM39835     1  0.6583      0.448 0.588 0.176 0.000 0.036 0.200
#> GSM39836     4  0.1701      0.766 0.016 0.000 0.000 0.936 0.048
#> GSM39837     2  0.2511      0.811 0.004 0.892 0.000 0.088 0.016
#> GSM39838     2  0.5059      0.621 0.000 0.700 0.000 0.176 0.124
#> GSM39839     3  0.4622      0.656 0.068 0.000 0.756 0.012 0.164
#> GSM39840     1  0.4249      0.454 0.688 0.000 0.000 0.296 0.016
#> GSM39841     1  0.3432      0.721 0.860 0.028 0.000 0.052 0.060
#> GSM39842     1  0.1364      0.733 0.952 0.000 0.000 0.012 0.036
#> GSM39843     4  0.5381      0.538 0.288 0.000 0.012 0.640 0.060
#> GSM39844     1  0.1012      0.737 0.968 0.000 0.000 0.020 0.012
#> GSM39845     3  0.1357      0.725 0.004 0.000 0.948 0.000 0.048
#> GSM39852     4  0.4468      0.523 0.044 0.000 0.000 0.716 0.240
#> GSM39853     2  0.3201      0.794 0.064 0.872 0.000 0.036 0.028
#> GSM39854     1  0.6725      0.397 0.548 0.300 0.000 0.080 0.072
#> GSM39857     3  0.4201      0.486 0.000 0.000 0.664 0.008 0.328
#> GSM39860     5  0.6692      0.212 0.004 0.360 0.160 0.008 0.468
#> GSM39861     3  0.1502      0.729 0.004 0.000 0.940 0.000 0.056
#> GSM39864     1  0.5613      0.480 0.604 0.000 0.000 0.108 0.288
#> GSM39868     5  0.7047      0.276 0.164 0.000 0.040 0.300 0.496

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     5  0.0146     0.8035 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM39874     5  0.0146     0.8035 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM39875     5  0.0146     0.8035 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM39876     5  0.0146     0.8035 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM39831     1  0.3217     0.6426 0.840 0.108 0.000 0.028 0.000 0.024
#> GSM39819     3  0.4634    -0.0826 0.044 0.400 0.556 0.000 0.000 0.000
#> GSM39820     3  0.4692     0.0748 0.020 0.360 0.600 0.004 0.000 0.016
#> GSM39821     4  0.1138     0.7632 0.024 0.004 0.000 0.960 0.000 0.012
#> GSM39822     5  0.0964     0.8006 0.000 0.016 0.000 0.004 0.968 0.012
#> GSM39823     3  0.4701     0.4946 0.000 0.148 0.684 0.000 0.000 0.168
#> GSM39824     3  0.4958     0.4598 0.000 0.068 0.680 0.000 0.032 0.220
#> GSM39825     3  0.6146     0.0927 0.000 0.196 0.540 0.032 0.000 0.232
#> GSM39826     4  0.1508     0.7527 0.020 0.016 0.000 0.948 0.004 0.012
#> GSM39827     1  0.6060     0.3836 0.524 0.120 0.000 0.316 0.000 0.040
#> GSM39846     3  0.2733     0.5692 0.000 0.080 0.864 0.000 0.000 0.056
#> GSM39847     4  0.1710     0.7601 0.028 0.016 0.000 0.936 0.000 0.020
#> GSM39848     5  0.4915     0.3918 0.004 0.048 0.000 0.004 0.564 0.380
#> GSM39849     3  0.5525     0.3747 0.000 0.164 0.588 0.000 0.008 0.240
#> GSM39850     4  0.1065     0.7593 0.020 0.008 0.000 0.964 0.000 0.008
#> GSM39851     4  0.5163     0.4958 0.268 0.088 0.000 0.628 0.000 0.016
#> GSM39855     3  0.5472     0.4099 0.000 0.064 0.636 0.000 0.064 0.236
#> GSM39856     3  0.2488     0.5669 0.000 0.044 0.880 0.000 0.000 0.076
#> GSM39858     3  0.1267     0.5552 0.000 0.060 0.940 0.000 0.000 0.000
#> GSM39859     3  0.0891     0.5652 0.000 0.024 0.968 0.000 0.000 0.008
#> GSM39862     6  0.4431     0.5411 0.000 0.048 0.060 0.080 0.024 0.788
#> GSM39863     1  0.3337     0.6389 0.832 0.112 0.000 0.032 0.000 0.024
#> GSM39865     5  0.3334     0.7424 0.000 0.052 0.000 0.004 0.820 0.124
#> GSM39866     1  0.7395     0.2925 0.432 0.308 0.028 0.112 0.000 0.120
#> GSM39867     1  0.5838     0.5614 0.680 0.136 0.000 0.052 0.064 0.068
#> GSM39869     5  0.3477     0.7506 0.008 0.080 0.000 0.000 0.820 0.092
#> GSM39870     3  0.5241     0.0547 0.036 0.336 0.592 0.012 0.000 0.024
#> GSM39871     3  0.1789     0.5675 0.000 0.044 0.924 0.000 0.000 0.032
#> GSM39872     6  0.5112     0.4844 0.000 0.128 0.236 0.004 0.000 0.632
#> GSM39828     4  0.6211     0.5045 0.088 0.100 0.000 0.564 0.000 0.248
#> GSM39829     3  0.5459    -0.2421 0.036 0.424 0.492 0.000 0.000 0.048
#> GSM39830     2  0.7489     0.0000 0.128 0.440 0.284 0.116 0.000 0.032
#> GSM39832     1  0.0767     0.6712 0.976 0.012 0.000 0.004 0.000 0.008
#> GSM39833     5  0.8559     0.0809 0.028 0.156 0.048 0.180 0.388 0.200
#> GSM39834     6  0.5859     0.5167 0.056 0.268 0.012 0.064 0.000 0.600
#> GSM39835     1  0.7228     0.3118 0.500 0.148 0.000 0.024 0.112 0.216
#> GSM39836     4  0.1398     0.7392 0.000 0.008 0.000 0.940 0.000 0.052
#> GSM39837     5  0.2255     0.7659 0.000 0.028 0.000 0.080 0.892 0.000
#> GSM39838     5  0.6391     0.5153 0.004 0.120 0.000 0.128 0.588 0.160
#> GSM39839     3  0.4634    -0.0826 0.044 0.400 0.556 0.000 0.000 0.000
#> GSM39840     1  0.4675     0.4982 0.688 0.056 0.000 0.236 0.000 0.020
#> GSM39841     1  0.4339     0.6299 0.772 0.144 0.000 0.032 0.032 0.020
#> GSM39842     1  0.1321     0.6703 0.952 0.020 0.000 0.004 0.000 0.024
#> GSM39843     4  0.5592     0.5494 0.208 0.128 0.004 0.632 0.000 0.028
#> GSM39844     1  0.0767     0.6712 0.976 0.012 0.000 0.004 0.000 0.008
#> GSM39845     3  0.2100     0.5276 0.000 0.112 0.884 0.000 0.000 0.004
#> GSM39852     4  0.5795     0.2686 0.016 0.140 0.000 0.536 0.000 0.308
#> GSM39853     5  0.3953     0.7221 0.064 0.064 0.000 0.044 0.816 0.012
#> GSM39854     1  0.7293     0.4109 0.536 0.140 0.000 0.084 0.168 0.072
#> GSM39857     3  0.4915     0.4040 0.000 0.108 0.632 0.000 0.000 0.260
#> GSM39860     6  0.6519     0.3151 0.000 0.068 0.152 0.004 0.240 0.536
#> GSM39861     3  0.2491     0.5402 0.000 0.112 0.868 0.000 0.000 0.020
#> GSM39864     1  0.6359     0.4056 0.528 0.268 0.004 0.044 0.000 0.156
#> GSM39868     6  0.6927     0.4586 0.064 0.268 0.020 0.152 0.000 0.496

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) other(p) k
#> SD:skmeans 36               NA   0.1002 2
#> SD:skmeans 57          0.00404   0.0089 3
#> SD:skmeans 48          0.00830   0.0093 4
#> SD:skmeans 41          0.00709   0.0328 5
#> SD:skmeans 33          0.03323   0.1819 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "pam"]
# you can also extract it by
# res = res_list["SD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'SD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.964           0.941       0.976         0.2476 0.758   0.758
#> 3 3 0.535           0.709       0.871         1.3499 0.623   0.516
#> 4 4 0.551           0.634       0.778         0.1972 0.771   0.520
#> 5 5 0.648           0.635       0.817         0.1151 0.817   0.476
#> 6 6 0.700           0.673       0.806         0.0478 0.920   0.663

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.0376     0.9190 0.004 0.996
#> GSM39874     2  0.0376     0.9190 0.004 0.996
#> GSM39875     2  0.0000     0.9165 0.000 1.000
#> GSM39876     2  0.0376     0.9190 0.004 0.996
#> GSM39831     1  0.0000     0.9818 1.000 0.000
#> GSM39819     1  0.0672     0.9803 0.992 0.008
#> GSM39820     1  0.0672     0.9803 0.992 0.008
#> GSM39821     1  0.0000     0.9818 1.000 0.000
#> GSM39822     2  0.0672     0.9181 0.008 0.992
#> GSM39823     1  0.0672     0.9803 0.992 0.008
#> GSM39824     1  0.0672     0.9803 0.992 0.008
#> GSM39825     1  0.0376     0.9811 0.996 0.004
#> GSM39826     1  0.0000     0.9818 1.000 0.000
#> GSM39827     1  0.0000     0.9818 1.000 0.000
#> GSM39846     1  0.0672     0.9803 0.992 0.008
#> GSM39847     1  0.0000     0.9818 1.000 0.000
#> GSM39848     1  0.6343     0.7869 0.840 0.160
#> GSM39849     1  0.0672     0.9803 0.992 0.008
#> GSM39850     1  0.0000     0.9818 1.000 0.000
#> GSM39851     1  0.0000     0.9818 1.000 0.000
#> GSM39855     1  0.0672     0.9803 0.992 0.008
#> GSM39856     1  0.0672     0.9803 0.992 0.008
#> GSM39858     1  0.0672     0.9803 0.992 0.008
#> GSM39859     1  0.0672     0.9803 0.992 0.008
#> GSM39862     1  0.0000     0.9818 1.000 0.000
#> GSM39863     1  0.0000     0.9818 1.000 0.000
#> GSM39865     1  0.1414     0.9646 0.980 0.020
#> GSM39866     1  0.0000     0.9818 1.000 0.000
#> GSM39867     1  0.0000     0.9818 1.000 0.000
#> GSM39869     2  0.0672     0.9181 0.008 0.992
#> GSM39870     1  0.0672     0.9803 0.992 0.008
#> GSM39871     1  0.0672     0.9803 0.992 0.008
#> GSM39872     1  0.0672     0.9803 0.992 0.008
#> GSM39828     1  0.0000     0.9818 1.000 0.000
#> GSM39829     1  0.0376     0.9811 0.996 0.004
#> GSM39830     1  0.0376     0.9811 0.996 0.004
#> GSM39832     1  0.0000     0.9818 1.000 0.000
#> GSM39833     1  0.0000     0.9818 1.000 0.000
#> GSM39834     1  0.0000     0.9818 1.000 0.000
#> GSM39835     1  0.0376     0.9795 0.996 0.004
#> GSM39836     1  0.0000     0.9818 1.000 0.000
#> GSM39837     2  0.9522     0.4517 0.372 0.628
#> GSM39838     1  0.0000     0.9818 1.000 0.000
#> GSM39839     1  0.0672     0.9803 0.992 0.008
#> GSM39840     1  0.0000     0.9818 1.000 0.000
#> GSM39841     1  0.0000     0.9818 1.000 0.000
#> GSM39842     1  0.0000     0.9818 1.000 0.000
#> GSM39843     1  0.0000     0.9818 1.000 0.000
#> GSM39844     1  0.0000     0.9818 1.000 0.000
#> GSM39845     1  0.0672     0.9803 0.992 0.008
#> GSM39852     1  0.0000     0.9818 1.000 0.000
#> GSM39853     2  0.6801     0.7814 0.180 0.820
#> GSM39854     1  0.0672     0.9762 0.992 0.008
#> GSM39857     1  0.0672     0.9803 0.992 0.008
#> GSM39860     1  0.9998    -0.0432 0.508 0.492
#> GSM39861     1  0.0672     0.9803 0.992 0.008
#> GSM39864     1  0.0000     0.9818 1.000 0.000
#> GSM39868     1  0.0000     0.9818 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000     0.9535 0.000 1.000 0.000
#> GSM39874     2  0.0000     0.9535 0.000 1.000 0.000
#> GSM39875     2  0.0000     0.9535 0.000 1.000 0.000
#> GSM39876     2  0.0000     0.9535 0.000 1.000 0.000
#> GSM39831     3  0.6045     0.4971 0.380 0.000 0.620
#> GSM39819     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39820     3  0.2711     0.7511 0.088 0.000 0.912
#> GSM39821     1  0.1031     0.8658 0.976 0.000 0.024
#> GSM39822     2  0.4702     0.7060 0.212 0.788 0.000
#> GSM39823     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39824     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39825     3  0.2959     0.7635 0.100 0.000 0.900
#> GSM39826     1  0.1031     0.8658 0.976 0.000 0.024
#> GSM39827     1  0.0892     0.8645 0.980 0.000 0.020
#> GSM39846     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39847     1  0.1753     0.8563 0.952 0.000 0.048
#> GSM39848     3  0.9262     0.3559 0.324 0.176 0.500
#> GSM39849     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39850     1  0.1031     0.8658 0.976 0.000 0.024
#> GSM39851     1  0.0424     0.8582 0.992 0.000 0.008
#> GSM39855     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39856     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39858     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39859     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39862     3  0.5178     0.6427 0.256 0.000 0.744
#> GSM39863     1  0.6180     0.0622 0.584 0.000 0.416
#> GSM39865     3  0.7084     0.5622 0.044 0.304 0.652
#> GSM39866     1  0.1643     0.8610 0.956 0.000 0.044
#> GSM39867     1  0.1163     0.8576 0.972 0.000 0.028
#> GSM39869     2  0.0000     0.9535 0.000 1.000 0.000
#> GSM39870     3  0.5785     0.3879 0.332 0.000 0.668
#> GSM39871     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39872     3  0.0592     0.7986 0.012 0.000 0.988
#> GSM39828     3  0.5882     0.5248 0.348 0.000 0.652
#> GSM39829     3  0.2066     0.7787 0.060 0.000 0.940
#> GSM39830     3  0.2878     0.7691 0.096 0.000 0.904
#> GSM39832     1  0.0237     0.8549 0.996 0.000 0.004
#> GSM39833     3  0.5968     0.5015 0.364 0.000 0.636
#> GSM39834     3  0.5465     0.6056 0.288 0.000 0.712
#> GSM39835     3  0.6204     0.3920 0.424 0.000 0.576
#> GSM39836     1  0.1031     0.8658 0.976 0.000 0.024
#> GSM39837     1  0.3129     0.7992 0.904 0.088 0.008
#> GSM39838     1  0.4002     0.7524 0.840 0.000 0.160
#> GSM39839     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39840     1  0.3192     0.7860 0.888 0.000 0.112
#> GSM39841     1  0.6267    -0.0464 0.548 0.000 0.452
#> GSM39842     3  0.6154     0.4462 0.408 0.000 0.592
#> GSM39843     1  0.1031     0.8654 0.976 0.000 0.024
#> GSM39844     1  0.2448     0.8307 0.924 0.000 0.076
#> GSM39845     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39852     3  0.6180     0.3975 0.416 0.000 0.584
#> GSM39853     1  0.1643     0.8299 0.956 0.044 0.000
#> GSM39854     1  0.0000     0.8519 1.000 0.000 0.000
#> GSM39857     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39860     3  0.6235     0.0977 0.000 0.436 0.564
#> GSM39861     3  0.0000     0.8010 0.000 0.000 1.000
#> GSM39864     3  0.5835     0.5363 0.340 0.000 0.660
#> GSM39868     1  0.6204     0.2538 0.576 0.000 0.424

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000    0.93906 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000    0.93906 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000    0.93906 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000    0.93906 0.000 1.000 0.000 0.000
#> GSM39831     1  0.3791    0.69783 0.796 0.000 0.200 0.004
#> GSM39819     3  0.1940    0.79849 0.076 0.000 0.924 0.000
#> GSM39820     3  0.3128    0.77502 0.076 0.000 0.884 0.040
#> GSM39821     4  0.1302    0.67999 0.044 0.000 0.000 0.956
#> GSM39822     2  0.4228    0.66633 0.008 0.760 0.000 0.232
#> GSM39823     3  0.1940    0.79849 0.076 0.000 0.924 0.000
#> GSM39824     3  0.0921    0.80790 0.000 0.000 0.972 0.028
#> GSM39825     3  0.4464    0.60772 0.024 0.000 0.768 0.208
#> GSM39826     4  0.1716    0.67488 0.064 0.000 0.000 0.936
#> GSM39827     4  0.1211    0.68038 0.040 0.000 0.000 0.960
#> GSM39846     3  0.1940    0.79849 0.076 0.000 0.924 0.000
#> GSM39847     4  0.0188    0.68263 0.000 0.000 0.004 0.996
#> GSM39848     4  0.8245    0.29574 0.024 0.208 0.328 0.440
#> GSM39849     3  0.0921    0.80790 0.000 0.000 0.972 0.028
#> GSM39850     4  0.1867    0.67065 0.072 0.000 0.000 0.928
#> GSM39851     4  0.1867    0.67065 0.072 0.000 0.000 0.928
#> GSM39855     3  0.0921    0.80790 0.000 0.000 0.972 0.028
#> GSM39856     3  0.0921    0.80790 0.000 0.000 0.972 0.028
#> GSM39858     3  0.1867    0.79945 0.072 0.000 0.928 0.000
#> GSM39859     3  0.0592    0.80805 0.000 0.000 0.984 0.016
#> GSM39862     3  0.5696   -0.13397 0.024 0.000 0.496 0.480
#> GSM39863     1  0.1635    0.80340 0.948 0.000 0.044 0.008
#> GSM39865     3  0.8462   -0.04401 0.024 0.288 0.400 0.288
#> GSM39866     4  0.3796    0.64844 0.096 0.000 0.056 0.848
#> GSM39867     1  0.2281    0.80128 0.904 0.000 0.000 0.096
#> GSM39869     2  0.0188    0.93614 0.004 0.996 0.000 0.000
#> GSM39870     3  0.5143    0.62204 0.076 0.000 0.752 0.172
#> GSM39871     3  0.0921    0.80790 0.000 0.000 0.972 0.028
#> GSM39872     3  0.2222    0.78259 0.016 0.000 0.924 0.060
#> GSM39828     4  0.5915    0.35170 0.040 0.000 0.400 0.560
#> GSM39829     3  0.3464    0.77830 0.076 0.000 0.868 0.056
#> GSM39830     3  0.5798    0.54183 0.096 0.000 0.696 0.208
#> GSM39832     1  0.2011    0.80001 0.920 0.000 0.000 0.080
#> GSM39833     4  0.5980    0.37292 0.044 0.000 0.396 0.560
#> GSM39834     3  0.5696   -0.15039 0.024 0.000 0.496 0.480
#> GSM39835     1  0.5713    0.47455 0.620 0.000 0.340 0.040
#> GSM39836     4  0.1022    0.68107 0.032 0.000 0.000 0.968
#> GSM39837     4  0.2542    0.65676 0.012 0.084 0.000 0.904
#> GSM39838     4  0.2670    0.66975 0.024 0.000 0.072 0.904
#> GSM39839     3  0.1940    0.79849 0.076 0.000 0.924 0.000
#> GSM39840     1  0.4713    0.44087 0.640 0.000 0.000 0.360
#> GSM39841     4  0.7048    0.49727 0.160 0.000 0.284 0.556
#> GSM39842     1  0.2797    0.79706 0.900 0.000 0.068 0.032
#> GSM39843     4  0.1792    0.67358 0.068 0.000 0.000 0.932
#> GSM39844     1  0.0336    0.78319 0.992 0.000 0.000 0.008
#> GSM39845     3  0.1940    0.79849 0.076 0.000 0.924 0.000
#> GSM39852     4  0.5467    0.41483 0.024 0.000 0.364 0.612
#> GSM39853     4  0.5950   -0.04683 0.416 0.040 0.000 0.544
#> GSM39854     1  0.2469    0.79660 0.892 0.000 0.000 0.108
#> GSM39857     3  0.0921    0.80790 0.000 0.000 0.972 0.028
#> GSM39860     3  0.5773    0.35046 0.004 0.376 0.592 0.028
#> GSM39861     3  0.0921    0.80790 0.000 0.000 0.972 0.028
#> GSM39864     4  0.5847    0.32940 0.036 0.000 0.404 0.560
#> GSM39868     4  0.5853    0.00295 0.032 0.000 0.460 0.508

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     0.9300 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.3003     0.6918 0.812 0.000 0.000 0.000 0.188
#> GSM39819     3  0.0290     0.8309 0.000 0.000 0.992 0.000 0.008
#> GSM39820     3  0.0404     0.8312 0.000 0.000 0.988 0.000 0.012
#> GSM39821     4  0.0162     0.8190 0.004 0.000 0.000 0.996 0.000
#> GSM39822     2  0.4971     0.6538 0.000 0.704 0.004 0.212 0.080
#> GSM39823     3  0.0510     0.8312 0.000 0.000 0.984 0.000 0.016
#> GSM39824     5  0.3480     0.5621 0.000 0.000 0.248 0.000 0.752
#> GSM39825     5  0.3934     0.6068 0.000 0.000 0.076 0.124 0.800
#> GSM39826     4  0.0290     0.8188 0.008 0.000 0.000 0.992 0.000
#> GSM39827     4  0.1697     0.7897 0.008 0.000 0.000 0.932 0.060
#> GSM39846     3  0.3707     0.5642 0.000 0.000 0.716 0.000 0.284
#> GSM39847     4  0.0404     0.8156 0.000 0.000 0.000 0.988 0.012
#> GSM39848     5  0.5852     0.3900 0.000 0.180 0.004 0.192 0.624
#> GSM39849     5  0.3480     0.5615 0.000 0.000 0.248 0.000 0.752
#> GSM39850     4  0.0290     0.8188 0.008 0.000 0.000 0.992 0.000
#> GSM39851     4  0.0290     0.8188 0.008 0.000 0.000 0.992 0.000
#> GSM39855     5  0.3480     0.5621 0.000 0.000 0.248 0.000 0.752
#> GSM39856     5  0.3480     0.5621 0.000 0.000 0.248 0.000 0.752
#> GSM39858     3  0.4242     0.2796 0.000 0.000 0.572 0.000 0.428
#> GSM39859     5  0.3661     0.5262 0.000 0.000 0.276 0.000 0.724
#> GSM39862     5  0.3969     0.4806 0.000 0.000 0.004 0.304 0.692
#> GSM39863     1  0.0162     0.8438 0.996 0.000 0.000 0.000 0.004
#> GSM39865     5  0.5101     0.4908 0.000 0.108 0.004 0.184 0.704
#> GSM39866     3  0.4548     0.5838 0.000 0.000 0.752 0.124 0.124
#> GSM39867     1  0.0000     0.8450 1.000 0.000 0.000 0.000 0.000
#> GSM39869     2  0.1591     0.9014 0.000 0.940 0.004 0.004 0.052
#> GSM39870     3  0.0162     0.8280 0.000 0.000 0.996 0.004 0.000
#> GSM39871     5  0.3480     0.5621 0.000 0.000 0.248 0.000 0.752
#> GSM39872     5  0.2873     0.6095 0.000 0.000 0.128 0.016 0.856
#> GSM39828     5  0.4066     0.4453 0.004 0.000 0.000 0.324 0.672
#> GSM39829     3  0.1364     0.8108 0.000 0.000 0.952 0.012 0.036
#> GSM39830     3  0.5006     0.3877 0.004 0.000 0.644 0.044 0.308
#> GSM39832     1  0.0000     0.8450 1.000 0.000 0.000 0.000 0.000
#> GSM39833     5  0.4443     0.2565 0.004 0.000 0.000 0.472 0.524
#> GSM39834     5  0.4114     0.5156 0.000 0.000 0.016 0.272 0.712
#> GSM39835     1  0.5422     0.3204 0.580 0.000 0.000 0.072 0.348
#> GSM39836     4  0.0162     0.8190 0.004 0.000 0.000 0.996 0.000
#> GSM39837     4  0.2519     0.7593 0.000 0.060 0.004 0.900 0.036
#> GSM39838     4  0.4135     0.5062 0.000 0.000 0.004 0.656 0.340
#> GSM39839     3  0.0290     0.8309 0.000 0.000 0.992 0.000 0.008
#> GSM39840     1  0.4166     0.4243 0.648 0.000 0.000 0.348 0.004
#> GSM39841     4  0.5652     0.0463 0.044 0.000 0.020 0.556 0.380
#> GSM39842     1  0.0000     0.8450 1.000 0.000 0.000 0.000 0.000
#> GSM39843     4  0.0451     0.8183 0.008 0.000 0.000 0.988 0.004
#> GSM39844     1  0.0000     0.8450 1.000 0.000 0.000 0.000 0.000
#> GSM39845     3  0.0510     0.8312 0.000 0.000 0.984 0.000 0.016
#> GSM39852     5  0.4101     0.3666 0.000 0.000 0.000 0.372 0.628
#> GSM39853     4  0.6567     0.2138 0.320 0.060 0.012 0.560 0.048
#> GSM39854     1  0.0324     0.8415 0.992 0.000 0.000 0.004 0.004
#> GSM39857     5  0.3274     0.5748 0.000 0.000 0.220 0.000 0.780
#> GSM39860     5  0.6739     0.1152 0.000 0.356 0.216 0.004 0.424
#> GSM39861     5  0.4719     0.5746 0.000 0.000 0.248 0.056 0.696
#> GSM39864     5  0.4937     0.4930 0.000 0.000 0.064 0.264 0.672
#> GSM39868     4  0.6207     0.1233 0.000 0.000 0.140 0.460 0.400

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     1  0.2793     0.6607 0.800 0.000 0.000 0.000 0.000 0.200
#> GSM39819     3  0.0405     0.8048 0.000 0.000 0.988 0.000 0.008 0.004
#> GSM39820     3  0.0146     0.8081 0.000 0.000 0.996 0.000 0.000 0.004
#> GSM39821     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39822     5  0.4038     0.6809 0.000 0.156 0.000 0.072 0.764 0.008
#> GSM39823     3  0.0547     0.8068 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM39824     6  0.4297     0.5661 0.000 0.000 0.176 0.000 0.100 0.724
#> GSM39825     6  0.3119     0.6399 0.000 0.000 0.032 0.076 0.036 0.856
#> GSM39826     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39827     4  0.1245     0.8680 0.000 0.000 0.000 0.952 0.016 0.032
#> GSM39846     3  0.5027     0.4185 0.000 0.000 0.596 0.000 0.100 0.304
#> GSM39847     4  0.0547     0.8974 0.000 0.000 0.000 0.980 0.000 0.020
#> GSM39848     5  0.2558     0.7154 0.000 0.000 0.000 0.004 0.840 0.156
#> GSM39849     6  0.4444     0.5656 0.000 0.000 0.184 0.000 0.108 0.708
#> GSM39850     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39851     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39855     6  0.4414     0.5575 0.000 0.000 0.180 0.000 0.108 0.712
#> GSM39856     6  0.4358     0.5627 0.000 0.000 0.184 0.000 0.100 0.716
#> GSM39858     3  0.5282     0.1625 0.000 0.000 0.484 0.000 0.100 0.416
#> GSM39859     6  0.4143     0.5736 0.000 0.000 0.180 0.000 0.084 0.736
#> GSM39862     6  0.4024     0.5468 0.000 0.000 0.000 0.264 0.036 0.700
#> GSM39863     1  0.0146     0.8191 0.996 0.000 0.000 0.000 0.004 0.000
#> GSM39865     5  0.2762     0.7010 0.000 0.000 0.000 0.000 0.804 0.196
#> GSM39866     3  0.3788     0.6440 0.004 0.000 0.808 0.068 0.016 0.104
#> GSM39867     1  0.1141     0.8102 0.948 0.000 0.000 0.000 0.052 0.000
#> GSM39869     5  0.2300     0.6529 0.000 0.144 0.000 0.000 0.856 0.000
#> GSM39870     3  0.0405     0.8080 0.000 0.000 0.988 0.000 0.004 0.008
#> GSM39871     6  0.4191     0.5714 0.000 0.000 0.180 0.000 0.088 0.732
#> GSM39872     6  0.1624     0.6484 0.000 0.000 0.044 0.008 0.012 0.936
#> GSM39828     6  0.4045     0.5422 0.000 0.000 0.000 0.268 0.036 0.696
#> GSM39829     3  0.1327     0.7875 0.000 0.000 0.936 0.000 0.000 0.064
#> GSM39830     3  0.4150     0.3286 0.000 0.000 0.616 0.008 0.008 0.368
#> GSM39832     1  0.0000     0.8200 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39833     6  0.3887     0.4658 0.000 0.000 0.000 0.360 0.008 0.632
#> GSM39834     6  0.3755     0.5846 0.000 0.000 0.000 0.220 0.036 0.744
#> GSM39835     1  0.6465     0.1928 0.464 0.000 0.000 0.112 0.072 0.352
#> GSM39836     4  0.0000     0.9075 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39837     5  0.4057     0.4708 0.000 0.012 0.000 0.388 0.600 0.000
#> GSM39838     5  0.4125     0.7146 0.000 0.000 0.000 0.128 0.748 0.124
#> GSM39839     3  0.0405     0.8048 0.000 0.000 0.988 0.000 0.008 0.004
#> GSM39840     1  0.3782     0.4278 0.636 0.000 0.000 0.360 0.004 0.000
#> GSM39841     6  0.5761     0.2615 0.032 0.000 0.040 0.424 0.020 0.484
#> GSM39842     1  0.0000     0.8200 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39843     4  0.0508     0.9008 0.004 0.000 0.000 0.984 0.000 0.012
#> GSM39844     1  0.0000     0.8200 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39845     3  0.0547     0.8068 0.000 0.000 0.980 0.000 0.000 0.020
#> GSM39852     6  0.4201     0.4982 0.000 0.000 0.000 0.300 0.036 0.664
#> GSM39853     5  0.4926     0.6508 0.112 0.008 0.004 0.192 0.684 0.000
#> GSM39854     1  0.1141     0.8102 0.948 0.000 0.000 0.000 0.052 0.000
#> GSM39857     6  0.2613     0.6167 0.000 0.000 0.140 0.000 0.012 0.848
#> GSM39860     5  0.4434     0.4280 0.000 0.000 0.172 0.000 0.712 0.116
#> GSM39861     6  0.2402     0.6295 0.000 0.000 0.120 0.012 0.000 0.868
#> GSM39864     6  0.4781     0.5632 0.000 0.000 0.052 0.216 0.036 0.696
#> GSM39868     4  0.6100     0.0473 0.004 0.000 0.104 0.444 0.032 0.416

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) other(p) k
#> SD:pam 56         2.52e-06 1.21e-06 2
#> SD:pam 48         2.33e-07 1.98e-06 3
#> SD:pam 44         3.87e-06 3.51e-05 4
#> SD:pam 43         1.81e-05 3.77e-04 5
#> SD:pam 47         5.68e-09 1.47e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "mclust"]
# you can also extract it by
# res = res_list["SD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'SD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.460           0.844       0.903         0.3488 0.610   0.610
#> 3 3 0.944           0.931       0.961         0.5393 0.538   0.399
#> 4 4 0.669           0.708       0.823         0.2479 0.895   0.775
#> 5 5 0.731           0.669       0.845         0.1260 0.868   0.643
#> 6 6 0.761           0.669       0.795         0.0592 0.902   0.628

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.0000      0.739 0.000 1.000
#> GSM39874     2  0.0000      0.739 0.000 1.000
#> GSM39875     2  0.0000      0.739 0.000 1.000
#> GSM39876     2  0.0000      0.739 0.000 1.000
#> GSM39831     1  0.3879      0.882 0.924 0.076
#> GSM39819     1  0.0000      0.920 1.000 0.000
#> GSM39820     1  0.0000      0.920 1.000 0.000
#> GSM39821     1  0.6973      0.759 0.812 0.188
#> GSM39822     2  0.7815      0.821 0.232 0.768
#> GSM39823     1  0.0000      0.920 1.000 0.000
#> GSM39824     1  0.0000      0.920 1.000 0.000
#> GSM39825     1  0.0000      0.920 1.000 0.000
#> GSM39826     2  0.9686      0.613 0.396 0.604
#> GSM39827     1  0.8608      0.569 0.716 0.284
#> GSM39846     1  0.0000      0.920 1.000 0.000
#> GSM39847     1  0.4562      0.868 0.904 0.096
#> GSM39848     2  0.6801      0.814 0.180 0.820
#> GSM39849     1  0.0000      0.920 1.000 0.000
#> GSM39850     1  0.7950      0.668 0.760 0.240
#> GSM39851     1  0.5294      0.845 0.880 0.120
#> GSM39855     1  0.0000      0.920 1.000 0.000
#> GSM39856     1  0.0000      0.920 1.000 0.000
#> GSM39858     1  0.0000      0.920 1.000 0.000
#> GSM39859     1  0.0000      0.920 1.000 0.000
#> GSM39862     1  0.0376      0.919 0.996 0.004
#> GSM39863     1  0.4815      0.860 0.896 0.104
#> GSM39865     2  0.8207      0.820 0.256 0.744
#> GSM39866     1  0.0672      0.918 0.992 0.008
#> GSM39867     2  0.8813      0.806 0.300 0.700
#> GSM39869     2  0.6801      0.814 0.180 0.820
#> GSM39870     1  0.0000      0.920 1.000 0.000
#> GSM39871     1  0.0000      0.920 1.000 0.000
#> GSM39872     1  0.0000      0.920 1.000 0.000
#> GSM39828     1  0.3274      0.894 0.940 0.060
#> GSM39829     1  0.0000      0.920 1.000 0.000
#> GSM39830     1  0.0000      0.920 1.000 0.000
#> GSM39832     1  0.6531      0.788 0.832 0.168
#> GSM39833     1  0.8144      0.643 0.748 0.252
#> GSM39834     1  0.0376      0.919 0.996 0.004
#> GSM39835     2  0.8813      0.806 0.300 0.700
#> GSM39836     1  0.4022      0.881 0.920 0.080
#> GSM39837     2  0.8813      0.806 0.300 0.700
#> GSM39838     2  0.8813      0.806 0.300 0.700
#> GSM39839     1  0.0000      0.920 1.000 0.000
#> GSM39840     1  0.5737      0.828 0.864 0.136
#> GSM39841     1  0.8608      0.569 0.716 0.284
#> GSM39842     1  0.5178      0.849 0.884 0.116
#> GSM39843     1  0.1414      0.913 0.980 0.020
#> GSM39844     1  0.6531      0.789 0.832 0.168
#> GSM39845     1  0.0000      0.920 1.000 0.000
#> GSM39852     1  0.1843      0.909 0.972 0.028
#> GSM39853     2  0.8813      0.806 0.300 0.700
#> GSM39854     2  0.8813      0.806 0.300 0.700
#> GSM39857     1  0.0000      0.920 1.000 0.000
#> GSM39860     1  0.5408      0.780 0.876 0.124
#> GSM39861     1  0.0000      0.920 1.000 0.000
#> GSM39864     1  0.0376      0.919 0.996 0.004
#> GSM39868     1  0.0000      0.920 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0747     1.0000 0.016 0.984 0.000
#> GSM39874     2  0.0747     1.0000 0.016 0.984 0.000
#> GSM39875     2  0.0747     1.0000 0.016 0.984 0.000
#> GSM39876     2  0.0747     1.0000 0.016 0.984 0.000
#> GSM39831     1  0.1774     0.9445 0.960 0.016 0.024
#> GSM39819     3  0.1289     0.9562 0.032 0.000 0.968
#> GSM39820     3  0.0424     0.9688 0.008 0.000 0.992
#> GSM39821     1  0.0592     0.9549 0.988 0.000 0.012
#> GSM39822     1  0.2096     0.9236 0.944 0.052 0.004
#> GSM39823     3  0.0592     0.9694 0.012 0.000 0.988
#> GSM39824     3  0.0747     0.9677 0.016 0.000 0.984
#> GSM39825     3  0.4235     0.7453 0.176 0.000 0.824
#> GSM39826     1  0.0592     0.9549 0.988 0.000 0.012
#> GSM39827     1  0.0747     0.9545 0.984 0.000 0.016
#> GSM39846     3  0.0424     0.9688 0.008 0.000 0.992
#> GSM39847     1  0.1129     0.9536 0.976 0.004 0.020
#> GSM39848     1  0.0475     0.9529 0.992 0.004 0.004
#> GSM39849     3  0.1289     0.9562 0.032 0.000 0.968
#> GSM39850     1  0.0592     0.9549 0.988 0.000 0.012
#> GSM39851     1  0.1774     0.9445 0.960 0.016 0.024
#> GSM39855     3  0.0892     0.9638 0.020 0.000 0.980
#> GSM39856     3  0.0424     0.9688 0.008 0.000 0.992
#> GSM39858     3  0.0424     0.9688 0.008 0.000 0.992
#> GSM39859     3  0.0424     0.9688 0.008 0.000 0.992
#> GSM39862     1  0.1482     0.9511 0.968 0.020 0.012
#> GSM39863     1  0.1774     0.9445 0.960 0.016 0.024
#> GSM39865     1  0.1765     0.9354 0.956 0.040 0.004
#> GSM39866     1  0.1832     0.9448 0.956 0.008 0.036
#> GSM39867     1  0.0237     0.9535 0.996 0.000 0.004
#> GSM39869     1  0.0983     0.9488 0.980 0.016 0.004
#> GSM39870     3  0.0592     0.9694 0.012 0.000 0.988
#> GSM39871     3  0.0424     0.9688 0.008 0.000 0.992
#> GSM39872     1  0.6516     0.0917 0.516 0.004 0.480
#> GSM39828     1  0.0829     0.9548 0.984 0.004 0.012
#> GSM39829     3  0.1031     0.9628 0.024 0.000 0.976
#> GSM39830     3  0.3038     0.8610 0.104 0.000 0.896
#> GSM39832     1  0.1636     0.9451 0.964 0.016 0.020
#> GSM39833     1  0.1482     0.9527 0.968 0.012 0.020
#> GSM39834     1  0.0829     0.9548 0.984 0.004 0.012
#> GSM39835     1  0.0237     0.9535 0.996 0.000 0.004
#> GSM39836     1  0.0829     0.9548 0.984 0.004 0.012
#> GSM39837     1  0.0661     0.9544 0.988 0.004 0.008
#> GSM39838     1  0.0475     0.9529 0.992 0.004 0.004
#> GSM39839     3  0.1163     0.9598 0.028 0.000 0.972
#> GSM39840     1  0.1774     0.9445 0.960 0.016 0.024
#> GSM39841     1  0.1129     0.9536 0.976 0.004 0.020
#> GSM39842     1  0.1774     0.9445 0.960 0.016 0.024
#> GSM39843     1  0.4209     0.8297 0.856 0.016 0.128
#> GSM39844     1  0.1636     0.9451 0.964 0.016 0.020
#> GSM39845     3  0.0424     0.9688 0.008 0.000 0.992
#> GSM39852     1  0.0829     0.9548 0.984 0.004 0.012
#> GSM39853     1  0.0661     0.9544 0.988 0.004 0.008
#> GSM39854     1  0.0237     0.9535 0.996 0.000 0.004
#> GSM39857     3  0.0592     0.9694 0.012 0.000 0.988
#> GSM39860     1  0.5578     0.6581 0.748 0.012 0.240
#> GSM39861     3  0.0592     0.9694 0.012 0.000 0.988
#> GSM39864     1  0.1482     0.9527 0.968 0.012 0.020
#> GSM39868     1  0.1182     0.9537 0.976 0.012 0.012

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1 p2    p3    p4
#> GSM39873     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM39874     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM39875     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM39876     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM39831     1  0.5000      0.993 0.504  0 0.000 0.496
#> GSM39819     3  0.0469      0.913 0.000  0 0.988 0.012
#> GSM39820     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM39821     4  0.0000      0.561 0.000  0 0.000 1.000
#> GSM39822     4  0.4996      0.592 0.484  0 0.000 0.516
#> GSM39823     3  0.0188      0.915 0.000  0 0.996 0.004
#> GSM39824     3  0.5356      0.648 0.072  0 0.728 0.200
#> GSM39825     3  0.4401      0.612 0.004  0 0.724 0.272
#> GSM39826     4  0.3907      0.591 0.232  0 0.000 0.768
#> GSM39827     4  0.0000      0.561 0.000  0 0.000 1.000
#> GSM39846     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM39847     4  0.0000      0.561 0.000  0 0.000 1.000
#> GSM39848     4  0.4996      0.592 0.484  0 0.000 0.516
#> GSM39849     3  0.0469      0.913 0.000  0 0.988 0.012
#> GSM39850     4  0.0188      0.556 0.004  0 0.000 0.996
#> GSM39851     1  0.4999      0.996 0.508  0 0.000 0.492
#> GSM39855     3  0.5356      0.648 0.072  0 0.728 0.200
#> GSM39856     3  0.0188      0.913 0.004  0 0.996 0.000
#> GSM39858     3  0.0188      0.913 0.004  0 0.996 0.000
#> GSM39859     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM39862     4  0.0707      0.556 0.020  0 0.000 0.980
#> GSM39863     1  0.4999      0.996 0.508  0 0.000 0.492
#> GSM39865     4  0.4996      0.592 0.484  0 0.000 0.516
#> GSM39866     4  0.0188      0.563 0.004  0 0.000 0.996
#> GSM39867     4  0.4967      0.602 0.452  0 0.000 0.548
#> GSM39869     4  0.4996      0.592 0.484  0 0.000 0.516
#> GSM39870     3  0.0188      0.915 0.000  0 0.996 0.004
#> GSM39871     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM39872     4  0.2174      0.518 0.020  0 0.052 0.928
#> GSM39828     4  0.0000      0.561 0.000  0 0.000 1.000
#> GSM39829     3  0.0469      0.913 0.000  0 0.988 0.012
#> GSM39830     3  0.3074      0.782 0.000  0 0.848 0.152
#> GSM39832     1  0.5000      0.994 0.504  0 0.000 0.496
#> GSM39833     4  0.3569      0.589 0.196  0 0.000 0.804
#> GSM39834     4  0.0188      0.563 0.004  0 0.000 0.996
#> GSM39835     4  0.4948      0.603 0.440  0 0.000 0.560
#> GSM39836     4  0.0000      0.561 0.000  0 0.000 1.000
#> GSM39837     4  0.4989      0.597 0.472  0 0.000 0.528
#> GSM39838     4  0.4981      0.600 0.464  0 0.000 0.536
#> GSM39839     3  0.0469      0.913 0.000  0 0.988 0.012
#> GSM39840     4  0.4996     -0.961 0.484  0 0.000 0.516
#> GSM39841     4  0.3975      0.351 0.240  0 0.000 0.760
#> GSM39842     1  0.4999      0.996 0.508  0 0.000 0.492
#> GSM39843     4  0.1970      0.433 0.060  0 0.008 0.932
#> GSM39844     1  0.5000      0.994 0.504  0 0.000 0.496
#> GSM39845     3  0.0000      0.914 0.000  0 1.000 0.000
#> GSM39852     4  0.0188      0.563 0.004  0 0.000 0.996
#> GSM39853     4  0.4985      0.598 0.468  0 0.000 0.532
#> GSM39854     4  0.4977      0.600 0.460  0 0.000 0.540
#> GSM39857     3  0.2714      0.820 0.004  0 0.884 0.112
#> GSM39860     4  0.5165      0.589 0.484  0 0.004 0.512
#> GSM39861     3  0.0188      0.915 0.000  0 0.996 0.004
#> GSM39864     4  0.0000      0.561 0.000  0 0.000 1.000
#> GSM39868     4  0.0188      0.562 0.000  0 0.004 0.996

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1 p2    p3    p4    p5
#> GSM39873     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM39874     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM39875     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM39876     2  0.0000      1.000 0.000  1 0.000 0.000 0.000
#> GSM39831     1  0.1478      0.865 0.936  0 0.000 0.064 0.000
#> GSM39819     3  0.1461      0.895 0.016  0 0.952 0.004 0.028
#> GSM39820     3  0.1310      0.895 0.024  0 0.956 0.000 0.020
#> GSM39821     4  0.3241      0.671 0.144  0 0.000 0.832 0.024
#> GSM39822     5  0.2629      0.705 0.004  0 0.000 0.136 0.860
#> GSM39823     3  0.0671      0.899 0.000  0 0.980 0.004 0.016
#> GSM39824     3  0.4705      0.210 0.004  0 0.504 0.008 0.484
#> GSM39825     3  0.3789      0.669 0.016  0 0.760 0.224 0.000
#> GSM39826     4  0.4906      0.556 0.076  0 0.000 0.692 0.232
#> GSM39827     4  0.4119      0.655 0.152  0 0.000 0.780 0.068
#> GSM39846     3  0.0000      0.902 0.000  0 1.000 0.000 0.000
#> GSM39847     4  0.1544      0.701 0.068  0 0.000 0.932 0.000
#> GSM39848     5  0.2605      0.703 0.000  0 0.000 0.148 0.852
#> GSM39849     3  0.0451      0.902 0.000  0 0.988 0.008 0.004
#> GSM39850     4  0.3578      0.671 0.132  0 0.000 0.820 0.048
#> GSM39851     1  0.0963      0.872 0.964  0 0.000 0.036 0.000
#> GSM39855     3  0.4706      0.199 0.004  0 0.500 0.008 0.488
#> GSM39856     3  0.0000      0.902 0.000  0 1.000 0.000 0.000
#> GSM39858     3  0.0000      0.902 0.000  0 1.000 0.000 0.000
#> GSM39859     3  0.0000      0.902 0.000  0 1.000 0.000 0.000
#> GSM39862     5  0.4796      0.273 0.012  0 0.004 0.468 0.516
#> GSM39863     1  0.1671      0.857 0.924  0 0.000 0.076 0.000
#> GSM39865     5  0.2471      0.705 0.000  0 0.000 0.136 0.864
#> GSM39866     4  0.1924      0.702 0.064  0 0.004 0.924 0.008
#> GSM39867     4  0.4893      0.333 0.028  0 0.000 0.568 0.404
#> GSM39869     5  0.2488      0.699 0.004  0 0.000 0.124 0.872
#> GSM39870     3  0.1377      0.897 0.020  0 0.956 0.004 0.020
#> GSM39871     3  0.0000      0.902 0.000  0 1.000 0.000 0.000
#> GSM39872     4  0.6677     -0.229 0.008  0 0.188 0.468 0.336
#> GSM39828     4  0.0671      0.699 0.016  0 0.004 0.980 0.000
#> GSM39829     3  0.1471      0.896 0.024  0 0.952 0.004 0.020
#> GSM39830     3  0.3013      0.840 0.028  0 0.880 0.068 0.024
#> GSM39832     1  0.0794      0.868 0.972  0 0.000 0.028 0.000
#> GSM39833     4  0.5002      0.381 0.044  0 0.000 0.612 0.344
#> GSM39834     4  0.0740      0.694 0.008  0 0.004 0.980 0.008
#> GSM39835     4  0.4800      0.396 0.028  0 0.000 0.604 0.368
#> GSM39836     4  0.1469      0.704 0.036  0 0.000 0.948 0.016
#> GSM39837     5  0.5109     -0.152 0.036  0 0.000 0.460 0.504
#> GSM39838     4  0.4219      0.197 0.000  0 0.000 0.584 0.416
#> GSM39839     3  0.1461      0.895 0.016  0 0.952 0.004 0.028
#> GSM39840     1  0.1608      0.854 0.928  0 0.000 0.072 0.000
#> GSM39841     1  0.6739     -0.133 0.392  0 0.000 0.260 0.348
#> GSM39842     1  0.0963      0.872 0.964  0 0.000 0.036 0.000
#> GSM39843     4  0.4049      0.586 0.124  0 0.084 0.792 0.000
#> GSM39844     1  0.0794      0.868 0.972  0 0.000 0.028 0.000
#> GSM39845     3  0.0290      0.902 0.008  0 0.992 0.000 0.000
#> GSM39852     4  0.0613      0.696 0.008  0 0.004 0.984 0.004
#> GSM39853     5  0.5109     -0.152 0.036  0 0.000 0.460 0.504
#> GSM39854     4  0.4894      0.222 0.024  0 0.000 0.520 0.456
#> GSM39857     3  0.1082      0.891 0.000  0 0.964 0.008 0.028
#> GSM39860     5  0.3733      0.671 0.004  0 0.032 0.160 0.804
#> GSM39861     3  0.0451      0.903 0.008  0 0.988 0.004 0.000
#> GSM39864     4  0.0771      0.698 0.020  0 0.004 0.976 0.000
#> GSM39868     4  0.0451      0.697 0.008  0 0.004 0.988 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1 p2    p3    p4    p5    p6
#> GSM39873     2  0.0000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39831     1  0.0632      0.895 0.976  0 0.000 0.024 0.000 0.000
#> GSM39819     6  0.3993      0.383 0.000  0 0.476 0.000 0.004 0.520
#> GSM39820     6  0.3866      0.378 0.000  0 0.484 0.000 0.000 0.516
#> GSM39821     4  0.2345      0.780 0.028  0 0.000 0.904 0.028 0.040
#> GSM39822     5  0.1649      0.706 0.000  0 0.000 0.032 0.932 0.036
#> GSM39823     3  0.1297      0.867 0.000  0 0.948 0.000 0.012 0.040
#> GSM39824     5  0.4731      0.336 0.000  0 0.428 0.000 0.524 0.048
#> GSM39825     3  0.4685      0.408 0.000  0 0.676 0.248 0.012 0.064
#> GSM39826     4  0.5201      0.708 0.044  0 0.000 0.664 0.072 0.220
#> GSM39827     4  0.4546      0.735 0.032  0 0.000 0.724 0.052 0.192
#> GSM39846     3  0.0000      0.903 0.000  0 1.000 0.000 0.000 0.000
#> GSM39847     4  0.1116      0.784 0.028  0 0.000 0.960 0.008 0.004
#> GSM39848     5  0.0865      0.724 0.000  0 0.000 0.036 0.964 0.000
#> GSM39849     3  0.1398      0.859 0.000  0 0.940 0.008 0.000 0.052
#> GSM39850     4  0.3485      0.770 0.040  0 0.000 0.832 0.040 0.088
#> GSM39851     1  0.0458      0.896 0.984  0 0.000 0.016 0.000 0.000
#> GSM39855     5  0.4731      0.336 0.000  0 0.428 0.000 0.524 0.048
#> GSM39856     3  0.0000      0.903 0.000  0 1.000 0.000 0.000 0.000
#> GSM39858     3  0.0000      0.903 0.000  0 1.000 0.000 0.000 0.000
#> GSM39859     3  0.0000      0.903 0.000  0 1.000 0.000 0.000 0.000
#> GSM39862     5  0.3244      0.600 0.000  0 0.000 0.268 0.732 0.000
#> GSM39863     1  0.0713      0.892 0.972  0 0.000 0.028 0.000 0.000
#> GSM39865     5  0.0790      0.724 0.000  0 0.000 0.032 0.968 0.000
#> GSM39866     4  0.1232      0.785 0.024  0 0.004 0.956 0.016 0.000
#> GSM39867     4  0.5989      0.576 0.036  0 0.000 0.488 0.104 0.372
#> GSM39869     5  0.0935      0.723 0.000  0 0.000 0.032 0.964 0.004
#> GSM39870     6  0.3860      0.392 0.000  0 0.472 0.000 0.000 0.528
#> GSM39871     3  0.0000      0.903 0.000  0 1.000 0.000 0.000 0.000
#> GSM39872     5  0.6053      0.367 0.000  0 0.308 0.280 0.412 0.000
#> GSM39828     4  0.0260      0.778 0.000  0 0.000 0.992 0.008 0.000
#> GSM39829     6  0.3991      0.391 0.000  0 0.472 0.000 0.004 0.524
#> GSM39830     6  0.4279      0.403 0.000  0 0.436 0.012 0.004 0.548
#> GSM39832     1  0.0458      0.896 0.984  0 0.000 0.016 0.000 0.000
#> GSM39833     4  0.6172      0.621 0.036  0 0.008 0.540 0.120 0.296
#> GSM39834     4  0.0260      0.778 0.000  0 0.000 0.992 0.008 0.000
#> GSM39835     4  0.5987      0.594 0.048  0 0.000 0.504 0.088 0.360
#> GSM39836     4  0.0717      0.782 0.016  0 0.000 0.976 0.008 0.000
#> GSM39837     6  0.6620     -0.499 0.032  0 0.000 0.352 0.236 0.380
#> GSM39838     4  0.6413      0.438 0.020  0 0.000 0.432 0.292 0.256
#> GSM39839     6  0.3993      0.383 0.000  0 0.476 0.000 0.004 0.520
#> GSM39840     1  0.1075      0.871 0.952  0 0.000 0.048 0.000 0.000
#> GSM39841     1  0.6997      0.113 0.460  0 0.000 0.220 0.100 0.220
#> GSM39842     1  0.0458      0.896 0.984  0 0.000 0.016 0.000 0.000
#> GSM39843     4  0.3806      0.697 0.144  0 0.024 0.792 0.000 0.040
#> GSM39844     1  0.0458      0.896 0.984  0 0.000 0.016 0.000 0.000
#> GSM39845     3  0.0790      0.884 0.000  0 0.968 0.000 0.000 0.032
#> GSM39852     4  0.0363      0.777 0.000  0 0.000 0.988 0.012 0.000
#> GSM39853     6  0.6620     -0.499 0.032  0 0.000 0.352 0.236 0.380
#> GSM39854     4  0.6464      0.497 0.036  0 0.000 0.416 0.176 0.372
#> GSM39857     3  0.2001      0.824 0.000  0 0.912 0.000 0.048 0.040
#> GSM39860     5  0.1644      0.708 0.000  0 0.000 0.028 0.932 0.040
#> GSM39861     3  0.1429      0.863 0.000  0 0.940 0.004 0.004 0.052
#> GSM39864     4  0.0622      0.781 0.012  0 0.000 0.980 0.008 0.000
#> GSM39868     4  0.0260      0.778 0.000  0 0.000 0.992 0.008 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) other(p) k
#> SD:mclust 58         3.53e-03 5.72e-03 2
#> SD:mclust 57         4.19e-13 2.62e-11 3
#> SD:mclust 55         6.87e-12 1.18e-10 4
#> SD:mclust 46         2.46e-09 1.61e-07 5
#> SD:mclust 43         1.03e-08 3.45e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


SD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["SD", "NMF"]
# you can also extract it by
# res = res_list["SD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'SD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk SD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk SD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.405           0.743       0.863         0.4505 0.552   0.552
#> 3 3 0.719           0.841       0.933         0.4631 0.675   0.463
#> 4 4 0.631           0.690       0.849         0.1208 0.835   0.572
#> 5 5 0.688           0.640       0.824         0.0812 0.897   0.642
#> 6 6 0.739           0.595       0.788         0.0366 0.927   0.684

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.0000      0.840 0.000 1.000
#> GSM39874     2  0.0000      0.840 0.000 1.000
#> GSM39875     2  0.0000      0.840 0.000 1.000
#> GSM39876     2  0.0000      0.840 0.000 1.000
#> GSM39831     1  0.8081      0.787 0.752 0.248
#> GSM39819     1  0.0000      0.792 1.000 0.000
#> GSM39820     1  0.0376      0.791 0.996 0.004
#> GSM39821     1  0.8081      0.787 0.752 0.248
#> GSM39822     2  0.0000      0.840 0.000 1.000
#> GSM39823     1  0.8813      0.354 0.700 0.300
#> GSM39824     2  0.8813      0.612 0.300 0.700
#> GSM39825     1  0.0000      0.792 1.000 0.000
#> GSM39826     1  0.8327      0.770 0.736 0.264
#> GSM39827     1  0.8081      0.787 0.752 0.248
#> GSM39846     1  0.7299      0.574 0.796 0.204
#> GSM39847     1  0.8081      0.787 0.752 0.248
#> GSM39848     2  0.0376      0.839 0.004 0.996
#> GSM39849     1  0.4298      0.736 0.912 0.088
#> GSM39850     1  0.8081      0.787 0.752 0.248
#> GSM39851     1  0.8081      0.787 0.752 0.248
#> GSM39855     2  0.8499      0.631 0.276 0.724
#> GSM39856     1  0.5629      0.687 0.868 0.132
#> GSM39858     1  0.1633      0.784 0.976 0.024
#> GSM39859     1  0.1414      0.786 0.980 0.020
#> GSM39862     2  0.9460      0.411 0.364 0.636
#> GSM39863     1  0.8081      0.787 0.752 0.248
#> GSM39865     2  0.1843      0.828 0.028 0.972
#> GSM39866     1  0.4298      0.801 0.912 0.088
#> GSM39867     2  0.9944     -0.131 0.456 0.544
#> GSM39869     2  0.0000      0.840 0.000 1.000
#> GSM39870     1  0.0376      0.791 0.996 0.004
#> GSM39871     1  0.1843      0.782 0.972 0.028
#> GSM39872     1  0.1184      0.789 0.984 0.016
#> GSM39828     1  0.8081      0.787 0.752 0.248
#> GSM39829     1  0.0000      0.792 1.000 0.000
#> GSM39830     1  0.0000      0.792 1.000 0.000
#> GSM39832     1  0.8081      0.787 0.752 0.248
#> GSM39833     2  0.9087      0.333 0.324 0.676
#> GSM39834     1  0.8016      0.788 0.756 0.244
#> GSM39835     2  0.6438      0.699 0.164 0.836
#> GSM39836     1  0.8081      0.787 0.752 0.248
#> GSM39837     2  0.0938      0.837 0.012 0.988
#> GSM39838     2  0.0000      0.840 0.000 1.000
#> GSM39839     1  0.0000      0.792 1.000 0.000
#> GSM39840     1  0.8081      0.787 0.752 0.248
#> GSM39841     1  0.8081      0.787 0.752 0.248
#> GSM39842     1  0.8081      0.787 0.752 0.248
#> GSM39843     1  0.8016      0.788 0.756 0.244
#> GSM39844     1  0.8081      0.787 0.752 0.248
#> GSM39845     1  0.1414      0.786 0.980 0.020
#> GSM39852     1  0.8081      0.787 0.752 0.248
#> GSM39853     2  0.1184      0.835 0.016 0.984
#> GSM39854     2  0.4022      0.791 0.080 0.920
#> GSM39857     1  0.5178      0.707 0.884 0.116
#> GSM39860     2  0.8081      0.645 0.248 0.752
#> GSM39861     1  0.1184      0.788 0.984 0.016
#> GSM39864     1  0.6148      0.798 0.848 0.152
#> GSM39868     1  0.1184      0.796 0.984 0.016

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000    0.90215 0.000 1.000 0.000
#> GSM39874     2  0.0000    0.90215 0.000 1.000 0.000
#> GSM39875     2  0.0000    0.90215 0.000 1.000 0.000
#> GSM39876     2  0.0000    0.90215 0.000 1.000 0.000
#> GSM39831     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39819     3  0.4750    0.74824 0.216 0.000 0.784
#> GSM39820     3  0.3340    0.85541 0.120 0.000 0.880
#> GSM39821     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39822     2  0.0000    0.90215 0.000 1.000 0.000
#> GSM39823     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39824     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39825     3  0.2066    0.89196 0.060 0.000 0.940
#> GSM39826     1  0.3038    0.82417 0.896 0.104 0.000
#> GSM39827     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39846     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39847     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39848     2  0.0000    0.90215 0.000 1.000 0.000
#> GSM39849     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39850     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39851     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39855     3  0.0237    0.91426 0.000 0.004 0.996
#> GSM39856     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39858     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39859     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39862     3  0.4784    0.73939 0.200 0.004 0.796
#> GSM39863     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39865     2  0.0000    0.90215 0.000 1.000 0.000
#> GSM39866     1  0.3816    0.79407 0.852 0.000 0.148
#> GSM39867     1  0.6280   -0.00708 0.540 0.460 0.000
#> GSM39869     2  0.0000    0.90215 0.000 1.000 0.000
#> GSM39870     3  0.3340    0.85541 0.120 0.000 0.880
#> GSM39871     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39872     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39828     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39829     3  0.5591    0.60221 0.304 0.000 0.696
#> GSM39830     1  0.5291    0.60450 0.732 0.000 0.268
#> GSM39832     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39833     2  0.4750    0.70865 0.216 0.784 0.000
#> GSM39834     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39835     2  0.6309    0.09565 0.496 0.504 0.000
#> GSM39836     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39837     2  0.1411    0.88704 0.036 0.964 0.000
#> GSM39838     2  0.0000    0.90215 0.000 1.000 0.000
#> GSM39839     3  0.3267    0.85849 0.116 0.000 0.884
#> GSM39840     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39841     1  0.0592    0.92445 0.988 0.012 0.000
#> GSM39842     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39843     1  0.0237    0.93053 0.996 0.000 0.004
#> GSM39844     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39845     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39852     1  0.0000    0.93313 1.000 0.000 0.000
#> GSM39853     2  0.1860    0.87695 0.052 0.948 0.000
#> GSM39854     2  0.6045    0.43004 0.380 0.620 0.000
#> GSM39857     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39860     3  0.5835    0.48099 0.000 0.340 0.660
#> GSM39861     3  0.0000    0.91653 0.000 0.000 1.000
#> GSM39864     1  0.1031    0.91550 0.976 0.000 0.024
#> GSM39868     1  0.4654    0.71162 0.792 0.000 0.208

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM39831     1  0.1174      0.810 0.968 0.000 0.020 0.012
#> GSM39819     3  0.3355      0.718 0.160 0.000 0.836 0.004
#> GSM39820     3  0.1902      0.788 0.064 0.000 0.932 0.004
#> GSM39821     1  0.3024      0.794 0.852 0.000 0.000 0.148
#> GSM39822     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM39823     3  0.4304      0.584 0.000 0.000 0.716 0.284
#> GSM39824     3  0.4888      0.351 0.000 0.000 0.588 0.412
#> GSM39825     3  0.5466      0.526 0.040 0.000 0.668 0.292
#> GSM39826     1  0.4328      0.718 0.748 0.008 0.000 0.244
#> GSM39827     1  0.2401      0.814 0.904 0.004 0.000 0.092
#> GSM39846     3  0.1211      0.805 0.000 0.000 0.960 0.040
#> GSM39847     1  0.2647      0.806 0.880 0.000 0.000 0.120
#> GSM39848     4  0.1377      0.665 0.008 0.020 0.008 0.964
#> GSM39849     3  0.1004      0.808 0.004 0.000 0.972 0.024
#> GSM39850     1  0.3626      0.771 0.812 0.004 0.000 0.184
#> GSM39851     1  0.1520      0.811 0.956 0.000 0.024 0.020
#> GSM39855     3  0.5000      0.121 0.000 0.000 0.500 0.500
#> GSM39856     3  0.1302      0.804 0.000 0.000 0.956 0.044
#> GSM39858     3  0.0921      0.807 0.000 0.000 0.972 0.028
#> GSM39859     3  0.1474      0.801 0.000 0.000 0.948 0.052
#> GSM39862     4  0.0937      0.667 0.012 0.000 0.012 0.976
#> GSM39863     1  0.1488      0.804 0.956 0.000 0.032 0.012
#> GSM39865     2  0.3219      0.795 0.000 0.836 0.000 0.164
#> GSM39866     1  0.4375      0.694 0.788 0.000 0.032 0.180
#> GSM39867     1  0.6289      0.593 0.648 0.236 0.000 0.116
#> GSM39869     2  0.1022      0.930 0.000 0.968 0.000 0.032
#> GSM39870     3  0.1978      0.787 0.068 0.000 0.928 0.004
#> GSM39871     3  0.1211      0.805 0.000 0.000 0.960 0.040
#> GSM39872     4  0.3764      0.471 0.000 0.000 0.216 0.784
#> GSM39828     1  0.4134      0.708 0.740 0.000 0.000 0.260
#> GSM39829     3  0.2944      0.748 0.128 0.000 0.868 0.004
#> GSM39830     3  0.5132      0.280 0.448 0.000 0.548 0.004
#> GSM39832     1  0.0707      0.817 0.980 0.000 0.000 0.020
#> GSM39833     2  0.3636      0.733 0.172 0.820 0.008 0.000
#> GSM39834     4  0.3024      0.589 0.148 0.000 0.000 0.852
#> GSM39835     1  0.5772      0.678 0.708 0.116 0.000 0.176
#> GSM39836     1  0.4643      0.588 0.656 0.000 0.000 0.344
#> GSM39837     2  0.0188      0.948 0.004 0.996 0.000 0.000
#> GSM39838     4  0.7172      0.154 0.140 0.376 0.000 0.484
#> GSM39839     3  0.2773      0.757 0.116 0.000 0.880 0.004
#> GSM39840     1  0.1022      0.819 0.968 0.000 0.000 0.032
#> GSM39841     1  0.1930      0.785 0.936 0.004 0.056 0.004
#> GSM39842     1  0.1059      0.813 0.972 0.000 0.016 0.012
#> GSM39843     1  0.2131      0.807 0.932 0.000 0.036 0.032
#> GSM39844     1  0.0937      0.814 0.976 0.000 0.012 0.012
#> GSM39845     3  0.1305      0.807 0.004 0.000 0.960 0.036
#> GSM39852     4  0.4941     -0.156 0.436 0.000 0.000 0.564
#> GSM39853     2  0.0000      0.950 0.000 1.000 0.000 0.000
#> GSM39854     1  0.6811      0.305 0.496 0.404 0.000 0.100
#> GSM39857     4  0.4992     -0.197 0.000 0.000 0.476 0.524
#> GSM39860     4  0.2704      0.589 0.000 0.000 0.124 0.876
#> GSM39861     3  0.0672      0.805 0.008 0.000 0.984 0.008
#> GSM39864     1  0.4018      0.723 0.772 0.000 0.004 0.224
#> GSM39868     4  0.3937      0.565 0.188 0.000 0.012 0.800

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000     0.9099 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     0.9099 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     0.9099 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     0.9099 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.2773     0.7141 0.836 0.000 0.000 0.164 0.000
#> GSM39819     3  0.3072     0.7759 0.100 0.004 0.868 0.012 0.016
#> GSM39820     3  0.1597     0.8168 0.020 0.000 0.948 0.024 0.008
#> GSM39821     4  0.1082     0.6876 0.028 0.000 0.000 0.964 0.008
#> GSM39822     2  0.0451     0.9081 0.000 0.988 0.000 0.008 0.004
#> GSM39823     3  0.3975     0.5979 0.008 0.000 0.744 0.008 0.240
#> GSM39824     3  0.4238     0.3267 0.000 0.000 0.628 0.004 0.368
#> GSM39825     3  0.5682     0.5067 0.008 0.000 0.656 0.164 0.172
#> GSM39826     4  0.1728     0.6867 0.020 0.004 0.000 0.940 0.036
#> GSM39827     4  0.4035     0.5446 0.220 0.016 0.000 0.756 0.008
#> GSM39846     3  0.0451     0.8240 0.004 0.000 0.988 0.000 0.008
#> GSM39847     4  0.1041     0.6867 0.032 0.000 0.000 0.964 0.004
#> GSM39848     5  0.1997     0.7182 0.000 0.036 0.000 0.040 0.924
#> GSM39849     3  0.5733     0.4468 0.312 0.000 0.588 0.004 0.096
#> GSM39850     4  0.0898     0.6880 0.020 0.000 0.000 0.972 0.008
#> GSM39851     4  0.3720     0.5529 0.228 0.000 0.000 0.760 0.012
#> GSM39855     5  0.4698     0.0877 0.000 0.008 0.468 0.004 0.520
#> GSM39856     3  0.0963     0.8199 0.000 0.000 0.964 0.000 0.036
#> GSM39858     3  0.0290     0.8239 0.000 0.000 0.992 0.000 0.008
#> GSM39859     3  0.0963     0.8187 0.000 0.000 0.964 0.000 0.036
#> GSM39862     5  0.1329     0.7301 0.004 0.000 0.008 0.032 0.956
#> GSM39863     1  0.3906     0.5446 0.704 0.000 0.004 0.292 0.000
#> GSM39865     2  0.2011     0.8549 0.000 0.908 0.000 0.004 0.088
#> GSM39866     4  0.6347     0.0475 0.356 0.000 0.004 0.492 0.148
#> GSM39867     1  0.5736     0.6506 0.688 0.056 0.000 0.180 0.076
#> GSM39869     2  0.2230     0.8351 0.000 0.884 0.000 0.000 0.116
#> GSM39870     3  0.2936     0.7794 0.024 0.000 0.872 0.096 0.008
#> GSM39871     3  0.0609     0.8230 0.000 0.000 0.980 0.000 0.020
#> GSM39872     5  0.2206     0.7300 0.016 0.000 0.068 0.004 0.912
#> GSM39828     4  0.3922     0.6097 0.180 0.000 0.000 0.780 0.040
#> GSM39829     3  0.2237     0.8065 0.040 0.000 0.916 0.040 0.004
#> GSM39830     3  0.5987     0.5206 0.236 0.000 0.616 0.136 0.012
#> GSM39832     1  0.1205     0.7519 0.956 0.000 0.000 0.040 0.004
#> GSM39833     2  0.7103     0.1589 0.360 0.472 0.004 0.112 0.052
#> GSM39834     5  0.3181     0.6571 0.072 0.000 0.000 0.072 0.856
#> GSM39835     1  0.3689     0.6702 0.820 0.024 0.000 0.016 0.140
#> GSM39836     4  0.1628     0.6767 0.008 0.000 0.000 0.936 0.056
#> GSM39837     2  0.1124     0.8928 0.000 0.960 0.000 0.036 0.004
#> GSM39838     4  0.6035     0.3195 0.004 0.316 0.000 0.556 0.124
#> GSM39839     3  0.2678     0.7833 0.100 0.000 0.880 0.004 0.016
#> GSM39840     4  0.4546     0.1592 0.460 0.000 0.000 0.532 0.008
#> GSM39841     1  0.4878     0.6731 0.756 0.048 0.020 0.164 0.012
#> GSM39842     1  0.1455     0.7301 0.952 0.000 0.008 0.008 0.032
#> GSM39843     4  0.5259     0.3576 0.368 0.000 0.028 0.588 0.016
#> GSM39844     1  0.1831     0.7540 0.920 0.000 0.000 0.076 0.004
#> GSM39845     3  0.0880     0.8204 0.000 0.000 0.968 0.000 0.032
#> GSM39852     4  0.2763     0.6352 0.004 0.000 0.000 0.848 0.148
#> GSM39853     2  0.0566     0.9043 0.012 0.984 0.000 0.004 0.000
#> GSM39854     1  0.6709     0.4733 0.552 0.296 0.000 0.072 0.080
#> GSM39857     5  0.4227     0.2601 0.000 0.000 0.420 0.000 0.580
#> GSM39860     5  0.1652     0.7374 0.004 0.004 0.040 0.008 0.944
#> GSM39861     3  0.0324     0.8239 0.000 0.000 0.992 0.004 0.004
#> GSM39864     4  0.6332    -0.1064 0.424 0.000 0.004 0.436 0.136
#> GSM39868     5  0.5449     0.3757 0.104 0.000 0.000 0.264 0.632

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     5  0.0713      0.857 0.000 0.028 0.000 0.000 0.972 0.000
#> GSM39874     5  0.0790      0.856 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM39875     5  0.0547      0.857 0.000 0.020 0.000 0.000 0.980 0.000
#> GSM39876     5  0.0790      0.856 0.000 0.032 0.000 0.000 0.968 0.000
#> GSM39831     1  0.1405      0.654 0.948 0.024 0.004 0.024 0.000 0.000
#> GSM39819     3  0.2800      0.753 0.068 0.020 0.880 0.024 0.000 0.008
#> GSM39820     3  0.1863      0.781 0.036 0.044 0.920 0.000 0.000 0.000
#> GSM39821     4  0.0405      0.833 0.008 0.004 0.000 0.988 0.000 0.000
#> GSM39822     5  0.0862      0.850 0.000 0.008 0.000 0.016 0.972 0.004
#> GSM39823     3  0.4766      0.332 0.000 0.072 0.612 0.000 0.000 0.316
#> GSM39824     3  0.3929      0.498 0.000 0.028 0.700 0.000 0.000 0.272
#> GSM39825     3  0.5868      0.393 0.004 0.048 0.612 0.220 0.000 0.116
#> GSM39826     4  0.0914      0.831 0.000 0.016 0.000 0.968 0.000 0.016
#> GSM39827     1  0.6274      0.321 0.480 0.124 0.000 0.348 0.048 0.000
#> GSM39846     3  0.0520      0.800 0.000 0.008 0.984 0.000 0.000 0.008
#> GSM39847     4  0.0665      0.832 0.004 0.008 0.000 0.980 0.000 0.008
#> GSM39848     6  0.3573      0.423 0.000 0.120 0.000 0.028 0.036 0.816
#> GSM39849     2  0.7154      0.233 0.080 0.464 0.264 0.016 0.000 0.176
#> GSM39850     4  0.0622      0.833 0.000 0.012 0.000 0.980 0.000 0.008
#> GSM39851     4  0.1340      0.823 0.040 0.008 0.000 0.948 0.000 0.004
#> GSM39855     6  0.4783      0.147 0.000 0.052 0.428 0.000 0.000 0.520
#> GSM39856     3  0.1845      0.783 0.000 0.052 0.920 0.000 0.000 0.028
#> GSM39858     3  0.0405      0.800 0.000 0.008 0.988 0.000 0.000 0.004
#> GSM39859     3  0.0725      0.800 0.000 0.012 0.976 0.000 0.000 0.012
#> GSM39862     6  0.4596      0.323 0.004 0.204 0.000 0.096 0.000 0.696
#> GSM39863     1  0.2913      0.663 0.860 0.092 0.012 0.036 0.000 0.000
#> GSM39865     5  0.4086      0.648 0.004 0.048 0.000 0.000 0.728 0.220
#> GSM39866     1  0.6243      0.466 0.504 0.372 0.020 0.036 0.008 0.060
#> GSM39867     1  0.4371      0.625 0.740 0.188 0.000 0.004 0.048 0.020
#> GSM39869     5  0.2631      0.799 0.004 0.044 0.000 0.000 0.876 0.076
#> GSM39870     3  0.3956      0.673 0.104 0.096 0.788 0.008 0.000 0.004
#> GSM39871     3  0.1225      0.795 0.000 0.036 0.952 0.000 0.000 0.012
#> GSM39872     6  0.4505      0.342 0.008 0.252 0.056 0.000 0.000 0.684
#> GSM39828     4  0.1592      0.825 0.008 0.032 0.000 0.940 0.000 0.020
#> GSM39829     3  0.2961      0.746 0.080 0.048 0.860 0.012 0.000 0.000
#> GSM39830     3  0.7163     -0.143 0.116 0.172 0.396 0.316 0.000 0.000
#> GSM39832     1  0.1387      0.621 0.932 0.068 0.000 0.000 0.000 0.000
#> GSM39833     4  0.7367      0.129 0.044 0.256 0.004 0.432 0.232 0.032
#> GSM39834     6  0.5073      0.380 0.096 0.292 0.000 0.004 0.000 0.608
#> GSM39835     2  0.6245      0.234 0.336 0.492 0.000 0.004 0.032 0.136
#> GSM39836     4  0.1232      0.824 0.004 0.016 0.000 0.956 0.000 0.024
#> GSM39837     5  0.2261      0.787 0.000 0.004 0.000 0.104 0.884 0.008
#> GSM39838     5  0.7796      0.112 0.016 0.244 0.000 0.156 0.372 0.212
#> GSM39839     3  0.2358      0.772 0.048 0.040 0.900 0.012 0.000 0.000
#> GSM39840     4  0.4215      0.583 0.244 0.056 0.000 0.700 0.000 0.000
#> GSM39841     1  0.3889      0.597 0.816 0.056 0.008 0.080 0.040 0.000
#> GSM39842     1  0.3921      0.207 0.676 0.308 0.000 0.004 0.000 0.012
#> GSM39843     4  0.2519      0.791 0.044 0.068 0.004 0.884 0.000 0.000
#> GSM39844     1  0.0777      0.646 0.972 0.024 0.000 0.004 0.000 0.000
#> GSM39845     3  0.0405      0.800 0.000 0.004 0.988 0.000 0.000 0.008
#> GSM39852     4  0.5926      0.404 0.032 0.184 0.000 0.580 0.000 0.204
#> GSM39853     5  0.0260      0.853 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM39854     1  0.4849      0.565 0.700 0.128 0.000 0.000 0.156 0.016
#> GSM39857     6  0.4774      0.154 0.000 0.052 0.420 0.000 0.000 0.528
#> GSM39860     6  0.1332      0.474 0.000 0.028 0.012 0.008 0.000 0.952
#> GSM39861     3  0.0508      0.799 0.004 0.012 0.984 0.000 0.000 0.000
#> GSM39864     1  0.5572      0.527 0.588 0.300 0.008 0.020 0.000 0.084
#> GSM39868     6  0.5556      0.345 0.112 0.332 0.000 0.012 0.000 0.544

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-SD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-SD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-SD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-SD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-SD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-SD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-SD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-SD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-SD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-SD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-SD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk SD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-SD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk SD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) other(p) k
#> SD:NMF 54         0.008435 0.014440 2
#> SD:NMF 54         0.000521 0.000928 3
#> SD:NMF 50         0.000587 0.008722 4
#> SD:NMF 46         0.001228 0.010724 5
#> SD:NMF 38         0.002402 0.013319 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "hclust"]
# you can also extract it by
# res = res_list["CV:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'CV' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 5.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.264           0.570       0.807         0.3531 0.646   0.646
#> 3 3 0.213           0.385       0.719         0.3567 0.784   0.687
#> 4 4 0.340           0.562       0.757         0.3301 0.712   0.496
#> 5 5 0.478           0.619       0.744         0.1290 0.920   0.773
#> 6 6 0.532           0.545       0.724         0.0551 0.977   0.920

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 5

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.2948   0.646535 0.052 0.948
#> GSM39874     2  0.2948   0.646535 0.052 0.948
#> GSM39875     2  0.2948   0.646535 0.052 0.948
#> GSM39876     2  0.2948   0.646535 0.052 0.948
#> GSM39831     1  0.0000   0.733250 1.000 0.000
#> GSM39819     1  0.8661   0.605918 0.712 0.288
#> GSM39820     1  0.8608   0.610612 0.716 0.284
#> GSM39821     1  0.0938   0.735736 0.988 0.012
#> GSM39822     2  0.9922   0.263347 0.448 0.552
#> GSM39823     1  0.9922   0.225297 0.552 0.448
#> GSM39824     2  0.9988  -0.000784 0.480 0.520
#> GSM39825     1  0.4815   0.728372 0.896 0.104
#> GSM39826     1  0.1184   0.731794 0.984 0.016
#> GSM39827     1  0.6887   0.679787 0.816 0.184
#> GSM39846     1  0.9815   0.343348 0.580 0.420
#> GSM39847     1  0.0938   0.735736 0.988 0.012
#> GSM39848     2  0.1633   0.620883 0.024 0.976
#> GSM39849     1  0.8861   0.563872 0.696 0.304
#> GSM39850     1  0.1184   0.731794 0.984 0.016
#> GSM39851     1  0.0000   0.733250 1.000 0.000
#> GSM39855     2  0.9209   0.445981 0.336 0.664
#> GSM39856     1  0.9795   0.356162 0.584 0.416
#> GSM39858     1  0.9248   0.522661 0.660 0.340
#> GSM39859     1  0.8955   0.571840 0.688 0.312
#> GSM39862     2  0.9933   0.255422 0.452 0.548
#> GSM39863     1  0.0000   0.733250 1.000 0.000
#> GSM39865     2  0.9922   0.243193 0.448 0.552
#> GSM39866     1  0.2603   0.740080 0.956 0.044
#> GSM39867     1  0.8713   0.536924 0.708 0.292
#> GSM39869     2  0.9866   0.322474 0.432 0.568
#> GSM39870     1  0.8499   0.618681 0.724 0.276
#> GSM39871     1  0.8955   0.571840 0.688 0.312
#> GSM39872     1  0.6531   0.698858 0.832 0.168
#> GSM39828     1  0.0000   0.733250 1.000 0.000
#> GSM39829     1  0.8555   0.614596 0.720 0.280
#> GSM39830     1  0.0938   0.736609 0.988 0.012
#> GSM39832     1  0.0000   0.733250 1.000 0.000
#> GSM39833     1  0.8661   0.593565 0.712 0.288
#> GSM39834     1  0.3733   0.737152 0.928 0.072
#> GSM39835     1  0.7376   0.630976 0.792 0.208
#> GSM39836     1  0.0938   0.735736 0.988 0.012
#> GSM39837     1  1.0000  -0.138118 0.504 0.496
#> GSM39838     1  0.9775   0.269570 0.588 0.412
#> GSM39839     1  0.8661   0.605918 0.712 0.288
#> GSM39840     1  0.0672   0.736847 0.992 0.008
#> GSM39841     1  0.4022   0.728554 0.920 0.080
#> GSM39842     1  0.0000   0.733250 1.000 0.000
#> GSM39843     1  0.0000   0.733250 1.000 0.000
#> GSM39844     1  0.0000   0.733250 1.000 0.000
#> GSM39845     1  0.8661   0.605918 0.712 0.288
#> GSM39852     1  0.2236   0.739832 0.964 0.036
#> GSM39853     2  0.9996   0.121806 0.488 0.512
#> GSM39854     1  0.8713   0.536924 0.708 0.292
#> GSM39857     1  0.9922   0.225297 0.552 0.448
#> GSM39860     2  0.0672   0.617143 0.008 0.992
#> GSM39861     1  0.8763   0.594640 0.704 0.296
#> GSM39864     1  0.1843   0.739457 0.972 0.028
#> GSM39868     1  0.3733   0.737152 0.928 0.072

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.3879    0.56065 0.000 0.848 0.152
#> GSM39874     2  0.3879    0.56065 0.000 0.848 0.152
#> GSM39875     2  0.3879    0.56065 0.000 0.848 0.152
#> GSM39876     2  0.3879    0.56065 0.000 0.848 0.152
#> GSM39831     1  0.0892    0.65261 0.980 0.000 0.020
#> GSM39819     1  0.6286    0.00665 0.536 0.000 0.464
#> GSM39820     1  0.6274    0.02123 0.544 0.000 0.456
#> GSM39821     1  0.1950    0.65719 0.952 0.008 0.040
#> GSM39822     2  0.9433    0.37215 0.356 0.460 0.184
#> GSM39823     3  0.7099    0.41771 0.384 0.028 0.588
#> GSM39824     3  0.6828    0.46867 0.312 0.032 0.656
#> GSM39825     1  0.5070    0.50689 0.772 0.004 0.224
#> GSM39826     1  0.2550    0.65075 0.936 0.024 0.040
#> GSM39827     1  0.5961    0.54967 0.792 0.112 0.096
#> GSM39846     3  0.6314    0.38256 0.392 0.004 0.604
#> GSM39847     1  0.1950    0.65719 0.952 0.008 0.040
#> GSM39848     3  0.6869   -0.14291 0.016 0.424 0.560
#> GSM39849     1  0.7410    0.12300 0.576 0.040 0.384
#> GSM39850     1  0.2550    0.65075 0.936 0.024 0.040
#> GSM39851     1  0.0892    0.65261 0.980 0.000 0.020
#> GSM39855     3  0.7739    0.35400 0.204 0.124 0.672
#> GSM39856     3  0.6330    0.37265 0.396 0.004 0.600
#> GSM39858     3  0.6518    0.08446 0.484 0.004 0.512
#> GSM39859     1  0.6307   -0.08900 0.512 0.000 0.488
#> GSM39862     3  0.9793    0.21761 0.376 0.236 0.388
#> GSM39863     1  0.0892    0.65261 0.980 0.000 0.020
#> GSM39865     1  0.9872   -0.34453 0.372 0.372 0.256
#> GSM39866     1  0.2486    0.65098 0.932 0.008 0.060
#> GSM39867     1  0.8245    0.27904 0.624 0.244 0.132
#> GSM39869     2  0.9641    0.32497 0.356 0.432 0.212
#> GSM39870     1  0.6215    0.08277 0.572 0.000 0.428
#> GSM39871     1  0.6307   -0.08900 0.512 0.000 0.488
#> GSM39872     1  0.5623    0.43527 0.716 0.004 0.280
#> GSM39828     1  0.0747    0.65344 0.984 0.000 0.016
#> GSM39829     1  0.6260    0.05351 0.552 0.000 0.448
#> GSM39830     1  0.1643    0.65888 0.956 0.000 0.044
#> GSM39832     1  0.1031    0.65123 0.976 0.000 0.024
#> GSM39833     1  0.8034    0.20963 0.584 0.080 0.336
#> GSM39834     1  0.3644    0.61614 0.872 0.004 0.124
#> GSM39835     1  0.7101    0.43193 0.704 0.216 0.080
#> GSM39836     1  0.1950    0.65626 0.952 0.008 0.040
#> GSM39837     2  0.9336    0.32058 0.412 0.424 0.164
#> GSM39838     1  0.9181    0.17821 0.540 0.236 0.224
#> GSM39839     1  0.6286    0.00665 0.536 0.000 0.464
#> GSM39840     1  0.1170    0.65476 0.976 0.008 0.016
#> GSM39841     1  0.3415    0.62254 0.900 0.080 0.020
#> GSM39842     1  0.1031    0.65123 0.976 0.000 0.024
#> GSM39843     1  0.0747    0.65344 0.984 0.000 0.016
#> GSM39844     1  0.1031    0.65123 0.976 0.000 0.024
#> GSM39845     1  0.6286    0.00665 0.536 0.000 0.464
#> GSM39852     1  0.2584    0.65209 0.928 0.008 0.064
#> GSM39853     2  0.9361    0.34770 0.396 0.436 0.168
#> GSM39854     1  0.8245    0.27904 0.624 0.244 0.132
#> GSM39857     3  0.7099    0.41771 0.384 0.028 0.588
#> GSM39860     3  0.6095   -0.10329 0.000 0.392 0.608
#> GSM39861     1  0.6291   -0.01191 0.532 0.000 0.468
#> GSM39864     1  0.1753    0.65353 0.952 0.000 0.048
#> GSM39868     1  0.3644    0.61614 0.872 0.004 0.124

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000    0.48967 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000    0.48967 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000    0.48967 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000    0.48967 0.000 1.000 0.000 0.000
#> GSM39831     1  0.0779    0.75192 0.980 0.000 0.016 0.004
#> GSM39819     3  0.4072    0.72907 0.252 0.000 0.748 0.000
#> GSM39820     3  0.4222    0.71733 0.272 0.000 0.728 0.000
#> GSM39821     1  0.4239    0.73631 0.808 0.004 0.160 0.028
#> GSM39822     2  0.8523    0.54375 0.208 0.524 0.188 0.080
#> GSM39823     3  0.4274    0.57731 0.072 0.000 0.820 0.108
#> GSM39824     3  0.3401    0.47127 0.008 0.000 0.840 0.152
#> GSM39825     1  0.5535    0.00742 0.560 0.000 0.420 0.020
#> GSM39826     1  0.5139    0.69762 0.768 0.020 0.172 0.040
#> GSM39827     1  0.6385    0.60179 0.712 0.152 0.092 0.044
#> GSM39846     3  0.2313    0.60373 0.032 0.000 0.924 0.044
#> GSM39847     1  0.4239    0.73631 0.808 0.004 0.160 0.028
#> GSM39848     4  0.3144    0.64016 0.000 0.044 0.072 0.884
#> GSM39849     3  0.6355    0.40411 0.256 0.016 0.656 0.072
#> GSM39850     1  0.5139    0.69762 0.768 0.020 0.172 0.040
#> GSM39851     1  0.0592    0.75222 0.984 0.000 0.016 0.000
#> GSM39855     3  0.4661    0.03118 0.000 0.000 0.652 0.348
#> GSM39856     3  0.1936    0.61273 0.032 0.000 0.940 0.028
#> GSM39858     3  0.3486    0.71301 0.188 0.000 0.812 0.000
#> GSM39859     3  0.3801    0.72828 0.220 0.000 0.780 0.000
#> GSM39862     4  0.7901    0.28461 0.176 0.016 0.344 0.464
#> GSM39863     1  0.0779    0.75192 0.980 0.000 0.016 0.004
#> GSM39865     2  0.9677    0.42045 0.224 0.384 0.196 0.196
#> GSM39866     1  0.3880    0.71815 0.836 0.008 0.136 0.020
#> GSM39867     1  0.9075    0.04948 0.460 0.244 0.184 0.112
#> GSM39869     2  0.9650    0.45024 0.208 0.388 0.180 0.224
#> GSM39870     3  0.4605    0.65456 0.336 0.000 0.664 0.000
#> GSM39871     3  0.3688    0.72807 0.208 0.000 0.792 0.000
#> GSM39872     3  0.6204   -0.04215 0.448 0.000 0.500 0.052
#> GSM39828     1  0.1022    0.75203 0.968 0.000 0.032 0.000
#> GSM39829     3  0.4134    0.72630 0.260 0.000 0.740 0.000
#> GSM39830     1  0.2973    0.69301 0.856 0.000 0.144 0.000
#> GSM39832     1  0.1151    0.74963 0.968 0.000 0.024 0.008
#> GSM39833     3  0.7545    0.13604 0.344 0.052 0.532 0.072
#> GSM39834     1  0.5592    0.63536 0.680 0.000 0.264 0.056
#> GSM39835     1  0.8422    0.29565 0.560 0.128 0.156 0.156
#> GSM39836     1  0.4857    0.70749 0.764 0.004 0.192 0.040
#> GSM39837     2  0.8373    0.51090 0.260 0.504 0.184 0.052
#> GSM39838     1  0.9773   -0.15476 0.348 0.248 0.232 0.172
#> GSM39839     3  0.4072    0.72907 0.252 0.000 0.748 0.000
#> GSM39840     1  0.1356    0.75322 0.960 0.000 0.032 0.008
#> GSM39841     1  0.3319    0.71612 0.888 0.060 0.016 0.036
#> GSM39842     1  0.1151    0.74963 0.968 0.000 0.024 0.008
#> GSM39843     1  0.1022    0.75203 0.968 0.000 0.032 0.000
#> GSM39844     1  0.1151    0.74963 0.968 0.000 0.024 0.008
#> GSM39845     3  0.4008    0.73051 0.244 0.000 0.756 0.000
#> GSM39852     1  0.4513    0.73207 0.796 0.004 0.160 0.040
#> GSM39853     2  0.8291    0.53684 0.244 0.520 0.184 0.052
#> GSM39854     1  0.9075    0.04948 0.460 0.244 0.184 0.112
#> GSM39857     3  0.4274    0.57731 0.072 0.000 0.820 0.108
#> GSM39860     4  0.2831    0.65518 0.000 0.004 0.120 0.876
#> GSM39861     3  0.3975    0.73093 0.240 0.000 0.760 0.000
#> GSM39864     1  0.3166    0.72755 0.868 0.000 0.116 0.016
#> GSM39868     1  0.5592    0.63536 0.680 0.000 0.264 0.056

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000
#> GSM39831     4  0.1357     0.7229 0.048 0.000 0.004 0.948 0.000
#> GSM39819     3  0.3210     0.7349 0.000 0.000 0.788 0.212 0.000
#> GSM39820     3  0.3671     0.7169 0.008 0.000 0.756 0.236 0.000
#> GSM39821     4  0.4887     0.6152 0.288 0.000 0.052 0.660 0.000
#> GSM39822     1  0.6197     0.5764 0.492 0.428 0.020 0.020 0.040
#> GSM39823     3  0.4100     0.6007 0.008 0.000 0.792 0.052 0.148
#> GSM39824     3  0.3048     0.5300 0.004 0.000 0.820 0.000 0.176
#> GSM39825     4  0.6077     0.0990 0.088 0.000 0.392 0.508 0.012
#> GSM39826     4  0.4897     0.5270 0.352 0.004 0.028 0.616 0.000
#> GSM39827     4  0.6382     0.3690 0.300 0.096 0.036 0.568 0.000
#> GSM39846     3  0.1502     0.6301 0.004 0.000 0.940 0.000 0.056
#> GSM39847     4  0.4887     0.6152 0.288 0.000 0.052 0.660 0.000
#> GSM39848     5  0.2899     0.6598 0.056 0.032 0.024 0.000 0.888
#> GSM39849     3  0.5373     0.3860 0.244 0.000 0.676 0.048 0.032
#> GSM39850     4  0.4897     0.5270 0.352 0.004 0.028 0.616 0.000
#> GSM39851     4  0.0865     0.7214 0.024 0.000 0.004 0.972 0.000
#> GSM39855     3  0.4264     0.1490 0.004 0.000 0.620 0.000 0.376
#> GSM39856     3  0.0955     0.6420 0.004 0.000 0.968 0.000 0.028
#> GSM39858     3  0.3488     0.7324 0.000 0.000 0.808 0.168 0.024
#> GSM39859     3  0.3086     0.7385 0.000 0.000 0.816 0.180 0.004
#> GSM39862     5  0.7704     0.4225 0.116 0.000 0.284 0.140 0.460
#> GSM39863     4  0.1357     0.7229 0.048 0.000 0.004 0.948 0.000
#> GSM39865     1  0.7476     0.6072 0.476 0.300 0.016 0.036 0.172
#> GSM39866     4  0.5040     0.6703 0.200 0.004 0.072 0.716 0.008
#> GSM39867     1  0.5427     0.6454 0.688 0.120 0.012 0.180 0.000
#> GSM39869     1  0.6634     0.6006 0.564 0.272 0.012 0.016 0.136
#> GSM39870     3  0.4404     0.6442 0.024 0.000 0.684 0.292 0.000
#> GSM39871     3  0.2813     0.7384 0.000 0.000 0.832 0.168 0.000
#> GSM39872     3  0.6947     0.0575 0.160 0.000 0.460 0.352 0.028
#> GSM39828     4  0.1195     0.7265 0.028 0.000 0.012 0.960 0.000
#> GSM39829     3  0.3659     0.7306 0.012 0.000 0.768 0.220 0.000
#> GSM39830     4  0.2873     0.6760 0.020 0.000 0.120 0.860 0.000
#> GSM39832     4  0.1792     0.6988 0.084 0.000 0.000 0.916 0.000
#> GSM39833     3  0.6988     0.1193 0.360 0.028 0.496 0.092 0.024
#> GSM39834     4  0.6424     0.5023 0.316 0.000 0.124 0.540 0.020
#> GSM39835     1  0.4095     0.2349 0.752 0.000 0.004 0.220 0.024
#> GSM39836     4  0.5174     0.5420 0.340 0.000 0.056 0.604 0.000
#> GSM39837     1  0.5877     0.6180 0.520 0.404 0.020 0.056 0.000
#> GSM39838     1  0.8649     0.5811 0.460 0.196 0.052 0.152 0.140
#> GSM39839     3  0.3210     0.7349 0.000 0.000 0.788 0.212 0.000
#> GSM39840     4  0.1168     0.7258 0.032 0.000 0.008 0.960 0.000
#> GSM39841     4  0.3257     0.6582 0.124 0.028 0.004 0.844 0.000
#> GSM39842     4  0.1792     0.6988 0.084 0.000 0.000 0.916 0.000
#> GSM39843     4  0.0898     0.7254 0.020 0.000 0.008 0.972 0.000
#> GSM39844     4  0.1792     0.6988 0.084 0.000 0.000 0.916 0.000
#> GSM39845     3  0.3177     0.7367 0.000 0.000 0.792 0.208 0.000
#> GSM39852     4  0.5361     0.6188 0.284 0.000 0.060 0.644 0.012
#> GSM39853     1  0.5663     0.6042 0.520 0.420 0.020 0.040 0.000
#> GSM39854     1  0.5427     0.6454 0.688 0.120 0.012 0.180 0.000
#> GSM39857     3  0.4100     0.6007 0.008 0.000 0.792 0.052 0.148
#> GSM39860     5  0.0794     0.6696 0.000 0.000 0.028 0.000 0.972
#> GSM39861     3  0.3266     0.7381 0.004 0.000 0.796 0.200 0.000
#> GSM39864     4  0.4480     0.6866 0.180 0.000 0.064 0.752 0.004
#> GSM39868     4  0.6424     0.5023 0.316 0.000 0.124 0.540 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     4  0.2122    0.63147 0.076 0.000 0.000 0.900 0.024 0.000
#> GSM39819     3  0.2854    0.73008 0.000 0.000 0.792 0.208 0.000 0.000
#> GSM39820     3  0.3786    0.70747 0.008 0.000 0.748 0.220 0.024 0.000
#> GSM39821     4  0.5066    0.50077 0.064 0.000 0.012 0.588 0.336 0.000
#> GSM39822     5  0.4388    0.62143 0.000 0.312 0.000 0.004 0.648 0.036
#> GSM39823     3  0.3735    0.60213 0.008 0.000 0.792 0.044 0.004 0.152
#> GSM39824     3  0.2979    0.54226 0.004 0.000 0.804 0.000 0.004 0.188
#> GSM39825     4  0.6607   -0.00454 0.108 0.000 0.380 0.440 0.064 0.008
#> GSM39826     4  0.5183    0.38874 0.080 0.000 0.004 0.528 0.388 0.000
#> GSM39827     5  0.5343   -0.25674 0.060 0.004 0.012 0.452 0.472 0.000
#> GSM39846     3  0.1818    0.63574 0.004 0.000 0.920 0.004 0.004 0.068
#> GSM39847     4  0.5066    0.50077 0.064 0.000 0.012 0.588 0.336 0.000
#> GSM39848     6  0.2510    0.54236 0.060 0.024 0.000 0.000 0.024 0.892
#> GSM39849     3  0.4164    0.34923 0.308 0.000 0.668 0.012 0.008 0.004
#> GSM39850     4  0.5183    0.38874 0.080 0.000 0.004 0.528 0.388 0.000
#> GSM39851     4  0.0632    0.63720 0.024 0.000 0.000 0.976 0.000 0.000
#> GSM39855     3  0.4090    0.18238 0.008 0.000 0.604 0.000 0.004 0.384
#> GSM39856     3  0.1371    0.64720 0.004 0.000 0.948 0.004 0.004 0.040
#> GSM39858     3  0.3351    0.72927 0.004 0.000 0.800 0.168 0.000 0.028
#> GSM39859     3  0.2738    0.73466 0.000 0.000 0.820 0.176 0.000 0.004
#> GSM39862     6  0.7649    0.26864 0.140 0.000 0.268 0.104 0.048 0.440
#> GSM39863     4  0.2122    0.63147 0.076 0.000 0.000 0.900 0.024 0.000
#> GSM39865     5  0.5858    0.59617 0.036 0.188 0.000 0.004 0.612 0.160
#> GSM39866     4  0.6011    0.54287 0.168 0.000 0.032 0.560 0.240 0.000
#> GSM39867     5  0.2585    0.52936 0.048 0.004 0.000 0.068 0.880 0.000
#> GSM39869     5  0.5219    0.56578 0.028 0.164 0.000 0.000 0.672 0.136
#> GSM39870     3  0.4751    0.63147 0.024 0.000 0.672 0.256 0.048 0.000
#> GSM39871     3  0.2491    0.73388 0.000 0.000 0.836 0.164 0.000 0.000
#> GSM39872     3  0.7146    0.02167 0.208 0.000 0.436 0.260 0.092 0.004
#> GSM39828     4  0.1777    0.64871 0.044 0.000 0.004 0.928 0.024 0.000
#> GSM39829     3  0.3430    0.72791 0.016 0.000 0.772 0.208 0.004 0.000
#> GSM39830     4  0.2889    0.59342 0.020 0.000 0.116 0.852 0.012 0.000
#> GSM39832     4  0.2888    0.57847 0.092 0.000 0.000 0.852 0.056 0.000
#> GSM39833     3  0.7085   -0.00670 0.256 0.020 0.480 0.052 0.188 0.004
#> GSM39834     4  0.7118    0.29315 0.228 0.000 0.068 0.372 0.328 0.004
#> GSM39835     1  0.4431    0.00000 0.688 0.000 0.000 0.076 0.236 0.000
#> GSM39836     4  0.5497    0.39322 0.092 0.000 0.012 0.504 0.392 0.000
#> GSM39837     5  0.4009    0.63547 0.000 0.288 0.000 0.028 0.684 0.000
#> GSM39838     5  0.6295    0.53610 0.076 0.084 0.008 0.048 0.656 0.128
#> GSM39839     3  0.2854    0.73008 0.000 0.000 0.792 0.208 0.000 0.000
#> GSM39840     4  0.1405    0.64753 0.024 0.000 0.004 0.948 0.024 0.000
#> GSM39841     4  0.3564    0.56167 0.040 0.016 0.000 0.808 0.136 0.000
#> GSM39842     4  0.2888    0.57847 0.092 0.000 0.000 0.852 0.056 0.000
#> GSM39843     4  0.1148    0.64730 0.020 0.000 0.004 0.960 0.016 0.000
#> GSM39844     4  0.2888    0.57847 0.092 0.000 0.000 0.852 0.056 0.000
#> GSM39845     3  0.2823    0.73205 0.000 0.000 0.796 0.204 0.000 0.000
#> GSM39852     4  0.6002    0.47376 0.140 0.000 0.012 0.512 0.328 0.008
#> GSM39853     5  0.3853    0.63237 0.000 0.304 0.000 0.016 0.680 0.000
#> GSM39854     5  0.2585    0.52936 0.048 0.004 0.000 0.068 0.880 0.000
#> GSM39857     3  0.3735    0.60213 0.008 0.000 0.792 0.044 0.004 0.152
#> GSM39860     6  0.0146    0.55010 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM39861     3  0.2902    0.73386 0.000 0.000 0.800 0.196 0.004 0.000
#> GSM39864     4  0.5560    0.58036 0.140 0.000 0.028 0.624 0.208 0.000
#> GSM39868     4  0.7118    0.29315 0.228 0.000 0.068 0.372 0.328 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) other(p) k
#> CV:hclust 45         4.84e-06 2.77e-06 2
#> CV:hclust 27         9.26e-06 5.89e-06 3
#> CV:hclust 41               NA 7.46e-01 4
#> CV:hclust 50         3.61e-10 1.76e-07 5
#> CV:hclust 44         6.42e-09 2.16e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "kmeans"]
# you can also extract it by
# res = res_list["CV:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'CV' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.246           0.684       0.830         0.4160 0.687   0.687
#> 3 3 0.688           0.808       0.904         0.5026 0.652   0.509
#> 4 4 0.543           0.507       0.745         0.1479 0.907   0.765
#> 5 5 0.550           0.469       0.713         0.0798 0.850   0.563
#> 6 6 0.621           0.392       0.640         0.0524 0.840   0.460

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.5629      0.899 0.132 0.868
#> GSM39874     2  0.5629      0.899 0.132 0.868
#> GSM39875     2  0.5629      0.899 0.132 0.868
#> GSM39876     2  0.5629      0.899 0.132 0.868
#> GSM39831     1  0.0000      0.776 1.000 0.000
#> GSM39819     1  0.7602      0.731 0.780 0.220
#> GSM39820     1  0.7602      0.731 0.780 0.220
#> GSM39821     1  0.0376      0.776 0.996 0.004
#> GSM39822     2  0.6531      0.876 0.168 0.832
#> GSM39823     1  0.9833      0.535 0.576 0.424
#> GSM39824     2  0.5737      0.678 0.136 0.864
#> GSM39825     1  0.7299      0.737 0.796 0.204
#> GSM39826     1  0.0672      0.774 0.992 0.008
#> GSM39827     1  0.0672      0.774 0.992 0.008
#> GSM39846     1  0.9833      0.535 0.576 0.424
#> GSM39847     1  0.0376      0.776 0.996 0.004
#> GSM39848     2  0.6343      0.881 0.160 0.840
#> GSM39849     1  0.9833      0.535 0.576 0.424
#> GSM39850     1  0.0672      0.774 0.992 0.008
#> GSM39851     1  0.0376      0.776 0.996 0.004
#> GSM39855     2  0.5737      0.678 0.136 0.864
#> GSM39856     1  0.9833      0.535 0.576 0.424
#> GSM39858     1  0.8813      0.680 0.700 0.300
#> GSM39859     1  0.8813      0.680 0.700 0.300
#> GSM39862     1  0.8955      0.567 0.688 0.312
#> GSM39863     1  0.0000      0.776 1.000 0.000
#> GSM39865     2  0.5629      0.897 0.132 0.868
#> GSM39866     1  0.0000      0.776 1.000 0.000
#> GSM39867     1  0.5946      0.640 0.856 0.144
#> GSM39869     2  0.6887      0.857 0.184 0.816
#> GSM39870     1  0.7602      0.731 0.780 0.220
#> GSM39871     1  0.8909      0.674 0.692 0.308
#> GSM39872     1  0.9732      0.564 0.596 0.404
#> GSM39828     1  0.1184      0.777 0.984 0.016
#> GSM39829     1  0.7299      0.736 0.796 0.204
#> GSM39830     1  0.5408      0.754 0.876 0.124
#> GSM39832     1  0.0672      0.774 0.992 0.008
#> GSM39833     1  0.6801      0.688 0.820 0.180
#> GSM39834     1  0.3584      0.773 0.932 0.068
#> GSM39835     1  0.7056      0.624 0.808 0.192
#> GSM39836     1  0.0376      0.776 0.996 0.004
#> GSM39837     1  0.9944     -0.170 0.544 0.456
#> GSM39838     1  0.9944     -0.170 0.544 0.456
#> GSM39839     1  0.7602      0.731 0.780 0.220
#> GSM39840     1  0.0672      0.774 0.992 0.008
#> GSM39841     1  0.0672      0.774 0.992 0.008
#> GSM39842     1  0.0672      0.774 0.992 0.008
#> GSM39843     1  0.1184      0.777 0.984 0.016
#> GSM39844     1  0.0672      0.774 0.992 0.008
#> GSM39845     1  0.8713      0.687 0.708 0.292
#> GSM39852     1  0.0000      0.776 1.000 0.000
#> GSM39853     1  0.9944     -0.170 0.544 0.456
#> GSM39854     1  0.8555      0.394 0.720 0.280
#> GSM39857     1  0.9833      0.535 0.576 0.424
#> GSM39860     2  0.1414      0.789 0.020 0.980
#> GSM39861     1  0.8713      0.687 0.708 0.292
#> GSM39864     1  0.1633      0.776 0.976 0.024
#> GSM39868     1  0.6801      0.745 0.820 0.180

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.1751     0.9187 0.012 0.960 0.028
#> GSM39874     2  0.1751     0.9187 0.012 0.960 0.028
#> GSM39875     2  0.1751     0.9187 0.012 0.960 0.028
#> GSM39876     2  0.1751     0.9187 0.012 0.960 0.028
#> GSM39831     1  0.1399     0.8885 0.968 0.004 0.028
#> GSM39819     3  0.4062     0.8112 0.164 0.000 0.836
#> GSM39820     3  0.4062     0.8112 0.164 0.000 0.836
#> GSM39821     1  0.1129     0.8856 0.976 0.020 0.004
#> GSM39822     2  0.2749     0.9033 0.064 0.924 0.012
#> GSM39823     3  0.1315     0.8787 0.008 0.020 0.972
#> GSM39824     3  0.1129     0.8759 0.004 0.020 0.976
#> GSM39825     3  0.5070     0.7382 0.224 0.004 0.772
#> GSM39826     1  0.1267     0.8814 0.972 0.024 0.004
#> GSM39827     1  0.1129     0.8856 0.976 0.020 0.004
#> GSM39846     3  0.0983     0.8803 0.004 0.016 0.980
#> GSM39847     1  0.1170     0.8874 0.976 0.016 0.008
#> GSM39848     2  0.2414     0.9132 0.040 0.940 0.020
#> GSM39849     3  0.1129     0.8759 0.004 0.020 0.976
#> GSM39850     1  0.1031     0.8833 0.976 0.024 0.000
#> GSM39851     1  0.1163     0.8888 0.972 0.000 0.028
#> GSM39855     3  0.1399     0.8713 0.004 0.028 0.968
#> GSM39856     3  0.0983     0.8803 0.004 0.016 0.980
#> GSM39858     3  0.0237     0.8832 0.004 0.000 0.996
#> GSM39859     3  0.0237     0.8832 0.004 0.000 0.996
#> GSM39862     1  0.7517     0.3877 0.588 0.048 0.364
#> GSM39863     1  0.1399     0.8885 0.968 0.004 0.028
#> GSM39865     2  0.2414     0.9141 0.040 0.940 0.020
#> GSM39866     1  0.1585     0.8881 0.964 0.008 0.028
#> GSM39867     1  0.1765     0.8777 0.956 0.040 0.004
#> GSM39869     2  0.2446     0.9106 0.052 0.936 0.012
#> GSM39870     3  0.4062     0.8112 0.164 0.000 0.836
#> GSM39871     3  0.0237     0.8832 0.004 0.000 0.996
#> GSM39872     3  0.1453     0.8779 0.008 0.024 0.968
#> GSM39828     1  0.1129     0.8894 0.976 0.004 0.020
#> GSM39829     3  0.4062     0.8112 0.164 0.000 0.836
#> GSM39830     3  0.6305     0.1511 0.484 0.000 0.516
#> GSM39832     1  0.1585     0.8884 0.964 0.008 0.028
#> GSM39833     1  0.4371     0.8129 0.860 0.032 0.108
#> GSM39834     1  0.4249     0.8240 0.864 0.028 0.108
#> GSM39835     1  0.1765     0.8750 0.956 0.040 0.004
#> GSM39836     1  0.1163     0.8834 0.972 0.028 0.000
#> GSM39837     1  0.6521     0.0692 0.500 0.496 0.004
#> GSM39838     1  0.5873     0.5496 0.684 0.312 0.004
#> GSM39839     3  0.3879     0.8183 0.152 0.000 0.848
#> GSM39840     1  0.0892     0.8894 0.980 0.000 0.020
#> GSM39841     1  0.1399     0.8885 0.968 0.004 0.028
#> GSM39842     1  0.1585     0.8884 0.964 0.008 0.028
#> GSM39843     1  0.1163     0.8888 0.972 0.000 0.028
#> GSM39844     1  0.1585     0.8884 0.964 0.008 0.028
#> GSM39845     3  0.0424     0.8828 0.008 0.000 0.992
#> GSM39852     1  0.1031     0.8847 0.976 0.024 0.000
#> GSM39853     1  0.6521     0.0692 0.500 0.496 0.004
#> GSM39854     1  0.2945     0.8421 0.908 0.088 0.004
#> GSM39857     3  0.1315     0.8787 0.008 0.020 0.972
#> GSM39860     2  0.6490     0.4829 0.012 0.628 0.360
#> GSM39861     3  0.0424     0.8828 0.008 0.000 0.992
#> GSM39864     1  0.1585     0.8881 0.964 0.008 0.028
#> GSM39868     1  0.5928     0.5377 0.696 0.008 0.296

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0188     0.6764 0.000 0.996 0.004 0.000
#> GSM39874     2  0.0188     0.6764 0.000 0.996 0.004 0.000
#> GSM39875     2  0.0188     0.6764 0.000 0.996 0.004 0.000
#> GSM39876     2  0.0188     0.6764 0.000 0.996 0.004 0.000
#> GSM39831     1  0.4964     0.4811 0.616 0.000 0.004 0.380
#> GSM39819     3  0.4901     0.7399 0.108 0.000 0.780 0.112
#> GSM39820     3  0.4784     0.7457 0.112 0.000 0.788 0.100
#> GSM39821     1  0.0817     0.5688 0.976 0.000 0.000 0.024
#> GSM39822     2  0.5055     0.6493 0.032 0.712 0.000 0.256
#> GSM39823     3  0.1792     0.8011 0.000 0.000 0.932 0.068
#> GSM39824     3  0.3610     0.7122 0.000 0.000 0.800 0.200
#> GSM39825     3  0.5051     0.6450 0.244 0.004 0.724 0.028
#> GSM39826     1  0.2281     0.5231 0.904 0.000 0.000 0.096
#> GSM39827     1  0.3123     0.5594 0.844 0.000 0.000 0.156
#> GSM39846     3  0.0469     0.8171 0.000 0.000 0.988 0.012
#> GSM39847     1  0.0000     0.5697 1.000 0.000 0.000 0.000
#> GSM39848     2  0.7093     0.3697 0.108 0.452 0.004 0.436
#> GSM39849     3  0.3945     0.7038 0.004 0.000 0.780 0.216
#> GSM39850     1  0.1792     0.5461 0.932 0.000 0.000 0.068
#> GSM39851     1  0.4428     0.5380 0.720 0.000 0.004 0.276
#> GSM39855     3  0.4364     0.6792 0.000 0.016 0.764 0.220
#> GSM39856     3  0.0469     0.8171 0.000 0.000 0.988 0.012
#> GSM39858     3  0.0657     0.8179 0.004 0.000 0.984 0.012
#> GSM39859     3  0.0188     0.8182 0.004 0.000 0.996 0.000
#> GSM39862     4  0.7052     0.0800 0.440 0.004 0.104 0.452
#> GSM39863     1  0.4964     0.4811 0.616 0.000 0.004 0.380
#> GSM39865     2  0.5337     0.6345 0.024 0.672 0.004 0.300
#> GSM39866     1  0.3908     0.5556 0.784 0.000 0.004 0.212
#> GSM39867     1  0.5126     0.2983 0.552 0.004 0.000 0.444
#> GSM39869     2  0.5010     0.6445 0.024 0.700 0.000 0.276
#> GSM39870     3  0.4784     0.7457 0.112 0.000 0.788 0.100
#> GSM39871     3  0.0376     0.8180 0.004 0.000 0.992 0.004
#> GSM39872     3  0.5536     0.6119 0.048 0.004 0.696 0.252
#> GSM39828     1  0.1847     0.5638 0.940 0.004 0.004 0.052
#> GSM39829     3  0.4956     0.7367 0.116 0.000 0.776 0.108
#> GSM39830     3  0.7248     0.2193 0.380 0.000 0.472 0.148
#> GSM39832     1  0.5161     0.3603 0.520 0.000 0.004 0.476
#> GSM39833     1  0.5312     0.2466 0.692 0.000 0.040 0.268
#> GSM39834     1  0.5536     0.2474 0.696 0.004 0.048 0.252
#> GSM39835     4  0.4877    -0.2371 0.408 0.000 0.000 0.592
#> GSM39836     1  0.1792     0.5425 0.932 0.000 0.000 0.068
#> GSM39837     2  0.7476     0.0727 0.408 0.416 0.000 0.176
#> GSM39838     1  0.6350     0.1213 0.636 0.112 0.000 0.252
#> GSM39839     3  0.4901     0.7399 0.108 0.000 0.780 0.112
#> GSM39840     1  0.4679     0.5061 0.648 0.000 0.000 0.352
#> GSM39841     1  0.5016     0.4695 0.600 0.000 0.004 0.396
#> GSM39842     4  0.5167    -0.5047 0.488 0.000 0.004 0.508
#> GSM39843     1  0.4372     0.5406 0.728 0.000 0.004 0.268
#> GSM39844     1  0.5161     0.3603 0.520 0.000 0.004 0.476
#> GSM39845     3  0.0657     0.8179 0.004 0.000 0.984 0.012
#> GSM39852     1  0.2197     0.5254 0.916 0.004 0.000 0.080
#> GSM39853     2  0.7792     0.1143 0.332 0.412 0.000 0.256
#> GSM39854     1  0.5112     0.2909 0.560 0.004 0.000 0.436
#> GSM39857     3  0.1867     0.7994 0.000 0.000 0.928 0.072
#> GSM39860     4  0.8542    -0.3413 0.032 0.336 0.236 0.396
#> GSM39861     3  0.0927     0.8166 0.016 0.000 0.976 0.008
#> GSM39864     1  0.4053     0.5502 0.768 0.000 0.004 0.228
#> GSM39868     1  0.6760     0.1606 0.628 0.004 0.180 0.188

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000    0.81958 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000    0.81958 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000    0.81958 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000    0.81958 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.2068    0.63726 0.904 0.000 0.000 0.092 0.004
#> GSM39819     3  0.4874    0.69587 0.148 0.000 0.756 0.056 0.040
#> GSM39820     3  0.4590    0.70958 0.124 0.000 0.780 0.064 0.032
#> GSM39821     4  0.3816    0.50939 0.304 0.000 0.000 0.696 0.000
#> GSM39822     2  0.6632   -0.06941 0.000 0.428 0.000 0.228 0.344
#> GSM39823     3  0.2583    0.70368 0.000 0.000 0.864 0.004 0.132
#> GSM39824     3  0.4060    0.43246 0.000 0.000 0.640 0.000 0.360
#> GSM39825     3  0.4671    0.62393 0.040 0.000 0.740 0.200 0.020
#> GSM39826     4  0.4181    0.52040 0.268 0.000 0.000 0.712 0.020
#> GSM39827     4  0.4639    0.40950 0.368 0.000 0.000 0.612 0.020
#> GSM39846     3  0.0963    0.75404 0.000 0.000 0.964 0.000 0.036
#> GSM39847     4  0.3928    0.50747 0.296 0.000 0.000 0.700 0.004
#> GSM39848     5  0.4159    0.38439 0.000 0.156 0.000 0.068 0.776
#> GSM39849     3  0.5985    0.09511 0.000 0.000 0.480 0.112 0.408
#> GSM39850     4  0.4130    0.51573 0.292 0.000 0.000 0.696 0.012
#> GSM39851     1  0.4130    0.44918 0.696 0.000 0.000 0.292 0.012
#> GSM39855     3  0.4415    0.27817 0.000 0.004 0.552 0.000 0.444
#> GSM39856     3  0.1043    0.75275 0.000 0.000 0.960 0.000 0.040
#> GSM39858     3  0.0609    0.75934 0.000 0.000 0.980 0.000 0.020
#> GSM39859     3  0.0000    0.76081 0.000 0.000 1.000 0.000 0.000
#> GSM39862     5  0.4405    0.39038 0.004 0.000 0.020 0.280 0.696
#> GSM39863     1  0.2068    0.63726 0.904 0.000 0.000 0.092 0.004
#> GSM39865     5  0.6304   -0.04875 0.000 0.384 0.000 0.156 0.460
#> GSM39866     1  0.4807    0.36678 0.632 0.000 0.008 0.340 0.020
#> GSM39867     1  0.6080    0.05409 0.520 0.000 0.000 0.344 0.136
#> GSM39869     5  0.6264   -0.07631 0.000 0.400 0.000 0.148 0.452
#> GSM39870     3  0.4590    0.70958 0.124 0.000 0.780 0.064 0.032
#> GSM39871     3  0.0324    0.76083 0.000 0.000 0.992 0.004 0.004
#> GSM39872     5  0.6368   -0.05939 0.000 0.000 0.400 0.164 0.436
#> GSM39828     4  0.5131    0.28053 0.364 0.000 0.000 0.588 0.048
#> GSM39829     3  0.4943    0.69477 0.140 0.000 0.752 0.076 0.032
#> GSM39830     3  0.7502    0.19957 0.292 0.000 0.428 0.232 0.048
#> GSM39832     1  0.1357    0.60578 0.948 0.000 0.000 0.004 0.048
#> GSM39833     4  0.5977    0.35418 0.104 0.000 0.032 0.644 0.220
#> GSM39834     4  0.6221    0.21597 0.088 0.000 0.032 0.580 0.300
#> GSM39835     5  0.6748    0.09886 0.308 0.000 0.000 0.284 0.408
#> GSM39836     4  0.3715    0.52414 0.260 0.000 0.000 0.736 0.004
#> GSM39837     4  0.7708    0.17245 0.136 0.296 0.000 0.452 0.116
#> GSM39838     4  0.5840    0.39511 0.112 0.016 0.000 0.636 0.236
#> GSM39839     3  0.4874    0.69587 0.148 0.000 0.756 0.056 0.040
#> GSM39840     1  0.3395    0.53517 0.764 0.000 0.000 0.236 0.000
#> GSM39841     1  0.1792    0.63651 0.916 0.000 0.000 0.084 0.000
#> GSM39842     1  0.3146    0.53122 0.856 0.000 0.000 0.092 0.052
#> GSM39843     1  0.4213    0.43901 0.680 0.000 0.000 0.308 0.012
#> GSM39844     1  0.1357    0.60578 0.948 0.000 0.000 0.004 0.048
#> GSM39845     3  0.0798    0.76111 0.000 0.000 0.976 0.008 0.016
#> GSM39852     4  0.4302    0.51347 0.248 0.000 0.000 0.720 0.032
#> GSM39853     4  0.8331    0.00811 0.188 0.292 0.000 0.352 0.168
#> GSM39854     1  0.6171   -0.01474 0.488 0.000 0.000 0.372 0.140
#> GSM39857     3  0.2848    0.68464 0.000 0.000 0.840 0.004 0.156
#> GSM39860     5  0.4166    0.39381 0.000 0.120 0.076 0.008 0.796
#> GSM39861     3  0.1173    0.75820 0.004 0.000 0.964 0.020 0.012
#> GSM39864     1  0.4520    0.44566 0.680 0.000 0.008 0.296 0.016
#> GSM39868     4  0.7949    0.23709 0.184 0.000 0.132 0.448 0.236

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     4  0.4002     0.3391 0.240 0.000 0.008 0.728 0.008 0.016
#> GSM39819     3  0.5599     0.6281 0.024 0.000 0.684 0.152 0.052 0.088
#> GSM39820     3  0.5339     0.6431 0.024 0.000 0.708 0.136 0.044 0.088
#> GSM39821     4  0.6093     0.1501 0.380 0.000 0.000 0.476 0.096 0.048
#> GSM39822     5  0.5875     0.1858 0.248 0.216 0.000 0.000 0.528 0.008
#> GSM39823     3  0.3892     0.6332 0.012 0.000 0.788 0.000 0.080 0.120
#> GSM39824     3  0.5616     0.3650 0.012 0.000 0.580 0.000 0.252 0.156
#> GSM39825     3  0.4986     0.5804 0.016 0.000 0.708 0.172 0.016 0.088
#> GSM39826     4  0.6268     0.1217 0.388 0.000 0.000 0.452 0.104 0.056
#> GSM39827     1  0.6054    -0.2220 0.436 0.000 0.000 0.424 0.100 0.040
#> GSM39846     3  0.1821     0.7211 0.008 0.000 0.928 0.000 0.024 0.040
#> GSM39847     4  0.6007     0.1748 0.364 0.000 0.000 0.500 0.084 0.052
#> GSM39848     5  0.5115     0.2372 0.020 0.048 0.000 0.000 0.560 0.372
#> GSM39849     6  0.4224     0.3910 0.016 0.000 0.312 0.000 0.012 0.660
#> GSM39850     4  0.6200     0.1356 0.388 0.000 0.000 0.460 0.096 0.056
#> GSM39851     4  0.0777     0.4021 0.024 0.000 0.000 0.972 0.000 0.004
#> GSM39855     3  0.6088     0.1548 0.012 0.000 0.440 0.000 0.368 0.180
#> GSM39856     3  0.2022     0.7159 0.008 0.000 0.916 0.000 0.024 0.052
#> GSM39858     3  0.0862     0.7370 0.004 0.000 0.972 0.000 0.016 0.008
#> GSM39859     3  0.0146     0.7389 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM39862     6  0.3934     0.2585 0.008 0.000 0.000 0.020 0.256 0.716
#> GSM39863     4  0.4002     0.3391 0.240 0.000 0.008 0.728 0.008 0.016
#> GSM39865     5  0.5081     0.5016 0.068 0.184 0.000 0.000 0.692 0.056
#> GSM39866     4  0.5894     0.3428 0.284 0.000 0.008 0.572 0.028 0.108
#> GSM39867     1  0.4705     0.3490 0.696 0.000 0.000 0.076 0.212 0.016
#> GSM39869     5  0.4992     0.4961 0.068 0.196 0.000 0.000 0.692 0.044
#> GSM39870     3  0.5430     0.6387 0.024 0.000 0.700 0.136 0.044 0.096
#> GSM39871     3  0.0653     0.7382 0.004 0.000 0.980 0.000 0.004 0.012
#> GSM39872     6  0.3152     0.4433 0.008 0.000 0.196 0.000 0.004 0.792
#> GSM39828     4  0.5759     0.2397 0.140 0.000 0.000 0.588 0.028 0.244
#> GSM39829     3  0.6030     0.5895 0.028 0.000 0.644 0.160 0.052 0.116
#> GSM39830     4  0.7000    -0.1252 0.024 0.000 0.340 0.440 0.056 0.140
#> GSM39832     4  0.4653     0.0668 0.480 0.000 0.000 0.488 0.012 0.020
#> GSM39833     6  0.7871     0.1767 0.160 0.000 0.036 0.264 0.144 0.396
#> GSM39834     6  0.5194     0.4630 0.148 0.000 0.020 0.084 0.036 0.712
#> GSM39835     6  0.6146     0.1570 0.376 0.000 0.000 0.028 0.140 0.456
#> GSM39836     4  0.6334     0.1360 0.388 0.000 0.000 0.448 0.096 0.068
#> GSM39837     1  0.7867     0.0733 0.336 0.168 0.000 0.132 0.332 0.032
#> GSM39838     5  0.6683    -0.1655 0.364 0.008 0.000 0.076 0.448 0.104
#> GSM39839     3  0.5599     0.6281 0.024 0.000 0.684 0.152 0.052 0.088
#> GSM39840     4  0.2269     0.3921 0.080 0.000 0.000 0.896 0.012 0.012
#> GSM39841     4  0.3981     0.3141 0.268 0.000 0.008 0.708 0.008 0.008
#> GSM39842     1  0.5487    -0.1816 0.488 0.000 0.000 0.416 0.016 0.080
#> GSM39843     4  0.0622     0.4039 0.012 0.000 0.000 0.980 0.000 0.008
#> GSM39844     4  0.4653     0.0668 0.480 0.000 0.000 0.488 0.012 0.020
#> GSM39845     3  0.1086     0.7400 0.012 0.000 0.964 0.000 0.012 0.012
#> GSM39852     4  0.7045     0.1306 0.340 0.000 0.000 0.396 0.104 0.160
#> GSM39853     1  0.6741     0.0656 0.420 0.168 0.000 0.044 0.360 0.008
#> GSM39854     1  0.4569     0.3509 0.700 0.000 0.000 0.052 0.228 0.020
#> GSM39857     3  0.4105     0.6047 0.008 0.000 0.760 0.000 0.080 0.152
#> GSM39860     5  0.5350     0.1132 0.004 0.044 0.028 0.000 0.544 0.380
#> GSM39861     3  0.1262     0.7336 0.008 0.000 0.956 0.000 0.016 0.020
#> GSM39864     4  0.5556     0.3590 0.228 0.000 0.008 0.632 0.024 0.108
#> GSM39868     6  0.6000     0.4502 0.144 0.000 0.048 0.100 0.048 0.660

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) other(p) k
#> CV:kmeans 54         5.32e-04 2.65e-04 2
#> CV:kmeans 53         5.19e-06 6.73e-06 3
#> CV:kmeans 39         3.76e-05 1.42e-04 4
#> CV:kmeans 32         5.23e-07 6.08e-06 5
#> CV:kmeans 20         4.54e-05 3.79e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "skmeans"]
# you can also extract it by
# res = res_list["CV:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'CV' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.321           0.564       0.814         0.4993 0.501   0.501
#> 3 3 0.896           0.896       0.954         0.3469 0.658   0.416
#> 4 4 0.607           0.677       0.823         0.1184 0.915   0.744
#> 5 5 0.623           0.546       0.744         0.0670 0.935   0.756
#> 6 6 0.644           0.425       0.671         0.0385 0.978   0.901

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.8661      0.596 0.288 0.712
#> GSM39874     2  0.8661      0.596 0.288 0.712
#> GSM39875     2  0.8661      0.596 0.288 0.712
#> GSM39876     2  0.8661      0.596 0.288 0.712
#> GSM39831     1  0.0000      0.746 1.000 0.000
#> GSM39819     1  0.9323      0.466 0.652 0.348
#> GSM39820     1  0.9323      0.466 0.652 0.348
#> GSM39821     1  0.0376      0.744 0.996 0.004
#> GSM39822     2  0.8813      0.583 0.300 0.700
#> GSM39823     2  0.4161      0.653 0.084 0.916
#> GSM39824     2  0.0000      0.668 0.000 1.000
#> GSM39825     1  0.9922      0.262 0.552 0.448
#> GSM39826     1  0.8608      0.404 0.716 0.284
#> GSM39827     1  0.1184      0.738 0.984 0.016
#> GSM39846     2  0.4161      0.652 0.084 0.916
#> GSM39847     1  0.0000      0.746 1.000 0.000
#> GSM39848     2  0.8713      0.592 0.292 0.708
#> GSM39849     2  0.0938      0.668 0.012 0.988
#> GSM39850     1  0.4161      0.686 0.916 0.084
#> GSM39851     1  0.0000      0.746 1.000 0.000
#> GSM39855     2  0.0000      0.668 0.000 1.000
#> GSM39856     2  0.4161      0.652 0.084 0.916
#> GSM39858     2  0.9323      0.303 0.348 0.652
#> GSM39859     2  0.9323      0.303 0.348 0.652
#> GSM39862     2  0.6048      0.645 0.148 0.852
#> GSM39863     1  0.0000      0.746 1.000 0.000
#> GSM39865     2  0.8661      0.596 0.288 0.712
#> GSM39866     1  0.1184      0.742 0.984 0.016
#> GSM39867     1  0.5408      0.647 0.876 0.124
#> GSM39869     2  0.9000      0.562 0.316 0.684
#> GSM39870     1  0.9323      0.466 0.652 0.348
#> GSM39871     2  0.7219      0.539 0.200 0.800
#> GSM39872     2  0.3274      0.660 0.060 0.940
#> GSM39828     1  0.2423      0.732 0.960 0.040
#> GSM39829     1  0.9044      0.498 0.680 0.320
#> GSM39830     1  0.8713      0.525 0.708 0.292
#> GSM39832     1  0.0000      0.746 1.000 0.000
#> GSM39833     2  0.9044      0.556 0.320 0.680
#> GSM39834     1  0.9922      0.321 0.552 0.448
#> GSM39835     2  0.9998      0.184 0.492 0.508
#> GSM39836     1  0.4022      0.689 0.920 0.080
#> GSM39837     1  0.9323      0.270 0.652 0.348
#> GSM39838     1  0.9970     -0.107 0.532 0.468
#> GSM39839     1  0.9323      0.466 0.652 0.348
#> GSM39840     1  0.0000      0.746 1.000 0.000
#> GSM39841     1  0.0000      0.746 1.000 0.000
#> GSM39842     1  0.0000      0.746 1.000 0.000
#> GSM39843     1  0.3431      0.718 0.936 0.064
#> GSM39844     1  0.0000      0.746 1.000 0.000
#> GSM39845     2  0.9323      0.303 0.348 0.652
#> GSM39852     1  0.0938      0.740 0.988 0.012
#> GSM39853     1  0.9460      0.230 0.636 0.364
#> GSM39854     1  0.9286      0.279 0.656 0.344
#> GSM39857     2  0.4298      0.650 0.088 0.912
#> GSM39860     2  0.0000      0.668 0.000 1.000
#> GSM39861     2  0.9358      0.293 0.352 0.648
#> GSM39864     1  0.2043      0.736 0.968 0.032
#> GSM39868     1  0.8861      0.518 0.696 0.304

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000      0.954 0.000 1.000 0.000
#> GSM39874     2  0.0000      0.954 0.000 1.000 0.000
#> GSM39875     2  0.0000      0.954 0.000 1.000 0.000
#> GSM39876     2  0.0000      0.954 0.000 1.000 0.000
#> GSM39831     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39819     3  0.1031      0.960 0.024 0.000 0.976
#> GSM39820     3  0.1031      0.960 0.024 0.000 0.976
#> GSM39821     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39822     2  0.0000      0.954 0.000 1.000 0.000
#> GSM39823     3  0.0000      0.967 0.000 0.000 1.000
#> GSM39824     3  0.0747      0.960 0.000 0.016 0.984
#> GSM39825     3  0.0892      0.959 0.020 0.000 0.980
#> GSM39826     1  0.3267      0.824 0.884 0.116 0.000
#> GSM39827     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39846     3  0.0000      0.967 0.000 0.000 1.000
#> GSM39847     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39848     2  0.0000      0.954 0.000 1.000 0.000
#> GSM39849     3  0.0747      0.960 0.000 0.016 0.984
#> GSM39850     1  0.0237      0.926 0.996 0.004 0.000
#> GSM39851     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39855     3  0.2711      0.891 0.000 0.088 0.912
#> GSM39856     3  0.0000      0.967 0.000 0.000 1.000
#> GSM39858     3  0.0000      0.967 0.000 0.000 1.000
#> GSM39859     3  0.0000      0.967 0.000 0.000 1.000
#> GSM39862     2  0.4519      0.846 0.116 0.852 0.032
#> GSM39863     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39865     2  0.0000      0.954 0.000 1.000 0.000
#> GSM39866     1  0.0424      0.924 0.992 0.008 0.000
#> GSM39867     1  0.5678      0.519 0.684 0.316 0.000
#> GSM39869     2  0.0000      0.954 0.000 1.000 0.000
#> GSM39870     3  0.1163      0.957 0.028 0.000 0.972
#> GSM39871     3  0.0000      0.967 0.000 0.000 1.000
#> GSM39872     3  0.0237      0.966 0.000 0.004 0.996
#> GSM39828     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39829     3  0.1031      0.960 0.024 0.000 0.976
#> GSM39830     3  0.5650      0.545 0.312 0.000 0.688
#> GSM39832     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39833     2  0.2031      0.932 0.016 0.952 0.032
#> GSM39834     1  0.8157      0.289 0.540 0.076 0.384
#> GSM39835     2  0.2878      0.882 0.096 0.904 0.000
#> GSM39836     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39837     2  0.0237      0.953 0.004 0.996 0.000
#> GSM39838     2  0.0000      0.954 0.000 1.000 0.000
#> GSM39839     3  0.1031      0.960 0.024 0.000 0.976
#> GSM39840     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39841     1  0.1964      0.885 0.944 0.056 0.000
#> GSM39842     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39843     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39844     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39845     3  0.0000      0.967 0.000 0.000 1.000
#> GSM39852     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39853     2  0.0424      0.951 0.008 0.992 0.000
#> GSM39854     2  0.5327      0.625 0.272 0.728 0.000
#> GSM39857     3  0.0000      0.967 0.000 0.000 1.000
#> GSM39860     2  0.2796      0.882 0.000 0.908 0.092
#> GSM39861     3  0.0000      0.967 0.000 0.000 1.000
#> GSM39864     1  0.0000      0.929 1.000 0.000 0.000
#> GSM39868     1  0.6235      0.235 0.564 0.000 0.436

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000      0.841 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000      0.841 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000      0.841 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000      0.841 0.000 1.000 0.000 0.000
#> GSM39831     1  0.0707      0.766 0.980 0.000 0.000 0.020
#> GSM39819     3  0.4059      0.740 0.200 0.000 0.788 0.012
#> GSM39820     3  0.4136      0.741 0.196 0.000 0.788 0.016
#> GSM39821     4  0.4382      0.640 0.296 0.000 0.000 0.704
#> GSM39822     2  0.0188      0.840 0.000 0.996 0.000 0.004
#> GSM39823     3  0.1867      0.806 0.000 0.000 0.928 0.072
#> GSM39824     3  0.4487      0.744 0.000 0.092 0.808 0.100
#> GSM39825     3  0.4679      0.675 0.044 0.000 0.772 0.184
#> GSM39826     4  0.4692      0.648 0.212 0.032 0.000 0.756
#> GSM39827     1  0.4356      0.478 0.708 0.000 0.000 0.292
#> GSM39846     3  0.0336      0.821 0.000 0.000 0.992 0.008
#> GSM39847     4  0.4222      0.661 0.272 0.000 0.000 0.728
#> GSM39848     2  0.2921      0.776 0.000 0.860 0.000 0.140
#> GSM39849     3  0.4761      0.712 0.000 0.044 0.764 0.192
#> GSM39850     4  0.4283      0.670 0.256 0.004 0.000 0.740
#> GSM39851     1  0.4250      0.508 0.724 0.000 0.000 0.276
#> GSM39855     3  0.5351      0.685 0.000 0.152 0.744 0.104
#> GSM39856     3  0.0707      0.820 0.000 0.000 0.980 0.020
#> GSM39858     3  0.0336      0.822 0.000 0.000 0.992 0.008
#> GSM39859     3  0.0000      0.822 0.000 0.000 1.000 0.000
#> GSM39862     4  0.5470      0.416 0.000 0.168 0.100 0.732
#> GSM39863     1  0.0817      0.765 0.976 0.000 0.000 0.024
#> GSM39865     2  0.0336      0.839 0.000 0.992 0.000 0.008
#> GSM39866     1  0.4268      0.622 0.760 0.004 0.004 0.232
#> GSM39867     1  0.6634      0.294 0.592 0.292 0.000 0.116
#> GSM39869     2  0.0000      0.841 0.000 1.000 0.000 0.000
#> GSM39870     3  0.4406      0.738 0.192 0.000 0.780 0.028
#> GSM39871     3  0.0188      0.822 0.000 0.000 0.996 0.004
#> GSM39872     3  0.5290      0.580 0.012 0.008 0.656 0.324
#> GSM39828     4  0.4585      0.548 0.332 0.000 0.000 0.668
#> GSM39829     3  0.4542      0.711 0.228 0.000 0.752 0.020
#> GSM39830     3  0.7403      0.170 0.380 0.000 0.452 0.168
#> GSM39832     1  0.0188      0.765 0.996 0.000 0.000 0.004
#> GSM39833     2  0.7268      0.532 0.060 0.612 0.072 0.256
#> GSM39834     4  0.6781      0.447 0.136 0.060 0.112 0.692
#> GSM39835     2  0.7352      0.368 0.328 0.496 0.000 0.176
#> GSM39836     4  0.3975      0.680 0.240 0.000 0.000 0.760
#> GSM39837     2  0.1890      0.819 0.008 0.936 0.000 0.056
#> GSM39838     2  0.4283      0.636 0.004 0.740 0.000 0.256
#> GSM39839     3  0.4059      0.740 0.200 0.000 0.788 0.012
#> GSM39840     1  0.3528      0.651 0.808 0.000 0.000 0.192
#> GSM39841     1  0.0376      0.765 0.992 0.004 0.000 0.004
#> GSM39842     1  0.1022      0.751 0.968 0.000 0.000 0.032
#> GSM39843     1  0.5093      0.351 0.640 0.000 0.012 0.348
#> GSM39844     1  0.0188      0.765 0.996 0.000 0.000 0.004
#> GSM39845     3  0.0336      0.822 0.000 0.000 0.992 0.008
#> GSM39852     4  0.3837      0.680 0.224 0.000 0.000 0.776
#> GSM39853     2  0.2224      0.817 0.040 0.928 0.000 0.032
#> GSM39854     2  0.6778      0.386 0.336 0.552 0.000 0.112
#> GSM39857     3  0.2704      0.786 0.000 0.000 0.876 0.124
#> GSM39860     2  0.6170      0.587 0.000 0.672 0.136 0.192
#> GSM39861     3  0.0000      0.822 0.000 0.000 1.000 0.000
#> GSM39864     1  0.3172      0.696 0.840 0.000 0.000 0.160
#> GSM39868     4  0.7067      0.337 0.188 0.000 0.244 0.568

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0162    0.80398 0.000 0.996 0.000 0.004 0.000
#> GSM39874     2  0.0162    0.80398 0.000 0.996 0.000 0.004 0.000
#> GSM39875     2  0.0162    0.80398 0.000 0.996 0.000 0.004 0.000
#> GSM39876     2  0.0162    0.80398 0.000 0.996 0.000 0.004 0.000
#> GSM39831     1  0.1012    0.69777 0.968 0.000 0.000 0.020 0.012
#> GSM39819     3  0.5053    0.56849 0.164 0.000 0.728 0.016 0.092
#> GSM39820     3  0.4700    0.58935 0.120 0.000 0.764 0.016 0.100
#> GSM39821     4  0.1732    0.85568 0.080 0.000 0.000 0.920 0.000
#> GSM39822     2  0.0324    0.80300 0.000 0.992 0.000 0.004 0.004
#> GSM39823     3  0.4101    0.41065 0.000 0.000 0.664 0.004 0.332
#> GSM39824     3  0.5056    0.24850 0.000 0.044 0.596 0.000 0.360
#> GSM39825     3  0.6993    0.29740 0.096 0.000 0.584 0.156 0.164
#> GSM39826     4  0.2597    0.85184 0.040 0.020 0.000 0.904 0.036
#> GSM39827     1  0.5447    0.26379 0.532 0.008 0.000 0.416 0.044
#> GSM39846     3  0.2648    0.60094 0.000 0.000 0.848 0.000 0.152
#> GSM39847     4  0.2166    0.86079 0.072 0.000 0.004 0.912 0.012
#> GSM39848     2  0.4505    0.34614 0.000 0.604 0.000 0.012 0.384
#> GSM39849     5  0.5469    0.31497 0.008 0.024 0.348 0.020 0.600
#> GSM39850     4  0.2037    0.86387 0.064 0.004 0.000 0.920 0.012
#> GSM39851     1  0.5051    0.02746 0.492 0.000 0.004 0.480 0.024
#> GSM39855     3  0.5584    0.11193 0.000 0.076 0.532 0.000 0.392
#> GSM39856     3  0.2929    0.57504 0.000 0.000 0.820 0.000 0.180
#> GSM39858     3  0.0880    0.64542 0.000 0.000 0.968 0.000 0.032
#> GSM39859     3  0.1768    0.64182 0.000 0.000 0.924 0.004 0.072
#> GSM39862     5  0.5505    0.56480 0.000 0.056 0.072 0.160 0.712
#> GSM39863     1  0.1106    0.69714 0.964 0.000 0.000 0.024 0.012
#> GSM39865     2  0.1628    0.78332 0.000 0.936 0.000 0.008 0.056
#> GSM39866     1  0.6375    0.50284 0.624 0.008 0.032 0.220 0.116
#> GSM39867     1  0.6512    0.49802 0.636 0.152 0.000 0.120 0.092
#> GSM39869     2  0.1525    0.79192 0.004 0.948 0.000 0.012 0.036
#> GSM39870     3  0.5025    0.58442 0.124 0.000 0.744 0.024 0.108
#> GSM39871     3  0.2127    0.62946 0.000 0.000 0.892 0.000 0.108
#> GSM39872     5  0.4404    0.48820 0.000 0.000 0.264 0.032 0.704
#> GSM39828     4  0.5758    0.60748 0.200 0.000 0.008 0.644 0.148
#> GSM39829     3  0.5447    0.55176 0.156 0.000 0.700 0.020 0.124
#> GSM39830     3  0.8074    0.03417 0.328 0.000 0.372 0.172 0.128
#> GSM39832     1  0.1493    0.69815 0.948 0.000 0.000 0.024 0.028
#> GSM39833     2  0.8215    0.20308 0.060 0.472 0.048 0.188 0.232
#> GSM39834     5  0.6596    0.43599 0.100 0.012 0.060 0.196 0.632
#> GSM39835     1  0.7845    0.05374 0.360 0.232 0.000 0.072 0.336
#> GSM39836     4  0.1830    0.85979 0.028 0.000 0.000 0.932 0.040
#> GSM39837     2  0.2275    0.77592 0.012 0.912 0.000 0.064 0.012
#> GSM39838     2  0.5815    0.51417 0.008 0.624 0.000 0.244 0.124
#> GSM39839     3  0.5053    0.56827 0.164 0.000 0.728 0.016 0.092
#> GSM39840     1  0.3940    0.58891 0.756 0.000 0.000 0.220 0.024
#> GSM39841     1  0.1673    0.69516 0.944 0.008 0.000 0.032 0.016
#> GSM39842     1  0.2012    0.69460 0.920 0.000 0.000 0.020 0.060
#> GSM39843     1  0.5977   -0.02275 0.464 0.000 0.036 0.460 0.040
#> GSM39844     1  0.1579    0.69846 0.944 0.000 0.000 0.024 0.032
#> GSM39845     3  0.1282    0.64611 0.000 0.000 0.952 0.004 0.044
#> GSM39852     4  0.3370    0.76591 0.028 0.000 0.000 0.824 0.148
#> GSM39853     2  0.2188    0.78246 0.024 0.924 0.000 0.028 0.024
#> GSM39854     2  0.7460   -0.00477 0.380 0.408 0.000 0.136 0.076
#> GSM39857     3  0.4150    0.28891 0.000 0.000 0.612 0.000 0.388
#> GSM39860     5  0.5781    0.39249 0.000 0.308 0.116 0.000 0.576
#> GSM39861     3  0.1569    0.64562 0.008 0.000 0.944 0.004 0.044
#> GSM39864     1  0.5104    0.59086 0.720 0.000 0.012 0.164 0.104
#> GSM39868     5  0.7446    0.27370 0.104 0.000 0.120 0.288 0.488

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     5  0.0146     0.7293 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM39874     5  0.0146     0.7293 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM39875     5  0.0146     0.7293 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM39876     5  0.0146     0.7293 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM39831     1  0.1863     0.6114 0.920 0.060 0.000 0.016 0.000 0.004
#> GSM39819     3  0.5117     0.0643 0.076 0.376 0.544 0.000 0.000 0.004
#> GSM39820     3  0.4776     0.1862 0.052 0.356 0.588 0.000 0.000 0.004
#> GSM39821     4  0.1464     0.8247 0.036 0.016 0.000 0.944 0.000 0.004
#> GSM39822     5  0.1871     0.7252 0.000 0.032 0.000 0.024 0.928 0.016
#> GSM39823     3  0.4895     0.3780 0.000 0.104 0.632 0.000 0.000 0.264
#> GSM39824     3  0.5568     0.1777 0.000 0.044 0.544 0.000 0.056 0.356
#> GSM39825     3  0.7839    -0.0860 0.068 0.200 0.460 0.136 0.000 0.136
#> GSM39826     4  0.2265     0.8103 0.028 0.032 0.000 0.912 0.004 0.024
#> GSM39827     1  0.6248     0.1304 0.432 0.116 0.000 0.412 0.004 0.036
#> GSM39846     3  0.2956     0.5340 0.000 0.040 0.840 0.000 0.000 0.120
#> GSM39847     4  0.2512     0.8125 0.040 0.048 0.008 0.896 0.000 0.008
#> GSM39848     5  0.5174     0.1865 0.000 0.036 0.000 0.028 0.508 0.428
#> GSM39849     6  0.6490     0.1375 0.004 0.140 0.352 0.012 0.024 0.468
#> GSM39850     4  0.1458     0.8203 0.020 0.016 0.000 0.948 0.000 0.016
#> GSM39851     1  0.5458     0.2406 0.496 0.096 0.000 0.400 0.000 0.008
#> GSM39855     3  0.6058    -0.0283 0.000 0.032 0.452 0.000 0.116 0.400
#> GSM39856     3  0.2790     0.5261 0.000 0.024 0.844 0.000 0.000 0.132
#> GSM39858     3  0.1757     0.5196 0.000 0.076 0.916 0.000 0.000 0.008
#> GSM39859     3  0.2384     0.5390 0.000 0.064 0.888 0.000 0.000 0.048
#> GSM39862     6  0.5159     0.4669 0.004 0.060 0.036 0.112 0.048 0.740
#> GSM39863     1  0.1845     0.6064 0.916 0.072 0.000 0.008 0.000 0.004
#> GSM39865     5  0.3096     0.6847 0.000 0.048 0.004 0.000 0.840 0.108
#> GSM39866     1  0.7628     0.2309 0.460 0.228 0.040 0.200 0.012 0.060
#> GSM39867     1  0.6995     0.3583 0.568 0.168 0.000 0.080 0.120 0.064
#> GSM39869     5  0.3148     0.6902 0.000 0.064 0.000 0.004 0.840 0.092
#> GSM39870     3  0.5194     0.1993 0.056 0.340 0.584 0.016 0.000 0.004
#> GSM39871     3  0.2328     0.5372 0.000 0.056 0.892 0.000 0.000 0.052
#> GSM39872     6  0.5144     0.4204 0.000 0.108 0.188 0.016 0.008 0.680
#> GSM39828     4  0.6973     0.3771 0.208 0.156 0.000 0.488 0.000 0.148
#> GSM39829     3  0.5801    -0.0032 0.064 0.388 0.504 0.004 0.000 0.040
#> GSM39830     2  0.7954     0.0000 0.236 0.372 0.248 0.096 0.000 0.048
#> GSM39832     1  0.1483     0.6174 0.944 0.036 0.000 0.008 0.000 0.012
#> GSM39833     5  0.8722    -0.0930 0.048 0.176 0.036 0.136 0.332 0.272
#> GSM39834     6  0.7535     0.3199 0.068 0.252 0.052 0.140 0.008 0.480
#> GSM39835     6  0.8286     0.0580 0.288 0.152 0.000 0.060 0.176 0.324
#> GSM39836     4  0.1693     0.8212 0.012 0.020 0.000 0.936 0.000 0.032
#> GSM39837     5  0.4042     0.6661 0.012 0.056 0.000 0.116 0.796 0.020
#> GSM39838     5  0.7280     0.4064 0.020 0.140 0.000 0.192 0.496 0.152
#> GSM39839     3  0.5055     0.0824 0.072 0.368 0.556 0.000 0.000 0.004
#> GSM39840     1  0.4224     0.5264 0.736 0.040 0.000 0.204 0.000 0.020
#> GSM39841     1  0.3236     0.5863 0.848 0.092 0.000 0.040 0.012 0.008
#> GSM39842     1  0.1887     0.6152 0.924 0.048 0.000 0.012 0.000 0.016
#> GSM39843     1  0.6203     0.1604 0.460 0.112 0.004 0.388 0.000 0.036
#> GSM39844     1  0.1307     0.6179 0.952 0.032 0.000 0.008 0.000 0.008
#> GSM39845     3  0.2750     0.4979 0.000 0.136 0.844 0.000 0.000 0.020
#> GSM39852     4  0.4742     0.6627 0.028 0.140 0.000 0.724 0.000 0.108
#> GSM39853     5  0.4567     0.6656 0.032 0.084 0.000 0.060 0.780 0.044
#> GSM39854     5  0.8201     0.1027 0.312 0.176 0.000 0.112 0.328 0.072
#> GSM39857     3  0.4750     0.2951 0.000 0.064 0.596 0.000 0.000 0.340
#> GSM39860     6  0.5603     0.3405 0.000 0.016 0.120 0.008 0.244 0.612
#> GSM39861     3  0.3275     0.5029 0.000 0.144 0.816 0.004 0.000 0.036
#> GSM39864     1  0.5586     0.4425 0.640 0.228 0.008 0.080 0.000 0.044
#> GSM39868     6  0.8340     0.1835 0.064 0.292 0.116 0.200 0.004 0.324

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) other(p) k
#> CV:skmeans 41          0.10293   0.0090 2
#> CV:skmeans 56          0.00459   0.0158 3
#> CV:skmeans 49          0.00718   0.0135 4
#> CV:skmeans 39          0.01164   0.0526 5
#> CV:skmeans 28          0.01987   0.0235 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "pam"]
# you can also extract it by
# res = res_list["CV:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'CV' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.963           0.936       0.966         0.2521 0.733   0.733
#> 3 3 0.365           0.575       0.820         1.2900 0.616   0.494
#> 4 4 0.643           0.784       0.881         0.2301 0.731   0.439
#> 5 5 0.677           0.723       0.778         0.0932 0.890   0.645
#> 6 6 0.762           0.755       0.859         0.0468 0.935   0.725

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.1414      0.860 0.020 0.980
#> GSM39874     2  0.1414      0.860 0.020 0.980
#> GSM39875     2  0.1414      0.860 0.020 0.980
#> GSM39876     2  0.1414      0.860 0.020 0.980
#> GSM39831     1  0.0000      0.982 1.000 0.000
#> GSM39819     1  0.1633      0.978 0.976 0.024
#> GSM39820     1  0.1633      0.978 0.976 0.024
#> GSM39821     1  0.0000      0.982 1.000 0.000
#> GSM39822     2  0.3584      0.847 0.068 0.932
#> GSM39823     1  0.1633      0.978 0.976 0.024
#> GSM39824     1  0.1633      0.978 0.976 0.024
#> GSM39825     1  0.0000      0.982 1.000 0.000
#> GSM39826     1  0.0000      0.982 1.000 0.000
#> GSM39827     1  0.0000      0.982 1.000 0.000
#> GSM39846     1  0.1633      0.978 0.976 0.024
#> GSM39847     1  0.0000      0.982 1.000 0.000
#> GSM39848     1  0.7219      0.696 0.800 0.200
#> GSM39849     1  0.1633      0.978 0.976 0.024
#> GSM39850     1  0.0000      0.982 1.000 0.000
#> GSM39851     1  0.0000      0.982 1.000 0.000
#> GSM39855     1  0.1633      0.978 0.976 0.024
#> GSM39856     1  0.1633      0.978 0.976 0.024
#> GSM39858     1  0.1633      0.978 0.976 0.024
#> GSM39859     1  0.1633      0.978 0.976 0.024
#> GSM39862     1  0.0000      0.982 1.000 0.000
#> GSM39863     1  0.0000      0.982 1.000 0.000
#> GSM39865     1  0.3584      0.911 0.932 0.068
#> GSM39866     1  0.0376      0.982 0.996 0.004
#> GSM39867     1  0.0000      0.982 1.000 0.000
#> GSM39869     2  0.1633      0.859 0.024 0.976
#> GSM39870     1  0.1633      0.978 0.976 0.024
#> GSM39871     1  0.1633      0.978 0.976 0.024
#> GSM39872     1  0.1414      0.979 0.980 0.020
#> GSM39828     1  0.0000      0.982 1.000 0.000
#> GSM39829     1  0.1414      0.979 0.980 0.020
#> GSM39830     1  0.1184      0.980 0.984 0.016
#> GSM39832     1  0.0000      0.982 1.000 0.000
#> GSM39833     1  0.0000      0.982 1.000 0.000
#> GSM39834     1  0.0672      0.982 0.992 0.008
#> GSM39835     1  0.0000      0.982 1.000 0.000
#> GSM39836     1  0.0000      0.982 1.000 0.000
#> GSM39837     2  1.0000      0.189 0.496 0.504
#> GSM39838     1  0.0000      0.982 1.000 0.000
#> GSM39839     1  0.1633      0.978 0.976 0.024
#> GSM39840     1  0.0000      0.982 1.000 0.000
#> GSM39841     1  0.0000      0.982 1.000 0.000
#> GSM39842     1  0.0000      0.982 1.000 0.000
#> GSM39843     1  0.0000      0.982 1.000 0.000
#> GSM39844     1  0.0376      0.982 0.996 0.004
#> GSM39845     1  0.1633      0.978 0.976 0.024
#> GSM39852     1  0.0000      0.982 1.000 0.000
#> GSM39853     2  0.8081      0.713 0.248 0.752
#> GSM39854     1  0.0376      0.980 0.996 0.004
#> GSM39857     1  0.1633      0.978 0.976 0.024
#> GSM39860     2  0.9129      0.565 0.328 0.672
#> GSM39861     1  0.1414      0.979 0.980 0.020
#> GSM39864     1  0.0000      0.982 1.000 0.000
#> GSM39868     1  0.1184      0.980 0.984 0.016

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000     0.8748 0.000 1.000 0.000
#> GSM39874     2  0.0000     0.8748 0.000 1.000 0.000
#> GSM39875     2  0.0000     0.8748 0.000 1.000 0.000
#> GSM39876     2  0.0000     0.8748 0.000 1.000 0.000
#> GSM39831     1  0.6045     0.2416 0.620 0.000 0.380
#> GSM39819     3  0.0237     0.7389 0.004 0.000 0.996
#> GSM39820     3  0.4399     0.5683 0.188 0.000 0.812
#> GSM39821     1  0.4931     0.6791 0.768 0.000 0.232
#> GSM39822     2  0.4346     0.6820 0.184 0.816 0.000
#> GSM39823     3  0.0000     0.7406 0.000 0.000 1.000
#> GSM39824     3  0.0000     0.7406 0.000 0.000 1.000
#> GSM39825     3  0.5291     0.5189 0.268 0.000 0.732
#> GSM39826     1  0.4605     0.6983 0.796 0.000 0.204
#> GSM39827     1  0.1860     0.7263 0.948 0.000 0.052
#> GSM39846     3  0.0000     0.7406 0.000 0.000 1.000
#> GSM39847     1  0.5098     0.6637 0.752 0.000 0.248
#> GSM39848     3  0.9843    -0.1642 0.372 0.248 0.380
#> GSM39849     3  0.2165     0.7232 0.064 0.000 0.936
#> GSM39850     1  0.4931     0.6791 0.768 0.000 0.232
#> GSM39851     1  0.1031     0.7197 0.976 0.000 0.024
#> GSM39855     3  0.0237     0.7404 0.004 0.000 0.996
#> GSM39856     3  0.0000     0.7406 0.000 0.000 1.000
#> GSM39858     3  0.0000     0.7406 0.000 0.000 1.000
#> GSM39859     3  0.0000     0.7406 0.000 0.000 1.000
#> GSM39862     3  0.6126     0.2451 0.400 0.000 0.600
#> GSM39863     1  0.2625     0.7071 0.916 0.000 0.084
#> GSM39865     3  0.8913     0.3489 0.220 0.208 0.572
#> GSM39866     1  0.5465     0.6284 0.712 0.000 0.288
#> GSM39867     1  0.0592     0.7126 0.988 0.000 0.012
#> GSM39869     2  0.0000     0.8748 0.000 1.000 0.000
#> GSM39870     3  0.5988     0.2444 0.368 0.000 0.632
#> GSM39871     3  0.0000     0.7406 0.000 0.000 1.000
#> GSM39872     3  0.1411     0.7319 0.036 0.000 0.964
#> GSM39828     3  0.6204     0.1750 0.424 0.000 0.576
#> GSM39829     3  0.3879     0.6385 0.152 0.000 0.848
#> GSM39830     3  0.5098     0.5332 0.248 0.000 0.752
#> GSM39832     1  0.0000     0.7074 1.000 0.000 0.000
#> GSM39833     3  0.6308    -0.0601 0.492 0.000 0.508
#> GSM39834     3  0.4842     0.5879 0.224 0.000 0.776
#> GSM39835     3  0.6305     0.0355 0.484 0.000 0.516
#> GSM39836     1  0.4931     0.6792 0.768 0.000 0.232
#> GSM39837     1  0.6451     0.5198 0.684 0.292 0.024
#> GSM39838     1  0.5098     0.6637 0.752 0.000 0.248
#> GSM39839     3  0.0237     0.7405 0.004 0.000 0.996
#> GSM39840     1  0.2356     0.7132 0.928 0.000 0.072
#> GSM39841     1  0.5327     0.6262 0.728 0.000 0.272
#> GSM39842     1  0.6140     0.1730 0.596 0.000 0.404
#> GSM39843     1  0.4504     0.7019 0.804 0.000 0.196
#> GSM39844     1  0.3816     0.6684 0.852 0.000 0.148
#> GSM39845     3  0.0000     0.7406 0.000 0.000 1.000
#> GSM39852     1  0.6286     0.1656 0.536 0.000 0.464
#> GSM39853     1  0.7001     0.2136 0.588 0.388 0.024
#> GSM39854     1  0.0237     0.7097 0.996 0.000 0.004
#> GSM39857     3  0.0424     0.7398 0.008 0.000 0.992
#> GSM39860     2  0.7262     0.1688 0.028 0.528 0.444
#> GSM39861     3  0.1643     0.7298 0.044 0.000 0.956
#> GSM39864     3  0.6154     0.2209 0.408 0.000 0.592
#> GSM39868     3  0.6140     0.1872 0.404 0.000 0.596

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000     0.9287 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000     0.9287 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000     0.9287 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000     0.9287 0.000 1.000 0.000 0.000
#> GSM39831     1  0.2662     0.8432 0.900 0.000 0.084 0.016
#> GSM39819     3  0.1661     0.8697 0.052 0.000 0.944 0.004
#> GSM39820     3  0.2867     0.8273 0.012 0.000 0.884 0.104
#> GSM39821     4  0.1211     0.8170 0.040 0.000 0.000 0.960
#> GSM39822     2  0.4546     0.6181 0.012 0.732 0.000 0.256
#> GSM39823     3  0.0804     0.8862 0.012 0.000 0.980 0.008
#> GSM39824     3  0.1004     0.8868 0.004 0.000 0.972 0.024
#> GSM39825     4  0.4978     0.4583 0.004 0.000 0.384 0.612
#> GSM39826     4  0.1716     0.8146 0.064 0.000 0.000 0.936
#> GSM39827     4  0.1474     0.8156 0.052 0.000 0.000 0.948
#> GSM39846     3  0.0336     0.8834 0.008 0.000 0.992 0.000
#> GSM39847     4  0.0592     0.8162 0.016 0.000 0.000 0.984
#> GSM39848     4  0.5996     0.5841 0.012 0.240 0.064 0.684
#> GSM39849     3  0.1610     0.8813 0.016 0.000 0.952 0.032
#> GSM39850     4  0.1716     0.8147 0.064 0.000 0.000 0.936
#> GSM39851     4  0.2737     0.7975 0.104 0.000 0.008 0.888
#> GSM39855     3  0.0779     0.8884 0.004 0.000 0.980 0.016
#> GSM39856     3  0.0657     0.8876 0.004 0.000 0.984 0.012
#> GSM39858     3  0.0188     0.8845 0.004 0.000 0.996 0.000
#> GSM39859     3  0.0779     0.8884 0.004 0.000 0.980 0.016
#> GSM39862     4  0.3583     0.7655 0.004 0.000 0.180 0.816
#> GSM39863     1  0.1118     0.9027 0.964 0.000 0.000 0.036
#> GSM39865     4  0.7327     0.5006 0.012 0.264 0.156 0.568
#> GSM39866     4  0.3143     0.7941 0.024 0.000 0.100 0.876
#> GSM39867     1  0.1389     0.9005 0.952 0.000 0.000 0.048
#> GSM39869     2  0.0804     0.9189 0.008 0.980 0.000 0.012
#> GSM39870     3  0.3479     0.7678 0.012 0.000 0.840 0.148
#> GSM39871     3  0.0657     0.8879 0.004 0.000 0.984 0.012
#> GSM39872     3  0.1824     0.8723 0.004 0.000 0.936 0.060
#> GSM39828     4  0.4105     0.7816 0.032 0.000 0.156 0.812
#> GSM39829     3  0.3529     0.7933 0.012 0.000 0.836 0.152
#> GSM39830     4  0.6149     0.2299 0.048 0.000 0.472 0.480
#> GSM39832     1  0.0817     0.8986 0.976 0.000 0.000 0.024
#> GSM39833     4  0.4562     0.7859 0.056 0.000 0.152 0.792
#> GSM39834     3  0.5760     0.0393 0.028 0.000 0.524 0.448
#> GSM39835     1  0.4417     0.7297 0.796 0.000 0.160 0.044
#> GSM39836     4  0.1151     0.8156 0.024 0.000 0.008 0.968
#> GSM39837     4  0.3342     0.7709 0.032 0.100 0.000 0.868
#> GSM39838     4  0.0336     0.8119 0.008 0.000 0.000 0.992
#> GSM39839     3  0.0937     0.8852 0.012 0.000 0.976 0.012
#> GSM39840     1  0.1209     0.9012 0.964 0.000 0.004 0.032
#> GSM39841     4  0.4514     0.7832 0.148 0.000 0.056 0.796
#> GSM39842     1  0.0927     0.9016 0.976 0.000 0.008 0.016
#> GSM39843     4  0.1716     0.8152 0.064 0.000 0.000 0.936
#> GSM39844     1  0.0779     0.8973 0.980 0.000 0.004 0.016
#> GSM39845     3  0.0804     0.8862 0.012 0.000 0.980 0.008
#> GSM39852     4  0.2714     0.8003 0.004 0.000 0.112 0.884
#> GSM39853     1  0.6412     0.5829 0.668 0.200 0.008 0.124
#> GSM39854     1  0.2081     0.8766 0.916 0.000 0.000 0.084
#> GSM39857     3  0.1305     0.8846 0.004 0.000 0.960 0.036
#> GSM39860     3  0.6148     0.2684 0.000 0.408 0.540 0.052
#> GSM39861     3  0.2125     0.8634 0.004 0.000 0.920 0.076
#> GSM39864     4  0.4893     0.7591 0.064 0.000 0.168 0.768
#> GSM39868     3  0.4746     0.5261 0.000 0.000 0.632 0.368

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000     0.8981 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     0.8981 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     0.8981 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     0.8981 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.2136     0.8288 0.904 0.000 0.000 0.008 0.088
#> GSM39819     3  0.2891     0.8862 0.000 0.000 0.824 0.000 0.176
#> GSM39820     3  0.2605     0.8917 0.000 0.000 0.852 0.000 0.148
#> GSM39821     4  0.0000     0.7832 0.000 0.000 0.000 1.000 0.000
#> GSM39822     2  0.5665     0.5388 0.004 0.624 0.112 0.260 0.000
#> GSM39823     3  0.3177     0.8788 0.000 0.000 0.792 0.000 0.208
#> GSM39824     5  0.0000     0.7705 0.000 0.000 0.000 0.000 1.000
#> GSM39825     4  0.5341     0.5088 0.000 0.000 0.060 0.564 0.376
#> GSM39826     4  0.0000     0.7832 0.000 0.000 0.000 1.000 0.000
#> GSM39827     4  0.0000     0.7832 0.000 0.000 0.000 1.000 0.000
#> GSM39846     5  0.3274     0.5221 0.000 0.000 0.220 0.000 0.780
#> GSM39847     4  0.1386     0.7875 0.000 0.000 0.016 0.952 0.032
#> GSM39848     4  0.7969     0.4155 0.008 0.240 0.176 0.468 0.108
#> GSM39849     5  0.1907     0.7638 0.000 0.000 0.044 0.028 0.928
#> GSM39850     4  0.0162     0.7825 0.000 0.000 0.004 0.996 0.000
#> GSM39851     4  0.0898     0.7754 0.008 0.000 0.020 0.972 0.000
#> GSM39855     5  0.1043     0.7675 0.000 0.000 0.040 0.000 0.960
#> GSM39856     5  0.0703     0.7725 0.000 0.000 0.024 0.000 0.976
#> GSM39858     5  0.2648     0.6630 0.000 0.000 0.152 0.000 0.848
#> GSM39859     5  0.2605     0.6960 0.000 0.000 0.148 0.000 0.852
#> GSM39862     4  0.5015     0.6775 0.004 0.000 0.056 0.668 0.272
#> GSM39863     1  0.0510     0.8897 0.984 0.000 0.000 0.016 0.000
#> GSM39865     4  0.8145     0.5192 0.008 0.148 0.176 0.460 0.208
#> GSM39866     3  0.3326     0.7395 0.000 0.000 0.824 0.152 0.024
#> GSM39867     1  0.0451     0.8869 0.988 0.000 0.008 0.004 0.000
#> GSM39869     2  0.2722     0.8351 0.008 0.868 0.120 0.004 0.000
#> GSM39870     3  0.3074     0.8832 0.000 0.000 0.804 0.000 0.196
#> GSM39871     5  0.1043     0.7675 0.000 0.000 0.040 0.000 0.960
#> GSM39872     5  0.1485     0.7570 0.000 0.000 0.020 0.032 0.948
#> GSM39828     4  0.4742     0.7172 0.004 0.000 0.060 0.716 0.220
#> GSM39829     3  0.2488     0.8772 0.000 0.000 0.872 0.004 0.124
#> GSM39830     3  0.4382     0.6106 0.004 0.000 0.700 0.020 0.276
#> GSM39832     1  0.0290     0.8898 0.992 0.000 0.000 0.008 0.000
#> GSM39833     4  0.4021     0.7410 0.000 0.000 0.036 0.764 0.200
#> GSM39834     5  0.5752    -0.2929 0.012 0.000 0.056 0.452 0.480
#> GSM39835     1  0.5685     0.6449 0.692 0.000 0.060 0.068 0.180
#> GSM39836     4  0.0000     0.7832 0.000 0.000 0.000 1.000 0.000
#> GSM39837     4  0.2790     0.7413 0.000 0.052 0.068 0.880 0.000
#> GSM39838     4  0.3692     0.7682 0.000 0.000 0.136 0.812 0.052
#> GSM39839     3  0.2516     0.8888 0.000 0.000 0.860 0.000 0.140
#> GSM39840     1  0.0955     0.8862 0.968 0.000 0.000 0.028 0.004
#> GSM39841     4  0.5162     0.7560 0.080 0.000 0.072 0.752 0.096
#> GSM39842     1  0.0290     0.8898 0.992 0.000 0.000 0.008 0.000
#> GSM39843     4  0.1173     0.7874 0.004 0.000 0.012 0.964 0.020
#> GSM39844     1  0.0290     0.8898 0.992 0.000 0.000 0.008 0.000
#> GSM39845     3  0.3177     0.8794 0.000 0.000 0.792 0.000 0.208
#> GSM39852     4  0.4125     0.7518 0.000 0.000 0.056 0.772 0.172
#> GSM39853     1  0.7053     0.5044 0.568 0.084 0.196 0.152 0.000
#> GSM39854     1  0.2036     0.8595 0.920 0.000 0.024 0.056 0.000
#> GSM39857     5  0.0880     0.7611 0.000 0.000 0.032 0.000 0.968
#> GSM39860     5  0.5533     0.2836 0.008 0.320 0.068 0.000 0.604
#> GSM39861     5  0.4732     0.4765 0.000 0.000 0.076 0.208 0.716
#> GSM39864     4  0.5415     0.7087 0.036 0.000 0.056 0.688 0.220
#> GSM39868     4  0.6036    -0.0343 0.000 0.000 0.116 0.452 0.432

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000      1.000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     1  0.1327      0.838 0.936 0.000 0.064 0.000 0.000 0.000
#> GSM39819     6  0.0937      0.932 0.000 0.000 0.040 0.000 0.000 0.960
#> GSM39820     6  0.0632      0.936 0.000 0.000 0.024 0.000 0.000 0.976
#> GSM39821     4  0.0146      0.823 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM39822     5  0.5027      0.451 0.000 0.304 0.000 0.100 0.596 0.000
#> GSM39823     6  0.1663      0.918 0.000 0.000 0.088 0.000 0.000 0.912
#> GSM39824     3  0.0000      0.779 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM39825     4  0.5877      0.463 0.000 0.000 0.320 0.548 0.068 0.064
#> GSM39826     4  0.0146      0.823 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM39827     4  0.0146      0.823 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM39846     3  0.2300      0.699 0.000 0.000 0.856 0.000 0.000 0.144
#> GSM39847     4  0.1332      0.825 0.000 0.000 0.028 0.952 0.008 0.012
#> GSM39848     5  0.0146      0.706 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM39849     3  0.1864      0.772 0.000 0.000 0.924 0.032 0.004 0.040
#> GSM39850     4  0.0146      0.823 0.000 0.000 0.000 0.996 0.004 0.000
#> GSM39851     4  0.0603      0.817 0.000 0.000 0.000 0.980 0.004 0.016
#> GSM39855     3  0.1007      0.778 0.000 0.000 0.956 0.000 0.000 0.044
#> GSM39856     3  0.0713      0.782 0.000 0.000 0.972 0.000 0.000 0.028
#> GSM39858     3  0.2048      0.749 0.000 0.000 0.880 0.000 0.000 0.120
#> GSM39859     3  0.3588      0.718 0.000 0.000 0.776 0.000 0.044 0.180
#> GSM39862     4  0.5096      0.722 0.000 0.000 0.188 0.688 0.076 0.048
#> GSM39863     1  0.0291      0.890 0.992 0.000 0.004 0.004 0.000 0.000
#> GSM39865     5  0.1644      0.695 0.000 0.004 0.052 0.012 0.932 0.000
#> GSM39866     6  0.0937      0.907 0.000 0.000 0.000 0.040 0.000 0.960
#> GSM39867     1  0.1700      0.842 0.916 0.000 0.000 0.004 0.080 0.000
#> GSM39869     5  0.2219      0.665 0.000 0.136 0.000 0.000 0.864 0.000
#> GSM39870     6  0.1327      0.930 0.000 0.000 0.064 0.000 0.000 0.936
#> GSM39871     3  0.1934      0.784 0.000 0.000 0.916 0.000 0.040 0.044
#> GSM39872     3  0.2459      0.760 0.000 0.000 0.896 0.032 0.052 0.020
#> GSM39828     4  0.4581      0.762 0.000 0.000 0.144 0.744 0.064 0.048
#> GSM39829     6  0.0363      0.930 0.000 0.000 0.012 0.000 0.000 0.988
#> GSM39830     6  0.2889      0.763 0.000 0.000 0.096 0.004 0.044 0.856
#> GSM39832     1  0.0000      0.891 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39833     4  0.3989      0.782 0.000 0.000 0.128 0.788 0.052 0.032
#> GSM39834     3  0.6318     -0.189 0.020 0.000 0.432 0.432 0.068 0.048
#> GSM39835     1  0.6579      0.170 0.492 0.000 0.100 0.076 0.324 0.008
#> GSM39836     4  0.0363      0.823 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM39837     4  0.3564      0.611 0.000 0.012 0.000 0.724 0.264 0.000
#> GSM39838     4  0.3668      0.551 0.000 0.000 0.004 0.668 0.328 0.000
#> GSM39839     6  0.0458      0.933 0.000 0.000 0.016 0.000 0.000 0.984
#> GSM39840     1  0.0692      0.885 0.976 0.000 0.004 0.020 0.000 0.000
#> GSM39841     4  0.5056      0.773 0.084 0.000 0.064 0.748 0.040 0.064
#> GSM39842     1  0.0000      0.891 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39843     4  0.1088      0.826 0.000 0.000 0.024 0.960 0.000 0.016
#> GSM39844     1  0.0000      0.891 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39845     6  0.1501      0.926 0.000 0.000 0.076 0.000 0.000 0.924
#> GSM39852     4  0.4210      0.789 0.000 0.000 0.108 0.780 0.068 0.044
#> GSM39853     5  0.5180      0.276 0.376 0.016 0.000 0.048 0.556 0.004
#> GSM39854     1  0.1856      0.852 0.920 0.000 0.000 0.048 0.032 0.000
#> GSM39857     3  0.1594      0.768 0.000 0.000 0.932 0.000 0.052 0.016
#> GSM39860     5  0.3198      0.553 0.000 0.000 0.260 0.000 0.740 0.000
#> GSM39861     3  0.5128      0.621 0.000 0.000 0.700 0.148 0.056 0.096
#> GSM39864     4  0.5256      0.753 0.032 0.000 0.144 0.716 0.064 0.044
#> GSM39868     3  0.6112      0.305 0.000 0.000 0.480 0.352 0.028 0.140

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) other(p) k
#> CV:pam 57         1.15e-05 7.82e-06 2
#> CV:pam 44         8.89e-07 6.45e-06 3
#> CV:pam 54         1.51e-07 9.26e-07 4
#> CV:pam 53         7.84e-07 2.69e-06 5
#> CV:pam 52         5.39e-10 4.01e-08 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "mclust"]
# you can also extract it by
# res = res_list["CV:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'CV' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.332           0.798       0.861         0.3679 0.610   0.610
#> 3 3 0.877           0.934       0.961         0.4823 0.538   0.399
#> 4 4 0.733           0.788       0.863         0.2456 0.822   0.619
#> 5 5 0.582           0.556       0.714         0.0922 0.895   0.662
#> 6 6 0.630           0.647       0.769         0.0589 0.806   0.383

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.1633      0.769 0.024 0.976
#> GSM39874     2  0.1633      0.769 0.024 0.976
#> GSM39875     2  0.1633      0.769 0.024 0.976
#> GSM39876     2  0.1633      0.769 0.024 0.976
#> GSM39831     1  0.8016      0.747 0.756 0.244
#> GSM39819     1  0.0000      0.844 1.000 0.000
#> GSM39820     1  0.0000      0.844 1.000 0.000
#> GSM39821     1  0.8207      0.728 0.744 0.256
#> GSM39822     2  0.6887      0.846 0.184 0.816
#> GSM39823     1  0.0000      0.844 1.000 0.000
#> GSM39824     1  0.0000      0.844 1.000 0.000
#> GSM39825     1  0.0938      0.844 0.988 0.012
#> GSM39826     2  0.8386      0.819 0.268 0.732
#> GSM39827     1  0.8813      0.660 0.700 0.300
#> GSM39846     1  0.0000      0.844 1.000 0.000
#> GSM39847     1  0.7674      0.758 0.776 0.224
#> GSM39848     2  0.6048      0.837 0.148 0.852
#> GSM39849     1  0.0376      0.845 0.996 0.004
#> GSM39850     1  0.8813      0.660 0.700 0.300
#> GSM39851     1  0.8016      0.747 0.756 0.244
#> GSM39855     1  0.0000      0.844 1.000 0.000
#> GSM39856     1  0.0000      0.844 1.000 0.000
#> GSM39858     1  0.0000      0.844 1.000 0.000
#> GSM39859     1  0.0000      0.844 1.000 0.000
#> GSM39862     1  0.2423      0.838 0.960 0.040
#> GSM39863     1  0.8016      0.747 0.756 0.244
#> GSM39865     2  0.7674      0.845 0.224 0.776
#> GSM39866     1  0.6531      0.791 0.832 0.168
#> GSM39867     2  0.8267      0.832 0.260 0.740
#> GSM39869     2  0.6148      0.839 0.152 0.848
#> GSM39870     1  0.0000      0.844 1.000 0.000
#> GSM39871     1  0.0000      0.844 1.000 0.000
#> GSM39872     1  0.0938      0.844 0.988 0.012
#> GSM39828     1  0.8327      0.717 0.736 0.264
#> GSM39829     1  0.0000      0.844 1.000 0.000
#> GSM39830     1  0.0938      0.844 0.988 0.012
#> GSM39832     1  0.8207      0.735 0.744 0.256
#> GSM39833     1  0.8499      0.696 0.724 0.276
#> GSM39834     1  0.1414      0.843 0.980 0.020
#> GSM39835     2  0.8267      0.832 0.260 0.740
#> GSM39836     1  0.8443      0.706 0.728 0.272
#> GSM39837     2  0.8144      0.837 0.252 0.748
#> GSM39838     2  0.8207      0.835 0.256 0.744
#> GSM39839     1  0.0000      0.844 1.000 0.000
#> GSM39840     1  0.8016      0.747 0.756 0.244
#> GSM39841     1  0.9000      0.625 0.684 0.316
#> GSM39842     1  0.8016      0.747 0.756 0.244
#> GSM39843     1  0.6343      0.797 0.840 0.160
#> GSM39844     1  0.8081      0.743 0.752 0.248
#> GSM39845     1  0.0000      0.844 1.000 0.000
#> GSM39852     1  0.8267      0.722 0.740 0.260
#> GSM39853     2  0.8144      0.837 0.252 0.748
#> GSM39854     2  0.8267      0.832 0.260 0.740
#> GSM39857     1  0.0000      0.844 1.000 0.000
#> GSM39860     1  0.5408      0.735 0.876 0.124
#> GSM39861     1  0.0000      0.844 1.000 0.000
#> GSM39864     1  0.5294      0.813 0.880 0.120
#> GSM39868     1  0.0938      0.844 0.988 0.012

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000      1.000 0.000 1.000 0.000
#> GSM39874     2  0.0000      1.000 0.000 1.000 0.000
#> GSM39875     2  0.0000      1.000 0.000 1.000 0.000
#> GSM39876     2  0.0000      1.000 0.000 1.000 0.000
#> GSM39831     1  0.0237      0.948 0.996 0.000 0.004
#> GSM39819     3  0.0424      0.968 0.008 0.000 0.992
#> GSM39820     3  0.0237      0.968 0.004 0.000 0.996
#> GSM39821     1  0.0237      0.949 0.996 0.000 0.004
#> GSM39822     1  0.3272      0.911 0.892 0.104 0.004
#> GSM39823     3  0.0424      0.968 0.008 0.000 0.992
#> GSM39824     3  0.0424      0.968 0.008 0.000 0.992
#> GSM39825     3  0.4346      0.723 0.184 0.000 0.816
#> GSM39826     1  0.0983      0.949 0.980 0.016 0.004
#> GSM39827     1  0.0237      0.949 0.996 0.000 0.004
#> GSM39846     3  0.0237      0.968 0.004 0.000 0.996
#> GSM39847     1  0.0475      0.949 0.992 0.004 0.004
#> GSM39848     1  0.3193      0.916 0.896 0.100 0.004
#> GSM39849     3  0.0592      0.964 0.012 0.000 0.988
#> GSM39850     1  0.0237      0.949 0.996 0.000 0.004
#> GSM39851     1  0.0237      0.948 0.996 0.000 0.004
#> GSM39855     3  0.0424      0.968 0.008 0.000 0.992
#> GSM39856     3  0.0237      0.968 0.004 0.000 0.996
#> GSM39858     3  0.0237      0.968 0.004 0.000 0.996
#> GSM39859     3  0.0237      0.968 0.004 0.000 0.996
#> GSM39862     1  0.2063      0.941 0.948 0.044 0.008
#> GSM39863     1  0.0237      0.948 0.996 0.000 0.004
#> GSM39865     1  0.3715      0.895 0.868 0.128 0.004
#> GSM39866     1  0.1399      0.947 0.968 0.028 0.004
#> GSM39867     1  0.1878      0.939 0.952 0.044 0.004
#> GSM39869     1  0.3030      0.919 0.904 0.092 0.004
#> GSM39870     3  0.0237      0.968 0.004 0.000 0.996
#> GSM39871     3  0.0237      0.968 0.004 0.000 0.996
#> GSM39872     1  0.5291      0.645 0.732 0.000 0.268
#> GSM39828     1  0.0829      0.949 0.984 0.012 0.004
#> GSM39829     3  0.0237      0.968 0.004 0.000 0.996
#> GSM39830     3  0.4235      0.736 0.176 0.000 0.824
#> GSM39832     1  0.0237      0.948 0.996 0.000 0.004
#> GSM39833     1  0.1905      0.944 0.956 0.028 0.016
#> GSM39834     1  0.2313      0.934 0.944 0.024 0.032
#> GSM39835     1  0.1129      0.949 0.976 0.020 0.004
#> GSM39836     1  0.0829      0.949 0.984 0.012 0.004
#> GSM39837     1  0.2772      0.925 0.916 0.080 0.004
#> GSM39838     1  0.2590      0.929 0.924 0.072 0.004
#> GSM39839     3  0.0424      0.968 0.008 0.000 0.992
#> GSM39840     1  0.0237      0.948 0.996 0.000 0.004
#> GSM39841     1  0.0829      0.949 0.984 0.012 0.004
#> GSM39842     1  0.0237      0.948 0.996 0.000 0.004
#> GSM39843     1  0.1289      0.936 0.968 0.000 0.032
#> GSM39844     1  0.0237      0.948 0.996 0.000 0.004
#> GSM39845     3  0.0237      0.968 0.004 0.000 0.996
#> GSM39852     1  0.0829      0.949 0.984 0.012 0.004
#> GSM39853     1  0.2772      0.925 0.916 0.080 0.004
#> GSM39854     1  0.2301      0.932 0.936 0.060 0.004
#> GSM39857     3  0.0424      0.968 0.008 0.000 0.992
#> GSM39860     1  0.5202      0.722 0.772 0.008 0.220
#> GSM39861     3  0.0424      0.968 0.008 0.000 0.992
#> GSM39864     1  0.0983      0.949 0.980 0.016 0.004
#> GSM39868     1  0.3340      0.855 0.880 0.000 0.120

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1 p2    p3    p4
#> GSM39873     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM39874     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM39875     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM39876     2  0.0000      1.000 0.000  1 0.000 0.000
#> GSM39831     1  0.0707      0.646 0.980  0 0.000 0.020
#> GSM39819     3  0.0524      0.947 0.008  0 0.988 0.004
#> GSM39820     3  0.0188      0.947 0.004  0 0.996 0.000
#> GSM39821     1  0.4643      0.741 0.656  0 0.000 0.344
#> GSM39822     4  0.0707      0.845 0.020  0 0.000 0.980
#> GSM39823     3  0.1209      0.936 0.004  0 0.964 0.032
#> GSM39824     3  0.2197      0.906 0.004  0 0.916 0.080
#> GSM39825     3  0.5174      0.683 0.092  0 0.756 0.152
#> GSM39826     4  0.4477      0.408 0.312  0 0.000 0.688
#> GSM39827     1  0.4643      0.741 0.656  0 0.000 0.344
#> GSM39846     3  0.0000      0.948 0.000  0 1.000 0.000
#> GSM39847     1  0.4543      0.748 0.676  0 0.000 0.324
#> GSM39848     4  0.0707      0.845 0.020  0 0.000 0.980
#> GSM39849     3  0.1388      0.934 0.012  0 0.960 0.028
#> GSM39850     1  0.4643      0.741 0.656  0 0.000 0.344
#> GSM39851     1  0.0817      0.632 0.976  0 0.000 0.024
#> GSM39855     3  0.2197      0.906 0.004  0 0.916 0.080
#> GSM39856     3  0.0188      0.947 0.000  0 0.996 0.004
#> GSM39858     3  0.0188      0.947 0.000  0 0.996 0.004
#> GSM39859     3  0.0188      0.947 0.000  0 0.996 0.004
#> GSM39862     1  0.4817      0.707 0.612  0 0.000 0.388
#> GSM39863     1  0.0707      0.629 0.980  0 0.000 0.020
#> GSM39865     4  0.0707      0.845 0.020  0 0.000 0.980
#> GSM39866     1  0.4679      0.737 0.648  0 0.000 0.352
#> GSM39867     4  0.2345      0.824 0.100  0 0.000 0.900
#> GSM39869     4  0.0707      0.845 0.020  0 0.000 0.980
#> GSM39870     3  0.0188      0.947 0.004  0 0.996 0.000
#> GSM39871     3  0.0000      0.948 0.000  0 1.000 0.000
#> GSM39872     1  0.6792      0.598 0.548  0 0.112 0.340
#> GSM39828     1  0.4643      0.742 0.656  0 0.000 0.344
#> GSM39829     3  0.0188      0.947 0.004  0 0.996 0.000
#> GSM39830     3  0.4718      0.732 0.092  0 0.792 0.116
#> GSM39832     1  0.0469      0.641 0.988  0 0.000 0.012
#> GSM39833     4  0.4331      0.427 0.288  0 0.000 0.712
#> GSM39834     1  0.4746      0.723 0.632  0 0.000 0.368
#> GSM39835     4  0.2530      0.810 0.112  0 0.000 0.888
#> GSM39836     1  0.4661      0.741 0.652  0 0.000 0.348
#> GSM39837     4  0.1302      0.837 0.044  0 0.000 0.956
#> GSM39838     4  0.1389      0.844 0.048  0 0.000 0.952
#> GSM39839     3  0.0524      0.947 0.008  0 0.988 0.004
#> GSM39840     1  0.2011      0.669 0.920  0 0.000 0.080
#> GSM39841     4  0.4994     -0.357 0.480  0 0.000 0.520
#> GSM39842     1  0.0592      0.643 0.984  0 0.000 0.016
#> GSM39843     1  0.4511      0.739 0.724  0 0.008 0.268
#> GSM39844     1  0.0469      0.641 0.988  0 0.000 0.012
#> GSM39845     3  0.0000      0.948 0.000  0 1.000 0.000
#> GSM39852     1  0.4730      0.727 0.636  0 0.000 0.364
#> GSM39853     4  0.1302      0.837 0.044  0 0.000 0.956
#> GSM39854     4  0.2081      0.834 0.084  0 0.000 0.916
#> GSM39857     3  0.1489      0.931 0.004  0 0.952 0.044
#> GSM39860     4  0.1624      0.829 0.028  0 0.020 0.952
#> GSM39861     3  0.0336      0.948 0.008  0 0.992 0.000
#> GSM39864     1  0.4741      0.747 0.668  0 0.004 0.328
#> GSM39868     1  0.5746      0.707 0.612  0 0.040 0.348

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1 p2    p3    p4    p5
#> GSM39873     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000
#> GSM39831     1  0.0162     0.6186 0.996  0 0.000 0.004 0.000
#> GSM39819     3  0.3474     0.8181 0.004  0 0.796 0.192 0.008
#> GSM39820     3  0.3333     0.8094 0.004  0 0.788 0.208 0.000
#> GSM39821     4  0.5893     0.4338 0.436  0 0.000 0.464 0.100
#> GSM39822     5  0.1544     0.6064 0.000  0 0.000 0.068 0.932
#> GSM39823     3  0.1952     0.8229 0.000  0 0.912 0.004 0.084
#> GSM39824     3  0.3728     0.6935 0.000  0 0.748 0.008 0.244
#> GSM39825     3  0.7031     0.4924 0.084  0 0.572 0.156 0.188
#> GSM39826     4  0.6468     0.1642 0.188  0 0.000 0.452 0.360
#> GSM39827     1  0.6242    -0.4589 0.448  0 0.000 0.408 0.144
#> GSM39846     3  0.0000     0.8447 0.000  0 1.000 0.000 0.000
#> GSM39847     1  0.6034    -0.5147 0.456  0 0.000 0.428 0.116
#> GSM39848     5  0.0290     0.6125 0.000  0 0.000 0.008 0.992
#> GSM39849     3  0.1956     0.8368 0.000  0 0.916 0.008 0.076
#> GSM39850     4  0.6188     0.5238 0.364  0 0.000 0.492 0.144
#> GSM39851     1  0.0510     0.6174 0.984  0 0.000 0.016 0.000
#> GSM39855     3  0.3642     0.7106 0.000  0 0.760 0.008 0.232
#> GSM39856     3  0.0162     0.8458 0.004  0 0.996 0.000 0.000
#> GSM39858     3  0.0162     0.8458 0.004  0 0.996 0.000 0.000
#> GSM39859     3  0.0162     0.8458 0.004  0 0.996 0.000 0.000
#> GSM39862     5  0.6801    -0.4534 0.244  0 0.004 0.324 0.428
#> GSM39863     1  0.1341     0.6050 0.944  0 0.000 0.056 0.000
#> GSM39865     5  0.1121     0.6112 0.000  0 0.000 0.044 0.956
#> GSM39866     1  0.6548    -0.6401 0.420  0 0.000 0.380 0.200
#> GSM39867     5  0.5341     0.4853 0.080  0 0.000 0.300 0.620
#> GSM39869     5  0.1608     0.6083 0.000  0 0.000 0.072 0.928
#> GSM39870     3  0.3521     0.7987 0.004  0 0.764 0.232 0.000
#> GSM39871     3  0.0162     0.8458 0.004  0 0.996 0.000 0.000
#> GSM39872     5  0.8286    -0.4405 0.240  0 0.128 0.308 0.324
#> GSM39828     4  0.6333     0.7439 0.288  0 0.000 0.516 0.196
#> GSM39829     3  0.3521     0.7987 0.004  0 0.764 0.232 0.000
#> GSM39830     3  0.6697     0.6046 0.104  0 0.588 0.236 0.072
#> GSM39832     1  0.0162     0.6184 0.996  0 0.000 0.004 0.000
#> GSM39833     5  0.6117     0.3389 0.148  0 0.016 0.224 0.612
#> GSM39834     4  0.6573     0.7289 0.272  0 0.004 0.500 0.224
#> GSM39835     5  0.5188     0.4752 0.060  0 0.000 0.328 0.612
#> GSM39836     4  0.6433     0.7300 0.312  0 0.000 0.488 0.200
#> GSM39837     5  0.4674     0.5971 0.060  0 0.000 0.232 0.708
#> GSM39838     5  0.3940     0.5781 0.024  0 0.000 0.220 0.756
#> GSM39839     3  0.3474     0.8181 0.004  0 0.796 0.192 0.008
#> GSM39840     1  0.2583     0.5216 0.864  0 0.000 0.132 0.004
#> GSM39841     5  0.6805     0.0292 0.380  0 0.024 0.144 0.452
#> GSM39842     1  0.0880     0.6118 0.968  0 0.000 0.032 0.000
#> GSM39843     1  0.6822    -0.5131 0.452  0 0.028 0.384 0.136
#> GSM39844     1  0.0162     0.6184 0.996  0 0.000 0.004 0.000
#> GSM39845     3  0.1704     0.8443 0.004  0 0.928 0.068 0.000
#> GSM39852     4  0.6371     0.7444 0.292  0 0.000 0.508 0.200
#> GSM39853     5  0.4674     0.5971 0.060  0 0.000 0.232 0.708
#> GSM39854     5  0.4793     0.5573 0.068  0 0.000 0.232 0.700
#> GSM39857     3  0.2445     0.8123 0.004  0 0.884 0.004 0.108
#> GSM39860     5  0.1981     0.5889 0.000  0 0.028 0.048 0.924
#> GSM39861     3  0.2228     0.8424 0.004  0 0.900 0.092 0.004
#> GSM39864     4  0.6410     0.6927 0.340  0 0.000 0.476 0.184
#> GSM39868     4  0.7279     0.6897 0.272  0 0.044 0.476 0.208

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1 p2    p3    p4    p5    p6
#> GSM39873     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39831     1  0.2595     0.9200 0.836  0 0.000 0.160 0.000 0.004
#> GSM39819     6  0.3482     0.7375 0.000  0 0.316 0.000 0.000 0.684
#> GSM39820     6  0.3175     0.7936 0.000  0 0.256 0.000 0.000 0.744
#> GSM39821     4  0.4165     0.6153 0.088  0 0.000 0.788 0.064 0.060
#> GSM39822     5  0.1866     0.7347 0.000  0 0.000 0.084 0.908 0.008
#> GSM39823     3  0.2051     0.7944 0.000  0 0.916 0.040 0.036 0.008
#> GSM39824     3  0.5118     0.5514 0.000  0 0.664 0.044 0.232 0.060
#> GSM39825     4  0.6239     0.0951 0.000  0 0.256 0.488 0.020 0.236
#> GSM39826     4  0.5648     0.5616 0.208  0 0.000 0.636 0.084 0.072
#> GSM39827     4  0.4935     0.6011 0.152  0 0.000 0.716 0.064 0.068
#> GSM39846     3  0.0146     0.8179 0.000  0 0.996 0.000 0.000 0.004
#> GSM39847     4  0.2670     0.6717 0.020  0 0.000 0.884 0.052 0.044
#> GSM39848     5  0.2668     0.7283 0.024  0 0.004 0.096 0.872 0.004
#> GSM39849     3  0.2585     0.7440 0.000  0 0.880 0.084 0.012 0.024
#> GSM39850     4  0.4483     0.6189 0.116  0 0.000 0.760 0.064 0.060
#> GSM39851     1  0.2520     0.9179 0.844  0 0.000 0.152 0.000 0.004
#> GSM39855     3  0.5208     0.5293 0.000  0 0.648 0.044 0.248 0.060
#> GSM39856     3  0.0146     0.8179 0.000  0 0.996 0.000 0.000 0.004
#> GSM39858     3  0.0547     0.8123 0.000  0 0.980 0.000 0.000 0.020
#> GSM39859     3  0.0508     0.8180 0.000  0 0.984 0.004 0.000 0.012
#> GSM39862     5  0.4477     0.3416 0.004  0 0.016 0.424 0.552 0.004
#> GSM39863     1  0.2527     0.9164 0.832  0 0.000 0.168 0.000 0.000
#> GSM39865     5  0.1610     0.7365 0.000  0 0.000 0.084 0.916 0.000
#> GSM39866     4  0.1426     0.6791 0.016  0 0.000 0.948 0.028 0.008
#> GSM39867     4  0.6251     0.4255 0.188  0 0.000 0.568 0.180 0.064
#> GSM39869     5  0.1610     0.7365 0.000  0 0.000 0.084 0.916 0.000
#> GSM39870     6  0.3101     0.7940 0.000  0 0.244 0.000 0.000 0.756
#> GSM39871     3  0.0260     0.8175 0.000  0 0.992 0.000 0.000 0.008
#> GSM39872     4  0.6260    -0.0092 0.004  0 0.148 0.524 0.288 0.036
#> GSM39828     4  0.0603     0.6750 0.000  0 0.000 0.980 0.016 0.004
#> GSM39829     6  0.3076     0.7940 0.000  0 0.240 0.000 0.000 0.760
#> GSM39830     6  0.5802     0.2943 0.012  0 0.108 0.352 0.008 0.520
#> GSM39832     1  0.2482     0.9194 0.848  0 0.000 0.148 0.000 0.004
#> GSM39833     4  0.5657     0.4842 0.056  0 0.008 0.648 0.204 0.084
#> GSM39834     4  0.0777     0.6731 0.000  0 0.000 0.972 0.024 0.004
#> GSM39835     4  0.6106     0.4819 0.148  0 0.000 0.600 0.172 0.080
#> GSM39836     4  0.1845     0.6804 0.072  0 0.000 0.916 0.008 0.004
#> GSM39837     5  0.6368     0.1721 0.048  0 0.000 0.352 0.464 0.136
#> GSM39838     4  0.5849     0.0824 0.116  0 0.000 0.480 0.384 0.020
#> GSM39839     6  0.3482     0.7375 0.000  0 0.316 0.000 0.000 0.684
#> GSM39840     1  0.3819     0.5804 0.624  0 0.000 0.372 0.000 0.004
#> GSM39841     4  0.7018     0.0392 0.368  0 0.000 0.380 0.124 0.128
#> GSM39842     1  0.3109     0.8646 0.772  0 0.000 0.224 0.000 0.004
#> GSM39843     4  0.3877     0.5832 0.136  0 0.008 0.792 0.008 0.056
#> GSM39844     1  0.2482     0.9194 0.848  0 0.000 0.148 0.000 0.004
#> GSM39845     3  0.2234     0.7256 0.000  0 0.872 0.004 0.000 0.124
#> GSM39852     4  0.0767     0.6779 0.008  0 0.000 0.976 0.012 0.004
#> GSM39853     5  0.6368     0.1721 0.048  0 0.000 0.352 0.464 0.136
#> GSM39854     4  0.6483     0.2541 0.152  0 0.000 0.508 0.276 0.064
#> GSM39857     3  0.1970     0.7943 0.000  0 0.920 0.044 0.028 0.008
#> GSM39860     5  0.4430     0.6570 0.004  0 0.068 0.104 0.772 0.052
#> GSM39861     3  0.3201     0.6001 0.000  0 0.780 0.012 0.000 0.208
#> GSM39864     4  0.0717     0.6751 0.000  0 0.000 0.976 0.016 0.008
#> GSM39868     4  0.1871     0.6602 0.000  0 0.032 0.928 0.024 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>            n disease.state(p) other(p) k
#> CV:mclust 58         3.53e-03 5.72e-03 2
#> CV:mclust 58         2.54e-13 2.01e-11 3
#> CV:mclust 55         6.87e-12 1.78e-09 4
#> CV:mclust 45         3.98e-09 6.60e-08 5
#> CV:mclust 46         9.08e-09 9.54e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


CV:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["CV", "NMF"]
# you can also extract it by
# res = res_list["CV:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'CV' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk CV-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk CV-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.355           0.772       0.870         0.4632 0.564   0.564
#> 3 3 0.756           0.833       0.925         0.4288 0.683   0.479
#> 4 4 0.659           0.706       0.843         0.1169 0.869   0.648
#> 5 5 0.663           0.629       0.797         0.0811 0.872   0.578
#> 6 6 0.716           0.638       0.788         0.0386 0.909   0.613

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.0672      0.906 0.008 0.992
#> GSM39874     2  0.0938      0.906 0.012 0.988
#> GSM39875     2  0.0938      0.906 0.012 0.988
#> GSM39876     2  0.1184      0.905 0.016 0.984
#> GSM39831     1  0.6801      0.825 0.820 0.180
#> GSM39819     1  0.0376      0.803 0.996 0.004
#> GSM39820     1  0.0376      0.803 0.996 0.004
#> GSM39821     1  0.6887      0.823 0.816 0.184
#> GSM39822     2  0.0376      0.906 0.004 0.996
#> GSM39823     1  0.9998     -0.197 0.508 0.492
#> GSM39824     2  0.7453      0.757 0.212 0.788
#> GSM39825     1  0.0376      0.803 0.996 0.004
#> GSM39826     1  0.9000      0.699 0.684 0.316
#> GSM39827     1  0.7376      0.804 0.792 0.208
#> GSM39846     1  0.9248      0.352 0.660 0.340
#> GSM39847     1  0.6801      0.825 0.820 0.180
#> GSM39848     2  0.0376      0.906 0.004 0.996
#> GSM39849     1  0.9286      0.341 0.656 0.344
#> GSM39850     1  0.6887      0.823 0.816 0.184
#> GSM39851     1  0.6801      0.825 0.820 0.180
#> GSM39855     2  0.7602      0.751 0.220 0.780
#> GSM39856     1  0.8608      0.485 0.716 0.284
#> GSM39858     1  0.2603      0.787 0.956 0.044
#> GSM39859     1  0.2043      0.793 0.968 0.032
#> GSM39862     2  0.7745      0.708 0.228 0.772
#> GSM39863     1  0.6801      0.825 0.820 0.180
#> GSM39865     2  0.3114      0.882 0.056 0.944
#> GSM39866     1  0.6623      0.825 0.828 0.172
#> GSM39867     1  0.9896      0.465 0.560 0.440
#> GSM39869     2  0.0000      0.905 0.000 1.000
#> GSM39870     1  0.0376      0.803 0.996 0.004
#> GSM39871     1  0.2778      0.785 0.952 0.048
#> GSM39872     1  0.5294      0.730 0.880 0.120
#> GSM39828     1  0.6801      0.825 0.820 0.180
#> GSM39829     1  0.0000      0.804 1.000 0.000
#> GSM39830     1  0.0376      0.804 0.996 0.004
#> GSM39832     1  0.6801      0.825 0.820 0.180
#> GSM39833     2  0.5408      0.788 0.124 0.876
#> GSM39834     1  0.5059      0.823 0.888 0.112
#> GSM39835     2  0.5737      0.785 0.136 0.864
#> GSM39836     1  0.6801      0.825 0.820 0.180
#> GSM39837     2  0.0672      0.903 0.008 0.992
#> GSM39838     2  0.0376      0.903 0.004 0.996
#> GSM39839     1  0.0000      0.804 1.000 0.000
#> GSM39840     1  0.6801      0.825 0.820 0.180
#> GSM39841     1  0.7453      0.801 0.788 0.212
#> GSM39842     1  0.6801      0.825 0.820 0.180
#> GSM39843     1  0.6801      0.825 0.820 0.180
#> GSM39844     1  0.6801      0.825 0.820 0.180
#> GSM39845     1  0.2236      0.791 0.964 0.036
#> GSM39852     1  0.6801      0.825 0.820 0.180
#> GSM39853     2  0.0376      0.903 0.004 0.996
#> GSM39854     2  0.3431      0.862 0.064 0.936
#> GSM39857     1  0.8081      0.556 0.752 0.248
#> GSM39860     2  0.7139      0.767 0.196 0.804
#> GSM39861     1  0.1843      0.795 0.972 0.028
#> GSM39864     1  0.6801      0.825 0.820 0.180
#> GSM39868     1  0.0000      0.804 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000      0.910 0.000 1.000 0.000
#> GSM39874     2  0.0000      0.910 0.000 1.000 0.000
#> GSM39875     2  0.0000      0.910 0.000 1.000 0.000
#> GSM39876     2  0.0000      0.910 0.000 1.000 0.000
#> GSM39831     1  0.0237      0.935 0.996 0.000 0.004
#> GSM39819     3  0.4178      0.795 0.172 0.000 0.828
#> GSM39820     3  0.2625      0.864 0.084 0.000 0.916
#> GSM39821     1  0.0000      0.936 1.000 0.000 0.000
#> GSM39822     2  0.0237      0.910 0.004 0.996 0.000
#> GSM39823     3  0.0237      0.892 0.000 0.004 0.996
#> GSM39824     3  0.0592      0.889 0.000 0.012 0.988
#> GSM39825     3  0.2537      0.868 0.080 0.000 0.920
#> GSM39826     1  0.4121      0.749 0.832 0.168 0.000
#> GSM39827     1  0.0237      0.934 0.996 0.004 0.000
#> GSM39846     3  0.0237      0.892 0.000 0.004 0.996
#> GSM39847     1  0.0237      0.935 0.996 0.000 0.004
#> GSM39848     2  0.0237      0.909 0.000 0.996 0.004
#> GSM39849     3  0.0237      0.892 0.000 0.004 0.996
#> GSM39850     1  0.0592      0.929 0.988 0.012 0.000
#> GSM39851     1  0.0237      0.935 0.996 0.000 0.004
#> GSM39855     3  0.1289      0.877 0.000 0.032 0.968
#> GSM39856     3  0.0237      0.892 0.000 0.004 0.996
#> GSM39858     3  0.0237      0.893 0.004 0.000 0.996
#> GSM39859     3  0.0000      0.892 0.000 0.000 1.000
#> GSM39862     3  0.7888      0.591 0.196 0.140 0.664
#> GSM39863     1  0.0237      0.935 0.996 0.000 0.004
#> GSM39865     2  0.0237      0.909 0.000 0.996 0.004
#> GSM39866     1  0.2564      0.902 0.936 0.028 0.036
#> GSM39867     1  0.5678      0.481 0.684 0.316 0.000
#> GSM39869     2  0.0237      0.910 0.004 0.996 0.000
#> GSM39870     3  0.3340      0.844 0.120 0.000 0.880
#> GSM39871     3  0.0000      0.892 0.000 0.000 1.000
#> GSM39872     3  0.0237      0.892 0.000 0.004 0.996
#> GSM39828     1  0.0424      0.934 0.992 0.000 0.008
#> GSM39829     3  0.4504      0.767 0.196 0.000 0.804
#> GSM39830     1  0.5497      0.545 0.708 0.000 0.292
#> GSM39832     1  0.0000      0.936 1.000 0.000 0.000
#> GSM39833     2  0.2400      0.875 0.064 0.932 0.004
#> GSM39834     1  0.4452      0.738 0.808 0.000 0.192
#> GSM39835     2  0.6192      0.327 0.420 0.580 0.000
#> GSM39836     1  0.0424      0.931 0.992 0.008 0.000
#> GSM39837     2  0.2261      0.882 0.068 0.932 0.000
#> GSM39838     2  0.0592      0.909 0.012 0.988 0.000
#> GSM39839     3  0.3340      0.844 0.120 0.000 0.880
#> GSM39840     1  0.0000      0.936 1.000 0.000 0.000
#> GSM39841     1  0.0000      0.936 1.000 0.000 0.000
#> GSM39842     1  0.0000      0.936 1.000 0.000 0.000
#> GSM39843     1  0.1163      0.922 0.972 0.000 0.028
#> GSM39844     1  0.0000      0.936 1.000 0.000 0.000
#> GSM39845     3  0.0424      0.892 0.008 0.000 0.992
#> GSM39852     1  0.0000      0.936 1.000 0.000 0.000
#> GSM39853     2  0.2261      0.882 0.068 0.932 0.000
#> GSM39854     2  0.6225      0.299 0.432 0.568 0.000
#> GSM39857     3  0.0237      0.892 0.000 0.004 0.996
#> GSM39860     3  0.6280      0.166 0.000 0.460 0.540
#> GSM39861     3  0.0424      0.892 0.008 0.000 0.992
#> GSM39864     1  0.1529      0.912 0.960 0.000 0.040
#> GSM39868     3  0.6244      0.272 0.440 0.000 0.560

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000     0.9599 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000     0.9599 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000     0.9599 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000     0.9599 0.000 1.000 0.000 0.000
#> GSM39831     1  0.0188     0.7560 0.996 0.000 0.004 0.000
#> GSM39819     3  0.4114     0.7019 0.200 0.004 0.788 0.008
#> GSM39820     3  0.2342     0.7937 0.080 0.000 0.912 0.008
#> GSM39821     1  0.3610     0.7228 0.800 0.000 0.000 0.200
#> GSM39822     2  0.0336     0.9582 0.000 0.992 0.000 0.008
#> GSM39823     3  0.4134     0.6854 0.000 0.000 0.740 0.260
#> GSM39824     3  0.5112     0.5147 0.000 0.008 0.608 0.384
#> GSM39825     3  0.4106     0.7737 0.084 0.000 0.832 0.084
#> GSM39826     1  0.5099     0.5250 0.612 0.008 0.000 0.380
#> GSM39827     1  0.2589     0.7582 0.884 0.000 0.000 0.116
#> GSM39846     3  0.1474     0.8158 0.000 0.000 0.948 0.052
#> GSM39847     1  0.3172     0.7458 0.840 0.000 0.000 0.160
#> GSM39848     4  0.1124     0.7351 0.012 0.012 0.004 0.972
#> GSM39849     3  0.3726     0.7272 0.000 0.000 0.788 0.212
#> GSM39850     1  0.4222     0.6628 0.728 0.000 0.000 0.272
#> GSM39851     1  0.0376     0.7545 0.992 0.000 0.004 0.004
#> GSM39855     3  0.5039     0.4866 0.000 0.004 0.592 0.404
#> GSM39856     3  0.1716     0.8124 0.000 0.000 0.936 0.064
#> GSM39858     3  0.0188     0.8192 0.000 0.000 0.996 0.004
#> GSM39859     3  0.1302     0.8180 0.000 0.000 0.956 0.044
#> GSM39862     4  0.1182     0.7362 0.016 0.000 0.016 0.968
#> GSM39863     1  0.1109     0.7414 0.968 0.000 0.028 0.004
#> GSM39865     2  0.2647     0.8676 0.000 0.880 0.000 0.120
#> GSM39866     1  0.4249     0.7172 0.800 0.016 0.008 0.176
#> GSM39867     1  0.6119     0.6215 0.680 0.168 0.000 0.152
#> GSM39869     2  0.1716     0.9242 0.000 0.936 0.000 0.064
#> GSM39870     3  0.2546     0.7878 0.092 0.000 0.900 0.008
#> GSM39871     3  0.0592     0.8201 0.000 0.000 0.984 0.016
#> GSM39872     4  0.3649     0.5299 0.000 0.000 0.204 0.796
#> GSM39828     1  0.4877     0.4898 0.592 0.000 0.000 0.408
#> GSM39829     3  0.3450     0.7465 0.156 0.000 0.836 0.008
#> GSM39830     1  0.5193     0.0935 0.580 0.000 0.412 0.008
#> GSM39832     1  0.1118     0.7655 0.964 0.000 0.000 0.036
#> GSM39833     2  0.3172     0.8541 0.088 0.884 0.008 0.020
#> GSM39834     4  0.2530     0.6881 0.100 0.000 0.004 0.896
#> GSM39835     1  0.6014     0.4939 0.588 0.052 0.000 0.360
#> GSM39836     1  0.4941     0.4274 0.564 0.000 0.000 0.436
#> GSM39837     2  0.0336     0.9578 0.008 0.992 0.000 0.000
#> GSM39838     4  0.7216     0.3453 0.180 0.284 0.000 0.536
#> GSM39839     3  0.3768     0.7212 0.184 0.000 0.808 0.008
#> GSM39840     1  0.1792     0.7652 0.932 0.000 0.000 0.068
#> GSM39841     1  0.2529     0.7120 0.920 0.024 0.048 0.008
#> GSM39842     1  0.1022     0.7653 0.968 0.000 0.000 0.032
#> GSM39843     1  0.1305     0.7417 0.960 0.000 0.036 0.004
#> GSM39844     1  0.0188     0.7586 0.996 0.000 0.000 0.004
#> GSM39845     3  0.0817     0.8205 0.000 0.000 0.976 0.024
#> GSM39852     4  0.4866    -0.0476 0.404 0.000 0.000 0.596
#> GSM39853     2  0.0469     0.9560 0.012 0.988 0.000 0.000
#> GSM39854     1  0.7053     0.3485 0.512 0.356 0.000 0.132
#> GSM39857     3  0.4843     0.5083 0.000 0.000 0.604 0.396
#> GSM39860     4  0.3636     0.5753 0.000 0.008 0.172 0.820
#> GSM39861     3  0.0336     0.8178 0.008 0.000 0.992 0.000
#> GSM39864     1  0.3625     0.7435 0.828 0.000 0.012 0.160
#> GSM39868     4  0.3453     0.7187 0.080 0.000 0.052 0.868

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0162      0.906 0.000 0.996 0.000 0.004 0.000
#> GSM39874     2  0.0000      0.906 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0162      0.906 0.000 0.996 0.000 0.004 0.000
#> GSM39876     2  0.0000      0.906 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.2966      0.587 0.816 0.000 0.000 0.184 0.000
#> GSM39819     3  0.3453      0.745 0.136 0.000 0.832 0.012 0.020
#> GSM39820     3  0.1716      0.821 0.016 0.000 0.944 0.016 0.024
#> GSM39821     4  0.2361      0.713 0.096 0.000 0.000 0.892 0.012
#> GSM39822     2  0.0703      0.901 0.000 0.976 0.000 0.024 0.000
#> GSM39823     3  0.4605      0.596 0.004 0.000 0.692 0.032 0.272
#> GSM39824     3  0.4498      0.494 0.004 0.004 0.632 0.004 0.356
#> GSM39825     3  0.4719      0.715 0.028 0.000 0.768 0.132 0.072
#> GSM39826     4  0.3134      0.700 0.120 0.000 0.000 0.848 0.032
#> GSM39827     4  0.3551      0.599 0.220 0.000 0.000 0.772 0.008
#> GSM39846     3  0.0510      0.827 0.000 0.000 0.984 0.000 0.016
#> GSM39847     4  0.1502      0.721 0.056 0.000 0.000 0.940 0.004
#> GSM39848     5  0.2950      0.739 0.020 0.028 0.004 0.060 0.888
#> GSM39849     5  0.7411      0.266 0.288 0.004 0.280 0.024 0.404
#> GSM39850     4  0.2773      0.709 0.112 0.000 0.000 0.868 0.020
#> GSM39851     1  0.4702      0.212 0.512 0.000 0.004 0.476 0.008
#> GSM39855     3  0.4390      0.350 0.000 0.004 0.568 0.000 0.428
#> GSM39856     3  0.1670      0.817 0.012 0.000 0.936 0.000 0.052
#> GSM39858     3  0.0451      0.828 0.004 0.000 0.988 0.000 0.008
#> GSM39859     3  0.0703      0.826 0.000 0.000 0.976 0.000 0.024
#> GSM39862     5  0.3080      0.737 0.060 0.000 0.008 0.060 0.872
#> GSM39863     1  0.3796      0.464 0.700 0.000 0.000 0.300 0.000
#> GSM39865     2  0.2873      0.806 0.000 0.860 0.000 0.020 0.120
#> GSM39866     4  0.5414      0.518 0.216 0.012 0.016 0.696 0.060
#> GSM39867     1  0.6793      0.263 0.524 0.128 0.000 0.308 0.040
#> GSM39869     2  0.2775      0.833 0.020 0.876 0.000 0.004 0.100
#> GSM39870     3  0.2414      0.802 0.008 0.000 0.900 0.080 0.012
#> GSM39871     3  0.0451      0.828 0.004 0.000 0.988 0.000 0.008
#> GSM39872     5  0.3536      0.725 0.052 0.000 0.072 0.024 0.852
#> GSM39828     4  0.5233      0.462 0.288 0.000 0.000 0.636 0.076
#> GSM39829     3  0.2993      0.797 0.044 0.000 0.884 0.048 0.024
#> GSM39830     1  0.6837      0.286 0.488 0.000 0.312 0.180 0.020
#> GSM39832     1  0.2127      0.607 0.892 0.000 0.000 0.108 0.000
#> GSM39833     1  0.7684      0.147 0.448 0.284 0.000 0.084 0.184
#> GSM39834     5  0.3419      0.654 0.016 0.000 0.000 0.180 0.804
#> GSM39835     1  0.5443      0.253 0.624 0.024 0.000 0.040 0.312
#> GSM39836     4  0.2221      0.719 0.036 0.000 0.000 0.912 0.052
#> GSM39837     2  0.0955      0.897 0.004 0.968 0.000 0.028 0.000
#> GSM39838     4  0.5787      0.396 0.000 0.204 0.000 0.616 0.180
#> GSM39839     3  0.3203      0.757 0.124 0.000 0.848 0.008 0.020
#> GSM39840     1  0.4150      0.387 0.612 0.000 0.000 0.388 0.000
#> GSM39841     1  0.4458      0.592 0.772 0.032 0.016 0.172 0.008
#> GSM39842     1  0.1942      0.564 0.920 0.000 0.000 0.012 0.068
#> GSM39843     1  0.4607      0.438 0.664 0.000 0.012 0.312 0.012
#> GSM39844     1  0.2471      0.604 0.864 0.000 0.000 0.136 0.000
#> GSM39845     3  0.0932      0.828 0.004 0.000 0.972 0.004 0.020
#> GSM39852     4  0.3013      0.650 0.008 0.000 0.000 0.832 0.160
#> GSM39853     2  0.0579      0.905 0.008 0.984 0.000 0.008 0.000
#> GSM39854     2  0.6947      0.222 0.300 0.520 0.000 0.128 0.052
#> GSM39857     3  0.4637      0.284 0.012 0.000 0.536 0.000 0.452
#> GSM39860     5  0.1412      0.740 0.000 0.004 0.036 0.008 0.952
#> GSM39861     3  0.0579      0.827 0.008 0.000 0.984 0.008 0.000
#> GSM39864     4  0.5297      0.436 0.292 0.000 0.008 0.640 0.060
#> GSM39868     5  0.4954      0.281 0.012 0.000 0.016 0.380 0.592

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0146     0.9103 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM39874     2  0.0000     0.9102 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0146     0.9103 0.000 0.996 0.000 0.000 0.000 0.004
#> GSM39876     2  0.0000     0.9102 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     1  0.1226     0.7782 0.952 0.000 0.004 0.004 0.040 0.000
#> GSM39819     3  0.3651     0.7555 0.076 0.000 0.824 0.044 0.056 0.000
#> GSM39820     3  0.1413     0.8220 0.008 0.000 0.948 0.004 0.036 0.004
#> GSM39821     4  0.0692     0.7609 0.004 0.000 0.000 0.976 0.020 0.000
#> GSM39822     2  0.1655     0.8879 0.000 0.932 0.000 0.052 0.008 0.008
#> GSM39823     3  0.4922     0.5594 0.000 0.000 0.616 0.000 0.288 0.096
#> GSM39824     3  0.4566     0.6563 0.000 0.000 0.700 0.000 0.140 0.160
#> GSM39825     3  0.5121     0.6024 0.004 0.000 0.672 0.200 0.108 0.016
#> GSM39826     4  0.1829     0.7465 0.000 0.028 0.000 0.928 0.008 0.036
#> GSM39827     4  0.5197     0.3429 0.320 0.000 0.000 0.568 0.112 0.000
#> GSM39846     3  0.0508     0.8277 0.000 0.000 0.984 0.000 0.012 0.004
#> GSM39847     4  0.1152     0.7561 0.004 0.000 0.000 0.952 0.044 0.000
#> GSM39848     6  0.3679     0.5551 0.000 0.032 0.004 0.040 0.104 0.820
#> GSM39849     6  0.5907     0.5159 0.048 0.000 0.120 0.024 0.156 0.652
#> GSM39850     4  0.0881     0.7588 0.000 0.008 0.000 0.972 0.008 0.012
#> GSM39851     4  0.2250     0.7510 0.064 0.000 0.000 0.896 0.040 0.000
#> GSM39855     3  0.5120     0.5008 0.000 0.000 0.600 0.000 0.120 0.280
#> GSM39856     3  0.2294     0.8030 0.000 0.000 0.892 0.000 0.036 0.072
#> GSM39858     3  0.0146     0.8268 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM39859     3  0.0622     0.8273 0.000 0.000 0.980 0.000 0.012 0.008
#> GSM39862     6  0.2499     0.5893 0.000 0.000 0.000 0.048 0.072 0.880
#> GSM39863     1  0.2474     0.7439 0.884 0.000 0.004 0.032 0.080 0.000
#> GSM39865     2  0.4419     0.6286 0.004 0.704 0.000 0.000 0.220 0.072
#> GSM39866     5  0.5083     0.2336 0.364 0.008 0.016 0.028 0.580 0.004
#> GSM39867     1  0.3583     0.6210 0.784 0.024 0.000 0.000 0.180 0.012
#> GSM39869     2  0.3792     0.7808 0.024 0.808 0.000 0.004 0.048 0.116
#> GSM39870     3  0.3621     0.7468 0.044 0.000 0.804 0.008 0.140 0.004
#> GSM39871     3  0.0914     0.8266 0.000 0.000 0.968 0.000 0.016 0.016
#> GSM39872     6  0.2302     0.5871 0.008 0.000 0.060 0.000 0.032 0.900
#> GSM39828     4  0.2594     0.7444 0.028 0.000 0.000 0.884 0.016 0.072
#> GSM39829     3  0.2411     0.8109 0.032 0.000 0.900 0.024 0.044 0.000
#> GSM39830     4  0.7606     0.3066 0.124 0.000 0.232 0.464 0.136 0.044
#> GSM39832     1  0.0692     0.7772 0.976 0.000 0.000 0.000 0.020 0.004
#> GSM39833     6  0.8339     0.0762 0.060 0.200 0.000 0.296 0.148 0.296
#> GSM39834     5  0.4868     0.1631 0.052 0.000 0.000 0.004 0.548 0.396
#> GSM39835     6  0.5288     0.3934 0.264 0.004 0.000 0.000 0.132 0.600
#> GSM39836     4  0.2062     0.7197 0.004 0.000 0.000 0.900 0.088 0.008
#> GSM39837     2  0.2048     0.8272 0.000 0.880 0.000 0.120 0.000 0.000
#> GSM39838     5  0.6786     0.3786 0.016 0.196 0.000 0.212 0.520 0.056
#> GSM39839     3  0.3577     0.7636 0.068 0.000 0.832 0.028 0.068 0.004
#> GSM39840     4  0.4610     0.5877 0.272 0.000 0.000 0.664 0.056 0.008
#> GSM39841     1  0.4502     0.6299 0.756 0.020 0.008 0.124 0.092 0.000
#> GSM39842     1  0.4143     0.6146 0.756 0.000 0.000 0.004 0.124 0.116
#> GSM39843     4  0.5007     0.6559 0.152 0.000 0.008 0.712 0.100 0.028
#> GSM39844     1  0.0458     0.7784 0.984 0.000 0.000 0.000 0.016 0.000
#> GSM39845     3  0.0363     0.8271 0.000 0.000 0.988 0.000 0.012 0.000
#> GSM39852     5  0.5082     0.0557 0.008 0.000 0.000 0.460 0.476 0.056
#> GSM39853     2  0.0520     0.9082 0.000 0.984 0.000 0.008 0.000 0.008
#> GSM39854     1  0.5305     0.4834 0.660 0.204 0.000 0.004 0.108 0.024
#> GSM39857     3  0.5364     0.4283 0.000 0.000 0.560 0.000 0.140 0.300
#> GSM39860     6  0.3295     0.5002 0.000 0.004 0.012 0.004 0.184 0.796
#> GSM39861     3  0.0862     0.8281 0.000 0.000 0.972 0.008 0.016 0.004
#> GSM39864     5  0.4641    -0.0214 0.480 0.000 0.008 0.008 0.492 0.012
#> GSM39868     5  0.5723     0.3369 0.084 0.000 0.032 0.012 0.608 0.264

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-CV-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-CV-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-CV-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-CV-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-CV-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-CV-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-CV-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-CV-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-CV-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-CV-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-CV-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk CV-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-CV-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk CV-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>         n disease.state(p) other(p) k
#> CV:NMF 53         0.018700  0.03184 2
#> CV:NMF 53         0.000617  0.00137 3
#> CV:NMF 50         0.000587  0.01428 4
#> CV:NMF 41         0.003359  0.00264 5
#> CV:NMF 46         0.001228  0.00592 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "hclust"]
# you can also extract it by
# res = res_list["MAD:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'MAD' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.249           0.694       0.840         0.2467 0.900   0.900
#> 3 3 0.147           0.494       0.686         1.2056 0.525   0.482
#> 4 4 0.362           0.578       0.746         0.2079 0.851   0.681
#> 5 5 0.471           0.461       0.708         0.1191 0.864   0.622
#> 6 6 0.528           0.582       0.743         0.0618 0.920   0.710

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     1  0.9580      0.496 0.620 0.380
#> GSM39874     1  0.9580      0.496 0.620 0.380
#> GSM39875     1  0.9580      0.496 0.620 0.380
#> GSM39876     1  0.9580      0.496 0.620 0.380
#> GSM39831     1  0.1843      0.781 0.972 0.028
#> GSM39819     1  0.6148      0.779 0.848 0.152
#> GSM39820     1  0.6343      0.777 0.840 0.160
#> GSM39821     1  0.0672      0.789 0.992 0.008
#> GSM39822     1  0.7528      0.741 0.784 0.216
#> GSM39823     1  0.9286      0.578 0.656 0.344
#> GSM39824     1  0.9815      0.389 0.580 0.420
#> GSM39825     1  0.1633      0.793 0.976 0.024
#> GSM39826     1  0.0672      0.789 0.992 0.008
#> GSM39827     1  0.2043      0.794 0.968 0.032
#> GSM39846     1  0.9522      0.517 0.628 0.372
#> GSM39847     1  0.0672      0.789 0.992 0.008
#> GSM39848     2  0.6973      0.607 0.188 0.812
#> GSM39849     1  0.7299      0.752 0.796 0.204
#> GSM39850     1  0.0672      0.789 0.992 0.008
#> GSM39851     1  0.1843      0.781 0.972 0.028
#> GSM39855     2  0.9922     -0.111 0.448 0.552
#> GSM39856     1  0.9323      0.569 0.652 0.348
#> GSM39858     1  0.9087      0.613 0.676 0.324
#> GSM39859     1  0.8144      0.712 0.748 0.252
#> GSM39862     1  0.5178      0.702 0.884 0.116
#> GSM39863     1  0.1843      0.781 0.972 0.028
#> GSM39865     1  0.9833      0.336 0.576 0.424
#> GSM39866     1  0.4161      0.799 0.916 0.084
#> GSM39867     1  0.3584      0.793 0.932 0.068
#> GSM39869     1  0.9286      0.446 0.656 0.344
#> GSM39870     1  0.6343      0.779 0.840 0.160
#> GSM39871     1  0.8081      0.712 0.752 0.248
#> GSM39872     1  0.4431      0.792 0.908 0.092
#> GSM39828     1  0.1414      0.789 0.980 0.020
#> GSM39829     1  0.5842      0.785 0.860 0.140
#> GSM39830     1  0.5946      0.783 0.856 0.144
#> GSM39832     1  0.1843      0.781 0.972 0.028
#> GSM39833     1  0.7602      0.743 0.780 0.220
#> GSM39834     1  0.1843      0.793 0.972 0.028
#> GSM39835     1  0.4022      0.787 0.920 0.080
#> GSM39836     1  0.0672      0.789 0.992 0.008
#> GSM39837     1  0.7453      0.744 0.788 0.212
#> GSM39838     1  0.9248      0.566 0.660 0.340
#> GSM39839     1  0.6148      0.779 0.848 0.152
#> GSM39840     1  0.1843      0.781 0.972 0.028
#> GSM39841     1  0.6148      0.785 0.848 0.152
#> GSM39842     1  0.1843      0.781 0.972 0.028
#> GSM39843     1  0.1414      0.783 0.980 0.020
#> GSM39844     1  0.1843      0.781 0.972 0.028
#> GSM39845     1  0.6343      0.777 0.840 0.160
#> GSM39852     1  0.1184      0.790 0.984 0.016
#> GSM39853     1  0.7453      0.744 0.788 0.212
#> GSM39854     1  0.3584      0.793 0.932 0.068
#> GSM39857     1  0.9248      0.584 0.660 0.340
#> GSM39860     2  0.1843      0.593 0.028 0.972
#> GSM39861     1  0.7139      0.755 0.804 0.196
#> GSM39864     1  0.3733      0.799 0.928 0.072
#> GSM39868     1  0.1843      0.793 0.972 0.028

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     3   0.554    0.28395 0.024 0.200 0.776
#> GSM39874     3   0.554    0.28395 0.024 0.200 0.776
#> GSM39875     3   0.554    0.28395 0.024 0.200 0.776
#> GSM39876     3   0.554    0.28395 0.024 0.200 0.776
#> GSM39831     1   0.232    0.72679 0.944 0.028 0.028
#> GSM39819     3   0.628    0.29634 0.460 0.000 0.540
#> GSM39820     3   0.629    0.27096 0.468 0.000 0.532
#> GSM39821     1   0.451    0.73644 0.832 0.012 0.156
#> GSM39822     3   0.679    0.41549 0.136 0.120 0.744
#> GSM39823     3   0.820    0.53933 0.200 0.160 0.640
#> GSM39824     3   0.743    0.46259 0.100 0.212 0.688
#> GSM39825     1   0.468    0.70881 0.804 0.004 0.192
#> GSM39826     1   0.512    0.71146 0.788 0.012 0.200
#> GSM39827     1   0.470    0.70172 0.812 0.008 0.180
#> GSM39846     3   0.740    0.52469 0.144 0.152 0.704
#> GSM39847     1   0.451    0.73644 0.832 0.012 0.156
#> GSM39848     2   0.598    0.66150 0.020 0.728 0.252
#> GSM39849     3   0.721    0.44093 0.360 0.036 0.604
#> GSM39850     1   0.512    0.71146 0.788 0.012 0.200
#> GSM39851     1   0.206    0.72777 0.952 0.024 0.024
#> GSM39855     3   0.684    0.21497 0.024 0.352 0.624
#> GSM39856     3   0.731    0.54421 0.168 0.124 0.708
#> GSM39858     3   0.725    0.55958 0.196 0.100 0.704
#> GSM39859     3   0.748    0.48982 0.308 0.060 0.632
#> GSM39862     1   0.664    0.67688 0.752 0.108 0.140
#> GSM39863     1   0.232    0.72679 0.944 0.028 0.028
#> GSM39865     3   0.806    0.00156 0.084 0.328 0.588
#> GSM39866     1   0.576    0.64946 0.764 0.028 0.208
#> GSM39867     3   0.775    0.30080 0.300 0.076 0.624
#> GSM39869     3   0.864    0.04545 0.128 0.308 0.564
#> GSM39870     1   0.648   -0.03657 0.544 0.004 0.452
#> GSM39871     3   0.694    0.50951 0.284 0.044 0.672
#> GSM39872     1   0.674    0.35267 0.600 0.016 0.384
#> GSM39828     1   0.309    0.74624 0.912 0.016 0.072
#> GSM39829     3   0.630    0.25834 0.476 0.000 0.524
#> GSM39830     1   0.599    0.10938 0.632 0.000 0.368
#> GSM39832     1   0.327    0.70945 0.912 0.044 0.044
#> GSM39833     3   0.756    0.46519 0.336 0.056 0.608
#> GSM39834     1   0.491    0.72047 0.796 0.008 0.196
#> GSM39835     1   0.822    0.11445 0.516 0.076 0.408
#> GSM39836     1   0.497    0.71847 0.800 0.012 0.188
#> GSM39837     3   0.635    0.43725 0.140 0.092 0.768
#> GSM39838     3   0.881    0.21296 0.172 0.252 0.576
#> GSM39839     3   0.628    0.29634 0.460 0.000 0.540
#> GSM39840     1   0.232    0.72520 0.944 0.028 0.028
#> GSM39841     1   0.596    0.59918 0.788 0.076 0.136
#> GSM39842     1   0.327    0.70945 0.912 0.044 0.044
#> GSM39843     1   0.117    0.73132 0.976 0.016 0.008
#> GSM39844     1   0.327    0.70945 0.912 0.044 0.044
#> GSM39845     3   0.650    0.27648 0.468 0.004 0.528
#> GSM39852     1   0.447    0.73355 0.828 0.008 0.164
#> GSM39853     3   0.635    0.43725 0.140 0.092 0.768
#> GSM39854     3   0.775    0.30080 0.300 0.076 0.624
#> GSM39857     3   0.824    0.54019 0.204 0.160 0.636
#> GSM39860     2   0.368    0.69715 0.008 0.876 0.116
#> GSM39861     3   0.678    0.43061 0.364 0.020 0.616
#> GSM39864     1   0.481    0.70603 0.832 0.028 0.140
#> GSM39868     1   0.491    0.72047 0.796 0.008 0.196

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2   0.402      0.623 0.000 0.836 0.096 0.068
#> GSM39874     2   0.402      0.623 0.000 0.836 0.096 0.068
#> GSM39875     2   0.402      0.623 0.000 0.836 0.096 0.068
#> GSM39876     2   0.402      0.623 0.000 0.836 0.096 0.068
#> GSM39831     1   0.210      0.675 0.940 0.016 0.016 0.028
#> GSM39819     3   0.478      0.618 0.336 0.000 0.660 0.004
#> GSM39820     3   0.487      0.585 0.356 0.004 0.640 0.000
#> GSM39821     1   0.567      0.673 0.728 0.084 0.180 0.008
#> GSM39822     2   0.398      0.681 0.052 0.860 0.060 0.028
#> GSM39823     3   0.415      0.669 0.072 0.012 0.844 0.072
#> GSM39824     3   0.302      0.571 0.000 0.024 0.884 0.092
#> GSM39825     1   0.549      0.608 0.696 0.036 0.260 0.008
#> GSM39826     1   0.650      0.647 0.664 0.144 0.184 0.008
#> GSM39827     1   0.586      0.656 0.728 0.148 0.112 0.012
#> GSM39846     3   0.282      0.660 0.028 0.020 0.912 0.040
#> GSM39847     1   0.567      0.673 0.728 0.084 0.180 0.008
#> GSM39848     4   0.587      0.412 0.004 0.304 0.048 0.644
#> GSM39849     3   0.647      0.632 0.188 0.096 0.688 0.028
#> GSM39850     1   0.650      0.647 0.664 0.144 0.184 0.008
#> GSM39851     1   0.187      0.676 0.948 0.016 0.012 0.024
#> GSM39855     3   0.495      0.313 0.000 0.024 0.708 0.268
#> GSM39856     3   0.238      0.687 0.040 0.020 0.928 0.012
#> GSM39858     3   0.284      0.706 0.068 0.016 0.904 0.012
#> GSM39859     3   0.399      0.711 0.188 0.004 0.800 0.008
#> GSM39862     1   0.752      0.611 0.632 0.088 0.180 0.100
#> GSM39863     1   0.210      0.675 0.940 0.016 0.016 0.028
#> GSM39865     2   0.614      0.476 0.024 0.664 0.044 0.268
#> GSM39866     1   0.605      0.549 0.672 0.036 0.264 0.028
#> GSM39867     2   0.643      0.518 0.184 0.696 0.036 0.084
#> GSM39869     2   0.632      0.476 0.056 0.648 0.020 0.276
#> GSM39870     3   0.583      0.300 0.440 0.032 0.528 0.000
#> GSM39871     3   0.348      0.719 0.148 0.012 0.840 0.000
#> GSM39872     1   0.683      0.181 0.488 0.060 0.436 0.016
#> GSM39828     1   0.460      0.695 0.812 0.056 0.120 0.012
#> GSM39829     3   0.490      0.576 0.364 0.004 0.632 0.000
#> GSM39830     1   0.514     -0.244 0.540 0.000 0.456 0.004
#> GSM39832     1   0.334      0.642 0.880 0.032 0.008 0.080
#> GSM39833     3   0.719      0.558 0.180 0.184 0.616 0.020
#> GSM39834     1   0.616      0.648 0.680 0.092 0.220 0.008
#> GSM39835     1   0.761     -0.196 0.436 0.412 0.012 0.140
#> GSM39836     1   0.640      0.651 0.672 0.132 0.188 0.008
#> GSM39837     2   0.349      0.686 0.052 0.876 0.064 0.008
#> GSM39838     2   0.724      0.507 0.092 0.648 0.072 0.188
#> GSM39839     3   0.478      0.618 0.336 0.000 0.660 0.004
#> GSM39840     1   0.207      0.674 0.940 0.016 0.012 0.032
#> GSM39841     1   0.468      0.569 0.792 0.164 0.020 0.024
#> GSM39842     1   0.334      0.642 0.880 0.032 0.008 0.080
#> GSM39843     1   0.207      0.681 0.940 0.012 0.032 0.016
#> GSM39844     1   0.334      0.642 0.880 0.032 0.008 0.080
#> GSM39845     3   0.487      0.589 0.356 0.004 0.640 0.000
#> GSM39852     1   0.566      0.667 0.724 0.076 0.192 0.008
#> GSM39853     2   0.349      0.686 0.052 0.876 0.064 0.008
#> GSM39854     2   0.643      0.518 0.184 0.696 0.036 0.084
#> GSM39857     3   0.422      0.669 0.076 0.012 0.840 0.072
#> GSM39860     4   0.356      0.586 0.004 0.012 0.140 0.844
#> GSM39861     3   0.416      0.687 0.240 0.004 0.756 0.000
#> GSM39864     1   0.537      0.627 0.748 0.032 0.192 0.028
#> GSM39868     1   0.616      0.648 0.680 0.092 0.220 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0324     0.6407 0.000 0.992 0.004 0.000 0.004
#> GSM39874     2  0.0324     0.6407 0.000 0.992 0.004 0.000 0.004
#> GSM39875     2  0.0324     0.6407 0.000 0.992 0.004 0.000 0.004
#> GSM39876     2  0.0324     0.6407 0.000 0.992 0.004 0.000 0.004
#> GSM39831     4  0.5440    -0.0656 0.472 0.000 0.048 0.476 0.004
#> GSM39819     3  0.4656     0.6738 0.076 0.000 0.740 0.180 0.004
#> GSM39820     3  0.4904     0.6248 0.072 0.000 0.688 0.240 0.000
#> GSM39821     4  0.0960     0.6377 0.016 0.004 0.008 0.972 0.000
#> GSM39822     2  0.6147     0.6402 0.168 0.648 0.004 0.152 0.028
#> GSM39823     3  0.4631     0.6572 0.008 0.000 0.752 0.076 0.164
#> GSM39824     3  0.3583     0.5989 0.004 0.012 0.792 0.000 0.192
#> GSM39825     4  0.4062     0.5591 0.040 0.000 0.196 0.764 0.000
#> GSM39826     4  0.1924     0.5997 0.064 0.008 0.004 0.924 0.000
#> GSM39827     4  0.5644     0.4475 0.216 0.068 0.032 0.680 0.004
#> GSM39846     3  0.2621     0.6652 0.004 0.008 0.876 0.000 0.112
#> GSM39847     4  0.0854     0.6381 0.012 0.004 0.008 0.976 0.000
#> GSM39848     5  0.4151     0.3495 0.000 0.344 0.004 0.000 0.652
#> GSM39849     3  0.4365     0.6429 0.184 0.016 0.768 0.028 0.004
#> GSM39850     4  0.1990     0.5998 0.068 0.008 0.004 0.920 0.000
#> GSM39851     4  0.5380    -0.0419 0.464 0.000 0.044 0.488 0.004
#> GSM39855     3  0.4632     0.3745 0.004 0.012 0.608 0.000 0.376
#> GSM39856     3  0.1928     0.6816 0.004 0.004 0.920 0.000 0.072
#> GSM39858     3  0.2061     0.6992 0.004 0.004 0.924 0.012 0.056
#> GSM39859     3  0.4206     0.7357 0.024 0.000 0.800 0.128 0.048
#> GSM39862     4  0.5295     0.5335 0.100 0.004 0.060 0.748 0.088
#> GSM39863     4  0.5440    -0.0656 0.472 0.000 0.048 0.476 0.004
#> GSM39865     2  0.6858     0.4771 0.080 0.580 0.004 0.092 0.244
#> GSM39866     4  0.4374     0.5820 0.076 0.000 0.092 0.800 0.032
#> GSM39867     1  0.6550    -0.4515 0.436 0.388 0.000 0.172 0.004
#> GSM39869     2  0.7476     0.3593 0.260 0.468 0.000 0.060 0.212
#> GSM39870     4  0.5555    -0.1430 0.068 0.000 0.452 0.480 0.000
#> GSM39871     3  0.1591     0.7250 0.004 0.004 0.940 0.052 0.000
#> GSM39872     4  0.5865     0.3170 0.060 0.004 0.348 0.572 0.016
#> GSM39828     4  0.3953     0.5794 0.148 0.000 0.060 0.792 0.000
#> GSM39829     3  0.4959     0.6203 0.076 0.000 0.684 0.240 0.000
#> GSM39830     3  0.6488     0.3320 0.208 0.000 0.516 0.272 0.004
#> GSM39832     1  0.4748     0.3469 0.660 0.000 0.040 0.300 0.000
#> GSM39833     3  0.6033     0.5460 0.188 0.080 0.664 0.068 0.000
#> GSM39834     4  0.2673     0.6381 0.060 0.000 0.044 0.892 0.004
#> GSM39835     1  0.3248     0.1128 0.856 0.088 0.000 0.052 0.004
#> GSM39836     4  0.1914     0.6086 0.056 0.008 0.008 0.928 0.000
#> GSM39837     2  0.5457     0.6495 0.172 0.672 0.000 0.152 0.004
#> GSM39838     2  0.7114     0.4991 0.064 0.584 0.012 0.180 0.160
#> GSM39839     3  0.4656     0.6738 0.076 0.000 0.740 0.180 0.004
#> GSM39840     1  0.5382    -0.0891 0.480 0.000 0.044 0.472 0.004
#> GSM39841     1  0.7255     0.1975 0.460 0.160 0.040 0.336 0.004
#> GSM39842     1  0.4748     0.3469 0.660 0.000 0.040 0.300 0.000
#> GSM39843     4  0.5306     0.1263 0.400 0.000 0.044 0.552 0.004
#> GSM39844     1  0.4748     0.3469 0.660 0.000 0.040 0.300 0.000
#> GSM39845     3  0.4877     0.6312 0.072 0.000 0.692 0.236 0.000
#> GSM39852     4  0.1211     0.6408 0.016 0.000 0.024 0.960 0.000
#> GSM39853     2  0.5457     0.6495 0.172 0.672 0.000 0.152 0.004
#> GSM39854     1  0.6550    -0.4515 0.436 0.388 0.000 0.172 0.004
#> GSM39857     3  0.4391     0.6566 0.008 0.000 0.768 0.060 0.164
#> GSM39860     5  0.0451     0.5573 0.000 0.004 0.008 0.000 0.988
#> GSM39861     3  0.3276     0.7263 0.032 0.000 0.836 0.132 0.000
#> GSM39864     4  0.5127     0.5482 0.132 0.000 0.096 0.740 0.032
#> GSM39868     4  0.2673     0.6381 0.060 0.000 0.044 0.892 0.004

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     5   0.000     0.5752 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM39874     5   0.000     0.5752 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM39875     5   0.000     0.5752 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM39876     5   0.000     0.5752 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM39831     1   0.274     0.8281 0.840 0.000 0.016 0.144 0.000 0.000
#> GSM39819     3   0.415     0.6649 0.232 0.008 0.720 0.040 0.000 0.000
#> GSM39820     3   0.479     0.6371 0.220 0.004 0.672 0.104 0.000 0.000
#> GSM39821     4   0.273     0.7414 0.152 0.012 0.000 0.836 0.000 0.000
#> GSM39822     5   0.612     0.3622 0.004 0.232 0.000 0.180 0.556 0.028
#> GSM39823     3   0.467     0.6332 0.028 0.016 0.744 0.056 0.000 0.156
#> GSM39824     3   0.341     0.5876 0.000 0.024 0.788 0.000 0.004 0.184
#> GSM39825     4   0.480     0.5920 0.164 0.000 0.164 0.672 0.000 0.000
#> GSM39826     4   0.178     0.7105 0.048 0.028 0.000 0.924 0.000 0.000
#> GSM39827     4   0.613     0.3259 0.360 0.108 0.004 0.492 0.036 0.000
#> GSM39846     3   0.249     0.6506 0.000 0.020 0.876 0.000 0.004 0.100
#> GSM39847     4   0.269     0.7431 0.148 0.012 0.000 0.840 0.000 0.000
#> GSM39848     6   0.430     0.3383 0.000 0.020 0.008 0.000 0.336 0.636
#> GSM39849     3   0.417     0.6054 0.056 0.200 0.736 0.000 0.000 0.008
#> GSM39850     4   0.184     0.7103 0.052 0.028 0.000 0.920 0.000 0.000
#> GSM39851     1   0.249     0.8311 0.864 0.004 0.008 0.124 0.000 0.000
#> GSM39855     3   0.438     0.3718 0.000 0.024 0.604 0.000 0.004 0.368
#> GSM39856     3   0.189     0.6659 0.000 0.024 0.916 0.000 0.000 0.060
#> GSM39858     3   0.265     0.6813 0.024 0.024 0.888 0.004 0.000 0.060
#> GSM39859     3   0.415     0.7197 0.124 0.000 0.780 0.044 0.000 0.052
#> GSM39862     4   0.488     0.6356 0.020 0.088 0.052 0.752 0.000 0.088
#> GSM39863     1   0.274     0.8281 0.840 0.000 0.016 0.144 0.000 0.000
#> GSM39865     5   0.666     0.3952 0.000 0.124 0.000 0.120 0.520 0.236
#> GSM39866     4   0.519     0.6206 0.200 0.012 0.076 0.684 0.000 0.028
#> GSM39867     2   0.663     0.4433 0.060 0.484 0.000 0.188 0.268 0.000
#> GSM39869     5   0.737    -0.0197 0.012 0.328 0.000 0.084 0.368 0.208
#> GSM39870     3   0.593     0.1648 0.184 0.004 0.444 0.368 0.000 0.000
#> GSM39871     3   0.192     0.7076 0.056 0.012 0.920 0.012 0.000 0.000
#> GSM39872     4   0.612     0.3432 0.064 0.056 0.316 0.548 0.000 0.016
#> GSM39828     4   0.467     0.6023 0.220 0.052 0.028 0.700 0.000 0.000
#> GSM39829     3   0.473     0.6383 0.224 0.004 0.676 0.096 0.000 0.000
#> GSM39830     3   0.525     0.2325 0.456 0.016 0.472 0.056 0.000 0.000
#> GSM39832     1   0.201     0.7899 0.904 0.084 0.008 0.004 0.000 0.000
#> GSM39833     3   0.605     0.5215 0.052 0.200 0.644 0.032 0.064 0.008
#> GSM39834     4   0.254     0.7382 0.068 0.028 0.016 0.888 0.000 0.000
#> GSM39835     2   0.267     0.1385 0.156 0.836 0.000 0.000 0.000 0.008
#> GSM39836     4   0.153     0.7154 0.048 0.016 0.000 0.936 0.000 0.000
#> GSM39837     5   0.551     0.3713 0.004 0.236 0.000 0.180 0.580 0.000
#> GSM39838     5   0.662     0.3739 0.000 0.096 0.000 0.228 0.524 0.152
#> GSM39839     3   0.415     0.6649 0.232 0.008 0.720 0.040 0.000 0.000
#> GSM39840     1   0.235     0.8378 0.876 0.004 0.008 0.112 0.000 0.000
#> GSM39841     1   0.409     0.7429 0.776 0.016 0.008 0.048 0.152 0.000
#> GSM39842     1   0.201     0.7899 0.904 0.084 0.008 0.004 0.000 0.000
#> GSM39843     1   0.335     0.7254 0.776 0.008 0.008 0.208 0.000 0.000
#> GSM39844     1   0.201     0.7899 0.904 0.084 0.008 0.004 0.000 0.000
#> GSM39845     3   0.470     0.6415 0.220 0.004 0.680 0.096 0.000 0.000
#> GSM39852     4   0.230     0.7409 0.120 0.000 0.008 0.872 0.000 0.000
#> GSM39853     5   0.551     0.3713 0.004 0.236 0.000 0.180 0.580 0.000
#> GSM39854     2   0.663     0.4433 0.060 0.484 0.000 0.188 0.268 0.000
#> GSM39857     3   0.459     0.6322 0.028 0.024 0.752 0.040 0.000 0.156
#> GSM39860     6   0.026     0.4942 0.000 0.000 0.008 0.000 0.000 0.992
#> GSM39861     3   0.315     0.7147 0.132 0.000 0.824 0.044 0.000 0.000
#> GSM39864     4   0.552     0.5039 0.296 0.008 0.068 0.600 0.000 0.028
#> GSM39868     4   0.254     0.7382 0.068 0.028 0.016 0.888 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) other(p) k
#> MAD:hclust 50               NA 9.79e-01 2
#> MAD:hclust 31               NA 5.33e-01 3
#> MAD:hclust 50         5.87e-04 1.13e-02 4
#> MAD:hclust 37         2.46e-04 1.63e-03 5
#> MAD:hclust 42         4.01e-09 1.78e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:kmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "kmeans"]
# you can also extract it by
# res = res_list["MAD:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'MAD' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.258           0.495       0.704         0.4463 0.627   0.627
#> 3 3 0.714           0.831       0.896         0.4117 0.687   0.517
#> 4 4 0.579           0.522       0.761         0.1393 0.915   0.779
#> 5 5 0.574           0.458       0.708         0.0838 0.849   0.577
#> 6 6 0.638           0.467       0.657         0.0452 0.878   0.565

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.0672     0.6898 0.008 0.992
#> GSM39874     2  0.0672     0.6898 0.008 0.992
#> GSM39875     2  0.0672     0.6898 0.008 0.992
#> GSM39876     2  0.0672     0.6898 0.008 0.992
#> GSM39831     1  0.7219     0.6273 0.800 0.200
#> GSM39819     1  0.6887     0.4862 0.816 0.184
#> GSM39820     1  0.6887     0.4862 0.816 0.184
#> GSM39821     1  0.7376     0.6241 0.792 0.208
#> GSM39822     2  0.5946     0.6270 0.144 0.856
#> GSM39823     1  0.9732     0.2478 0.596 0.404
#> GSM39824     2  0.8327     0.4660 0.264 0.736
#> GSM39825     1  0.7139     0.4773 0.804 0.196
#> GSM39826     1  0.7528     0.6167 0.784 0.216
#> GSM39827     1  0.7528     0.6167 0.784 0.216
#> GSM39846     1  0.9732     0.2478 0.596 0.404
#> GSM39847     1  0.7219     0.6273 0.800 0.200
#> GSM39848     2  0.5842     0.6290 0.140 0.860
#> GSM39849     1  0.9732     0.2478 0.596 0.404
#> GSM39850     1  0.7376     0.6241 0.792 0.208
#> GSM39851     1  0.7376     0.6241 0.792 0.208
#> GSM39855     2  0.8327     0.4660 0.264 0.736
#> GSM39856     1  0.9732     0.2478 0.596 0.404
#> GSM39858     1  0.9491     0.3020 0.632 0.368
#> GSM39859     1  0.9491     0.3020 0.632 0.368
#> GSM39862     1  0.9970     0.2995 0.532 0.468
#> GSM39863     1  0.7219     0.6273 0.800 0.200
#> GSM39865     2  0.0376     0.6877 0.004 0.996
#> GSM39866     1  0.8327     0.6081 0.736 0.264
#> GSM39867     1  0.9323     0.4013 0.652 0.348
#> GSM39869     2  0.6148     0.6193 0.152 0.848
#> GSM39870     1  0.6887     0.4862 0.816 0.184
#> GSM39871     1  0.9580     0.2856 0.620 0.380
#> GSM39872     1  0.9661     0.2679 0.608 0.392
#> GSM39828     1  0.6973     0.6288 0.812 0.188
#> GSM39829     1  0.6048     0.5013 0.852 0.148
#> GSM39830     1  0.0376     0.5593 0.996 0.004
#> GSM39832     1  0.7376     0.6241 0.792 0.208
#> GSM39833     1  0.9358     0.5046 0.648 0.352
#> GSM39834     1  0.6973     0.6288 0.812 0.188
#> GSM39835     1  0.9170     0.4468 0.668 0.332
#> GSM39836     1  0.7376     0.6241 0.792 0.208
#> GSM39837     2  0.9933     0.1524 0.452 0.548
#> GSM39838     2  0.9754     0.2521 0.408 0.592
#> GSM39839     1  0.6887     0.4862 0.816 0.184
#> GSM39840     1  0.7376     0.6241 0.792 0.208
#> GSM39841     1  0.7602     0.6123 0.780 0.220
#> GSM39842     1  0.7376     0.6241 0.792 0.208
#> GSM39843     1  0.6623     0.6264 0.828 0.172
#> GSM39844     1  0.7376     0.6241 0.792 0.208
#> GSM39845     1  0.8763     0.3875 0.704 0.296
#> GSM39852     1  0.7219     0.6273 0.800 0.200
#> GSM39853     2  0.9944     0.1408 0.456 0.544
#> GSM39854     1  0.9993    -0.0116 0.516 0.484
#> GSM39857     1  0.9732     0.2478 0.596 0.404
#> GSM39860     2  0.7299     0.5156 0.204 0.796
#> GSM39861     1  0.8763     0.3875 0.704 0.296
#> GSM39864     1  0.6973     0.6288 0.812 0.188
#> GSM39868     1  0.6973     0.6288 0.812 0.188

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2   0.304      0.777 0.000 0.896 0.104
#> GSM39874     2   0.304      0.777 0.000 0.896 0.104
#> GSM39875     2   0.304      0.777 0.000 0.896 0.104
#> GSM39876     2   0.304      0.777 0.000 0.896 0.104
#> GSM39831     1   0.140      0.908 0.968 0.004 0.028
#> GSM39819     3   0.348      0.887 0.128 0.000 0.872
#> GSM39820     3   0.341      0.889 0.124 0.000 0.876
#> GSM39821     1   0.238      0.911 0.940 0.044 0.016
#> GSM39822     2   0.293      0.792 0.040 0.924 0.036
#> GSM39823     3   0.101      0.926 0.008 0.012 0.980
#> GSM39824     3   0.134      0.905 0.016 0.012 0.972
#> GSM39825     3   0.385      0.890 0.108 0.016 0.876
#> GSM39826     1   0.199      0.901 0.948 0.048 0.004
#> GSM39827     1   0.227      0.912 0.944 0.040 0.016
#> GSM39846     3   0.134      0.930 0.016 0.012 0.972
#> GSM39847     1   0.238      0.911 0.940 0.044 0.016
#> GSM39848     2   0.304      0.793 0.036 0.920 0.044
#> GSM39849     3   0.134      0.930 0.016 0.012 0.972
#> GSM39850     1   0.175      0.903 0.952 0.048 0.000
#> GSM39851     1   0.158      0.910 0.964 0.008 0.028
#> GSM39855     3   0.134      0.905 0.016 0.012 0.972
#> GSM39856     3   0.134      0.930 0.016 0.012 0.972
#> GSM39858     3   0.116      0.934 0.028 0.000 0.972
#> GSM39859     3   0.116      0.934 0.028 0.000 0.972
#> GSM39862     1   0.751      0.533 0.644 0.068 0.288
#> GSM39863     1   0.140      0.908 0.968 0.004 0.028
#> GSM39865     2   0.318      0.792 0.024 0.912 0.064
#> GSM39866     1   0.318      0.885 0.912 0.024 0.064
#> GSM39867     1   0.383      0.855 0.868 0.124 0.008
#> GSM39869     2   0.243      0.791 0.024 0.940 0.036
#> GSM39870     3   0.341      0.889 0.124 0.000 0.876
#> GSM39871     3   0.116      0.934 0.028 0.000 0.972
#> GSM39872     3   0.219      0.917 0.024 0.028 0.948
#> GSM39828     1   0.178      0.914 0.960 0.020 0.020
#> GSM39829     3   0.424      0.827 0.176 0.000 0.824
#> GSM39830     1   0.614      0.244 0.596 0.000 0.404
#> GSM39832     1   0.268      0.902 0.932 0.040 0.028
#> GSM39833     1   0.327      0.886 0.912 0.044 0.044
#> GSM39834     1   0.321      0.904 0.912 0.060 0.028
#> GSM39835     1   0.345      0.868 0.888 0.104 0.008
#> GSM39836     1   0.199      0.901 0.948 0.048 0.004
#> GSM39837     2   0.627      0.278 0.452 0.548 0.000
#> GSM39838     2   0.729      0.347 0.408 0.560 0.032
#> GSM39839     3   0.341      0.890 0.124 0.000 0.876
#> GSM39840     1   0.162      0.911 0.964 0.012 0.024
#> GSM39841     1   0.175      0.910 0.960 0.012 0.028
#> GSM39842     1   0.268      0.902 0.932 0.040 0.028
#> GSM39843     1   0.116      0.908 0.972 0.000 0.028
#> GSM39844     1   0.268      0.902 0.932 0.040 0.028
#> GSM39845     3   0.153      0.932 0.040 0.000 0.960
#> GSM39852     1   0.249      0.902 0.932 0.060 0.008
#> GSM39853     2   0.619      0.302 0.420 0.580 0.000
#> GSM39854     1   0.410      0.836 0.852 0.140 0.008
#> GSM39857     3   0.101      0.926 0.008 0.012 0.980
#> GSM39860     2   0.657      0.472 0.016 0.636 0.348
#> GSM39861     3   0.153      0.932 0.040 0.000 0.960
#> GSM39864     1   0.219      0.906 0.948 0.024 0.028
#> GSM39868     1   0.255      0.910 0.936 0.040 0.024

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0469     0.7246 0.000 0.988 0.012 0.000
#> GSM39874     2  0.0469     0.7246 0.000 0.988 0.012 0.000
#> GSM39875     2  0.0469     0.7246 0.000 0.988 0.012 0.000
#> GSM39876     2  0.0469     0.7246 0.000 0.988 0.012 0.000
#> GSM39831     1  0.4713     0.4257 0.640 0.000 0.000 0.360
#> GSM39819     3  0.4467     0.7724 0.040 0.000 0.788 0.172
#> GSM39820     3  0.4417     0.7750 0.044 0.000 0.796 0.160
#> GSM39821     1  0.0000     0.5951 1.000 0.000 0.000 0.000
#> GSM39822     2  0.4019     0.7101 0.012 0.792 0.000 0.196
#> GSM39823     3  0.2081     0.8180 0.000 0.000 0.916 0.084
#> GSM39824     3  0.3726     0.7266 0.000 0.000 0.788 0.212
#> GSM39825     3  0.4985     0.7271 0.148 0.008 0.780 0.064
#> GSM39826     1  0.0817     0.5876 0.976 0.000 0.000 0.024
#> GSM39827     1  0.3074     0.5499 0.848 0.000 0.000 0.152
#> GSM39846     3  0.0336     0.8415 0.000 0.000 0.992 0.008
#> GSM39847     1  0.0336     0.5956 0.992 0.000 0.000 0.008
#> GSM39848     2  0.6055     0.5694 0.052 0.576 0.000 0.372
#> GSM39849     3  0.2408     0.8254 0.000 0.000 0.896 0.104
#> GSM39850     1  0.0469     0.5924 0.988 0.000 0.000 0.012
#> GSM39851     1  0.3837     0.5343 0.776 0.000 0.000 0.224
#> GSM39855     3  0.3837     0.7150 0.000 0.000 0.776 0.224
#> GSM39856     3  0.0336     0.8415 0.000 0.000 0.992 0.008
#> GSM39858     3  0.0000     0.8424 0.000 0.000 1.000 0.000
#> GSM39859     3  0.0000     0.8424 0.000 0.000 1.000 0.000
#> GSM39862     1  0.6882     0.0250 0.492 0.008 0.080 0.420
#> GSM39863     1  0.4713     0.4257 0.640 0.000 0.000 0.360
#> GSM39865     2  0.4746     0.6789 0.008 0.712 0.004 0.276
#> GSM39866     1  0.4923     0.5037 0.684 0.008 0.004 0.304
#> GSM39867     1  0.5543     0.1066 0.556 0.020 0.000 0.424
#> GSM39869     2  0.4228     0.6997 0.008 0.760 0.000 0.232
#> GSM39870     3  0.4417     0.7750 0.044 0.000 0.796 0.160
#> GSM39871     3  0.0469     0.8417 0.000 0.000 0.988 0.012
#> GSM39872     3  0.5137     0.7054 0.036 0.008 0.740 0.216
#> GSM39828     1  0.1716     0.5825 0.936 0.000 0.000 0.064
#> GSM39829     3  0.4893     0.7509 0.064 0.000 0.768 0.168
#> GSM39830     3  0.7613     0.1826 0.352 0.000 0.440 0.208
#> GSM39832     1  0.5158     0.1635 0.524 0.004 0.000 0.472
#> GSM39833     1  0.3224     0.5294 0.864 0.000 0.016 0.120
#> GSM39834     1  0.4049     0.5100 0.780 0.008 0.000 0.212
#> GSM39835     4  0.5409    -0.3259 0.492 0.012 0.000 0.496
#> GSM39836     1  0.1474     0.5803 0.948 0.000 0.000 0.052
#> GSM39837     2  0.6840     0.1609 0.432 0.468 0.000 0.100
#> GSM39838     1  0.7732    -0.2008 0.444 0.288 0.000 0.268
#> GSM39839     3  0.4467     0.7724 0.040 0.000 0.788 0.172
#> GSM39840     1  0.4356     0.4739 0.708 0.000 0.000 0.292
#> GSM39841     1  0.4746     0.4181 0.632 0.000 0.000 0.368
#> GSM39842     4  0.5158    -0.3906 0.472 0.004 0.000 0.524
#> GSM39843     1  0.3074     0.5654 0.848 0.000 0.000 0.152
#> GSM39844     1  0.5158     0.1635 0.524 0.004 0.000 0.472
#> GSM39845     3  0.0000     0.8424 0.000 0.000 1.000 0.000
#> GSM39852     1  0.2737     0.5510 0.888 0.008 0.000 0.104
#> GSM39853     2  0.7659     0.0964 0.332 0.444 0.000 0.224
#> GSM39854     1  0.5650     0.0817 0.544 0.024 0.000 0.432
#> GSM39857     3  0.2081     0.8180 0.000 0.000 0.916 0.084
#> GSM39860     4  0.8206    -0.4731 0.012 0.364 0.256 0.368
#> GSM39861     3  0.0921     0.8401 0.000 0.000 0.972 0.028
#> GSM39864     1  0.4722     0.5103 0.692 0.008 0.000 0.300
#> GSM39868     1  0.4011     0.5238 0.784 0.008 0.000 0.208

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0162     0.7309 0.000 0.996 0.004 0.000 0.000
#> GSM39874     2  0.0162     0.7309 0.000 0.996 0.004 0.000 0.000
#> GSM39875     2  0.0162     0.7309 0.000 0.996 0.004 0.000 0.000
#> GSM39876     2  0.0162     0.7309 0.000 0.996 0.004 0.000 0.000
#> GSM39831     1  0.0162     0.6064 0.996 0.000 0.000 0.004 0.000
#> GSM39819     3  0.5518     0.6647 0.176 0.000 0.704 0.048 0.072
#> GSM39820     3  0.4761     0.6901 0.160 0.000 0.756 0.028 0.056
#> GSM39821     4  0.3876     0.4745 0.316 0.000 0.000 0.684 0.000
#> GSM39822     2  0.5964     0.1326 0.000 0.536 0.000 0.124 0.340
#> GSM39823     3  0.3170     0.6832 0.000 0.004 0.828 0.008 0.160
#> GSM39824     3  0.4434     0.4409 0.000 0.004 0.640 0.008 0.348
#> GSM39825     3  0.4653     0.6466 0.028 0.000 0.776 0.116 0.080
#> GSM39826     4  0.4183     0.4715 0.324 0.000 0.000 0.668 0.008
#> GSM39827     1  0.4582    -0.1043 0.572 0.000 0.000 0.416 0.012
#> GSM39846     3  0.0798     0.7597 0.000 0.000 0.976 0.008 0.016
#> GSM39847     4  0.4047     0.4681 0.320 0.000 0.000 0.676 0.004
#> GSM39848     5  0.5164     0.4977 0.000 0.232 0.000 0.096 0.672
#> GSM39849     3  0.3758     0.7093 0.004 0.000 0.816 0.052 0.128
#> GSM39850     4  0.4183     0.4715 0.324 0.000 0.000 0.668 0.008
#> GSM39851     1  0.3579     0.3992 0.756 0.000 0.000 0.240 0.004
#> GSM39855     3  0.4530     0.3959 0.000 0.004 0.612 0.008 0.376
#> GSM39856     3  0.0898     0.7589 0.000 0.000 0.972 0.008 0.020
#> GSM39858     3  0.0671     0.7618 0.000 0.000 0.980 0.004 0.016
#> GSM39859     3  0.0404     0.7617 0.000 0.000 0.988 0.000 0.012
#> GSM39862     5  0.4920     0.3704 0.020 0.000 0.020 0.300 0.660
#> GSM39863     1  0.0162     0.6064 0.996 0.000 0.000 0.004 0.000
#> GSM39865     5  0.5546    -0.0431 0.000 0.436 0.000 0.068 0.496
#> GSM39866     1  0.5284     0.3063 0.660 0.000 0.000 0.236 0.104
#> GSM39867     4  0.6841    -0.0685 0.368 0.016 0.000 0.440 0.176
#> GSM39869     2  0.5836    -0.0319 0.000 0.492 0.000 0.096 0.412
#> GSM39870     3  0.4761     0.6901 0.160 0.000 0.756 0.028 0.056
#> GSM39871     3  0.0451     0.7620 0.000 0.000 0.988 0.008 0.004
#> GSM39872     3  0.6195     0.1977 0.000 0.000 0.488 0.144 0.368
#> GSM39828     4  0.5415     0.3243 0.384 0.000 0.000 0.552 0.064
#> GSM39829     3  0.5208     0.6713 0.180 0.000 0.720 0.032 0.068
#> GSM39830     3  0.7380     0.1423 0.396 0.000 0.404 0.124 0.076
#> GSM39832     1  0.4504     0.5252 0.748 0.000 0.000 0.168 0.084
#> GSM39833     4  0.5877     0.4201 0.288 0.000 0.008 0.596 0.108
#> GSM39834     4  0.6458     0.3412 0.240 0.000 0.000 0.500 0.260
#> GSM39835     1  0.6767     0.0980 0.388 0.000 0.000 0.336 0.276
#> GSM39836     4  0.3890     0.4984 0.252 0.000 0.000 0.736 0.012
#> GSM39837     4  0.7684     0.1852 0.164 0.340 0.000 0.412 0.084
#> GSM39838     4  0.6724    -0.0318 0.048 0.092 0.000 0.492 0.368
#> GSM39839     3  0.5518     0.6647 0.176 0.000 0.704 0.048 0.072
#> GSM39840     1  0.2127     0.5634 0.892 0.000 0.000 0.108 0.000
#> GSM39841     1  0.0404     0.6045 0.988 0.000 0.000 0.012 0.000
#> GSM39842     1  0.4867     0.5066 0.716 0.000 0.000 0.180 0.104
#> GSM39843     1  0.3990     0.2967 0.688 0.000 0.000 0.308 0.004
#> GSM39844     1  0.4504     0.5252 0.748 0.000 0.000 0.168 0.084
#> GSM39845     3  0.0992     0.7624 0.000 0.000 0.968 0.008 0.024
#> GSM39852     4  0.5312     0.4651 0.208 0.000 0.000 0.668 0.124
#> GSM39853     4  0.8286     0.0605 0.208 0.296 0.000 0.352 0.144
#> GSM39854     4  0.6871    -0.0490 0.356 0.016 0.000 0.444 0.184
#> GSM39857     3  0.3250     0.6769 0.000 0.004 0.820 0.008 0.168
#> GSM39860     5  0.5553     0.4656 0.000 0.180 0.132 0.012 0.676
#> GSM39861     3  0.0486     0.7619 0.004 0.000 0.988 0.004 0.004
#> GSM39864     1  0.4901     0.3711 0.708 0.000 0.000 0.196 0.096
#> GSM39868     4  0.6507     0.3384 0.268 0.000 0.000 0.488 0.244

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000    1.00000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     1  0.5600    0.45584 0.572 0.000 0.000 0.256 0.008 0.164
#> GSM39819     3  0.5000    0.57962 0.080 0.000 0.628 0.004 0.004 0.284
#> GSM39820     3  0.4626    0.58650 0.076 0.000 0.652 0.000 0.000 0.272
#> GSM39821     4  0.0820    0.67081 0.012 0.000 0.000 0.972 0.000 0.016
#> GSM39822     5  0.5199    0.41128 0.000 0.300 0.000 0.120 0.580 0.000
#> GSM39823     3  0.4040    0.61402 0.020 0.000 0.784 0.000 0.092 0.104
#> GSM39824     3  0.5676    0.41433 0.028 0.000 0.604 0.000 0.228 0.140
#> GSM39825     3  0.5322    0.48871 0.004 0.000 0.696 0.076 0.084 0.140
#> GSM39826     4  0.0725    0.67167 0.012 0.000 0.000 0.976 0.000 0.012
#> GSM39827     4  0.4236    0.43682 0.184 0.000 0.000 0.744 0.016 0.056
#> GSM39846     3  0.1155    0.70221 0.004 0.000 0.956 0.000 0.004 0.036
#> GSM39847     4  0.0508    0.66942 0.004 0.000 0.000 0.984 0.000 0.012
#> GSM39848     5  0.4934    0.46031 0.012 0.084 0.000 0.020 0.712 0.172
#> GSM39849     3  0.4847    0.57552 0.040 0.000 0.708 0.004 0.052 0.196
#> GSM39850     4  0.0725    0.67167 0.012 0.000 0.000 0.976 0.000 0.012
#> GSM39851     4  0.4810    0.26360 0.292 0.000 0.000 0.624 0.000 0.084
#> GSM39855     3  0.6099    0.34891 0.032 0.000 0.540 0.000 0.260 0.168
#> GSM39856     3  0.1155    0.70221 0.004 0.000 0.956 0.000 0.004 0.036
#> GSM39858     3  0.0603    0.71170 0.000 0.000 0.980 0.000 0.004 0.016
#> GSM39859     3  0.0000    0.71080 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM39862     5  0.5800    0.04917 0.012 0.000 0.012 0.100 0.532 0.344
#> GSM39863     1  0.5600    0.45584 0.572 0.000 0.000 0.256 0.008 0.164
#> GSM39865     5  0.3633    0.47718 0.000 0.252 0.000 0.004 0.732 0.012
#> GSM39866     6  0.7049   -0.18362 0.348 0.000 0.004 0.228 0.060 0.360
#> GSM39867     1  0.6666    0.16864 0.464 0.004 0.000 0.220 0.272 0.040
#> GSM39869     5  0.4302    0.46176 0.008 0.260 0.000 0.016 0.700 0.016
#> GSM39870     3  0.4788    0.57435 0.072 0.000 0.636 0.004 0.000 0.288
#> GSM39871     3  0.0603    0.70946 0.004 0.000 0.980 0.000 0.000 0.016
#> GSM39872     6  0.6968    0.00405 0.032 0.000 0.360 0.024 0.188 0.396
#> GSM39828     4  0.4116    0.54860 0.048 0.000 0.000 0.776 0.036 0.140
#> GSM39829     3  0.4950    0.51583 0.080 0.000 0.576 0.000 0.000 0.344
#> GSM39830     3  0.7277    0.15586 0.096 0.000 0.352 0.200 0.004 0.348
#> GSM39832     1  0.1910    0.53356 0.892 0.000 0.000 0.108 0.000 0.000
#> GSM39833     4  0.5315    0.48035 0.036 0.000 0.036 0.712 0.076 0.140
#> GSM39834     6  0.6616    0.43137 0.056 0.000 0.000 0.280 0.188 0.476
#> GSM39835     1  0.6556    0.16525 0.528 0.000 0.000 0.088 0.236 0.148
#> GSM39836     4  0.2056    0.61161 0.012 0.000 0.000 0.904 0.004 0.080
#> GSM39837     4  0.6357   -0.08351 0.016 0.212 0.000 0.488 0.276 0.008
#> GSM39838     5  0.6136    0.26853 0.008 0.032 0.000 0.304 0.536 0.120
#> GSM39839     3  0.5000    0.57962 0.080 0.000 0.628 0.004 0.004 0.284
#> GSM39840     1  0.5381    0.18926 0.476 0.000 0.000 0.424 0.004 0.096
#> GSM39841     1  0.5743    0.43178 0.556 0.000 0.000 0.284 0.016 0.144
#> GSM39842     1  0.2365    0.50058 0.896 0.000 0.000 0.068 0.012 0.024
#> GSM39843     4  0.4936    0.35227 0.244 0.000 0.004 0.656 0.004 0.092
#> GSM39844     1  0.1910    0.53356 0.892 0.000 0.000 0.108 0.000 0.000
#> GSM39845     3  0.1265    0.71035 0.000 0.000 0.948 0.000 0.008 0.044
#> GSM39852     4  0.5202    0.10479 0.008 0.000 0.000 0.628 0.124 0.240
#> GSM39853     5  0.8226    0.11353 0.200 0.196 0.000 0.260 0.308 0.036
#> GSM39854     1  0.6739    0.13465 0.444 0.004 0.000 0.236 0.276 0.040
#> GSM39857     3  0.4218    0.60200 0.020 0.000 0.768 0.000 0.096 0.116
#> GSM39860     5  0.6125    0.33007 0.024 0.076 0.076 0.000 0.624 0.200
#> GSM39861     3  0.1152    0.70901 0.000 0.000 0.952 0.000 0.004 0.044
#> GSM39864     1  0.6934   -0.09359 0.368 0.000 0.000 0.232 0.060 0.340
#> GSM39868     6  0.6610    0.41736 0.052 0.000 0.000 0.304 0.184 0.460

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) other(p) k
#> MAD:kmeans 33         3.91e-03 1.97e-03 2
#> MAD:kmeans 53         5.19e-06 1.28e-05 3
#> MAD:kmeans 42         8.32e-05 1.15e-04 4
#> MAD:kmeans 27         1.37e-06 4.20e-06 5
#> MAD:kmeans 28         3.63e-06 8.04e-06 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:skmeans

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "skmeans"]
# you can also extract it by
# res = res_list["MAD:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'MAD' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.492           0.756       0.886         0.5030 0.501   0.501
#> 3 3 0.886           0.921       0.964         0.3340 0.658   0.416
#> 4 4 0.660           0.708       0.848         0.1207 0.883   0.665
#> 5 5 0.681           0.600       0.770         0.0653 0.940   0.774
#> 6 6 0.666           0.591       0.740         0.0402 0.953   0.784

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.4562      0.825 0.096 0.904
#> GSM39874     2  0.4562      0.825 0.096 0.904
#> GSM39875     2  0.4562      0.825 0.096 0.904
#> GSM39876     2  0.4562      0.825 0.096 0.904
#> GSM39831     1  0.0000      0.860 1.000 0.000
#> GSM39819     1  0.9866      0.352 0.568 0.432
#> GSM39820     1  0.9866      0.352 0.568 0.432
#> GSM39821     1  0.0376      0.859 0.996 0.004
#> GSM39822     2  0.9580      0.462 0.380 0.620
#> GSM39823     2  0.1414      0.857 0.020 0.980
#> GSM39824     2  0.0000      0.853 0.000 1.000
#> GSM39825     2  0.3879      0.831 0.076 0.924
#> GSM39826     1  0.1414      0.853 0.980 0.020
#> GSM39827     1  0.0000      0.860 1.000 0.000
#> GSM39846     2  0.1414      0.857 0.020 0.980
#> GSM39847     1  0.0000      0.860 1.000 0.000
#> GSM39848     2  0.9522      0.478 0.372 0.628
#> GSM39849     2  0.1414      0.857 0.020 0.980
#> GSM39850     1  0.1414      0.853 0.980 0.020
#> GSM39851     1  0.0000      0.860 1.000 0.000
#> GSM39855     2  0.0000      0.853 0.000 1.000
#> GSM39856     2  0.1414      0.857 0.020 0.980
#> GSM39858     2  0.3733      0.834 0.072 0.928
#> GSM39859     2  0.3733      0.834 0.072 0.928
#> GSM39862     2  0.8955      0.527 0.312 0.688
#> GSM39863     1  0.0000      0.860 1.000 0.000
#> GSM39865     2  0.4562      0.825 0.096 0.904
#> GSM39866     1  0.7745      0.666 0.772 0.228
#> GSM39867     1  0.1414      0.853 0.980 0.020
#> GSM39869     2  0.9732      0.409 0.404 0.596
#> GSM39870     1  0.9866      0.352 0.568 0.432
#> GSM39871     2  0.1414      0.857 0.020 0.980
#> GSM39872     2  0.1414      0.857 0.020 0.980
#> GSM39828     1  0.1843      0.850 0.972 0.028
#> GSM39829     1  0.9754      0.401 0.592 0.408
#> GSM39830     1  0.6973      0.731 0.812 0.188
#> GSM39832     1  0.0000      0.860 1.000 0.000
#> GSM39833     2  0.9635      0.445 0.388 0.612
#> GSM39834     1  0.4298      0.835 0.912 0.088
#> GSM39835     1  0.8608      0.527 0.716 0.284
#> GSM39836     1  0.1414      0.853 0.980 0.020
#> GSM39837     1  0.3733      0.822 0.928 0.072
#> GSM39838     1  0.8016      0.609 0.756 0.244
#> GSM39839     1  0.9866      0.352 0.568 0.432
#> GSM39840     1  0.0000      0.860 1.000 0.000
#> GSM39841     1  0.0000      0.860 1.000 0.000
#> GSM39842     1  0.0000      0.860 1.000 0.000
#> GSM39843     1  0.2423      0.844 0.960 0.040
#> GSM39844     1  0.0000      0.860 1.000 0.000
#> GSM39845     2  0.3733      0.834 0.072 0.928
#> GSM39852     1  0.1414      0.853 0.980 0.020
#> GSM39853     1  0.3733      0.822 0.928 0.072
#> GSM39854     1  0.3733      0.822 0.928 0.072
#> GSM39857     2  0.1414      0.857 0.020 0.980
#> GSM39860     2  0.0000      0.853 0.000 1.000
#> GSM39861     2  0.3733      0.834 0.072 0.928
#> GSM39864     1  0.4431      0.811 0.908 0.092
#> GSM39868     1  0.4562      0.807 0.904 0.096

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39874     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39875     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39876     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39831     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39819     3  0.0424      0.975 0.008 0.000 0.992
#> GSM39820     3  0.0424      0.975 0.008 0.000 0.992
#> GSM39821     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39822     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39823     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39824     3  0.0237      0.977 0.000 0.004 0.996
#> GSM39825     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39826     1  0.0237      0.957 0.996 0.004 0.000
#> GSM39827     1  0.0237      0.958 0.996 0.004 0.000
#> GSM39846     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39847     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39848     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39849     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39850     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39851     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39855     3  0.1411      0.948 0.000 0.036 0.964
#> GSM39856     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39858     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39859     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39862     2  0.5803      0.692 0.248 0.736 0.016
#> GSM39863     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39865     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39866     1  0.3752      0.811 0.856 0.000 0.144
#> GSM39867     1  0.6126      0.304 0.600 0.400 0.000
#> GSM39869     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39870     3  0.0424      0.975 0.008 0.000 0.992
#> GSM39871     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39872     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39828     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39829     3  0.1163      0.957 0.028 0.000 0.972
#> GSM39830     3  0.5291      0.639 0.268 0.000 0.732
#> GSM39832     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39833     2  0.1015      0.928 0.012 0.980 0.008
#> GSM39834     1  0.2846      0.899 0.924 0.056 0.020
#> GSM39835     2  0.4504      0.773 0.196 0.804 0.000
#> GSM39836     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39837     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39838     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39839     3  0.0237      0.977 0.004 0.000 0.996
#> GSM39840     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39841     1  0.3752      0.821 0.856 0.144 0.000
#> GSM39842     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39843     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39844     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39845     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39852     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39853     2  0.0000      0.938 0.000 1.000 0.000
#> GSM39854     2  0.5138      0.680 0.252 0.748 0.000
#> GSM39857     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39860     2  0.4399      0.756 0.000 0.812 0.188
#> GSM39861     3  0.0000      0.979 0.000 0.000 1.000
#> GSM39864     1  0.0000      0.960 1.000 0.000 0.000
#> GSM39868     1  0.0424      0.954 0.992 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000     0.9027 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000     0.9027 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000     0.9027 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000     0.9027 0.000 1.000 0.000 0.000
#> GSM39831     1  0.0592     0.7129 0.984 0.000 0.000 0.016
#> GSM39819     3  0.3945     0.7473 0.216 0.000 0.780 0.004
#> GSM39820     3  0.4137     0.7502 0.208 0.000 0.780 0.012
#> GSM39821     4  0.3123     0.8133 0.156 0.000 0.000 0.844
#> GSM39822     2  0.0000     0.9027 0.000 1.000 0.000 0.000
#> GSM39823     3  0.1302     0.8602 0.000 0.000 0.956 0.044
#> GSM39824     3  0.2300     0.8465 0.000 0.028 0.924 0.048
#> GSM39825     3  0.2831     0.8075 0.004 0.000 0.876 0.120
#> GSM39826     4  0.3123     0.8135 0.156 0.000 0.000 0.844
#> GSM39827     1  0.3942     0.5531 0.764 0.000 0.000 0.236
#> GSM39846     3  0.0469     0.8658 0.000 0.000 0.988 0.012
#> GSM39847     4  0.2973     0.8171 0.144 0.000 0.000 0.856
#> GSM39848     2  0.1474     0.8825 0.000 0.948 0.000 0.052
#> GSM39849     3  0.1302     0.8607 0.000 0.000 0.956 0.044
#> GSM39850     4  0.3074     0.8154 0.152 0.000 0.000 0.848
#> GSM39851     1  0.4746     0.2543 0.632 0.000 0.000 0.368
#> GSM39855     3  0.3081     0.8233 0.000 0.064 0.888 0.048
#> GSM39856     3  0.0707     0.8649 0.000 0.000 0.980 0.020
#> GSM39858     3  0.0000     0.8663 0.000 0.000 1.000 0.000
#> GSM39859     3  0.0000     0.8663 0.000 0.000 1.000 0.000
#> GSM39862     4  0.5262     0.5787 0.008 0.128 0.096 0.768
#> GSM39863     1  0.0592     0.7129 0.984 0.000 0.000 0.016
#> GSM39865     2  0.0469     0.8999 0.000 0.988 0.000 0.012
#> GSM39866     1  0.4776     0.5963 0.776 0.000 0.060 0.164
#> GSM39867     1  0.6219     0.4560 0.640 0.264 0.000 0.096
#> GSM39869     2  0.0188     0.9019 0.000 0.996 0.000 0.004
#> GSM39870     3  0.4245     0.7562 0.196 0.000 0.784 0.020
#> GSM39871     3  0.0000     0.8663 0.000 0.000 1.000 0.000
#> GSM39872     3  0.4335     0.6939 0.004 0.004 0.752 0.240
#> GSM39828     4  0.3610     0.7678 0.200 0.000 0.000 0.800
#> GSM39829     3  0.4630     0.6993 0.252 0.000 0.732 0.016
#> GSM39830     3  0.7586     0.0552 0.388 0.000 0.416 0.196
#> GSM39832     1  0.0000     0.7136 1.000 0.000 0.000 0.000
#> GSM39833     2  0.8126     0.3032 0.108 0.528 0.072 0.292
#> GSM39834     4  0.4820     0.5080 0.296 0.000 0.012 0.692
#> GSM39835     1  0.6296     0.2609 0.548 0.388 0.000 0.064
#> GSM39836     4  0.2408     0.8118 0.104 0.000 0.000 0.896
#> GSM39837     2  0.1305     0.8873 0.004 0.960 0.000 0.036
#> GSM39838     2  0.3764     0.7214 0.000 0.784 0.000 0.216
#> GSM39839     3  0.3908     0.7507 0.212 0.000 0.784 0.004
#> GSM39840     1  0.3266     0.6145 0.832 0.000 0.000 0.168
#> GSM39841     1  0.1284     0.7114 0.964 0.012 0.000 0.024
#> GSM39842     1  0.0188     0.7128 0.996 0.000 0.000 0.004
#> GSM39843     1  0.4998    -0.1185 0.512 0.000 0.000 0.488
#> GSM39844     1  0.0000     0.7136 1.000 0.000 0.000 0.000
#> GSM39845     3  0.0000     0.8663 0.000 0.000 1.000 0.000
#> GSM39852     4  0.2011     0.7901 0.080 0.000 0.000 0.920
#> GSM39853     2  0.1820     0.8747 0.036 0.944 0.000 0.020
#> GSM39854     1  0.6503     0.0861 0.480 0.448 0.000 0.072
#> GSM39857     3  0.1389     0.8592 0.000 0.000 0.952 0.048
#> GSM39860     2  0.5783     0.6511 0.000 0.708 0.172 0.120
#> GSM39861     3  0.0188     0.8657 0.000 0.000 0.996 0.004
#> GSM39864     1  0.3172     0.6404 0.840 0.000 0.000 0.160
#> GSM39868     4  0.4431     0.5335 0.304 0.000 0.000 0.696

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000     0.8455 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     0.8455 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     0.8455 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     0.8455 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.2782     0.7205 0.880 0.000 0.000 0.048 0.072
#> GSM39819     3  0.4737     0.6174 0.064 0.000 0.732 0.008 0.196
#> GSM39820     3  0.4404     0.6263 0.040 0.000 0.748 0.008 0.204
#> GSM39821     4  0.1484     0.7851 0.048 0.000 0.000 0.944 0.008
#> GSM39822     2  0.0290     0.8449 0.000 0.992 0.000 0.000 0.008
#> GSM39823     3  0.3661     0.5721 0.000 0.000 0.724 0.000 0.276
#> GSM39824     3  0.4503     0.4906 0.000 0.024 0.664 0.000 0.312
#> GSM39825     3  0.5112     0.4696 0.004 0.000 0.680 0.076 0.240
#> GSM39826     4  0.1710     0.7765 0.040 0.004 0.000 0.940 0.016
#> GSM39827     1  0.4787     0.4389 0.640 0.000 0.000 0.324 0.036
#> GSM39846     3  0.1732     0.7010 0.000 0.000 0.920 0.000 0.080
#> GSM39847     4  0.1408     0.7841 0.044 0.000 0.000 0.948 0.008
#> GSM39848     2  0.3790     0.6138 0.000 0.724 0.000 0.004 0.272
#> GSM39849     3  0.4066     0.5418 0.000 0.000 0.672 0.004 0.324
#> GSM39850     4  0.1124     0.7813 0.036 0.000 0.000 0.960 0.004
#> GSM39851     4  0.5470     0.3496 0.364 0.000 0.000 0.564 0.072
#> GSM39855     3  0.5053     0.4250 0.000 0.052 0.624 0.000 0.324
#> GSM39856     3  0.2230     0.6832 0.000 0.000 0.884 0.000 0.116
#> GSM39858     3  0.0404     0.7103 0.000 0.000 0.988 0.000 0.012
#> GSM39859     3  0.0794     0.7098 0.000 0.000 0.972 0.000 0.028
#> GSM39862     5  0.6220     0.4726 0.004 0.060 0.072 0.224 0.640
#> GSM39863     1  0.2843     0.7208 0.876 0.000 0.000 0.048 0.076
#> GSM39865     2  0.1965     0.8038 0.000 0.904 0.000 0.000 0.096
#> GSM39866     1  0.6698     0.4777 0.588 0.004 0.044 0.132 0.232
#> GSM39867     1  0.4785     0.6077 0.756 0.160 0.000 0.048 0.036
#> GSM39869     2  0.1121     0.8337 0.000 0.956 0.000 0.000 0.044
#> GSM39870     3  0.4774     0.6175 0.044 0.000 0.732 0.020 0.204
#> GSM39871     3  0.1197     0.7074 0.000 0.000 0.952 0.000 0.048
#> GSM39872     5  0.4763     0.2162 0.000 0.000 0.336 0.032 0.632
#> GSM39828     4  0.4069     0.7214 0.088 0.000 0.004 0.800 0.108
#> GSM39829     3  0.5223     0.5757 0.068 0.000 0.680 0.012 0.240
#> GSM39830     3  0.8459     0.0599 0.204 0.000 0.344 0.204 0.248
#> GSM39832     1  0.0324     0.7344 0.992 0.000 0.000 0.004 0.004
#> GSM39833     2  0.8636    -0.1105 0.100 0.336 0.024 0.300 0.240
#> GSM39834     5  0.6351     0.3173 0.156 0.004 0.004 0.288 0.548
#> GSM39835     1  0.6622     0.4284 0.584 0.220 0.000 0.040 0.156
#> GSM39836     4  0.1444     0.7513 0.012 0.000 0.000 0.948 0.040
#> GSM39837     2  0.2032     0.8140 0.004 0.924 0.000 0.052 0.020
#> GSM39838     2  0.4796     0.6452 0.000 0.728 0.000 0.152 0.120
#> GSM39839     3  0.4737     0.6174 0.064 0.000 0.732 0.008 0.196
#> GSM39840     1  0.4428     0.4972 0.700 0.000 0.000 0.268 0.032
#> GSM39841     1  0.3248     0.7166 0.856 0.004 0.000 0.052 0.088
#> GSM39842     1  0.0898     0.7306 0.972 0.000 0.000 0.008 0.020
#> GSM39843     4  0.5351     0.5396 0.280 0.000 0.008 0.644 0.068
#> GSM39844     1  0.0324     0.7344 0.992 0.000 0.000 0.004 0.004
#> GSM39845     3  0.1357     0.7043 0.000 0.000 0.948 0.004 0.048
#> GSM39852     4  0.3728     0.4754 0.008 0.000 0.000 0.748 0.244
#> GSM39853     2  0.3478     0.7485 0.100 0.848 0.000 0.028 0.024
#> GSM39854     1  0.6071     0.3148 0.556 0.352 0.000 0.048 0.044
#> GSM39857     3  0.3816     0.5310 0.000 0.000 0.696 0.000 0.304
#> GSM39860     5  0.6407     0.2938 0.000 0.304 0.176 0.004 0.516
#> GSM39861     3  0.1121     0.7115 0.000 0.000 0.956 0.000 0.044
#> GSM39864     1  0.5278     0.6074 0.696 0.000 0.008 0.116 0.180
#> GSM39868     5  0.6708     0.1579 0.168 0.000 0.012 0.368 0.452

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     5  0.0000     0.7733 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM39874     5  0.0000     0.7733 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM39875     5  0.0000     0.7733 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM39876     5  0.0000     0.7733 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM39831     1  0.3299     0.6824 0.820 0.140 0.000 0.028 0.000 0.012
#> GSM39819     2  0.4371     0.7901 0.036 0.620 0.344 0.000 0.000 0.000
#> GSM39820     2  0.4688     0.7683 0.028 0.572 0.388 0.000 0.000 0.012
#> GSM39821     4  0.0551     0.7521 0.004 0.004 0.000 0.984 0.000 0.008
#> GSM39822     5  0.1461     0.7665 0.000 0.016 0.000 0.000 0.940 0.044
#> GSM39823     3  0.3588     0.6751 0.000 0.060 0.788 0.000 0.000 0.152
#> GSM39824     3  0.3300     0.6666 0.000 0.016 0.812 0.000 0.016 0.156
#> GSM39825     3  0.6147     0.3807 0.008 0.160 0.584 0.040 0.000 0.208
#> GSM39826     4  0.1059     0.7463 0.016 0.004 0.000 0.964 0.000 0.016
#> GSM39827     1  0.5778     0.3546 0.544 0.060 0.000 0.336 0.000 0.060
#> GSM39846     3  0.1700     0.6915 0.000 0.080 0.916 0.000 0.000 0.004
#> GSM39847     4  0.1434     0.7509 0.008 0.024 0.000 0.948 0.000 0.020
#> GSM39848     5  0.5090     0.3047 0.000 0.040 0.008 0.008 0.508 0.436
#> GSM39849     3  0.4943     0.5278 0.004 0.148 0.680 0.004 0.000 0.164
#> GSM39850     4  0.0767     0.7516 0.012 0.004 0.000 0.976 0.000 0.008
#> GSM39851     4  0.5648     0.3524 0.312 0.120 0.000 0.552 0.000 0.016
#> GSM39855     3  0.3721     0.6421 0.000 0.016 0.784 0.000 0.032 0.168
#> GSM39856     3  0.1411     0.7058 0.000 0.060 0.936 0.000 0.000 0.004
#> GSM39858     3  0.2558     0.6137 0.000 0.156 0.840 0.000 0.000 0.004
#> GSM39859     3  0.2070     0.6866 0.000 0.092 0.896 0.000 0.000 0.012
#> GSM39862     6  0.4794     0.5474 0.000 0.016 0.112 0.076 0.044 0.752
#> GSM39863     1  0.3339     0.6804 0.816 0.144 0.000 0.028 0.000 0.012
#> GSM39865     5  0.3712     0.6687 0.000 0.032 0.004 0.000 0.760 0.204
#> GSM39866     1  0.7286     0.3256 0.420 0.288 0.008 0.104 0.000 0.180
#> GSM39867     1  0.5027     0.5961 0.744 0.060 0.000 0.032 0.056 0.108
#> GSM39869     5  0.3695     0.6923 0.004 0.044 0.000 0.000 0.776 0.176
#> GSM39870     2  0.4886     0.7488 0.024 0.576 0.376 0.004 0.000 0.020
#> GSM39871     3  0.1918     0.6968 0.000 0.088 0.904 0.000 0.000 0.008
#> GSM39872     6  0.5368     0.1718 0.004 0.084 0.396 0.004 0.000 0.512
#> GSM39828     4  0.5529     0.6224 0.084 0.100 0.000 0.668 0.000 0.148
#> GSM39829     2  0.5104     0.7541 0.032 0.628 0.288 0.000 0.000 0.052
#> GSM39830     2  0.6283     0.5338 0.112 0.616 0.144 0.116 0.000 0.012
#> GSM39832     1  0.0665     0.7027 0.980 0.008 0.000 0.008 0.000 0.004
#> GSM39833     5  0.8900     0.0063 0.076 0.108 0.056 0.260 0.356 0.144
#> GSM39834     6  0.5706     0.4738 0.052 0.172 0.004 0.112 0.004 0.656
#> GSM39835     1  0.6630     0.4362 0.576 0.084 0.000 0.028 0.104 0.208
#> GSM39836     4  0.1625     0.7243 0.000 0.012 0.000 0.928 0.000 0.060
#> GSM39837     5  0.2158     0.7422 0.012 0.016 0.000 0.056 0.912 0.004
#> GSM39838     5  0.6436     0.3727 0.000 0.060 0.000 0.148 0.508 0.284
#> GSM39839     2  0.4344     0.7864 0.032 0.612 0.356 0.000 0.000 0.000
#> GSM39840     1  0.4251     0.4888 0.700 0.032 0.000 0.256 0.000 0.012
#> GSM39841     1  0.4274     0.6636 0.768 0.156 0.000 0.040 0.020 0.016
#> GSM39842     1  0.0632     0.6989 0.976 0.000 0.000 0.000 0.000 0.024
#> GSM39843     4  0.6224     0.4878 0.216 0.156 0.020 0.580 0.000 0.028
#> GSM39844     1  0.0551     0.7025 0.984 0.008 0.000 0.004 0.000 0.004
#> GSM39845     3  0.3694     0.4318 0.000 0.232 0.740 0.000 0.000 0.028
#> GSM39852     4  0.5262     0.2560 0.008 0.076 0.004 0.572 0.000 0.340
#> GSM39853     5  0.3467     0.7100 0.064 0.036 0.000 0.016 0.848 0.036
#> GSM39854     1  0.7043     0.4097 0.552 0.072 0.000 0.060 0.192 0.124
#> GSM39857     3  0.3456     0.6535 0.000 0.040 0.788 0.000 0.000 0.172
#> GSM39860     6  0.6366     0.3538 0.000 0.040 0.240 0.000 0.208 0.512
#> GSM39861     3  0.3370     0.6476 0.000 0.148 0.804 0.000 0.000 0.048
#> GSM39864     1  0.6514     0.4235 0.504 0.228 0.000 0.052 0.000 0.216
#> GSM39868     6  0.6676     0.3877 0.052 0.204 0.020 0.180 0.000 0.544

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) other(p) k
#> MAD:skmeans 49          0.05974  0.00302 2
#> MAD:skmeans 57          0.00404  0.00890 3
#> MAD:skmeans 51          0.00276  0.00636 4
#> MAD:skmeans 41          0.00709  0.02466 5
#> MAD:skmeans 40          0.00912  0.04584 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:pam*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "pam"]
# you can also extract it by
# res = res_list["MAD:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'MAD' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.928           0.931       0.973         0.2721 0.733   0.733
#> 3 3 0.565           0.756       0.886         1.2117 0.570   0.451
#> 4 4 0.533           0.673       0.819         0.1805 0.894   0.736
#> 5 5 0.671           0.664       0.821         0.0971 0.881   0.620
#> 6 6 0.731           0.757       0.848         0.0481 0.910   0.628

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.0000   0.914700 0.000 1.000
#> GSM39874     2  0.0000   0.914700 0.000 1.000
#> GSM39875     2  0.0000   0.914700 0.000 1.000
#> GSM39876     2  0.0000   0.914700 0.000 1.000
#> GSM39831     1  0.0000   0.978825 1.000 0.000
#> GSM39819     1  0.0376   0.978884 0.996 0.004
#> GSM39820     1  0.0376   0.978884 0.996 0.004
#> GSM39821     1  0.0000   0.978825 1.000 0.000
#> GSM39822     2  0.0376   0.913994 0.004 0.996
#> GSM39823     1  0.0376   0.978884 0.996 0.004
#> GSM39824     1  0.0376   0.978884 0.996 0.004
#> GSM39825     1  0.0376   0.978884 0.996 0.004
#> GSM39826     1  0.0672   0.974257 0.992 0.008
#> GSM39827     1  0.0000   0.978825 1.000 0.000
#> GSM39846     1  0.0376   0.978884 0.996 0.004
#> GSM39847     1  0.0000   0.978825 1.000 0.000
#> GSM39848     1  0.8207   0.627013 0.744 0.256
#> GSM39849     1  0.0376   0.978884 0.996 0.004
#> GSM39850     1  0.0672   0.974257 0.992 0.008
#> GSM39851     1  0.0000   0.978825 1.000 0.000
#> GSM39855     1  0.0376   0.978884 0.996 0.004
#> GSM39856     1  0.0376   0.978884 0.996 0.004
#> GSM39858     1  0.0376   0.978884 0.996 0.004
#> GSM39859     1  0.0376   0.978884 0.996 0.004
#> GSM39862     1  0.0000   0.978825 1.000 0.000
#> GSM39863     1  0.0000   0.978825 1.000 0.000
#> GSM39865     1  0.6973   0.754801 0.812 0.188
#> GSM39866     1  0.0000   0.978825 1.000 0.000
#> GSM39867     1  0.1414   0.963893 0.980 0.020
#> GSM39869     2  0.0376   0.913994 0.004 0.996
#> GSM39870     1  0.0376   0.978884 0.996 0.004
#> GSM39871     1  0.0376   0.978884 0.996 0.004
#> GSM39872     1  0.0376   0.978884 0.996 0.004
#> GSM39828     1  0.0000   0.978825 1.000 0.000
#> GSM39829     1  0.0376   0.978884 0.996 0.004
#> GSM39830     1  0.0376   0.978884 0.996 0.004
#> GSM39832     1  0.0000   0.978825 1.000 0.000
#> GSM39833     1  0.0000   0.978825 1.000 0.000
#> GSM39834     1  0.0000   0.978825 1.000 0.000
#> GSM39835     1  0.0672   0.974257 0.992 0.008
#> GSM39836     1  0.0672   0.974257 0.992 0.008
#> GSM39837     2  0.6048   0.789713 0.148 0.852
#> GSM39838     1  0.0672   0.974257 0.992 0.008
#> GSM39839     1  0.0376   0.978884 0.996 0.004
#> GSM39840     1  0.0000   0.978825 1.000 0.000
#> GSM39841     1  0.0672   0.974257 0.992 0.008
#> GSM39842     1  0.0000   0.978825 1.000 0.000
#> GSM39843     1  0.0000   0.978825 1.000 0.000
#> GSM39844     1  0.0000   0.978825 1.000 0.000
#> GSM39845     1  0.0376   0.978884 0.996 0.004
#> GSM39852     1  0.0000   0.978825 1.000 0.000
#> GSM39853     2  0.0672   0.912967 0.008 0.992
#> GSM39854     1  0.9209   0.451012 0.664 0.336
#> GSM39857     1  0.0376   0.978884 0.996 0.004
#> GSM39860     2  1.0000   0.000893 0.496 0.504
#> GSM39861     1  0.0376   0.978884 0.996 0.004
#> GSM39864     1  0.0000   0.978825 1.000 0.000
#> GSM39868     1  0.0376   0.978884 0.996 0.004

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000      0.906 0.000 1.000 0.000
#> GSM39874     2  0.0000      0.906 0.000 1.000 0.000
#> GSM39875     2  0.0000      0.906 0.000 1.000 0.000
#> GSM39876     2  0.0000      0.906 0.000 1.000 0.000
#> GSM39831     1  0.5948      0.593 0.640 0.000 0.360
#> GSM39819     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39820     3  0.3192      0.812 0.112 0.000 0.888
#> GSM39821     1  0.0237      0.797 0.996 0.000 0.004
#> GSM39822     2  0.2356      0.844 0.072 0.928 0.000
#> GSM39823     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39824     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39825     3  0.4062      0.730 0.164 0.000 0.836
#> GSM39826     1  0.0237      0.797 0.996 0.000 0.004
#> GSM39827     1  0.0000      0.795 1.000 0.000 0.000
#> GSM39846     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39847     1  0.0237      0.797 0.996 0.000 0.004
#> GSM39848     1  0.9364      0.342 0.484 0.332 0.184
#> GSM39849     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39850     1  0.0237      0.797 0.996 0.000 0.004
#> GSM39851     1  0.0237      0.796 0.996 0.000 0.004
#> GSM39855     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39856     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39858     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39859     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39862     1  0.6235      0.458 0.564 0.000 0.436
#> GSM39863     1  0.4291      0.746 0.820 0.000 0.180
#> GSM39865     2  0.8109      0.261 0.080 0.568 0.352
#> GSM39866     1  0.0892      0.790 0.980 0.000 0.020
#> GSM39867     1  0.0000      0.795 1.000 0.000 0.000
#> GSM39869     2  0.0000      0.906 0.000 1.000 0.000
#> GSM39870     3  0.5760      0.490 0.328 0.000 0.672
#> GSM39871     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39872     3  0.0592      0.907 0.012 0.000 0.988
#> GSM39828     1  0.5926      0.600 0.644 0.000 0.356
#> GSM39829     3  0.2796      0.838 0.092 0.000 0.908
#> GSM39830     3  0.4399      0.684 0.188 0.000 0.812
#> GSM39832     1  0.0000      0.795 1.000 0.000 0.000
#> GSM39833     1  0.5650      0.647 0.688 0.000 0.312
#> GSM39834     1  0.6291      0.381 0.532 0.000 0.468
#> GSM39835     1  0.5926      0.600 0.644 0.000 0.356
#> GSM39836     1  0.0237      0.797 0.996 0.000 0.004
#> GSM39837     1  0.1163      0.783 0.972 0.028 0.000
#> GSM39838     1  0.0237      0.797 0.996 0.000 0.004
#> GSM39839     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39840     1  0.1031      0.794 0.976 0.000 0.024
#> GSM39841     1  0.4654      0.731 0.792 0.000 0.208
#> GSM39842     1  0.5926      0.599 0.644 0.000 0.356
#> GSM39843     1  0.0424      0.797 0.992 0.000 0.008
#> GSM39844     1  0.0237      0.794 0.996 0.000 0.004
#> GSM39845     3  0.0000      0.915 0.000 0.000 1.000
#> GSM39852     1  0.4235      0.750 0.824 0.000 0.176
#> GSM39853     1  0.5497      0.500 0.708 0.292 0.000
#> GSM39854     1  0.0000      0.795 1.000 0.000 0.000
#> GSM39857     3  0.0237      0.912 0.004 0.000 0.996
#> GSM39860     3  0.6247      0.319 0.004 0.376 0.620
#> GSM39861     3  0.0424      0.910 0.008 0.000 0.992
#> GSM39864     1  0.5926      0.600 0.644 0.000 0.356
#> GSM39868     1  0.5882      0.394 0.652 0.000 0.348

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000     0.8676 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000     0.8676 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000     0.8676 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000     0.8676 0.000 1.000 0.000 0.000
#> GSM39831     1  0.4225     0.7114 0.792 0.000 0.184 0.024
#> GSM39819     3  0.3942     0.7862 0.236 0.000 0.764 0.000
#> GSM39820     3  0.5312     0.7571 0.236 0.000 0.712 0.052
#> GSM39821     4  0.0188     0.7254 0.004 0.000 0.000 0.996
#> GSM39822     2  0.2197     0.8031 0.004 0.916 0.000 0.080
#> GSM39823     3  0.3873     0.7891 0.228 0.000 0.772 0.000
#> GSM39824     3  0.0000     0.8038 0.000 0.000 1.000 0.000
#> GSM39825     3  0.5690     0.4242 0.060 0.000 0.672 0.268
#> GSM39826     4  0.0817     0.7223 0.024 0.000 0.000 0.976
#> GSM39827     4  0.0921     0.7183 0.028 0.000 0.000 0.972
#> GSM39846     3  0.3219     0.7937 0.164 0.000 0.836 0.000
#> GSM39847     4  0.0000     0.7256 0.000 0.000 0.000 1.000
#> GSM39848     4  0.7864     0.2642 0.008 0.332 0.208 0.452
#> GSM39849     3  0.0336     0.8048 0.008 0.000 0.992 0.000
#> GSM39850     4  0.0817     0.7223 0.024 0.000 0.000 0.976
#> GSM39851     4  0.0817     0.7223 0.024 0.000 0.000 0.976
#> GSM39855     3  0.0000     0.8038 0.000 0.000 1.000 0.000
#> GSM39856     3  0.0188     0.8045 0.004 0.000 0.996 0.000
#> GSM39858     3  0.3172     0.7949 0.160 0.000 0.840 0.000
#> GSM39859     3  0.0000     0.8038 0.000 0.000 1.000 0.000
#> GSM39862     4  0.4769     0.6001 0.008 0.000 0.308 0.684
#> GSM39863     1  0.4856     0.7965 0.780 0.000 0.084 0.136
#> GSM39865     2  0.7793     0.1797 0.008 0.488 0.280 0.224
#> GSM39866     4  0.4706     0.5690 0.248 0.000 0.020 0.732
#> GSM39867     1  0.4008     0.7720 0.756 0.000 0.000 0.244
#> GSM39869     2  0.1452     0.8471 0.036 0.956 0.000 0.008
#> GSM39870     3  0.6187     0.7042 0.236 0.000 0.656 0.108
#> GSM39871     3  0.0000     0.8038 0.000 0.000 1.000 0.000
#> GSM39872     3  0.0817     0.7914 0.000 0.000 0.976 0.024
#> GSM39828     4  0.4831     0.6184 0.016 0.000 0.280 0.704
#> GSM39829     3  0.6245     0.7251 0.244 0.000 0.648 0.108
#> GSM39830     3  0.7782     0.3004 0.264 0.000 0.424 0.312
#> GSM39832     1  0.3942     0.7720 0.764 0.000 0.000 0.236
#> GSM39833     4  0.4955     0.6278 0.024 0.000 0.268 0.708
#> GSM39834     4  0.5024     0.5463 0.008 0.000 0.360 0.632
#> GSM39835     1  0.6685     0.6319 0.600 0.000 0.268 0.132
#> GSM39836     4  0.0000     0.7256 0.000 0.000 0.000 1.000
#> GSM39837     4  0.1211     0.7155 0.000 0.040 0.000 0.960
#> GSM39838     4  0.0336     0.7245 0.008 0.000 0.000 0.992
#> GSM39839     3  0.3942     0.7862 0.236 0.000 0.764 0.000
#> GSM39840     4  0.4941    -0.1192 0.436 0.000 0.000 0.564
#> GSM39841     4  0.5091     0.6616 0.068 0.000 0.180 0.752
#> GSM39842     1  0.5159     0.7758 0.756 0.000 0.156 0.088
#> GSM39843     4  0.0817     0.7223 0.024 0.000 0.000 0.976
#> GSM39844     1  0.2216     0.7446 0.908 0.000 0.000 0.092
#> GSM39845     3  0.3873     0.7891 0.228 0.000 0.772 0.000
#> GSM39852     4  0.3933     0.6704 0.008 0.000 0.200 0.792
#> GSM39853     4  0.6939    -0.0532 0.332 0.128 0.000 0.540
#> GSM39854     1  0.4406     0.7328 0.700 0.000 0.000 0.300
#> GSM39857     3  0.0188     0.8018 0.000 0.000 0.996 0.004
#> GSM39860     3  0.4817     0.3290 0.000 0.388 0.612 0.000
#> GSM39861     3  0.2198     0.7943 0.072 0.000 0.920 0.008
#> GSM39864     4  0.5901     0.5867 0.068 0.000 0.280 0.652
#> GSM39868     4  0.5272     0.4384 0.032 0.000 0.288 0.680

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000      0.841 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000      0.841 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000      0.841 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000      0.841 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.3053      0.766 0.828 0.000 0.000 0.008 0.164
#> GSM39819     3  0.0000      0.834 0.000 0.000 1.000 0.000 0.000
#> GSM39820     3  0.0000      0.834 0.000 0.000 1.000 0.000 0.000
#> GSM39821     4  0.0000      0.793 0.000 0.000 0.000 1.000 0.000
#> GSM39822     2  0.2864      0.778 0.000 0.852 0.000 0.012 0.136
#> GSM39823     3  0.0162      0.833 0.000 0.000 0.996 0.000 0.004
#> GSM39824     5  0.3305      0.747 0.000 0.000 0.224 0.000 0.776
#> GSM39825     5  0.6453     -0.364 0.000 0.000 0.180 0.388 0.432
#> GSM39826     4  0.0000      0.793 0.000 0.000 0.000 1.000 0.000
#> GSM39827     4  0.1943      0.781 0.056 0.000 0.000 0.924 0.020
#> GSM39846     5  0.4219      0.490 0.000 0.000 0.416 0.000 0.584
#> GSM39847     4  0.0290      0.794 0.000 0.000 0.000 0.992 0.008
#> GSM39848     5  0.6818     -0.348 0.000 0.336 0.000 0.312 0.352
#> GSM39849     5  0.3336      0.748 0.000 0.000 0.228 0.000 0.772
#> GSM39850     4  0.0000      0.793 0.000 0.000 0.000 1.000 0.000
#> GSM39851     4  0.0000      0.793 0.000 0.000 0.000 1.000 0.000
#> GSM39855     5  0.3336      0.748 0.000 0.000 0.228 0.000 0.772
#> GSM39856     5  0.3336      0.748 0.000 0.000 0.228 0.000 0.772
#> GSM39858     5  0.4030      0.600 0.000 0.000 0.352 0.000 0.648
#> GSM39859     5  0.3534      0.731 0.000 0.000 0.256 0.000 0.744
#> GSM39862     4  0.4262      0.590 0.000 0.000 0.000 0.560 0.440
#> GSM39863     1  0.2909      0.775 0.848 0.000 0.000 0.012 0.140
#> GSM39865     2  0.6625      0.118 0.000 0.456 0.000 0.268 0.276
#> GSM39866     3  0.3995      0.655 0.000 0.000 0.788 0.060 0.152
#> GSM39867     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000
#> GSM39869     2  0.3975      0.729 0.144 0.792 0.000 0.000 0.064
#> GSM39870     3  0.0000      0.834 0.000 0.000 1.000 0.000 0.000
#> GSM39871     5  0.3336      0.748 0.000 0.000 0.228 0.000 0.772
#> GSM39872     5  0.3013      0.700 0.000 0.000 0.160 0.008 0.832
#> GSM39828     4  0.4074      0.660 0.000 0.000 0.000 0.636 0.364
#> GSM39829     3  0.1478      0.797 0.000 0.000 0.936 0.000 0.064
#> GSM39830     3  0.3593      0.725 0.000 0.000 0.828 0.088 0.084
#> GSM39832     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000
#> GSM39833     4  0.2966      0.738 0.000 0.000 0.000 0.816 0.184
#> GSM39834     4  0.4138      0.642 0.000 0.000 0.000 0.616 0.384
#> GSM39835     1  0.4168      0.647 0.764 0.000 0.000 0.052 0.184
#> GSM39836     4  0.0290      0.794 0.000 0.000 0.000 0.992 0.008
#> GSM39837     4  0.1701      0.767 0.000 0.016 0.000 0.936 0.048
#> GSM39838     4  0.3210      0.740 0.000 0.000 0.000 0.788 0.212
#> GSM39839     3  0.0000      0.834 0.000 0.000 1.000 0.000 0.000
#> GSM39840     1  0.4283      0.272 0.544 0.000 0.000 0.456 0.000
#> GSM39841     4  0.3304      0.760 0.028 0.000 0.004 0.840 0.128
#> GSM39842     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000
#> GSM39843     4  0.0000      0.793 0.000 0.000 0.000 1.000 0.000
#> GSM39844     1  0.0000      0.835 1.000 0.000 0.000 0.000 0.000
#> GSM39845     3  0.0000      0.834 0.000 0.000 1.000 0.000 0.000
#> GSM39852     4  0.3816      0.710 0.000 0.000 0.000 0.696 0.304
#> GSM39853     4  0.7277     -0.246 0.372 0.160 0.000 0.420 0.048
#> GSM39854     1  0.1205      0.823 0.956 0.000 0.000 0.040 0.004
#> GSM39857     5  0.3305      0.744 0.000 0.000 0.224 0.000 0.776
#> GSM39860     5  0.5642      0.572 0.000 0.180 0.184 0.000 0.636
#> GSM39861     3  0.6748     -0.130 0.000 0.000 0.404 0.320 0.276
#> GSM39864     4  0.5760      0.564 0.000 0.000 0.096 0.536 0.368
#> GSM39868     4  0.3999      0.729 0.000 0.000 0.020 0.740 0.240

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     1  0.3041     0.7836 0.856 0.000 0.020 0.000 0.088 0.036
#> GSM39819     6  0.1663     0.9245 0.000 0.000 0.088 0.000 0.000 0.912
#> GSM39820     6  0.1663     0.9245 0.000 0.000 0.088 0.000 0.000 0.912
#> GSM39821     4  0.0000     0.7664 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39822     5  0.2482     0.7140 0.000 0.148 0.000 0.004 0.848 0.000
#> GSM39823     6  0.2416     0.9082 0.000 0.000 0.156 0.000 0.000 0.844
#> GSM39824     3  0.0000     0.8621 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM39825     4  0.7549     0.2806 0.000 0.000 0.288 0.336 0.176 0.200
#> GSM39826     4  0.0000     0.7664 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39827     4  0.1963     0.7559 0.044 0.000 0.004 0.924 0.016 0.012
#> GSM39846     3  0.2416     0.7054 0.000 0.000 0.844 0.000 0.000 0.156
#> GSM39847     4  0.0260     0.7685 0.000 0.000 0.008 0.992 0.000 0.000
#> GSM39848     5  0.0000     0.7354 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM39849     3  0.1444     0.8309 0.000 0.000 0.928 0.000 0.000 0.072
#> GSM39850     4  0.0000     0.7664 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39851     4  0.0000     0.7664 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39855     3  0.0146     0.8611 0.000 0.000 0.996 0.000 0.004 0.000
#> GSM39856     3  0.0000     0.8621 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM39858     3  0.1863     0.7779 0.000 0.000 0.896 0.000 0.000 0.104
#> GSM39859     3  0.1480     0.8446 0.000 0.000 0.940 0.000 0.020 0.040
#> GSM39862     4  0.6228     0.5804 0.000 0.000 0.204 0.512 0.256 0.028
#> GSM39863     1  0.2600     0.7927 0.876 0.000 0.000 0.004 0.084 0.036
#> GSM39865     5  0.2445     0.7290 0.000 0.108 0.020 0.000 0.872 0.000
#> GSM39866     6  0.2618     0.8199 0.000 0.000 0.000 0.052 0.076 0.872
#> GSM39867     1  0.1074     0.8255 0.960 0.000 0.000 0.000 0.012 0.028
#> GSM39869     5  0.3787     0.6988 0.100 0.064 0.000 0.000 0.808 0.028
#> GSM39870     6  0.2219     0.9189 0.000 0.000 0.136 0.000 0.000 0.864
#> GSM39871     3  0.0000     0.8621 0.000 0.000 1.000 0.000 0.000 0.000
#> GSM39872     3  0.2666     0.7747 0.000 0.000 0.872 0.008 0.092 0.028
#> GSM39828     4  0.5412     0.6970 0.000 0.000 0.148 0.648 0.176 0.028
#> GSM39829     6  0.2404     0.9158 0.000 0.000 0.112 0.000 0.016 0.872
#> GSM39830     6  0.1787     0.8525 0.000 0.000 0.068 0.008 0.004 0.920
#> GSM39832     1  0.0000     0.8329 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39833     4  0.3633     0.7428 0.000 0.000 0.140 0.804 0.028 0.028
#> GSM39834     4  0.5681     0.6775 0.000 0.000 0.184 0.612 0.176 0.028
#> GSM39835     1  0.5780     0.5959 0.676 0.000 0.144 0.076 0.076 0.028
#> GSM39836     4  0.0363     0.7669 0.000 0.000 0.000 0.988 0.012 0.000
#> GSM39837     5  0.4051     0.3768 0.000 0.008 0.000 0.432 0.560 0.000
#> GSM39838     5  0.1765     0.7273 0.000 0.000 0.000 0.096 0.904 0.000
#> GSM39839     6  0.1663     0.9245 0.000 0.000 0.088 0.000 0.000 0.912
#> GSM39840     1  0.3843     0.2952 0.548 0.000 0.000 0.452 0.000 0.000
#> GSM39841     4  0.4971     0.7185 0.028 0.000 0.100 0.736 0.024 0.112
#> GSM39842     1  0.0000     0.8329 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39843     4  0.0260     0.7685 0.000 0.000 0.008 0.992 0.000 0.000
#> GSM39844     1  0.0146     0.8326 0.996 0.000 0.000 0.000 0.000 0.004
#> GSM39845     6  0.2454     0.9068 0.000 0.000 0.160 0.000 0.000 0.840
#> GSM39852     4  0.4958     0.7191 0.000 0.000 0.100 0.696 0.176 0.028
#> GSM39853     5  0.4340     0.6745 0.104 0.000 0.000 0.176 0.720 0.000
#> GSM39854     1  0.2183     0.8156 0.912 0.000 0.000 0.040 0.020 0.028
#> GSM39857     3  0.1092     0.8533 0.000 0.000 0.960 0.000 0.020 0.020
#> GSM39860     5  0.3428     0.5261 0.000 0.000 0.304 0.000 0.696 0.000
#> GSM39861     3  0.6615    -0.0101 0.000 0.000 0.384 0.268 0.028 0.320
#> GSM39864     4  0.6800     0.6069 0.000 0.000 0.148 0.520 0.176 0.156
#> GSM39868     4  0.5211     0.6760 0.000 0.000 0.124 0.684 0.152 0.040

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) other(p) k
#> MAD:pam 56         1.41e-05 9.91e-06 2
#> MAD:pam 51         8.53e-08 6.79e-07 3
#> MAD:pam 50         5.54e-07 2.17e-06 4
#> MAD:pam 51         1.47e-06 1.02e-05 5
#> MAD:pam 54         2.10e-10 9.86e-09 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:mclust*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "mclust"]
# you can also extract it by
# res = res_list["MAD:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'MAD' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.403           0.859       0.889         0.3676 0.610   0.610
#> 3 3 0.939           0.931       0.964         0.4795 0.542   0.400
#> 4 4 0.673           0.710       0.846         0.2411 0.815   0.604
#> 5 5 0.688           0.718       0.835         0.1148 0.839   0.541
#> 6 6 0.761           0.731       0.797         0.0558 0.941   0.774

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.3879      0.820 0.076 0.924
#> GSM39874     2  0.3879      0.820 0.076 0.924
#> GSM39875     2  0.3879      0.820 0.076 0.924
#> GSM39876     2  0.3879      0.820 0.076 0.924
#> GSM39831     1  0.5178      0.869 0.884 0.116
#> GSM39819     1  0.0000      0.901 1.000 0.000
#> GSM39820     1  0.0000      0.901 1.000 0.000
#> GSM39821     1  0.7528      0.786 0.784 0.216
#> GSM39822     2  0.7745      0.895 0.228 0.772
#> GSM39823     1  0.0000      0.901 1.000 0.000
#> GSM39824     1  0.0000      0.901 1.000 0.000
#> GSM39825     1  0.0376      0.901 0.996 0.004
#> GSM39826     2  0.8443      0.807 0.272 0.728
#> GSM39827     1  0.8267      0.717 0.740 0.260
#> GSM39846     1  0.0000      0.901 1.000 0.000
#> GSM39847     1  0.5519      0.857 0.872 0.128
#> GSM39848     2  0.7219      0.887 0.200 0.800
#> GSM39849     1  0.0000      0.901 1.000 0.000
#> GSM39850     1  0.8267      0.726 0.740 0.260
#> GSM39851     1  0.7745      0.787 0.772 0.228
#> GSM39855     1  0.0000      0.901 1.000 0.000
#> GSM39856     1  0.0000      0.901 1.000 0.000
#> GSM39858     1  0.0000      0.901 1.000 0.000
#> GSM39859     1  0.0000      0.901 1.000 0.000
#> GSM39862     1  0.2236      0.896 0.964 0.036
#> GSM39863     1  0.6148      0.853 0.848 0.152
#> GSM39865     2  0.7745      0.895 0.228 0.772
#> GSM39866     1  0.3274      0.893 0.940 0.060
#> GSM39867     2  0.7815      0.882 0.232 0.768
#> GSM39869     2  0.7528      0.895 0.216 0.784
#> GSM39870     1  0.0000      0.901 1.000 0.000
#> GSM39871     1  0.0000      0.901 1.000 0.000
#> GSM39872     1  0.0376      0.901 0.996 0.004
#> GSM39828     1  0.4022      0.887 0.920 0.080
#> GSM39829     1  0.0000      0.901 1.000 0.000
#> GSM39830     1  0.0376      0.901 0.996 0.004
#> GSM39832     1  0.8386      0.736 0.732 0.268
#> GSM39833     1  0.6973      0.780 0.812 0.188
#> GSM39834     1  0.3114      0.894 0.944 0.056
#> GSM39835     2  0.7528      0.876 0.216 0.784
#> GSM39836     1  0.5408      0.861 0.876 0.124
#> GSM39837     2  0.8144      0.886 0.252 0.748
#> GSM39838     2  0.8144      0.886 0.252 0.748
#> GSM39839     1  0.0000      0.901 1.000 0.000
#> GSM39840     1  0.8016      0.769 0.756 0.244
#> GSM39841     1  0.8016      0.724 0.756 0.244
#> GSM39842     1  0.8016      0.769 0.756 0.244
#> GSM39843     1  0.4690      0.878 0.900 0.100
#> GSM39844     1  0.8327      0.742 0.736 0.264
#> GSM39845     1  0.0000      0.901 1.000 0.000
#> GSM39852     1  0.3274      0.893 0.940 0.060
#> GSM39853     2  0.8144      0.886 0.252 0.748
#> GSM39854     2  0.7815      0.882 0.232 0.768
#> GSM39857     1  0.0000      0.901 1.000 0.000
#> GSM39860     1  0.6623      0.711 0.828 0.172
#> GSM39861     1  0.0000      0.901 1.000 0.000
#> GSM39864     1  0.3274      0.893 0.940 0.060
#> GSM39868     1  0.3114      0.894 0.944 0.056

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000      1.000 0.000 1.000 0.000
#> GSM39874     2  0.0000      1.000 0.000 1.000 0.000
#> GSM39875     2  0.0000      1.000 0.000 1.000 0.000
#> GSM39876     2  0.0000      1.000 0.000 1.000 0.000
#> GSM39831     1  0.0983      0.960 0.980 0.004 0.016
#> GSM39819     3  0.0892      0.942 0.020 0.000 0.980
#> GSM39820     3  0.0237      0.951 0.004 0.000 0.996
#> GSM39821     1  0.0424      0.961 0.992 0.000 0.008
#> GSM39822     1  0.2173      0.938 0.944 0.048 0.008
#> GSM39823     3  0.0237      0.951 0.004 0.000 0.996
#> GSM39824     3  0.0424      0.949 0.008 0.000 0.992
#> GSM39825     3  0.3752      0.786 0.144 0.000 0.856
#> GSM39826     1  0.0424      0.961 0.992 0.000 0.008
#> GSM39827     1  0.0424      0.961 0.992 0.000 0.008
#> GSM39846     3  0.0000      0.949 0.000 0.000 1.000
#> GSM39847     1  0.1170      0.961 0.976 0.008 0.016
#> GSM39848     1  0.1453      0.954 0.968 0.024 0.008
#> GSM39849     3  0.0747      0.944 0.016 0.000 0.984
#> GSM39850     1  0.0424      0.961 0.992 0.000 0.008
#> GSM39851     1  0.0983      0.960 0.980 0.004 0.016
#> GSM39855     3  0.0592      0.945 0.012 0.000 0.988
#> GSM39856     3  0.0000      0.949 0.000 0.000 1.000
#> GSM39858     3  0.0000      0.949 0.000 0.000 1.000
#> GSM39859     3  0.0237      0.951 0.004 0.000 0.996
#> GSM39862     1  0.2176      0.952 0.948 0.032 0.020
#> GSM39863     1  0.0983      0.960 0.980 0.004 0.016
#> GSM39865     1  0.2384      0.931 0.936 0.056 0.008
#> GSM39866     1  0.3031      0.914 0.912 0.012 0.076
#> GSM39867     1  0.0237      0.960 0.996 0.000 0.004
#> GSM39869     1  0.1170      0.957 0.976 0.016 0.008
#> GSM39870     3  0.0000      0.949 0.000 0.000 1.000
#> GSM39871     3  0.0000      0.949 0.000 0.000 1.000
#> GSM39872     3  0.5560      0.529 0.300 0.000 0.700
#> GSM39828     1  0.1015      0.961 0.980 0.008 0.012
#> GSM39829     3  0.0747      0.944 0.016 0.000 0.984
#> GSM39830     3  0.2959      0.849 0.100 0.000 0.900
#> GSM39832     1  0.0983      0.960 0.980 0.004 0.016
#> GSM39833     1  0.2050      0.953 0.952 0.020 0.028
#> GSM39834     1  0.1774      0.957 0.960 0.016 0.024
#> GSM39835     1  0.0237      0.958 0.996 0.004 0.000
#> GSM39836     1  0.1015      0.961 0.980 0.008 0.012
#> GSM39837     1  0.0829      0.959 0.984 0.012 0.004
#> GSM39838     1  0.1015      0.957 0.980 0.012 0.008
#> GSM39839     3  0.0892      0.942 0.020 0.000 0.980
#> GSM39840     1  0.0983      0.960 0.980 0.004 0.016
#> GSM39841     1  0.1337      0.961 0.972 0.012 0.016
#> GSM39842     1  0.0983      0.960 0.980 0.004 0.016
#> GSM39843     1  0.5443      0.642 0.736 0.004 0.260
#> GSM39844     1  0.0983      0.960 0.980 0.004 0.016
#> GSM39845     3  0.0237      0.951 0.004 0.000 0.996
#> GSM39852     1  0.1636      0.958 0.964 0.016 0.020
#> GSM39853     1  0.0592      0.958 0.988 0.012 0.000
#> GSM39854     1  0.0000      0.958 1.000 0.000 0.000
#> GSM39857     3  0.0237      0.951 0.004 0.000 0.996
#> GSM39860     1  0.6597      0.506 0.664 0.024 0.312
#> GSM39861     3  0.0000      0.949 0.000 0.000 1.000
#> GSM39864     1  0.1905      0.956 0.956 0.016 0.028
#> GSM39868     1  0.1636      0.958 0.964 0.016 0.020

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1 p2    p3    p4
#> GSM39873     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000  1 0.000 0.000
#> GSM39831     1  0.0000     0.5595 1.000  0 0.000 0.000
#> GSM39819     3  0.0657     0.9082 0.004  0 0.984 0.012
#> GSM39820     3  0.0000     0.9117 0.000  0 1.000 0.000
#> GSM39821     1  0.4925     0.5900 0.572  0 0.000 0.428
#> GSM39822     4  0.0469     0.8251 0.012  0 0.000 0.988
#> GSM39823     3  0.0921     0.8989 0.000  0 0.972 0.028
#> GSM39824     3  0.4193     0.6317 0.000  0 0.732 0.268
#> GSM39825     3  0.5507     0.6285 0.156  0 0.732 0.112
#> GSM39826     4  0.4164     0.4734 0.264  0 0.000 0.736
#> GSM39827     1  0.4925     0.5900 0.572  0 0.000 0.428
#> GSM39846     3  0.0000     0.9117 0.000  0 1.000 0.000
#> GSM39847     1  0.4925     0.5900 0.572  0 0.000 0.428
#> GSM39848     4  0.0707     0.8277 0.020  0 0.000 0.980
#> GSM39849     3  0.0657     0.9082 0.004  0 0.984 0.012
#> GSM39850     1  0.4916     0.5917 0.576  0 0.000 0.424
#> GSM39851     1  0.0000     0.5595 1.000  0 0.000 0.000
#> GSM39855     3  0.4193     0.6317 0.000  0 0.732 0.268
#> GSM39856     3  0.0000     0.9117 0.000  0 1.000 0.000
#> GSM39858     3  0.0000     0.9117 0.000  0 1.000 0.000
#> GSM39859     3  0.0000     0.9117 0.000  0 1.000 0.000
#> GSM39862     1  0.4977     0.5718 0.540  0 0.000 0.460
#> GSM39863     1  0.0000     0.5595 1.000  0 0.000 0.000
#> GSM39865     4  0.0469     0.8251 0.012  0 0.000 0.988
#> GSM39866     1  0.4972     0.5761 0.544  0 0.000 0.456
#> GSM39867     4  0.1557     0.8294 0.056  0 0.000 0.944
#> GSM39869     4  0.0469     0.8251 0.012  0 0.000 0.988
#> GSM39870     3  0.0000     0.9117 0.000  0 1.000 0.000
#> GSM39871     3  0.0000     0.9117 0.000  0 1.000 0.000
#> GSM39872     4  0.7115    -0.3877 0.420  0 0.128 0.452
#> GSM39828     1  0.4925     0.5900 0.572  0 0.000 0.428
#> GSM39829     3  0.0376     0.9105 0.004  0 0.992 0.004
#> GSM39830     3  0.3505     0.8017 0.048  0 0.864 0.088
#> GSM39832     1  0.0000     0.5595 1.000  0 0.000 0.000
#> GSM39833     4  0.4804    -0.0311 0.384  0 0.000 0.616
#> GSM39834     1  0.4977     0.5718 0.540  0 0.000 0.460
#> GSM39835     4  0.1637     0.8275 0.060  0 0.000 0.940
#> GSM39836     1  0.4933     0.5892 0.568  0 0.000 0.432
#> GSM39837     4  0.1474     0.8297 0.052  0 0.000 0.948
#> GSM39838     4  0.0817     0.8287 0.024  0 0.000 0.976
#> GSM39839     3  0.0657     0.9082 0.004  0 0.984 0.012
#> GSM39840     1  0.0000     0.5595 1.000  0 0.000 0.000
#> GSM39841     1  0.4564     0.4012 0.672  0 0.000 0.328
#> GSM39842     1  0.0000     0.5595 1.000  0 0.000 0.000
#> GSM39843     1  0.6319     0.5455 0.604  0 0.084 0.312
#> GSM39844     1  0.0000     0.5595 1.000  0 0.000 0.000
#> GSM39845     3  0.0000     0.9117 0.000  0 1.000 0.000
#> GSM39852     1  0.4977     0.5718 0.540  0 0.000 0.460
#> GSM39853     4  0.1474     0.8297 0.052  0 0.000 0.948
#> GSM39854     4  0.1557     0.8294 0.056  0 0.000 0.944
#> GSM39857     3  0.2868     0.7975 0.000  0 0.864 0.136
#> GSM39860     4  0.2081     0.7610 0.084  0 0.000 0.916
#> GSM39861     3  0.0000     0.9117 0.000  0 1.000 0.000
#> GSM39864     1  0.4967     0.5796 0.548  0 0.000 0.452
#> GSM39868     1  0.4967     0.5796 0.548  0 0.000 0.452

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1 p2    p3    p4    p5
#> GSM39873     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000
#> GSM39831     1  0.2424     0.8382 0.868  0 0.000 0.132 0.000
#> GSM39819     3  0.2515     0.8653 0.044  0 0.904 0.008 0.044
#> GSM39820     3  0.1310     0.8838 0.024  0 0.956 0.000 0.020
#> GSM39821     4  0.2629     0.6996 0.136  0 0.000 0.860 0.004
#> GSM39822     5  0.2124     0.7933 0.004  0 0.000 0.096 0.900
#> GSM39823     3  0.0671     0.8853 0.004  0 0.980 0.000 0.016
#> GSM39824     3  0.4452     0.0357 0.004  0 0.500 0.000 0.496
#> GSM39825     3  0.4174     0.6890 0.016  0 0.776 0.180 0.028
#> GSM39826     4  0.4736     0.6604 0.072  0 0.000 0.712 0.216
#> GSM39827     4  0.4349     0.6823 0.176  0 0.000 0.756 0.068
#> GSM39846     3  0.0000     0.8893 0.000  0 1.000 0.000 0.000
#> GSM39847     4  0.1671     0.7133 0.076  0 0.000 0.924 0.000
#> GSM39848     5  0.2124     0.7917 0.004  0 0.000 0.096 0.900
#> GSM39849     3  0.1393     0.8798 0.012  0 0.956 0.024 0.008
#> GSM39850     4  0.3667     0.7015 0.140  0 0.000 0.812 0.048
#> GSM39851     1  0.1478     0.8773 0.936  0 0.000 0.064 0.000
#> GSM39855     3  0.4452     0.0357 0.004  0 0.500 0.000 0.496
#> GSM39856     3  0.0000     0.8893 0.000  0 1.000 0.000 0.000
#> GSM39858     3  0.0000     0.8893 0.000  0 1.000 0.000 0.000
#> GSM39859     3  0.0162     0.8892 0.000  0 0.996 0.000 0.004
#> GSM39862     5  0.4375     0.4936 0.000  0 0.004 0.420 0.576
#> GSM39863     1  0.2179     0.8542 0.888  0 0.000 0.112 0.000
#> GSM39865     5  0.1965     0.7923 0.000  0 0.000 0.096 0.904
#> GSM39866     4  0.2142     0.7047 0.048  0 0.004 0.920 0.028
#> GSM39867     4  0.4938     0.6056 0.048  0 0.000 0.640 0.312
#> GSM39869     5  0.2124     0.7933 0.004  0 0.000 0.096 0.900
#> GSM39870     3  0.1300     0.8838 0.028  0 0.956 0.000 0.016
#> GSM39871     3  0.0000     0.8893 0.000  0 1.000 0.000 0.000
#> GSM39872     5  0.6866     0.3552 0.004  0 0.252 0.364 0.380
#> GSM39828     4  0.1270     0.7131 0.052  0 0.000 0.948 0.000
#> GSM39829     3  0.1787     0.8788 0.032  0 0.940 0.012 0.016
#> GSM39830     3  0.3925     0.7805 0.056  0 0.828 0.088 0.028
#> GSM39832     1  0.1197     0.8802 0.952  0 0.000 0.048 0.000
#> GSM39833     4  0.5530     0.5136 0.076  0 0.000 0.556 0.368
#> GSM39834     4  0.0609     0.6943 0.000  0 0.000 0.980 0.020
#> GSM39835     4  0.4637     0.6164 0.036  0 0.000 0.672 0.292
#> GSM39836     4  0.1282     0.7145 0.044  0 0.000 0.952 0.004
#> GSM39837     4  0.5555     0.3876 0.068  0 0.000 0.480 0.452
#> GSM39838     4  0.4452     0.2954 0.004  0 0.000 0.500 0.496
#> GSM39839     3  0.2515     0.8653 0.044  0 0.904 0.008 0.044
#> GSM39840     1  0.1197     0.8802 0.952  0 0.000 0.048 0.000
#> GSM39841     1  0.6557     0.0290 0.472  0 0.000 0.288 0.240
#> GSM39842     1  0.1197     0.8802 0.952  0 0.000 0.048 0.000
#> GSM39843     4  0.5716     0.3752 0.108  0 0.256 0.628 0.008
#> GSM39844     1  0.1197     0.8802 0.952  0 0.000 0.048 0.000
#> GSM39845     3  0.0162     0.8892 0.000  0 0.996 0.000 0.004
#> GSM39852     4  0.0609     0.6943 0.000  0 0.000 0.980 0.020
#> GSM39853     4  0.5555     0.3876 0.068  0 0.000 0.480 0.452
#> GSM39854     4  0.5227     0.4380 0.044  0 0.000 0.508 0.448
#> GSM39857     3  0.1270     0.8659 0.000  0 0.948 0.000 0.052
#> GSM39860     5  0.3608     0.7546 0.000  0 0.040 0.148 0.812
#> GSM39861     3  0.0290     0.8892 0.000  0 0.992 0.000 0.008
#> GSM39864     4  0.1386     0.7000 0.032  0 0.000 0.952 0.016
#> GSM39868     4  0.0671     0.6960 0.004  0 0.000 0.980 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1 p2    p3    p4    p5    p6
#> GSM39873     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39831     1  0.0146     0.8967 0.996  0 0.000 0.004 0.000 0.000
#> GSM39819     6  0.3727     0.8876 0.000  0 0.388 0.000 0.000 0.612
#> GSM39820     6  0.3828     0.8975 0.000  0 0.440 0.000 0.000 0.560
#> GSM39821     4  0.3844     0.7551 0.072  0 0.000 0.812 0.056 0.060
#> GSM39822     5  0.1745     0.9308 0.000  0 0.000 0.068 0.920 0.012
#> GSM39823     3  0.1088     0.7170 0.000  0 0.960 0.000 0.016 0.024
#> GSM39824     3  0.4371     0.4108 0.000  0 0.620 0.000 0.344 0.036
#> GSM39825     3  0.4418     0.3111 0.000  0 0.700 0.228 0.004 0.068
#> GSM39826     4  0.4876     0.7414 0.056  0 0.000 0.720 0.072 0.152
#> GSM39827     4  0.4788     0.7480 0.072  0 0.000 0.732 0.060 0.136
#> GSM39846     3  0.0000     0.7283 0.000  0 1.000 0.000 0.000 0.000
#> GSM39847     4  0.1477     0.7628 0.048  0 0.000 0.940 0.008 0.004
#> GSM39848     5  0.1387     0.9327 0.000  0 0.000 0.068 0.932 0.000
#> GSM39849     3  0.1616     0.6710 0.000  0 0.932 0.020 0.000 0.048
#> GSM39850     4  0.4167     0.7514 0.072  0 0.000 0.788 0.056 0.084
#> GSM39851     1  0.0000     0.8990 1.000  0 0.000 0.000 0.000 0.000
#> GSM39855     3  0.4371     0.4108 0.000  0 0.620 0.000 0.344 0.036
#> GSM39856     3  0.0000     0.7283 0.000  0 1.000 0.000 0.000 0.000
#> GSM39858     3  0.0000     0.7283 0.000  0 1.000 0.000 0.000 0.000
#> GSM39859     3  0.0000     0.7283 0.000  0 1.000 0.000 0.000 0.000
#> GSM39862     5  0.3895     0.6960 0.008  0 0.000 0.280 0.700 0.012
#> GSM39863     1  0.0260     0.8939 0.992  0 0.000 0.008 0.000 0.000
#> GSM39865     5  0.1387     0.9327 0.000  0 0.000 0.068 0.932 0.000
#> GSM39866     4  0.1109     0.7528 0.016  0 0.004 0.964 0.004 0.012
#> GSM39867     4  0.5163     0.6937 0.044  0 0.000 0.636 0.048 0.272
#> GSM39869     5  0.1745     0.9308 0.000  0 0.000 0.068 0.920 0.012
#> GSM39870     6  0.3833     0.8937 0.000  0 0.444 0.000 0.000 0.556
#> GSM39871     3  0.0000     0.7283 0.000  0 1.000 0.000 0.000 0.000
#> GSM39872     3  0.6570    -0.0640 0.008  0 0.396 0.284 0.300 0.012
#> GSM39828     4  0.1555     0.7613 0.060  0 0.000 0.932 0.004 0.004
#> GSM39829     6  0.4051     0.9007 0.000  0 0.432 0.008 0.000 0.560
#> GSM39830     6  0.5462     0.8158 0.040  0 0.348 0.044 0.004 0.564
#> GSM39832     1  0.0000     0.8990 1.000  0 0.000 0.000 0.000 0.000
#> GSM39833     4  0.6299     0.6692 0.064  0 0.016 0.592 0.112 0.216
#> GSM39834     4  0.0862     0.7438 0.008  0 0.000 0.972 0.004 0.016
#> GSM39835     4  0.5637     0.6902 0.056  0 0.000 0.608 0.076 0.260
#> GSM39836     4  0.1382     0.7630 0.036  0 0.000 0.948 0.008 0.008
#> GSM39837     4  0.6760     0.4950 0.056  0 0.000 0.436 0.208 0.300
#> GSM39838     4  0.5348     0.2576 0.004  0 0.000 0.476 0.428 0.092
#> GSM39839     6  0.3727     0.8876 0.000  0 0.388 0.000 0.000 0.612
#> GSM39840     1  0.0000     0.8990 1.000  0 0.000 0.000 0.000 0.000
#> GSM39841     1  0.6483    -0.0948 0.444  0 0.000 0.288 0.028 0.240
#> GSM39842     1  0.0000     0.8990 1.000  0 0.000 0.000 0.000 0.000
#> GSM39843     4  0.5533     0.5847 0.184  0 0.028 0.632 0.000 0.156
#> GSM39844     1  0.0000     0.8990 1.000  0 0.000 0.000 0.000 0.000
#> GSM39845     3  0.0632     0.7107 0.000  0 0.976 0.000 0.000 0.024
#> GSM39852     4  0.0862     0.7438 0.008  0 0.000 0.972 0.004 0.016
#> GSM39853     4  0.6760     0.4950 0.056  0 0.000 0.436 0.208 0.300
#> GSM39854     4  0.6574     0.5276 0.044  0 0.000 0.468 0.216 0.272
#> GSM39857     3  0.1461     0.7045 0.000  0 0.940 0.000 0.044 0.016
#> GSM39860     5  0.1863     0.9150 0.000  0 0.004 0.060 0.920 0.016
#> GSM39861     3  0.1387     0.6496 0.000  0 0.932 0.000 0.000 0.068
#> GSM39864     4  0.0951     0.7435 0.008  0 0.000 0.968 0.004 0.020
#> GSM39868     4  0.0862     0.7438 0.008  0 0.000 0.972 0.004 0.016

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) other(p) k
#> MAD:mclust 58         3.53e-03 5.72e-03 2
#> MAD:mclust 58         2.54e-13 1.24e-11 3
#> MAD:mclust 54         1.12e-11 2.21e-09 4
#> MAD:mclust 48         9.44e-10 6.22e-08 5
#> MAD:mclust 50         1.39e-09 1.18e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


MAD:NMF

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["MAD", "NMF"]
# you can also extract it by
# res = res_list["MAD:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'MAD' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk MAD-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk MAD-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.322           0.665       0.801         0.4881 0.506   0.506
#> 3 3 0.730           0.852       0.931         0.3580 0.659   0.421
#> 4 4 0.655           0.677       0.845         0.1191 0.868   0.640
#> 5 5 0.669           0.579       0.802         0.0764 0.860   0.541
#> 6 6 0.708           0.553       0.780         0.0391 0.895   0.565

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.7299      0.735 0.204 0.796
#> GSM39874     2  0.6343      0.749 0.160 0.840
#> GSM39875     2  0.5408      0.754 0.124 0.876
#> GSM39876     2  0.5178      0.754 0.116 0.884
#> GSM39831     1  0.0000      0.798 1.000 0.000
#> GSM39819     1  0.9000      0.621 0.684 0.316
#> GSM39820     1  0.9129      0.608 0.672 0.328
#> GSM39821     1  0.0000      0.798 1.000 0.000
#> GSM39822     2  0.8813      0.678 0.300 0.700
#> GSM39823     2  0.3274      0.716 0.060 0.940
#> GSM39824     2  0.0938      0.726 0.012 0.988
#> GSM39825     1  0.9044      0.617 0.680 0.320
#> GSM39826     1  0.2043      0.770 0.968 0.032
#> GSM39827     1  0.0000      0.798 1.000 0.000
#> GSM39846     2  0.4161      0.705 0.084 0.916
#> GSM39847     1  0.0000      0.798 1.000 0.000
#> GSM39848     2  0.8267      0.706 0.260 0.740
#> GSM39849     2  0.7219      0.583 0.200 0.800
#> GSM39850     1  0.0000      0.798 1.000 0.000
#> GSM39851     1  0.0000      0.798 1.000 0.000
#> GSM39855     2  0.0938      0.726 0.012 0.988
#> GSM39856     2  0.4298      0.702 0.088 0.912
#> GSM39858     1  0.9963      0.381 0.536 0.464
#> GSM39859     1  0.9944      0.399 0.544 0.456
#> GSM39862     2  0.7950      0.732 0.240 0.760
#> GSM39863     1  0.0000      0.798 1.000 0.000
#> GSM39865     2  0.2603      0.742 0.044 0.956
#> GSM39866     1  0.6712      0.718 0.824 0.176
#> GSM39867     1  0.4022      0.718 0.920 0.080
#> GSM39869     2  0.8861      0.675 0.304 0.696
#> GSM39870     1  0.9129      0.608 0.672 0.328
#> GSM39871     2  0.9850     -0.100 0.428 0.572
#> GSM39872     2  0.7056      0.596 0.192 0.808
#> GSM39828     1  0.0000      0.798 1.000 0.000
#> GSM39829     1  0.8909      0.628 0.692 0.308
#> GSM39830     1  0.8144      0.670 0.748 0.252
#> GSM39832     1  0.0000      0.798 1.000 0.000
#> GSM39833     2  0.9815      0.578 0.420 0.580
#> GSM39834     1  0.1414      0.784 0.980 0.020
#> GSM39835     2  0.9996      0.417 0.488 0.512
#> GSM39836     1  0.0000      0.798 1.000 0.000
#> GSM39837     2  0.9460      0.619 0.364 0.636
#> GSM39838     2  0.8955      0.668 0.312 0.688
#> GSM39839     1  0.8909      0.628 0.692 0.308
#> GSM39840     1  0.0000      0.798 1.000 0.000
#> GSM39841     1  0.0000      0.798 1.000 0.000
#> GSM39842     1  0.0000      0.798 1.000 0.000
#> GSM39843     1  0.0000      0.798 1.000 0.000
#> GSM39844     1  0.0000      0.798 1.000 0.000
#> GSM39845     1  0.9732      0.503 0.596 0.404
#> GSM39852     1  0.0000      0.798 1.000 0.000
#> GSM39853     2  0.9580      0.605 0.380 0.620
#> GSM39854     1  0.9998     -0.415 0.508 0.492
#> GSM39857     2  0.3879      0.710 0.076 0.924
#> GSM39860     2  0.0000      0.725 0.000 1.000
#> GSM39861     1  0.9732      0.504 0.596 0.404
#> GSM39864     1  0.0938      0.795 0.988 0.012
#> GSM39868     1  0.5842      0.739 0.860 0.140

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000      0.892 0.000 1.000 0.000
#> GSM39874     2  0.0000      0.892 0.000 1.000 0.000
#> GSM39875     2  0.0000      0.892 0.000 1.000 0.000
#> GSM39876     2  0.0000      0.892 0.000 1.000 0.000
#> GSM39831     1  0.0237      0.955 0.996 0.000 0.004
#> GSM39819     3  0.4931      0.716 0.232 0.000 0.768
#> GSM39820     3  0.3267      0.842 0.116 0.000 0.884
#> GSM39821     1  0.0000      0.955 1.000 0.000 0.000
#> GSM39822     2  0.0237      0.892 0.004 0.996 0.000
#> GSM39823     3  0.0237      0.901 0.000 0.004 0.996
#> GSM39824     3  0.0424      0.900 0.000 0.008 0.992
#> GSM39825     3  0.1643      0.885 0.044 0.000 0.956
#> GSM39826     1  0.4887      0.636 0.772 0.228 0.000
#> GSM39827     1  0.0000      0.955 1.000 0.000 0.000
#> GSM39846     3  0.0237      0.901 0.000 0.004 0.996
#> GSM39847     1  0.0237      0.955 0.996 0.000 0.004
#> GSM39848     2  0.0237      0.890 0.000 0.996 0.004
#> GSM39849     3  0.0237      0.901 0.000 0.004 0.996
#> GSM39850     1  0.0237      0.953 0.996 0.004 0.000
#> GSM39851     1  0.0237      0.955 0.996 0.000 0.004
#> GSM39855     3  0.1031      0.891 0.000 0.024 0.976
#> GSM39856     3  0.0237      0.901 0.000 0.004 0.996
#> GSM39858     3  0.0000      0.901 0.000 0.000 1.000
#> GSM39859     3  0.0000      0.901 0.000 0.000 1.000
#> GSM39862     3  0.8052      0.574 0.196 0.152 0.652
#> GSM39863     1  0.0237      0.955 0.996 0.000 0.004
#> GSM39865     2  0.0237      0.890 0.000 0.996 0.004
#> GSM39866     1  0.4235      0.767 0.824 0.000 0.176
#> GSM39867     2  0.6180      0.395 0.416 0.584 0.000
#> GSM39869     2  0.0237      0.892 0.004 0.996 0.000
#> GSM39870     3  0.3340      0.840 0.120 0.000 0.880
#> GSM39871     3  0.0000      0.901 0.000 0.000 1.000
#> GSM39872     3  0.0237      0.901 0.000 0.004 0.996
#> GSM39828     1  0.0237      0.955 0.996 0.000 0.004
#> GSM39829     3  0.5650      0.583 0.312 0.000 0.688
#> GSM39830     1  0.4931      0.672 0.768 0.000 0.232
#> GSM39832     1  0.0000      0.955 1.000 0.000 0.000
#> GSM39833     2  0.4834      0.752 0.204 0.792 0.004
#> GSM39834     1  0.0000      0.955 1.000 0.000 0.000
#> GSM39835     2  0.5905      0.550 0.352 0.648 0.000
#> GSM39836     1  0.0747      0.943 0.984 0.016 0.000
#> GSM39837     2  0.1529      0.882 0.040 0.960 0.000
#> GSM39838     2  0.0424      0.892 0.008 0.992 0.000
#> GSM39839     3  0.3619      0.827 0.136 0.000 0.864
#> GSM39840     1  0.0000      0.955 1.000 0.000 0.000
#> GSM39841     1  0.0424      0.951 0.992 0.008 0.000
#> GSM39842     1  0.0000      0.955 1.000 0.000 0.000
#> GSM39843     1  0.0747      0.947 0.984 0.000 0.016
#> GSM39844     1  0.0000      0.955 1.000 0.000 0.000
#> GSM39845     3  0.0000      0.901 0.000 0.000 1.000
#> GSM39852     1  0.0000      0.955 1.000 0.000 0.000
#> GSM39853     2  0.2261      0.870 0.068 0.932 0.000
#> GSM39854     2  0.5397      0.667 0.280 0.720 0.000
#> GSM39857     3  0.0237      0.901 0.000 0.004 0.996
#> GSM39860     3  0.6286      0.181 0.000 0.464 0.536
#> GSM39861     3  0.0000      0.901 0.000 0.000 1.000
#> GSM39864     1  0.0592      0.950 0.988 0.000 0.012
#> GSM39868     1  0.2165      0.904 0.936 0.000 0.064

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000      0.899 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000      0.899 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000      0.899 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000      0.899 0.000 1.000 0.000 0.000
#> GSM39831     1  0.0336      0.784 0.992 0.000 0.000 0.008
#> GSM39819     3  0.3975      0.640 0.240 0.000 0.760 0.000
#> GSM39820     3  0.1637      0.791 0.060 0.000 0.940 0.000
#> GSM39821     1  0.3688      0.728 0.792 0.000 0.000 0.208
#> GSM39822     2  0.0188      0.898 0.000 0.996 0.000 0.004
#> GSM39823     3  0.4564      0.562 0.000 0.000 0.672 0.328
#> GSM39824     3  0.5126      0.371 0.000 0.004 0.552 0.444
#> GSM39825     3  0.5036      0.614 0.024 0.000 0.696 0.280
#> GSM39826     1  0.4891      0.617 0.680 0.012 0.000 0.308
#> GSM39827     1  0.2216      0.777 0.908 0.000 0.000 0.092
#> GSM39846     3  0.0707      0.808 0.000 0.000 0.980 0.020
#> GSM39847     1  0.3528      0.741 0.808 0.000 0.000 0.192
#> GSM39848     4  0.0817      0.727 0.000 0.024 0.000 0.976
#> GSM39849     3  0.1059      0.809 0.012 0.000 0.972 0.016
#> GSM39850     1  0.3764      0.722 0.784 0.000 0.000 0.216
#> GSM39851     1  0.0376      0.781 0.992 0.000 0.004 0.004
#> GSM39855     3  0.5155      0.320 0.000 0.004 0.528 0.468
#> GSM39856     3  0.0817      0.807 0.000 0.000 0.976 0.024
#> GSM39858     3  0.0000      0.808 0.000 0.000 1.000 0.000
#> GSM39859     3  0.1389      0.800 0.000 0.000 0.952 0.048
#> GSM39862     4  0.0336      0.727 0.000 0.000 0.008 0.992
#> GSM39863     1  0.0188      0.780 0.996 0.000 0.004 0.000
#> GSM39865     2  0.2973      0.779 0.000 0.856 0.000 0.144
#> GSM39866     1  0.4399      0.667 0.760 0.000 0.016 0.224
#> GSM39867     1  0.6815      0.471 0.580 0.284 0.000 0.136
#> GSM39869     2  0.0707      0.891 0.000 0.980 0.000 0.020
#> GSM39870     3  0.1637      0.791 0.060 0.000 0.940 0.000
#> GSM39871     3  0.0336      0.808 0.000 0.000 0.992 0.008
#> GSM39872     4  0.4040      0.414 0.000 0.000 0.248 0.752
#> GSM39828     1  0.4454      0.628 0.692 0.000 0.000 0.308
#> GSM39829     3  0.3172      0.721 0.160 0.000 0.840 0.000
#> GSM39830     1  0.4996     -0.114 0.516 0.000 0.484 0.000
#> GSM39832     1  0.0817      0.786 0.976 0.000 0.000 0.024
#> GSM39833     2  0.4131      0.733 0.156 0.816 0.020 0.008
#> GSM39834     4  0.2868      0.667 0.136 0.000 0.000 0.864
#> GSM39835     1  0.6790      0.509 0.608 0.196 0.000 0.196
#> GSM39836     1  0.4989      0.311 0.528 0.000 0.000 0.472
#> GSM39837     2  0.0336      0.898 0.008 0.992 0.000 0.000
#> GSM39838     4  0.6307      0.413 0.092 0.288 0.000 0.620
#> GSM39839     3  0.3486      0.697 0.188 0.000 0.812 0.000
#> GSM39840     1  0.0921      0.786 0.972 0.000 0.000 0.028
#> GSM39841     1  0.1452      0.757 0.956 0.008 0.036 0.000
#> GSM39842     1  0.0188      0.783 0.996 0.000 0.000 0.004
#> GSM39843     1  0.1724      0.772 0.948 0.000 0.032 0.020
#> GSM39844     1  0.0469      0.785 0.988 0.000 0.000 0.012
#> GSM39845     3  0.1109      0.808 0.004 0.000 0.968 0.028
#> GSM39852     4  0.4746      0.117 0.368 0.000 0.000 0.632
#> GSM39853     2  0.0336      0.898 0.008 0.992 0.000 0.000
#> GSM39854     2  0.6881      0.175 0.340 0.540 0.000 0.120
#> GSM39857     3  0.4985      0.328 0.000 0.000 0.532 0.468
#> GSM39860     4  0.3401      0.583 0.000 0.008 0.152 0.840
#> GSM39861     3  0.0592      0.806 0.016 0.000 0.984 0.000
#> GSM39864     1  0.3764      0.716 0.784 0.000 0.000 0.216
#> GSM39868     4  0.2530      0.692 0.112 0.000 0.000 0.888

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000   0.907838 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000   0.907838 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000   0.907838 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000   0.907838 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.3586   0.611237 0.736 0.000 0.000 0.264 0.000
#> GSM39819     3  0.2457   0.773845 0.076 0.000 0.900 0.008 0.016
#> GSM39820     3  0.1372   0.797420 0.004 0.000 0.956 0.024 0.016
#> GSM39821     4  0.0510   0.638190 0.016 0.000 0.000 0.984 0.000
#> GSM39822     2  0.0290   0.906270 0.000 0.992 0.000 0.008 0.000
#> GSM39823     3  0.4166   0.371920 0.004 0.000 0.648 0.000 0.348
#> GSM39824     3  0.4546   0.024603 0.008 0.000 0.532 0.000 0.460
#> GSM39825     3  0.5946   0.482704 0.028 0.000 0.644 0.108 0.220
#> GSM39826     4  0.1329   0.639566 0.032 0.004 0.000 0.956 0.008
#> GSM39827     4  0.3243   0.511663 0.180 0.004 0.000 0.812 0.004
#> GSM39846     3  0.0404   0.804208 0.000 0.000 0.988 0.000 0.012
#> GSM39847     4  0.0451   0.640442 0.008 0.000 0.000 0.988 0.004
#> GSM39848     5  0.2064   0.711378 0.020 0.028 0.004 0.016 0.932
#> GSM39849     3  0.6149   0.364248 0.340 0.000 0.536 0.008 0.116
#> GSM39850     4  0.1041   0.637046 0.032 0.000 0.000 0.964 0.004
#> GSM39851     4  0.3550   0.396553 0.236 0.000 0.000 0.760 0.004
#> GSM39855     5  0.4510   0.165687 0.008 0.000 0.432 0.000 0.560
#> GSM39856     3  0.1216   0.801907 0.020 0.000 0.960 0.000 0.020
#> GSM39858     3  0.0451   0.804507 0.004 0.000 0.988 0.000 0.008
#> GSM39859     3  0.0693   0.803829 0.008 0.000 0.980 0.000 0.012
#> GSM39862     5  0.2283   0.712749 0.036 0.000 0.008 0.040 0.916
#> GSM39863     1  0.4333   0.495517 0.640 0.000 0.004 0.352 0.004
#> GSM39865     2  0.2329   0.818308 0.000 0.876 0.000 0.000 0.124
#> GSM39866     4  0.6568   0.203916 0.276 0.000 0.012 0.528 0.184
#> GSM39867     1  0.6612   0.499618 0.592 0.104 0.000 0.240 0.064
#> GSM39869     2  0.2124   0.849993 0.004 0.900 0.000 0.000 0.096
#> GSM39870     3  0.2586   0.763253 0.012 0.000 0.892 0.084 0.012
#> GSM39871     3  0.0912   0.804106 0.016 0.000 0.972 0.000 0.012
#> GSM39872     5  0.3090   0.708011 0.088 0.000 0.052 0.000 0.860
#> GSM39828     4  0.4901   0.471012 0.196 0.000 0.000 0.708 0.096
#> GSM39829     3  0.2251   0.781244 0.024 0.000 0.916 0.052 0.008
#> GSM39830     3  0.6926   0.125015 0.316 0.000 0.444 0.228 0.012
#> GSM39832     1  0.2732   0.652967 0.840 0.000 0.000 0.160 0.000
#> GSM39833     1  0.7504   0.092263 0.424 0.336 0.000 0.180 0.060
#> GSM39834     5  0.3579   0.632131 0.072 0.000 0.000 0.100 0.828
#> GSM39835     1  0.3599   0.515006 0.828 0.016 0.000 0.024 0.132
#> GSM39836     4  0.1792   0.623026 0.000 0.000 0.000 0.916 0.084
#> GSM39837     2  0.0609   0.898892 0.000 0.980 0.000 0.020 0.000
#> GSM39838     4  0.6945   0.194342 0.012 0.264 0.000 0.452 0.272
#> GSM39839     3  0.2332   0.778228 0.076 0.000 0.904 0.004 0.016
#> GSM39840     1  0.4305   0.203922 0.512 0.000 0.000 0.488 0.000
#> GSM39841     1  0.5309   0.584409 0.656 0.040 0.008 0.284 0.012
#> GSM39842     1  0.1364   0.597802 0.952 0.000 0.000 0.036 0.012
#> GSM39843     4  0.4875   0.127594 0.400 0.000 0.020 0.576 0.004
#> GSM39844     1  0.2929   0.652216 0.820 0.000 0.000 0.180 0.000
#> GSM39845     3  0.0451   0.804824 0.004 0.000 0.988 0.000 0.008
#> GSM39852     4  0.4152   0.479153 0.012 0.000 0.000 0.692 0.296
#> GSM39853     2  0.0324   0.906636 0.004 0.992 0.000 0.004 0.000
#> GSM39854     2  0.6887  -0.008361 0.388 0.464 0.000 0.080 0.068
#> GSM39857     5  0.4574   0.223424 0.012 0.000 0.412 0.000 0.576
#> GSM39860     5  0.1106   0.723235 0.012 0.000 0.024 0.000 0.964
#> GSM39861     3  0.0324   0.804129 0.000 0.000 0.992 0.004 0.004
#> GSM39864     4  0.6088  -0.000751 0.380 0.000 0.000 0.492 0.128
#> GSM39868     5  0.5087   0.345999 0.064 0.000 0.000 0.292 0.644

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     5  0.0000     0.9102 0.000 0.000 0.000 0.000 1.000 0.000
#> GSM39874     5  0.0146     0.9105 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM39875     5  0.0146     0.9105 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM39876     5  0.0146     0.9105 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM39831     1  0.2357     0.5802 0.872 0.116 0.000 0.012 0.000 0.000
#> GSM39819     3  0.3234     0.7485 0.048 0.056 0.860 0.024 0.000 0.012
#> GSM39820     3  0.1973     0.7882 0.036 0.028 0.924 0.000 0.004 0.008
#> GSM39821     4  0.0405     0.7708 0.008 0.000 0.000 0.988 0.000 0.004
#> GSM39822     5  0.1176     0.8994 0.000 0.020 0.000 0.024 0.956 0.000
#> GSM39823     3  0.4658     0.2296 0.004 0.040 0.580 0.000 0.000 0.376
#> GSM39824     3  0.4289     0.3098 0.000 0.028 0.612 0.000 0.000 0.360
#> GSM39825     3  0.6172     0.3112 0.000 0.044 0.540 0.268 0.000 0.148
#> GSM39826     4  0.0922     0.7703 0.000 0.024 0.000 0.968 0.004 0.004
#> GSM39827     1  0.4644     0.1049 0.524 0.032 0.000 0.440 0.004 0.000
#> GSM39846     3  0.0717     0.8044 0.000 0.016 0.976 0.000 0.000 0.008
#> GSM39847     4  0.0767     0.7699 0.012 0.008 0.000 0.976 0.000 0.004
#> GSM39848     6  0.3504     0.4638 0.000 0.112 0.000 0.016 0.052 0.820
#> GSM39849     2  0.5262     0.2232 0.004 0.612 0.268 0.004 0.000 0.112
#> GSM39850     4  0.0653     0.7713 0.004 0.012 0.000 0.980 0.000 0.004
#> GSM39851     4  0.1749     0.7585 0.024 0.036 0.000 0.932 0.000 0.008
#> GSM39855     6  0.4532    -0.0345 0.000 0.032 0.468 0.000 0.000 0.500
#> GSM39856     3  0.1745     0.7927 0.000 0.056 0.924 0.000 0.000 0.020
#> GSM39858     3  0.0603     0.8045 0.000 0.016 0.980 0.000 0.000 0.004
#> GSM39859     3  0.0993     0.8038 0.000 0.024 0.964 0.000 0.000 0.012
#> GSM39862     6  0.3683     0.4049 0.000 0.192 0.000 0.044 0.000 0.764
#> GSM39863     1  0.1989     0.6066 0.916 0.052 0.004 0.028 0.000 0.000
#> GSM39865     5  0.4268     0.5513 0.004 0.040 0.000 0.000 0.684 0.272
#> GSM39866     1  0.6021     0.4240 0.636 0.160 0.032 0.008 0.016 0.148
#> GSM39867     1  0.3003     0.5836 0.860 0.084 0.000 0.000 0.028 0.028
#> GSM39869     5  0.2448     0.8465 0.000 0.052 0.000 0.000 0.884 0.064
#> GSM39870     3  0.4886     0.4458 0.300 0.076 0.620 0.000 0.004 0.000
#> GSM39871     3  0.1265     0.8001 0.000 0.044 0.948 0.000 0.000 0.008
#> GSM39872     6  0.4494     0.3887 0.004 0.224 0.076 0.000 0.000 0.696
#> GSM39828     4  0.1391     0.7654 0.000 0.040 0.000 0.944 0.000 0.016
#> GSM39829     3  0.3499     0.7311 0.108 0.036 0.832 0.012 0.004 0.008
#> GSM39830     4  0.6850     0.1141 0.032 0.252 0.272 0.432 0.000 0.012
#> GSM39832     1  0.3133     0.4912 0.780 0.212 0.000 0.008 0.000 0.000
#> GSM39833     4  0.6227     0.1686 0.004 0.420 0.016 0.448 0.088 0.024
#> GSM39834     6  0.5227     0.3799 0.232 0.144 0.000 0.004 0.000 0.620
#> GSM39835     2  0.4981     0.4098 0.136 0.700 0.000 0.000 0.028 0.136
#> GSM39836     4  0.1078     0.7619 0.012 0.008 0.000 0.964 0.000 0.016
#> GSM39837     5  0.2810     0.7743 0.000 0.008 0.000 0.156 0.832 0.004
#> GSM39838     6  0.8327     0.1423 0.120 0.108 0.000 0.136 0.288 0.348
#> GSM39839     3  0.2816     0.7644 0.044 0.064 0.876 0.004 0.000 0.012
#> GSM39840     4  0.5140     0.4614 0.164 0.192 0.000 0.640 0.000 0.004
#> GSM39841     1  0.5968     0.3375 0.632 0.196 0.008 0.112 0.044 0.008
#> GSM39842     2  0.4227    -0.0877 0.492 0.496 0.000 0.004 0.000 0.008
#> GSM39843     4  0.2292     0.7343 0.004 0.104 0.004 0.884 0.000 0.004
#> GSM39844     1  0.2848     0.5354 0.816 0.176 0.000 0.008 0.000 0.000
#> GSM39845     3  0.0520     0.8040 0.000 0.008 0.984 0.000 0.000 0.008
#> GSM39852     4  0.7055    -0.0956 0.140 0.120 0.000 0.392 0.000 0.348
#> GSM39853     5  0.0665     0.9074 0.004 0.008 0.000 0.008 0.980 0.000
#> GSM39854     1  0.4415     0.4719 0.732 0.048 0.000 0.000 0.192 0.028
#> GSM39857     6  0.4578     0.0230 0.000 0.036 0.444 0.000 0.000 0.520
#> GSM39860     6  0.1837     0.4955 0.000 0.044 0.020 0.004 0.004 0.928
#> GSM39861     3  0.0405     0.8051 0.000 0.008 0.988 0.000 0.000 0.004
#> GSM39864     1  0.4526     0.5054 0.740 0.116 0.012 0.004 0.000 0.128
#> GSM39868     6  0.5829     0.2929 0.284 0.168 0.012 0.000 0.000 0.536

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-MAD-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-MAD-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-MAD-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-MAD-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-MAD-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-MAD-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-MAD-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-MAD-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-MAD-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-MAD-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-MAD-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk MAD-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-MAD-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk MAD-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) other(p) k
#> MAD:NMF 53         0.052206  0.02885 2
#> MAD:NMF 56         0.001562  0.00174 3
#> MAD:NMF 48         0.000861  0.01101 4
#> MAD:NMF 38         0.006108  0.00454 5
#> MAD:NMF 33         0.006925  0.03581 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:hclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "hclust"]
# you can also extract it by
# res = res_list["ATC:hclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'ATC' method.
#>   Subgroups are detected by 'hclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-hclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-hclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.731           0.907       0.955         0.3330 0.687   0.687
#> 3 3 0.414           0.633       0.815         0.6281 0.670   0.533
#> 4 4 0.419           0.505       0.754         0.1824 0.883   0.731
#> 5 5 0.484           0.587       0.755         0.0977 0.894   0.718
#> 6 6 0.596           0.273       0.611         0.0691 0.785   0.413

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.0000      0.933 0.000 1.000
#> GSM39874     2  0.0000      0.933 0.000 1.000
#> GSM39875     2  0.0000      0.933 0.000 1.000
#> GSM39876     2  0.0000      0.933 0.000 1.000
#> GSM39831     1  0.0000      0.954 1.000 0.000
#> GSM39819     1  0.0000      0.954 1.000 0.000
#> GSM39820     1  0.0000      0.954 1.000 0.000
#> GSM39821     1  0.0000      0.954 1.000 0.000
#> GSM39822     2  0.9129      0.495 0.328 0.672
#> GSM39823     1  0.4815      0.887 0.896 0.104
#> GSM39824     2  0.0672      0.931 0.008 0.992
#> GSM39825     1  0.0000      0.954 1.000 0.000
#> GSM39826     1  0.1184      0.948 0.984 0.016
#> GSM39827     1  0.0376      0.953 0.996 0.004
#> GSM39846     1  0.4939      0.884 0.892 0.108
#> GSM39847     1  0.0000      0.954 1.000 0.000
#> GSM39848     2  0.0000      0.933 0.000 1.000
#> GSM39849     1  0.6973      0.795 0.812 0.188
#> GSM39850     1  0.1184      0.948 0.984 0.016
#> GSM39851     1  0.0000      0.954 1.000 0.000
#> GSM39855     2  0.0672      0.931 0.008 0.992
#> GSM39856     1  0.4939      0.884 0.892 0.108
#> GSM39858     1  0.0000      0.954 1.000 0.000
#> GSM39859     1  0.0000      0.954 1.000 0.000
#> GSM39862     1  0.8555      0.653 0.720 0.280
#> GSM39863     1  0.0000      0.954 1.000 0.000
#> GSM39865     2  0.8081      0.658 0.248 0.752
#> GSM39866     1  0.0000      0.954 1.000 0.000
#> GSM39867     1  0.0376      0.953 0.996 0.004
#> GSM39869     2  0.0938      0.929 0.012 0.988
#> GSM39870     1  0.0000      0.954 1.000 0.000
#> GSM39871     1  0.0938      0.950 0.988 0.012
#> GSM39872     1  0.4939      0.884 0.892 0.108
#> GSM39828     1  0.0000      0.954 1.000 0.000
#> GSM39829     1  0.0000      0.954 1.000 0.000
#> GSM39830     1  0.0000      0.954 1.000 0.000
#> GSM39832     1  0.0000      0.954 1.000 0.000
#> GSM39833     1  0.5842      0.852 0.860 0.140
#> GSM39834     1  0.1184      0.948 0.984 0.016
#> GSM39835     1  0.9358      0.504 0.648 0.352
#> GSM39836     1  0.3879      0.910 0.924 0.076
#> GSM39837     1  0.8443      0.667 0.728 0.272
#> GSM39838     1  0.3879      0.910 0.924 0.076
#> GSM39839     1  0.0000      0.954 1.000 0.000
#> GSM39840     1  0.0000      0.954 1.000 0.000
#> GSM39841     1  0.0000      0.954 1.000 0.000
#> GSM39842     1  0.0000      0.954 1.000 0.000
#> GSM39843     1  0.0000      0.954 1.000 0.000
#> GSM39844     1  0.0000      0.954 1.000 0.000
#> GSM39845     1  0.0000      0.954 1.000 0.000
#> GSM39852     1  0.0000      0.954 1.000 0.000
#> GSM39853     1  0.1633      0.944 0.976 0.024
#> GSM39854     1  0.1414      0.946 0.980 0.020
#> GSM39857     1  0.4815      0.887 0.896 0.104
#> GSM39860     2  0.0000      0.933 0.000 1.000
#> GSM39861     1  0.0000      0.954 1.000 0.000
#> GSM39864     1  0.0000      0.954 1.000 0.000
#> GSM39868     1  0.0000      0.954 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.3752      0.924 0.000 0.856 0.144
#> GSM39874     2  0.3752      0.924 0.000 0.856 0.144
#> GSM39875     2  0.3752      0.924 0.000 0.856 0.144
#> GSM39876     2  0.3752      0.924 0.000 0.856 0.144
#> GSM39831     1  0.0000      0.838 1.000 0.000 0.000
#> GSM39819     1  0.1529      0.834 0.960 0.000 0.040
#> GSM39820     1  0.0000      0.838 1.000 0.000 0.000
#> GSM39821     1  0.3752      0.752 0.856 0.000 0.144
#> GSM39822     3  0.6540     -0.352 0.008 0.408 0.584
#> GSM39823     3  0.6299      0.410 0.476 0.000 0.524
#> GSM39824     2  0.1964      0.903 0.000 0.944 0.056
#> GSM39825     1  0.3192      0.796 0.888 0.000 0.112
#> GSM39826     3  0.6286      0.380 0.464 0.000 0.536
#> GSM39827     1  0.6252     -0.134 0.556 0.000 0.444
#> GSM39846     3  0.6286      0.435 0.464 0.000 0.536
#> GSM39847     1  0.3686      0.757 0.860 0.000 0.140
#> GSM39848     2  0.0424      0.906 0.000 0.992 0.008
#> GSM39849     3  0.5706      0.566 0.320 0.000 0.680
#> GSM39850     3  0.6295      0.359 0.472 0.000 0.528
#> GSM39851     1  0.0000      0.838 1.000 0.000 0.000
#> GSM39855     2  0.1964      0.903 0.000 0.944 0.056
#> GSM39856     3  0.6286      0.435 0.464 0.000 0.536
#> GSM39858     1  0.3116      0.799 0.892 0.000 0.108
#> GSM39859     1  0.3038      0.802 0.896 0.000 0.104
#> GSM39862     3  0.5852      0.569 0.152 0.060 0.788
#> GSM39863     1  0.0000      0.838 1.000 0.000 0.000
#> GSM39865     3  0.6683     -0.524 0.008 0.496 0.496
#> GSM39866     1  0.0237      0.837 0.996 0.000 0.004
#> GSM39867     1  0.6252     -0.134 0.556 0.000 0.444
#> GSM39869     2  0.4842      0.878 0.000 0.776 0.224
#> GSM39870     1  0.0237      0.837 0.996 0.000 0.004
#> GSM39871     1  0.5098      0.560 0.752 0.000 0.248
#> GSM39872     3  0.6286      0.435 0.464 0.000 0.536
#> GSM39828     1  0.3816      0.760 0.852 0.000 0.148
#> GSM39829     1  0.0000      0.838 1.000 0.000 0.000
#> GSM39830     1  0.0747      0.838 0.984 0.000 0.016
#> GSM39832     1  0.0000      0.838 1.000 0.000 0.000
#> GSM39833     3  0.5016      0.604 0.240 0.000 0.760
#> GSM39834     1  0.6260     -0.175 0.552 0.000 0.448
#> GSM39835     3  0.0661      0.390 0.008 0.004 0.988
#> GSM39836     3  0.6045      0.518 0.380 0.000 0.620
#> GSM39837     3  0.5138      0.536 0.120 0.052 0.828
#> GSM39838     3  0.6045      0.518 0.380 0.000 0.620
#> GSM39839     1  0.1529      0.834 0.960 0.000 0.040
#> GSM39840     1  0.0000      0.838 1.000 0.000 0.000
#> GSM39841     1  0.0000      0.838 1.000 0.000 0.000
#> GSM39842     1  0.0000      0.838 1.000 0.000 0.000
#> GSM39843     1  0.3192      0.795 0.888 0.000 0.112
#> GSM39844     1  0.0000      0.838 1.000 0.000 0.000
#> GSM39845     1  0.1031      0.838 0.976 0.000 0.024
#> GSM39852     1  0.3340      0.781 0.880 0.000 0.120
#> GSM39853     3  0.5926      0.557 0.356 0.000 0.644
#> GSM39854     3  0.5948      0.552 0.360 0.000 0.640
#> GSM39857     3  0.6299      0.410 0.476 0.000 0.524
#> GSM39860     2  0.0424      0.906 0.000 0.992 0.008
#> GSM39861     1  0.3038      0.802 0.896 0.000 0.104
#> GSM39864     1  0.1643      0.833 0.956 0.000 0.044
#> GSM39868     1  0.5621      0.361 0.692 0.000 0.308

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.3528     0.8785 0.000 0.808 0.000 0.192
#> GSM39874     2  0.3528     0.8785 0.000 0.808 0.000 0.192
#> GSM39875     2  0.3528     0.8785 0.000 0.808 0.000 0.192
#> GSM39876     2  0.3528     0.8785 0.000 0.808 0.000 0.192
#> GSM39831     1  0.0000     0.7284 1.000 0.000 0.000 0.000
#> GSM39819     1  0.2921     0.6865 0.860 0.000 0.140 0.000
#> GSM39820     1  0.0000     0.7284 1.000 0.000 0.000 0.000
#> GSM39821     1  0.4423     0.6471 0.788 0.000 0.176 0.036
#> GSM39822     4  0.5578    -0.2828 0.000 0.312 0.040 0.648
#> GSM39823     3  0.3401     0.7171 0.152 0.000 0.840 0.008
#> GSM39824     2  0.2563     0.8336 0.000 0.908 0.020 0.072
#> GSM39825     1  0.4936     0.4253 0.624 0.000 0.372 0.004
#> GSM39826     1  0.7921    -0.2696 0.348 0.000 0.328 0.324
#> GSM39827     1  0.7553     0.0715 0.476 0.000 0.216 0.308
#> GSM39846     3  0.3300     0.7236 0.144 0.000 0.848 0.008
#> GSM39847     1  0.4379     0.6507 0.792 0.000 0.172 0.036
#> GSM39848     2  0.0000     0.8514 0.000 1.000 0.000 0.000
#> GSM39849     3  0.2840     0.5654 0.044 0.000 0.900 0.056
#> GSM39850     1  0.7909    -0.2319 0.364 0.000 0.312 0.324
#> GSM39851     1  0.0000     0.7284 1.000 0.000 0.000 0.000
#> GSM39855     2  0.2563     0.8336 0.000 0.908 0.020 0.072
#> GSM39856     3  0.3300     0.7236 0.144 0.000 0.848 0.008
#> GSM39858     1  0.4907     0.3217 0.580 0.000 0.420 0.000
#> GSM39859     1  0.4898     0.3310 0.584 0.000 0.416 0.000
#> GSM39862     3  0.6377     0.1243 0.040 0.016 0.568 0.376
#> GSM39863     1  0.0000     0.7284 1.000 0.000 0.000 0.000
#> GSM39865     4  0.5487    -0.4529 0.000 0.400 0.020 0.580
#> GSM39866     1  0.0469     0.7246 0.988 0.000 0.000 0.012
#> GSM39867     1  0.7553     0.0715 0.476 0.000 0.216 0.308
#> GSM39869     2  0.4522     0.8113 0.000 0.680 0.000 0.320
#> GSM39870     1  0.0469     0.7246 0.988 0.000 0.000 0.012
#> GSM39871     3  0.5112     0.0490 0.436 0.000 0.560 0.004
#> GSM39872     3  0.3300     0.7236 0.144 0.000 0.848 0.008
#> GSM39828     1  0.5003     0.5292 0.676 0.000 0.308 0.016
#> GSM39829     1  0.0336     0.7271 0.992 0.000 0.008 0.000
#> GSM39830     1  0.1022     0.7265 0.968 0.000 0.032 0.000
#> GSM39832     1  0.0000     0.7284 1.000 0.000 0.000 0.000
#> GSM39833     3  0.5817     0.2680 0.076 0.000 0.676 0.248
#> GSM39834     1  0.7731    -0.0190 0.428 0.000 0.332 0.240
#> GSM39835     4  0.4713     0.1008 0.000 0.000 0.360 0.640
#> GSM39836     4  0.7799     0.1621 0.272 0.000 0.308 0.420
#> GSM39837     4  0.4767     0.2437 0.020 0.000 0.256 0.724
#> GSM39838     4  0.7799     0.1621 0.272 0.000 0.308 0.420
#> GSM39839     1  0.2921     0.6865 0.860 0.000 0.140 0.000
#> GSM39840     1  0.0000     0.7284 1.000 0.000 0.000 0.000
#> GSM39841     1  0.0000     0.7284 1.000 0.000 0.000 0.000
#> GSM39842     1  0.0000     0.7284 1.000 0.000 0.000 0.000
#> GSM39843     1  0.4605     0.4901 0.664 0.000 0.336 0.000
#> GSM39844     1  0.0000     0.7284 1.000 0.000 0.000 0.000
#> GSM39845     1  0.2345     0.7113 0.900 0.000 0.100 0.000
#> GSM39852     1  0.4057     0.6681 0.816 0.000 0.152 0.032
#> GSM39853     4  0.7731     0.1718 0.240 0.000 0.332 0.428
#> GSM39854     4  0.7748     0.1697 0.244 0.000 0.332 0.424
#> GSM39857     3  0.3401     0.7171 0.152 0.000 0.840 0.008
#> GSM39860     2  0.0000     0.8514 0.000 1.000 0.000 0.000
#> GSM39861     1  0.4804     0.3891 0.616 0.000 0.384 0.000
#> GSM39864     1  0.2198     0.7177 0.920 0.000 0.072 0.008
#> GSM39868     1  0.6897     0.3688 0.588 0.000 0.244 0.168

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.3366     0.7494 0.000 0.768 0.000 0.000 0.232
#> GSM39874     2  0.3366     0.7494 0.000 0.768 0.000 0.000 0.232
#> GSM39875     2  0.3366     0.7494 0.000 0.768 0.000 0.000 0.232
#> GSM39876     2  0.3366     0.7494 0.000 0.768 0.000 0.000 0.232
#> GSM39831     1  0.0162     0.7649 0.996 0.000 0.000 0.000 0.004
#> GSM39819     1  0.2763     0.7215 0.848 0.000 0.148 0.004 0.000
#> GSM39820     1  0.0566     0.7624 0.984 0.000 0.004 0.012 0.000
#> GSM39821     1  0.4504     0.5986 0.748 0.000 0.084 0.168 0.000
#> GSM39822     5  0.6905     0.2968 0.000 0.300 0.004 0.300 0.396
#> GSM39823     3  0.2540     0.7290 0.088 0.000 0.888 0.024 0.000
#> GSM39824     2  0.2824     0.6477 0.000 0.864 0.020 0.000 0.116
#> GSM39825     1  0.4574     0.3827 0.576 0.000 0.412 0.012 0.000
#> GSM39826     4  0.4974     0.7625 0.212 0.000 0.092 0.696 0.000
#> GSM39827     4  0.5750     0.6045 0.388 0.000 0.024 0.544 0.044
#> GSM39846     3  0.2017     0.7309 0.080 0.000 0.912 0.008 0.000
#> GSM39847     1  0.4449     0.6042 0.752 0.000 0.080 0.168 0.000
#> GSM39848     2  0.0162     0.7149 0.000 0.996 0.000 0.004 0.000
#> GSM39849     3  0.1914     0.5969 0.000 0.000 0.924 0.016 0.060
#> GSM39850     4  0.4879     0.7615 0.228 0.000 0.076 0.696 0.000
#> GSM39851     1  0.0162     0.7649 0.996 0.000 0.000 0.000 0.004
#> GSM39855     2  0.2824     0.6477 0.000 0.864 0.020 0.000 0.116
#> GSM39856     3  0.2017     0.7309 0.080 0.000 0.912 0.008 0.000
#> GSM39858     1  0.4443     0.2426 0.524 0.000 0.472 0.004 0.000
#> GSM39859     1  0.4440     0.2533 0.528 0.000 0.468 0.004 0.000
#> GSM39862     3  0.6503     0.0146 0.000 0.000 0.436 0.372 0.192
#> GSM39863     1  0.0162     0.7649 0.996 0.000 0.000 0.000 0.004
#> GSM39865     5  0.6605     0.1639 0.000 0.348 0.000 0.220 0.432
#> GSM39866     1  0.2389     0.6743 0.880 0.000 0.000 0.116 0.004
#> GSM39867     4  0.5750     0.6045 0.388 0.000 0.024 0.544 0.044
#> GSM39869     2  0.4135     0.6040 0.000 0.656 0.000 0.004 0.340
#> GSM39870     1  0.2392     0.6867 0.888 0.000 0.004 0.104 0.004
#> GSM39871     3  0.4276     0.1477 0.380 0.000 0.616 0.004 0.000
#> GSM39872     3  0.2017     0.7309 0.080 0.000 0.912 0.008 0.000
#> GSM39828     1  0.5508     0.5409 0.636 0.000 0.244 0.120 0.000
#> GSM39829     1  0.0609     0.7641 0.980 0.000 0.020 0.000 0.000
#> GSM39830     1  0.1493     0.7618 0.948 0.000 0.028 0.024 0.000
#> GSM39832     1  0.0162     0.7649 0.996 0.000 0.000 0.000 0.004
#> GSM39833     3  0.5396    -0.1085 0.012 0.000 0.492 0.464 0.032
#> GSM39834     4  0.6358     0.6938 0.300 0.000 0.088 0.572 0.040
#> GSM39835     5  0.5941     0.1939 0.000 0.000 0.160 0.256 0.584
#> GSM39836     4  0.5209     0.6957 0.136 0.000 0.056 0.740 0.068
#> GSM39837     4  0.5160     0.1413 0.000 0.004 0.060 0.648 0.288
#> GSM39838     4  0.5209     0.6957 0.136 0.000 0.056 0.740 0.068
#> GSM39839     1  0.2763     0.7215 0.848 0.000 0.148 0.004 0.000
#> GSM39840     1  0.0451     0.7636 0.988 0.000 0.000 0.008 0.004
#> GSM39841     1  0.0162     0.7649 0.996 0.000 0.000 0.000 0.004
#> GSM39842     1  0.0162     0.7649 0.996 0.000 0.000 0.000 0.004
#> GSM39843     1  0.4211     0.4928 0.636 0.000 0.360 0.004 0.000
#> GSM39844     1  0.0162     0.7649 0.996 0.000 0.000 0.000 0.004
#> GSM39845     1  0.2921     0.7343 0.856 0.000 0.124 0.020 0.000
#> GSM39852     1  0.4179     0.6331 0.776 0.000 0.072 0.152 0.000
#> GSM39853     4  0.5772     0.7281 0.160 0.000 0.092 0.692 0.056
#> GSM39854     4  0.5744     0.7324 0.164 0.000 0.092 0.692 0.052
#> GSM39857     3  0.2540     0.7290 0.088 0.000 0.888 0.024 0.000
#> GSM39860     2  0.0162     0.7149 0.000 0.996 0.000 0.004 0.000
#> GSM39861     1  0.4510     0.3199 0.560 0.000 0.432 0.008 0.000
#> GSM39864     1  0.2632     0.7327 0.888 0.000 0.040 0.072 0.000
#> GSM39868     1  0.6148    -0.4253 0.460 0.000 0.052 0.452 0.036

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.3868     0.3657 0.000 0.504 0.000 0.000 0.496 0.000
#> GSM39874     2  0.3868     0.3657 0.000 0.504 0.000 0.000 0.496 0.000
#> GSM39875     2  0.3868     0.3657 0.000 0.504 0.000 0.000 0.496 0.000
#> GSM39876     2  0.3868     0.3657 0.000 0.504 0.000 0.000 0.496 0.000
#> GSM39831     1  0.3838     0.7168 0.552 0.000 0.448 0.000 0.000 0.000
#> GSM39819     3  0.3668    -0.2590 0.328 0.000 0.668 0.004 0.000 0.000
#> GSM39820     1  0.4338     0.6190 0.496 0.000 0.484 0.020 0.000 0.000
#> GSM39821     3  0.6082    -0.2508 0.356 0.000 0.416 0.224 0.004 0.000
#> GSM39822     5  0.5572     0.6219 0.004 0.052 0.000 0.216 0.644 0.084
#> GSM39823     3  0.4408     0.0757 0.416 0.000 0.560 0.020 0.004 0.000
#> GSM39824     2  0.4689     0.1192 0.012 0.644 0.004 0.000 0.304 0.036
#> GSM39825     3  0.1895     0.2846 0.072 0.000 0.912 0.016 0.000 0.000
#> GSM39826     4  0.2217     0.6523 0.048 0.000 0.036 0.908 0.004 0.004
#> GSM39827     4  0.5492     0.5486 0.132 0.000 0.136 0.668 0.000 0.064
#> GSM39846     3  0.4629     0.0545 0.436 0.000 0.524 0.000 0.040 0.000
#> GSM39847     3  0.6068    -0.2558 0.356 0.000 0.420 0.220 0.004 0.000
#> GSM39848     2  0.0000     0.3927 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39849     1  0.6445    -0.4410 0.436 0.000 0.376 0.000 0.052 0.136
#> GSM39850     4  0.2483     0.6530 0.056 0.000 0.044 0.892 0.004 0.004
#> GSM39851     1  0.3838     0.7168 0.552 0.000 0.448 0.000 0.000 0.000
#> GSM39855     2  0.4689     0.1192 0.012 0.644 0.004 0.000 0.304 0.036
#> GSM39856     3  0.4629     0.0545 0.436 0.000 0.524 0.000 0.040 0.000
#> GSM39858     3  0.0146     0.3312 0.000 0.000 0.996 0.004 0.000 0.000
#> GSM39859     3  0.0291     0.3299 0.004 0.000 0.992 0.004 0.000 0.000
#> GSM39862     4  0.8389    -0.0940 0.244 0.000 0.068 0.316 0.236 0.136
#> GSM39863     1  0.3838     0.7168 0.552 0.000 0.448 0.000 0.000 0.000
#> GSM39865     5  0.4796     0.6569 0.004 0.052 0.000 0.152 0.732 0.060
#> GSM39866     1  0.6004     0.4298 0.488 0.000 0.296 0.208 0.000 0.008
#> GSM39867     4  0.5492     0.5486 0.132 0.000 0.136 0.668 0.000 0.064
#> GSM39869     5  0.3934     0.1488 0.000 0.376 0.000 0.000 0.616 0.008
#> GSM39870     1  0.5945     0.4501 0.496 0.000 0.304 0.192 0.000 0.008
#> GSM39871     3  0.2544     0.3502 0.140 0.000 0.852 0.004 0.004 0.000
#> GSM39872     3  0.4629     0.0545 0.436 0.000 0.524 0.000 0.040 0.000
#> GSM39828     3  0.5297     0.0420 0.212 0.000 0.616 0.168 0.004 0.000
#> GSM39829     3  0.3854    -0.5864 0.464 0.000 0.536 0.000 0.000 0.000
#> GSM39830     3  0.4584    -0.5595 0.452 0.000 0.512 0.036 0.000 0.000
#> GSM39832     1  0.3838     0.7168 0.552 0.000 0.448 0.000 0.000 0.000
#> GSM39833     4  0.6991     0.1983 0.268 0.000 0.076 0.516 0.044 0.096
#> GSM39834     4  0.4628     0.6195 0.108 0.000 0.064 0.768 0.032 0.028
#> GSM39835     6  0.2074     0.0000 0.004 0.000 0.000 0.048 0.036 0.912
#> GSM39836     4  0.3207     0.5855 0.004 0.000 0.004 0.840 0.100 0.052
#> GSM39837     4  0.5236     0.2162 0.004 0.000 0.008 0.612 0.284 0.092
#> GSM39838     4  0.3207     0.5855 0.004 0.000 0.004 0.840 0.100 0.052
#> GSM39839     3  0.3668    -0.2590 0.328 0.000 0.668 0.004 0.000 0.000
#> GSM39840     1  0.4067     0.7082 0.548 0.000 0.444 0.008 0.000 0.000
#> GSM39841     1  0.3838     0.7168 0.552 0.000 0.448 0.000 0.000 0.000
#> GSM39842     1  0.3838     0.7168 0.552 0.000 0.448 0.000 0.000 0.000
#> GSM39843     3  0.2442     0.2050 0.144 0.000 0.852 0.004 0.000 0.000
#> GSM39844     1  0.3838     0.7168 0.552 0.000 0.448 0.000 0.000 0.000
#> GSM39845     3  0.4332    -0.3335 0.352 0.000 0.616 0.032 0.000 0.000
#> GSM39852     3  0.5975    -0.2891 0.360 0.000 0.440 0.196 0.004 0.000
#> GSM39853     4  0.2901     0.6183 0.036 0.000 0.012 0.868 0.004 0.080
#> GSM39854     4  0.2758     0.6192 0.036 0.000 0.012 0.872 0.000 0.080
#> GSM39857     3  0.4408     0.0757 0.416 0.000 0.560 0.020 0.004 0.000
#> GSM39860     2  0.0000     0.3927 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39861     3  0.1367     0.3084 0.044 0.000 0.944 0.012 0.000 0.000
#> GSM39864     3  0.5209    -0.4779 0.416 0.000 0.492 0.092 0.000 0.000
#> GSM39868     4  0.6020     0.4868 0.196 0.000 0.128 0.620 0.032 0.024

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-hclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-hclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-hclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-hclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-hclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-hclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-hclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-hclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-hclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-hclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-hclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-hclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-hclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-hclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) other(p) k
#> ATC:hclust 57         0.000136 5.93e-05 2
#> ATC:hclust 44         0.000192 2.11e-03 3
#> ATC:hclust 36         0.001171 3.99e-03 4
#> ATC:hclust 45         0.000542 4.80e-03 5
#> ATC:hclust 20               NA 4.13e-01 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:kmeans**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "kmeans"]
# you can also extract it by
# res = res_list["ATC:kmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'ATC' method.
#>   Subgroups are detected by 'kmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-kmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-kmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.963       0.987         0.3372 0.666   0.666
#> 3 3 0.595           0.761       0.880         0.7662 0.687   0.548
#> 4 4 0.603           0.733       0.834         0.2063 0.752   0.460
#> 5 5 0.711           0.679       0.826         0.0873 0.889   0.624
#> 6 6 0.745           0.595       0.776         0.0443 0.929   0.702

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2   0.000      0.971 0.000 1.000
#> GSM39874     2   0.000      0.971 0.000 1.000
#> GSM39875     2   0.000      0.971 0.000 1.000
#> GSM39876     2   0.000      0.971 0.000 1.000
#> GSM39831     1   0.000      0.989 1.000 0.000
#> GSM39819     1   0.000      0.989 1.000 0.000
#> GSM39820     1   0.000      0.989 1.000 0.000
#> GSM39821     1   0.000      0.989 1.000 0.000
#> GSM39822     2   0.000      0.971 0.000 1.000
#> GSM39823     1   0.000      0.989 1.000 0.000
#> GSM39824     2   0.000      0.971 0.000 1.000
#> GSM39825     1   0.000      0.989 1.000 0.000
#> GSM39826     1   0.000      0.989 1.000 0.000
#> GSM39827     1   0.000      0.989 1.000 0.000
#> GSM39846     1   0.000      0.989 1.000 0.000
#> GSM39847     1   0.000      0.989 1.000 0.000
#> GSM39848     2   0.000      0.971 0.000 1.000
#> GSM39849     1   0.000      0.989 1.000 0.000
#> GSM39850     1   0.000      0.989 1.000 0.000
#> GSM39851     1   0.000      0.989 1.000 0.000
#> GSM39855     2   0.000      0.971 0.000 1.000
#> GSM39856     1   0.000      0.989 1.000 0.000
#> GSM39858     1   0.000      0.989 1.000 0.000
#> GSM39859     1   0.000      0.989 1.000 0.000
#> GSM39862     2   0.891      0.545 0.308 0.692
#> GSM39863     1   0.000      0.989 1.000 0.000
#> GSM39865     2   0.000      0.971 0.000 1.000
#> GSM39866     1   0.000      0.989 1.000 0.000
#> GSM39867     1   0.000      0.989 1.000 0.000
#> GSM39869     2   0.000      0.971 0.000 1.000
#> GSM39870     1   0.000      0.989 1.000 0.000
#> GSM39871     1   0.000      0.989 1.000 0.000
#> GSM39872     1   0.000      0.989 1.000 0.000
#> GSM39828     1   0.000      0.989 1.000 0.000
#> GSM39829     1   0.000      0.989 1.000 0.000
#> GSM39830     1   0.000      0.989 1.000 0.000
#> GSM39832     1   0.000      0.989 1.000 0.000
#> GSM39833     1   0.000      0.989 1.000 0.000
#> GSM39834     1   0.000      0.989 1.000 0.000
#> GSM39835     1   0.994      0.113 0.544 0.456
#> GSM39836     1   0.000      0.989 1.000 0.000
#> GSM39837     1   0.000      0.989 1.000 0.000
#> GSM39838     1   0.000      0.989 1.000 0.000
#> GSM39839     1   0.000      0.989 1.000 0.000
#> GSM39840     1   0.000      0.989 1.000 0.000
#> GSM39841     1   0.000      0.989 1.000 0.000
#> GSM39842     1   0.000      0.989 1.000 0.000
#> GSM39843     1   0.000      0.989 1.000 0.000
#> GSM39844     1   0.000      0.989 1.000 0.000
#> GSM39845     1   0.000      0.989 1.000 0.000
#> GSM39852     1   0.000      0.989 1.000 0.000
#> GSM39853     1   0.000      0.989 1.000 0.000
#> GSM39854     1   0.000      0.989 1.000 0.000
#> GSM39857     1   0.000      0.989 1.000 0.000
#> GSM39860     2   0.000      0.971 0.000 1.000
#> GSM39861     1   0.000      0.989 1.000 0.000
#> GSM39864     1   0.000      0.989 1.000 0.000
#> GSM39868     1   0.000      0.989 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2   0.000      0.951 0.000 1.000 0.000
#> GSM39874     2   0.000      0.951 0.000 1.000 0.000
#> GSM39875     2   0.000      0.951 0.000 1.000 0.000
#> GSM39876     2   0.000      0.951 0.000 1.000 0.000
#> GSM39831     1   0.000      0.869 1.000 0.000 0.000
#> GSM39819     1   0.141      0.859 0.964 0.000 0.036
#> GSM39820     1   0.116      0.862 0.972 0.000 0.028
#> GSM39821     1   0.129      0.855 0.968 0.000 0.032
#> GSM39822     2   0.400      0.838 0.000 0.840 0.160
#> GSM39823     3   0.216      0.781 0.064 0.000 0.936
#> GSM39824     3   0.263      0.685 0.000 0.084 0.916
#> GSM39825     1   0.588      0.508 0.652 0.000 0.348
#> GSM39826     1   0.614      0.130 0.596 0.000 0.404
#> GSM39827     1   0.164      0.853 0.956 0.000 0.044
#> GSM39846     3   0.216      0.781 0.064 0.000 0.936
#> GSM39847     1   0.196      0.848 0.944 0.000 0.056
#> GSM39848     2   0.141      0.950 0.000 0.964 0.036
#> GSM39849     3   0.216      0.781 0.064 0.000 0.936
#> GSM39850     1   0.312      0.807 0.892 0.000 0.108
#> GSM39851     1   0.000      0.869 1.000 0.000 0.000
#> GSM39855     2   0.406      0.846 0.000 0.836 0.164
#> GSM39856     3   0.216      0.781 0.064 0.000 0.936
#> GSM39858     1   0.576      0.526 0.672 0.000 0.328
#> GSM39859     1   0.588      0.508 0.652 0.000 0.348
#> GSM39862     3   0.116      0.730 0.000 0.028 0.972
#> GSM39863     1   0.000      0.869 1.000 0.000 0.000
#> GSM39865     3   0.559      0.409 0.000 0.304 0.696
#> GSM39866     1   0.000      0.869 1.000 0.000 0.000
#> GSM39867     1   0.153      0.854 0.960 0.000 0.040
#> GSM39869     2   0.141      0.950 0.000 0.964 0.036
#> GSM39870     1   0.116      0.862 0.972 0.000 0.028
#> GSM39871     3   0.216      0.781 0.064 0.000 0.936
#> GSM39872     3   0.216      0.781 0.064 0.000 0.936
#> GSM39828     1   0.226      0.841 0.932 0.000 0.068
#> GSM39829     1   0.116      0.862 0.972 0.000 0.028
#> GSM39830     1   0.116      0.862 0.972 0.000 0.028
#> GSM39832     1   0.000      0.869 1.000 0.000 0.000
#> GSM39833     3   0.216      0.769 0.064 0.000 0.936
#> GSM39834     1   0.614      0.130 0.596 0.000 0.404
#> GSM39835     3   0.382      0.720 0.148 0.000 0.852
#> GSM39836     3   0.617      0.477 0.412 0.000 0.588
#> GSM39837     3   0.597      0.558 0.364 0.000 0.636
#> GSM39838     3   0.576      0.582 0.328 0.000 0.672
#> GSM39839     1   0.418      0.750 0.828 0.000 0.172
#> GSM39840     1   0.000      0.869 1.000 0.000 0.000
#> GSM39841     1   0.000      0.869 1.000 0.000 0.000
#> GSM39842     1   0.000      0.869 1.000 0.000 0.000
#> GSM39843     1   0.388      0.781 0.848 0.000 0.152
#> GSM39844     1   0.000      0.869 1.000 0.000 0.000
#> GSM39845     1   0.450      0.728 0.804 0.000 0.196
#> GSM39852     1   0.312      0.807 0.892 0.000 0.108
#> GSM39853     3   0.617      0.477 0.412 0.000 0.588
#> GSM39854     3   0.617      0.477 0.412 0.000 0.588
#> GSM39857     3   0.216      0.781 0.064 0.000 0.936
#> GSM39860     2   0.141      0.950 0.000 0.964 0.036
#> GSM39861     1   0.450      0.728 0.804 0.000 0.196
#> GSM39864     1   0.000      0.869 1.000 0.000 0.000
#> GSM39868     1   0.288      0.816 0.904 0.000 0.096

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0188     0.8975 0.000 0.996 0.000 0.004
#> GSM39874     2  0.0188     0.8975 0.000 0.996 0.000 0.004
#> GSM39875     2  0.0188     0.8975 0.000 0.996 0.000 0.004
#> GSM39876     2  0.0188     0.8975 0.000 0.996 0.000 0.004
#> GSM39831     1  0.1637     0.8505 0.940 0.000 0.000 0.060
#> GSM39819     1  0.1637     0.8205 0.940 0.000 0.060 0.000
#> GSM39820     1  0.0188     0.8500 0.996 0.000 0.004 0.000
#> GSM39821     4  0.4761     0.6273 0.372 0.000 0.000 0.628
#> GSM39822     2  0.6027     0.7465 0.000 0.684 0.124 0.192
#> GSM39823     3  0.3617     0.7779 0.064 0.000 0.860 0.076
#> GSM39824     3  0.3443     0.6375 0.000 0.016 0.848 0.136
#> GSM39825     1  0.6396     0.3070 0.548 0.000 0.380 0.072
#> GSM39826     4  0.3142     0.8140 0.132 0.000 0.008 0.860
#> GSM39827     4  0.4072     0.7857 0.252 0.000 0.000 0.748
#> GSM39846     3  0.2926     0.7919 0.048 0.000 0.896 0.056
#> GSM39847     4  0.4978     0.7058 0.324 0.000 0.012 0.664
#> GSM39848     2  0.3885     0.8810 0.000 0.844 0.092 0.064
#> GSM39849     3  0.2926     0.7919 0.048 0.000 0.896 0.056
#> GSM39850     4  0.3933     0.8173 0.200 0.000 0.008 0.792
#> GSM39851     1  0.1637     0.8505 0.940 0.000 0.000 0.060
#> GSM39855     3  0.6290     0.0577 0.000 0.364 0.568 0.068
#> GSM39856     3  0.2926     0.7919 0.048 0.000 0.896 0.056
#> GSM39858     1  0.5203     0.3072 0.576 0.000 0.416 0.008
#> GSM39859     3  0.6310     0.2617 0.352 0.000 0.576 0.072
#> GSM39862     3  0.3975     0.6136 0.000 0.000 0.760 0.240
#> GSM39863     1  0.1637     0.8505 0.940 0.000 0.000 0.060
#> GSM39865     3  0.7442     0.1520 0.000 0.200 0.496 0.304
#> GSM39866     1  0.1389     0.8490 0.952 0.000 0.000 0.048
#> GSM39867     4  0.4072     0.7856 0.252 0.000 0.000 0.748
#> GSM39869     2  0.4292     0.8719 0.000 0.820 0.100 0.080
#> GSM39870     1  0.0188     0.8500 0.996 0.000 0.004 0.000
#> GSM39871     3  0.3834     0.7713 0.076 0.000 0.848 0.076
#> GSM39872     3  0.2926     0.7919 0.048 0.000 0.896 0.056
#> GSM39828     4  0.4936     0.7171 0.316 0.000 0.012 0.672
#> GSM39829     1  0.0188     0.8500 0.996 0.000 0.004 0.000
#> GSM39830     1  0.0188     0.8500 0.996 0.000 0.004 0.000
#> GSM39832     1  0.1637     0.8505 0.940 0.000 0.000 0.060
#> GSM39833     4  0.4182     0.5836 0.024 0.000 0.180 0.796
#> GSM39834     4  0.3852     0.8198 0.180 0.000 0.012 0.808
#> GSM39835     4  0.4584     0.2954 0.000 0.004 0.300 0.696
#> GSM39836     4  0.2542     0.7915 0.084 0.000 0.012 0.904
#> GSM39837     4  0.2944     0.7400 0.044 0.004 0.052 0.900
#> GSM39838     4  0.2021     0.6905 0.012 0.000 0.056 0.932
#> GSM39839     1  0.2281     0.7917 0.904 0.000 0.096 0.000
#> GSM39840     1  0.1637     0.8505 0.940 0.000 0.000 0.060
#> GSM39841     1  0.1637     0.8505 0.940 0.000 0.000 0.060
#> GSM39842     1  0.1637     0.8505 0.940 0.000 0.000 0.060
#> GSM39843     1  0.4829     0.7040 0.776 0.000 0.156 0.068
#> GSM39844     1  0.1637     0.8505 0.940 0.000 0.000 0.060
#> GSM39845     1  0.5627     0.5936 0.692 0.000 0.240 0.068
#> GSM39852     4  0.4212     0.8131 0.216 0.000 0.012 0.772
#> GSM39853     4  0.2053     0.7895 0.072 0.004 0.000 0.924
#> GSM39854     4  0.2053     0.7895 0.072 0.004 0.000 0.924
#> GSM39857     3  0.2926     0.7919 0.048 0.000 0.896 0.056
#> GSM39860     2  0.3687     0.8846 0.000 0.856 0.080 0.064
#> GSM39861     1  0.5791     0.5365 0.656 0.000 0.284 0.060
#> GSM39864     1  0.1302     0.8488 0.956 0.000 0.000 0.044
#> GSM39868     4  0.4319     0.8069 0.228 0.000 0.012 0.760

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000     0.7890 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     0.7890 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     0.7890 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     0.7890 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.0510     0.8828 0.984 0.000 0.000 0.016 0.000
#> GSM39819     1  0.3752     0.6738 0.708 0.000 0.292 0.000 0.000
#> GSM39820     1  0.2891     0.8092 0.824 0.000 0.176 0.000 0.000
#> GSM39821     4  0.2964     0.8600 0.120 0.000 0.024 0.856 0.000
#> GSM39822     5  0.5635    -0.3466 0.000 0.428 0.000 0.076 0.496
#> GSM39823     3  0.3250     0.5554 0.008 0.000 0.820 0.004 0.168
#> GSM39824     5  0.3461     0.4343 0.000 0.000 0.224 0.004 0.772
#> GSM39825     3  0.3192     0.5896 0.112 0.000 0.848 0.040 0.000
#> GSM39826     4  0.0955     0.8750 0.028 0.000 0.000 0.968 0.004
#> GSM39827     4  0.2463     0.8811 0.100 0.000 0.008 0.888 0.004
#> GSM39846     3  0.4192     0.3777 0.000 0.000 0.596 0.000 0.404
#> GSM39847     4  0.3390     0.8520 0.100 0.000 0.060 0.840 0.000
#> GSM39848     2  0.4066     0.6367 0.000 0.672 0.000 0.004 0.324
#> GSM39849     3  0.4403     0.3381 0.000 0.000 0.560 0.004 0.436
#> GSM39850     4  0.1991     0.8874 0.076 0.000 0.004 0.916 0.004
#> GSM39851     1  0.0510     0.8828 0.984 0.000 0.000 0.016 0.000
#> GSM39855     5  0.4171     0.4996 0.000 0.112 0.104 0.000 0.784
#> GSM39856     3  0.4192     0.3777 0.000 0.000 0.596 0.000 0.404
#> GSM39858     3  0.3391     0.5753 0.188 0.000 0.800 0.000 0.012
#> GSM39859     3  0.2546     0.5979 0.048 0.000 0.904 0.036 0.012
#> GSM39862     5  0.3321     0.5340 0.000 0.000 0.136 0.032 0.832
#> GSM39863     1  0.0510     0.8828 0.984 0.000 0.000 0.016 0.000
#> GSM39865     5  0.3107     0.5285 0.000 0.032 0.012 0.088 0.868
#> GSM39866     1  0.1211     0.8794 0.960 0.000 0.024 0.016 0.000
#> GSM39867     4  0.2477     0.8846 0.092 0.000 0.008 0.892 0.008
#> GSM39869     2  0.4542     0.4183 0.000 0.536 0.000 0.008 0.456
#> GSM39870     1  0.2891     0.8092 0.824 0.000 0.176 0.000 0.000
#> GSM39871     3  0.1764     0.5885 0.008 0.000 0.928 0.000 0.064
#> GSM39872     3  0.4367     0.3687 0.000 0.000 0.580 0.004 0.416
#> GSM39828     4  0.3401     0.8532 0.096 0.000 0.064 0.840 0.000
#> GSM39829     1  0.2891     0.8092 0.824 0.000 0.176 0.000 0.000
#> GSM39830     1  0.2966     0.8036 0.816 0.000 0.184 0.000 0.000
#> GSM39832     1  0.0671     0.8811 0.980 0.000 0.000 0.016 0.004
#> GSM39833     4  0.3779     0.7375 0.000 0.000 0.052 0.804 0.144
#> GSM39834     4  0.2046     0.8877 0.068 0.000 0.016 0.916 0.000
#> GSM39835     5  0.4907    -0.0915 0.000 0.000 0.024 0.484 0.492
#> GSM39836     4  0.0671     0.8685 0.016 0.000 0.000 0.980 0.004
#> GSM39837     4  0.3320     0.7633 0.012 0.000 0.004 0.820 0.164
#> GSM39838     4  0.2964     0.7660 0.004 0.000 0.004 0.840 0.152
#> GSM39839     1  0.4150     0.5008 0.612 0.000 0.388 0.000 0.000
#> GSM39840     1  0.0510     0.8828 0.984 0.000 0.000 0.016 0.000
#> GSM39841     1  0.0510     0.8828 0.984 0.000 0.000 0.016 0.000
#> GSM39842     1  0.0671     0.8811 0.980 0.000 0.000 0.016 0.004
#> GSM39843     3  0.4666     0.3734 0.284 0.000 0.676 0.040 0.000
#> GSM39844     1  0.0671     0.8811 0.980 0.000 0.000 0.016 0.004
#> GSM39845     3  0.5105     0.4014 0.264 0.000 0.660 0.076 0.000
#> GSM39852     4  0.2331     0.8856 0.080 0.000 0.020 0.900 0.000
#> GSM39853     4  0.2520     0.8262 0.012 0.000 0.004 0.888 0.096
#> GSM39854     4  0.2520     0.8262 0.012 0.000 0.004 0.888 0.096
#> GSM39857     3  0.3612     0.4930 0.000 0.000 0.732 0.000 0.268
#> GSM39860     2  0.3928     0.6619 0.000 0.700 0.000 0.004 0.296
#> GSM39861     3  0.4429     0.5372 0.192 0.000 0.744 0.064 0.000
#> GSM39864     1  0.1800     0.8708 0.932 0.000 0.048 0.020 0.000
#> GSM39868     4  0.2423     0.8849 0.080 0.000 0.024 0.896 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.3608      0.667 0.000 0.716 0.012 0.000 0.272 0.000
#> GSM39874     2  0.3608      0.667 0.000 0.716 0.012 0.000 0.272 0.000
#> GSM39875     2  0.3608      0.667 0.000 0.716 0.012 0.000 0.272 0.000
#> GSM39876     2  0.3608      0.667 0.000 0.716 0.012 0.000 0.272 0.000
#> GSM39831     1  0.0146      0.841 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM39819     3  0.4739      0.014 0.436 0.000 0.516 0.000 0.048 0.000
#> GSM39820     1  0.4788      0.583 0.648 0.000 0.276 0.008 0.068 0.000
#> GSM39821     4  0.2475      0.770 0.060 0.000 0.036 0.892 0.012 0.000
#> GSM39822     2  0.6119     -0.276 0.000 0.444 0.000 0.024 0.388 0.144
#> GSM39823     3  0.3937     -0.210 0.000 0.000 0.572 0.004 0.000 0.424
#> GSM39824     6  0.3008      0.532 0.000 0.032 0.036 0.000 0.068 0.864
#> GSM39825     3  0.2450      0.690 0.064 0.000 0.896 0.024 0.004 0.012
#> GSM39826     4  0.0508      0.786 0.004 0.000 0.000 0.984 0.012 0.000
#> GSM39827     4  0.1461      0.787 0.044 0.000 0.000 0.940 0.016 0.000
#> GSM39846     6  0.2941      0.722 0.000 0.000 0.220 0.000 0.000 0.780
#> GSM39847     4  0.2764      0.747 0.028 0.000 0.100 0.864 0.008 0.000
#> GSM39848     2  0.2979      0.536 0.000 0.848 0.032 0.000 0.008 0.112
#> GSM39849     6  0.3136      0.713 0.000 0.000 0.188 0.000 0.016 0.796
#> GSM39850     4  0.0717      0.788 0.016 0.000 0.000 0.976 0.008 0.000
#> GSM39851     1  0.0000      0.841 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39855     6  0.5324      0.112 0.000 0.248 0.052 0.000 0.060 0.640
#> GSM39856     6  0.2941      0.722 0.000 0.000 0.220 0.000 0.000 0.780
#> GSM39858     3  0.2555      0.694 0.096 0.000 0.876 0.000 0.008 0.020
#> GSM39859     3  0.2570      0.647 0.024 0.000 0.888 0.024 0.000 0.064
#> GSM39862     6  0.3454      0.360 0.000 0.024 0.008 0.004 0.160 0.804
#> GSM39863     1  0.0000      0.841 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39865     5  0.6511      0.334 0.000 0.216 0.000 0.028 0.380 0.376
#> GSM39866     1  0.3067      0.796 0.864 0.000 0.040 0.024 0.068 0.004
#> GSM39867     4  0.2265      0.772 0.076 0.000 0.000 0.896 0.024 0.004
#> GSM39869     2  0.5300      0.217 0.000 0.632 0.016 0.000 0.232 0.120
#> GSM39870     1  0.4825      0.570 0.640 0.000 0.284 0.008 0.068 0.000
#> GSM39871     3  0.3499      0.170 0.000 0.000 0.680 0.000 0.000 0.320
#> GSM39872     6  0.3133      0.719 0.000 0.000 0.212 0.000 0.008 0.780
#> GSM39828     4  0.2815      0.747 0.028 0.000 0.096 0.864 0.012 0.000
#> GSM39829     1  0.4632      0.587 0.656 0.000 0.276 0.004 0.064 0.000
#> GSM39830     1  0.4756      0.558 0.636 0.000 0.292 0.004 0.068 0.000
#> GSM39832     1  0.0146      0.841 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM39833     4  0.4892      0.418 0.000 0.000 0.012 0.592 0.348 0.048
#> GSM39834     4  0.2389      0.778 0.016 0.000 0.020 0.904 0.052 0.008
#> GSM39835     5  0.5935      0.422 0.000 0.000 0.028 0.204 0.572 0.196
#> GSM39836     4  0.1196      0.781 0.000 0.000 0.008 0.952 0.040 0.000
#> GSM39837     4  0.3838      0.288 0.000 0.000 0.000 0.552 0.448 0.000
#> GSM39838     4  0.4124      0.502 0.000 0.000 0.008 0.648 0.332 0.012
#> GSM39839     3  0.4511      0.362 0.332 0.000 0.620 0.000 0.048 0.000
#> GSM39840     1  0.0146      0.841 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM39841     1  0.0000      0.841 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39842     1  0.0291      0.840 0.992 0.000 0.000 0.004 0.004 0.000
#> GSM39843     3  0.3349      0.683 0.164 0.000 0.804 0.024 0.008 0.000
#> GSM39844     1  0.0146      0.841 0.996 0.000 0.000 0.004 0.000 0.000
#> GSM39845     3  0.4180      0.674 0.096 0.000 0.784 0.076 0.044 0.000
#> GSM39852     4  0.2186      0.783 0.024 0.000 0.024 0.916 0.032 0.004
#> GSM39853     4  0.3563      0.525 0.000 0.000 0.000 0.664 0.336 0.000
#> GSM39854     4  0.3547      0.530 0.000 0.000 0.000 0.668 0.332 0.000
#> GSM39857     6  0.3838      0.399 0.000 0.000 0.448 0.000 0.000 0.552
#> GSM39860     2  0.2487      0.554 0.000 0.876 0.032 0.000 0.000 0.092
#> GSM39861     3  0.2404      0.699 0.080 0.000 0.884 0.036 0.000 0.000
#> GSM39864     1  0.3505      0.773 0.824 0.000 0.092 0.016 0.068 0.000
#> GSM39868     4  0.2869      0.771 0.024 0.000 0.036 0.880 0.052 0.008

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-kmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-kmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-kmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-kmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-kmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-kmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-kmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-kmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-kmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-kmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-kmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-kmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-kmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-kmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) other(p) k
#> ATC:kmeans 57         7.23e-04 2.01e-04 2
#> ATC:kmeans 52         3.19e-05 8.23e-04 3
#> ATC:kmeans 52         2.71e-05 5.49e-05 4
#> ATC:kmeans 46         7.10e-06 1.55e-04 5
#> ATC:kmeans 45         9.71e-06 1.97e-04 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:skmeans*

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "skmeans"]
# you can also extract it by
# res = res_list["ATC:skmeans"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'ATC' method.
#>   Subgroups are detected by 'skmeans' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 3.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-skmeans-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-skmeans-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.999           0.949       0.980         0.4967 0.506   0.506
#> 3 3 0.935           0.918       0.965         0.3109 0.792   0.609
#> 4 4 0.768           0.770       0.901         0.1183 0.833   0.577
#> 5 5 0.639           0.580       0.736         0.0685 0.855   0.548
#> 6 6 0.684           0.608       0.788         0.0381 0.955   0.806

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 3
#> attr(,"optional")
#> [1] 2

There is also optional best \(k\) = 2 that is worth to check.

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2   0.000      0.984 0.000 1.000
#> GSM39874     2   0.000      0.984 0.000 1.000
#> GSM39875     2   0.000      0.984 0.000 1.000
#> GSM39876     2   0.000      0.984 0.000 1.000
#> GSM39831     1   0.000      0.974 1.000 0.000
#> GSM39819     1   0.000      0.974 1.000 0.000
#> GSM39820     1   0.000      0.974 1.000 0.000
#> GSM39821     1   0.000      0.974 1.000 0.000
#> GSM39822     2   0.000      0.984 0.000 1.000
#> GSM39823     1   0.985      0.268 0.572 0.428
#> GSM39824     2   0.000      0.984 0.000 1.000
#> GSM39825     1   0.000      0.974 1.000 0.000
#> GSM39826     1   0.163      0.952 0.976 0.024
#> GSM39827     1   0.000      0.974 1.000 0.000
#> GSM39846     2   0.000      0.984 0.000 1.000
#> GSM39847     1   0.000      0.974 1.000 0.000
#> GSM39848     2   0.000      0.984 0.000 1.000
#> GSM39849     2   0.000      0.984 0.000 1.000
#> GSM39850     1   0.000      0.974 1.000 0.000
#> GSM39851     1   0.000      0.974 1.000 0.000
#> GSM39855     2   0.000      0.984 0.000 1.000
#> GSM39856     2   0.000      0.984 0.000 1.000
#> GSM39858     1   0.000      0.974 1.000 0.000
#> GSM39859     1   0.000      0.974 1.000 0.000
#> GSM39862     2   0.000      0.984 0.000 1.000
#> GSM39863     1   0.000      0.974 1.000 0.000
#> GSM39865     2   0.000      0.984 0.000 1.000
#> GSM39866     1   0.000      0.974 1.000 0.000
#> GSM39867     1   0.000      0.974 1.000 0.000
#> GSM39869     2   0.000      0.984 0.000 1.000
#> GSM39870     1   0.000      0.974 1.000 0.000
#> GSM39871     1   0.952      0.418 0.628 0.372
#> GSM39872     2   0.000      0.984 0.000 1.000
#> GSM39828     1   0.000      0.974 1.000 0.000
#> GSM39829     1   0.000      0.974 1.000 0.000
#> GSM39830     1   0.000      0.974 1.000 0.000
#> GSM39832     1   0.000      0.974 1.000 0.000
#> GSM39833     2   0.000      0.984 0.000 1.000
#> GSM39834     1   0.000      0.974 1.000 0.000
#> GSM39835     2   0.000      0.984 0.000 1.000
#> GSM39836     2   0.814      0.653 0.252 0.748
#> GSM39837     2   0.000      0.984 0.000 1.000
#> GSM39838     2   0.000      0.984 0.000 1.000
#> GSM39839     1   0.000      0.974 1.000 0.000
#> GSM39840     1   0.000      0.974 1.000 0.000
#> GSM39841     1   0.000      0.974 1.000 0.000
#> GSM39842     1   0.000      0.974 1.000 0.000
#> GSM39843     1   0.000      0.974 1.000 0.000
#> GSM39844     1   0.000      0.974 1.000 0.000
#> GSM39845     1   0.000      0.974 1.000 0.000
#> GSM39852     1   0.000      0.974 1.000 0.000
#> GSM39853     2   0.456      0.885 0.096 0.904
#> GSM39854     2   0.000      0.984 0.000 1.000
#> GSM39857     2   0.000      0.984 0.000 1.000
#> GSM39860     2   0.000      0.984 0.000 1.000
#> GSM39861     1   0.000      0.974 1.000 0.000
#> GSM39864     1   0.000      0.974 1.000 0.000
#> GSM39868     1   0.000      0.974 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39874     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39875     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39876     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39831     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39819     1  0.5882     0.4054 0.652 0.000 0.348
#> GSM39820     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39821     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39822     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39823     3  0.0424     0.9384 0.008 0.000 0.992
#> GSM39824     2  0.1411     0.9445 0.000 0.964 0.036
#> GSM39825     3  0.2165     0.9318 0.064 0.000 0.936
#> GSM39826     1  0.0848     0.9494 0.984 0.008 0.008
#> GSM39827     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39846     3  0.0424     0.9372 0.000 0.008 0.992
#> GSM39847     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39848     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39849     3  0.0424     0.9372 0.000 0.008 0.992
#> GSM39850     1  0.0424     0.9561 0.992 0.000 0.008
#> GSM39851     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39855     2  0.0747     0.9628 0.000 0.984 0.016
#> GSM39856     3  0.0424     0.9372 0.000 0.008 0.992
#> GSM39858     3  0.2165     0.9318 0.064 0.000 0.936
#> GSM39859     3  0.2165     0.9318 0.064 0.000 0.936
#> GSM39862     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39863     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39865     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39866     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39867     1  0.0237     0.9587 0.996 0.000 0.004
#> GSM39869     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39870     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39871     3  0.0424     0.9384 0.008 0.000 0.992
#> GSM39872     3  0.0424     0.9372 0.000 0.008 0.992
#> GSM39828     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39829     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39830     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39832     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39833     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39834     1  0.0424     0.9561 0.992 0.000 0.008
#> GSM39835     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39836     2  0.6047     0.5433 0.312 0.680 0.008
#> GSM39837     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39838     2  0.0424     0.9700 0.000 0.992 0.008
#> GSM39839     3  0.3267     0.8932 0.116 0.000 0.884
#> GSM39840     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39841     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39842     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39843     3  0.3116     0.9018 0.108 0.000 0.892
#> GSM39844     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39845     1  0.6308    -0.0697 0.508 0.000 0.492
#> GSM39852     1  0.0424     0.9561 0.992 0.000 0.008
#> GSM39853     2  0.0848     0.9643 0.008 0.984 0.008
#> GSM39854     2  0.0424     0.9700 0.000 0.992 0.008
#> GSM39857     3  0.0424     0.9372 0.000 0.008 0.992
#> GSM39860     2  0.0000     0.9744 0.000 1.000 0.000
#> GSM39861     3  0.5216     0.6865 0.260 0.000 0.740
#> GSM39864     1  0.0000     0.9609 1.000 0.000 0.000
#> GSM39868     1  0.0237     0.9587 0.996 0.000 0.004

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000     0.9376 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000     0.9376 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000     0.9376 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000     0.9376 0.000 1.000 0.000 0.000
#> GSM39831     1  0.0469     0.8650 0.988 0.000 0.000 0.012
#> GSM39819     1  0.1004     0.8486 0.972 0.000 0.004 0.024
#> GSM39820     1  0.0000     0.8622 1.000 0.000 0.000 0.000
#> GSM39821     1  0.4981     0.1851 0.536 0.000 0.000 0.464
#> GSM39822     2  0.0000     0.9376 0.000 1.000 0.000 0.000
#> GSM39823     3  0.0000     0.8819 0.000 0.000 1.000 0.000
#> GSM39824     2  0.4222     0.6392 0.000 0.728 0.272 0.000
#> GSM39825     3  0.4955     0.6479 0.268 0.000 0.708 0.024
#> GSM39826     4  0.0921     0.8028 0.028 0.000 0.000 0.972
#> GSM39827     1  0.3873     0.6545 0.772 0.000 0.000 0.228
#> GSM39846     3  0.0000     0.8819 0.000 0.000 1.000 0.000
#> GSM39847     1  0.4697     0.4701 0.644 0.000 0.000 0.356
#> GSM39848     2  0.0000     0.9376 0.000 1.000 0.000 0.000
#> GSM39849     3  0.0188     0.8789 0.000 0.004 0.996 0.000
#> GSM39850     4  0.0921     0.8028 0.028 0.000 0.000 0.972
#> GSM39851     1  0.0469     0.8650 0.988 0.000 0.000 0.012
#> GSM39855     2  0.2469     0.8578 0.000 0.892 0.108 0.000
#> GSM39856     3  0.0000     0.8819 0.000 0.000 1.000 0.000
#> GSM39858     3  0.4927     0.6552 0.264 0.000 0.712 0.024
#> GSM39859     3  0.4387     0.7359 0.200 0.000 0.776 0.024
#> GSM39862     2  0.1792     0.8948 0.000 0.932 0.068 0.000
#> GSM39863     1  0.0469     0.8650 0.988 0.000 0.000 0.012
#> GSM39865     2  0.0000     0.9376 0.000 1.000 0.000 0.000
#> GSM39866     1  0.0469     0.8650 0.988 0.000 0.000 0.012
#> GSM39867     4  0.4977     0.1129 0.460 0.000 0.000 0.540
#> GSM39869     2  0.0000     0.9376 0.000 1.000 0.000 0.000
#> GSM39870     1  0.0188     0.8608 0.996 0.000 0.000 0.004
#> GSM39871     3  0.0188     0.8805 0.000 0.000 0.996 0.004
#> GSM39872     3  0.0000     0.8819 0.000 0.000 1.000 0.000
#> GSM39828     1  0.4776     0.4305 0.624 0.000 0.000 0.376
#> GSM39829     1  0.0000     0.8622 1.000 0.000 0.000 0.000
#> GSM39830     1  0.0188     0.8610 0.996 0.000 0.000 0.004
#> GSM39832     1  0.0469     0.8650 0.988 0.000 0.000 0.012
#> GSM39833     2  0.1724     0.9128 0.000 0.948 0.032 0.020
#> GSM39834     4  0.1389     0.8036 0.048 0.000 0.000 0.952
#> GSM39835     2  0.0188     0.9359 0.000 0.996 0.000 0.004
#> GSM39836     4  0.1302     0.7885 0.000 0.044 0.000 0.956
#> GSM39837     2  0.0469     0.9321 0.000 0.988 0.000 0.012
#> GSM39838     2  0.4522     0.4762 0.000 0.680 0.000 0.320
#> GSM39839     1  0.1733     0.8348 0.948 0.000 0.028 0.024
#> GSM39840     1  0.0469     0.8650 0.988 0.000 0.000 0.012
#> GSM39841     1  0.0469     0.8650 0.988 0.000 0.000 0.012
#> GSM39842     1  0.0469     0.8650 0.988 0.000 0.000 0.012
#> GSM39843     1  0.3080     0.7815 0.880 0.000 0.096 0.024
#> GSM39844     1  0.0469     0.8650 0.988 0.000 0.000 0.012
#> GSM39845     1  0.5159     0.3364 0.624 0.000 0.364 0.012
#> GSM39852     4  0.2345     0.7847 0.100 0.000 0.000 0.900
#> GSM39853     4  0.4991     0.3210 0.004 0.388 0.000 0.608
#> GSM39854     4  0.3569     0.6701 0.000 0.196 0.000 0.804
#> GSM39857     3  0.0000     0.8819 0.000 0.000 1.000 0.000
#> GSM39860     2  0.0000     0.9376 0.000 1.000 0.000 0.000
#> GSM39861     1  0.5696    -0.0988 0.492 0.000 0.484 0.024
#> GSM39864     1  0.0469     0.8650 0.988 0.000 0.000 0.012
#> GSM39868     4  0.2921     0.7545 0.140 0.000 0.000 0.860

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000     0.8100 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     0.8100 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     0.8100 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     0.8100 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.0000     0.8604 1.000 0.000 0.000 0.000 0.000
#> GSM39819     1  0.4030     0.3974 0.648 0.000 0.352 0.000 0.000
#> GSM39820     1  0.2732     0.7585 0.840 0.000 0.160 0.000 0.000
#> GSM39821     4  0.4610     0.4934 0.388 0.000 0.000 0.596 0.016
#> GSM39822     2  0.0000     0.8100 0.000 1.000 0.000 0.000 0.000
#> GSM39823     3  0.4192    -0.7154 0.000 0.000 0.596 0.000 0.404
#> GSM39824     2  0.4752     0.4015 0.000 0.568 0.020 0.000 0.412
#> GSM39825     3  0.2843     0.4668 0.144 0.000 0.848 0.000 0.008
#> GSM39826     4  0.2293     0.6770 0.016 0.000 0.000 0.900 0.084
#> GSM39827     1  0.4849     0.5437 0.724 0.000 0.000 0.136 0.140
#> GSM39846     5  0.4242     0.9693 0.000 0.000 0.428 0.000 0.572
#> GSM39847     4  0.5933     0.4435 0.388 0.000 0.076 0.524 0.012
#> GSM39848     2  0.1121     0.8054 0.000 0.956 0.000 0.000 0.044
#> GSM39849     5  0.4331     0.9527 0.000 0.004 0.400 0.000 0.596
#> GSM39850     4  0.2278     0.6930 0.032 0.000 0.000 0.908 0.060
#> GSM39851     1  0.0162     0.8603 0.996 0.000 0.000 0.000 0.004
#> GSM39855     2  0.4268     0.5366 0.000 0.648 0.008 0.000 0.344
#> GSM39856     5  0.4256     0.9617 0.000 0.000 0.436 0.000 0.564
#> GSM39858     3  0.2583     0.4640 0.132 0.000 0.864 0.000 0.004
#> GSM39859     3  0.2653     0.4011 0.096 0.000 0.880 0.000 0.024
#> GSM39862     2  0.4333     0.5467 0.000 0.640 0.004 0.004 0.352
#> GSM39863     1  0.0000     0.8604 1.000 0.000 0.000 0.000 0.000
#> GSM39865     2  0.0963     0.8066 0.000 0.964 0.000 0.000 0.036
#> GSM39866     1  0.1074     0.8521 0.968 0.000 0.012 0.004 0.016
#> GSM39867     1  0.5733     0.3262 0.620 0.000 0.000 0.160 0.220
#> GSM39869     2  0.0404     0.8094 0.000 0.988 0.000 0.000 0.012
#> GSM39870     1  0.2970     0.7479 0.828 0.000 0.168 0.000 0.004
#> GSM39871     3  0.4015    -0.5779 0.000 0.000 0.652 0.000 0.348
#> GSM39872     5  0.4219     0.9691 0.000 0.000 0.416 0.000 0.584
#> GSM39828     4  0.6636     0.4657 0.356 0.000 0.104 0.504 0.036
#> GSM39829     1  0.2690     0.7629 0.844 0.000 0.156 0.000 0.000
#> GSM39830     1  0.2561     0.7700 0.856 0.000 0.144 0.000 0.000
#> GSM39832     1  0.0290     0.8597 0.992 0.000 0.000 0.000 0.008
#> GSM39833     2  0.5873     0.5842 0.000 0.556 0.024 0.056 0.364
#> GSM39834     4  0.4226     0.6997 0.140 0.000 0.000 0.776 0.084
#> GSM39835     2  0.3359     0.7453 0.000 0.816 0.000 0.020 0.164
#> GSM39836     4  0.0798     0.6751 0.000 0.016 0.000 0.976 0.008
#> GSM39837     2  0.4413     0.6540 0.000 0.724 0.000 0.044 0.232
#> GSM39838     2  0.5446     0.5313 0.000 0.628 0.000 0.272 0.100
#> GSM39839     3  0.4307    -0.0463 0.500 0.000 0.500 0.000 0.000
#> GSM39840     1  0.0290     0.8597 0.992 0.000 0.000 0.000 0.008
#> GSM39841     1  0.0000     0.8604 1.000 0.000 0.000 0.000 0.000
#> GSM39842     1  0.0404     0.8582 0.988 0.000 0.000 0.000 0.012
#> GSM39843     3  0.4855     0.2038 0.436 0.000 0.544 0.004 0.016
#> GSM39844     1  0.0290     0.8597 0.992 0.000 0.000 0.000 0.008
#> GSM39845     3  0.4560     0.0335 0.484 0.000 0.508 0.000 0.008
#> GSM39852     4  0.3241     0.7127 0.144 0.000 0.000 0.832 0.024
#> GSM39853     2  0.6808     0.0537 0.000 0.360 0.000 0.300 0.340
#> GSM39854     4  0.6657     0.1166 0.000 0.236 0.000 0.424 0.340
#> GSM39857     3  0.4304    -0.8512 0.000 0.000 0.516 0.000 0.484
#> GSM39860     2  0.1121     0.8054 0.000 0.956 0.000 0.000 0.044
#> GSM39861     3  0.3607     0.4979 0.244 0.000 0.752 0.000 0.004
#> GSM39864     1  0.0693     0.8564 0.980 0.000 0.012 0.000 0.008
#> GSM39868     4  0.3513     0.7056 0.180 0.000 0.000 0.800 0.020

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     5  0.1082     0.7634 0.000 0.040 0.000 0.000 0.956 0.004
#> GSM39874     5  0.1082     0.7634 0.000 0.040 0.000 0.000 0.956 0.004
#> GSM39875     5  0.1082     0.7634 0.000 0.040 0.000 0.000 0.956 0.004
#> GSM39876     5  0.1082     0.7634 0.000 0.040 0.000 0.000 0.956 0.004
#> GSM39831     1  0.0000     0.8005 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39819     1  0.4693     0.2172 0.564 0.040 0.392 0.004 0.000 0.000
#> GSM39820     1  0.4320     0.5817 0.704 0.048 0.240 0.008 0.000 0.000
#> GSM39821     4  0.5399     0.5135 0.360 0.032 0.056 0.552 0.000 0.000
#> GSM39822     5  0.0937     0.7632 0.000 0.040 0.000 0.000 0.960 0.000
#> GSM39823     6  0.4761     0.6000 0.000 0.032 0.312 0.024 0.000 0.632
#> GSM39824     5  0.4450     0.3901 0.000 0.016 0.012 0.000 0.592 0.380
#> GSM39825     3  0.4643     0.6484 0.096 0.024 0.728 0.000 0.000 0.152
#> GSM39826     4  0.4555     0.5111 0.016 0.272 0.040 0.672 0.000 0.000
#> GSM39827     1  0.5295     0.3851 0.656 0.208 0.032 0.104 0.000 0.000
#> GSM39846     6  0.0632     0.8272 0.000 0.000 0.024 0.000 0.000 0.976
#> GSM39847     4  0.6235     0.5678 0.264 0.052 0.144 0.540 0.000 0.000
#> GSM39848     5  0.0725     0.7581 0.000 0.012 0.012 0.000 0.976 0.000
#> GSM39849     6  0.1232     0.8122 0.000 0.024 0.016 0.004 0.000 0.956
#> GSM39850     4  0.4771     0.5353 0.032 0.256 0.040 0.672 0.000 0.000
#> GSM39851     1  0.0000     0.8005 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39855     5  0.3665     0.5968 0.000 0.016 0.012 0.000 0.760 0.212
#> GSM39856     6  0.0632     0.8274 0.000 0.000 0.024 0.000 0.000 0.976
#> GSM39858     3  0.4166     0.6553 0.088 0.004 0.748 0.000 0.000 0.160
#> GSM39859     3  0.4176     0.5845 0.064 0.004 0.732 0.000 0.000 0.200
#> GSM39862     5  0.5153     0.4892 0.000 0.040 0.024 0.020 0.656 0.260
#> GSM39863     1  0.0000     0.8005 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39865     5  0.0508     0.7602 0.000 0.004 0.012 0.000 0.984 0.000
#> GSM39866     1  0.2585     0.7622 0.888 0.016 0.048 0.048 0.000 0.000
#> GSM39867     1  0.5275     0.2329 0.556 0.364 0.024 0.056 0.000 0.000
#> GSM39869     5  0.0260     0.7629 0.000 0.008 0.000 0.000 0.992 0.000
#> GSM39870     1  0.4415     0.5779 0.700 0.048 0.240 0.012 0.000 0.000
#> GSM39871     6  0.3634     0.5296 0.000 0.000 0.356 0.000 0.000 0.644
#> GSM39872     6  0.0551     0.8182 0.000 0.008 0.004 0.000 0.004 0.984
#> GSM39828     4  0.6584     0.5382 0.256 0.068 0.172 0.504 0.000 0.000
#> GSM39829     1  0.4094     0.6107 0.728 0.040 0.224 0.008 0.000 0.000
#> GSM39830     1  0.3595     0.6605 0.780 0.036 0.180 0.004 0.000 0.000
#> GSM39832     1  0.0000     0.8005 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39833     2  0.7441     0.2057 0.000 0.404 0.068 0.052 0.348 0.128
#> GSM39834     4  0.5855     0.5007 0.140 0.176 0.052 0.628 0.000 0.004
#> GSM39835     5  0.4944     0.2376 0.000 0.332 0.016 0.012 0.612 0.028
#> GSM39836     4  0.2069     0.5555 0.000 0.068 0.020 0.908 0.004 0.000
#> GSM39837     5  0.4841    -0.0634 0.000 0.424 0.024 0.020 0.532 0.000
#> GSM39838     5  0.5695     0.2428 0.000 0.136 0.024 0.252 0.588 0.000
#> GSM39839     3  0.4400     0.4633 0.332 0.032 0.632 0.004 0.000 0.000
#> GSM39840     1  0.0291     0.7976 0.992 0.000 0.004 0.004 0.000 0.000
#> GSM39841     1  0.0146     0.7997 0.996 0.000 0.004 0.000 0.000 0.000
#> GSM39842     1  0.0508     0.7963 0.984 0.012 0.000 0.004 0.000 0.000
#> GSM39843     3  0.4486     0.6344 0.272 0.032 0.680 0.008 0.000 0.008
#> GSM39844     1  0.0000     0.8005 1.000 0.000 0.000 0.000 0.000 0.000
#> GSM39845     3  0.5736     0.1764 0.424 0.036 0.476 0.004 0.000 0.060
#> GSM39852     4  0.2133     0.6201 0.052 0.016 0.020 0.912 0.000 0.000
#> GSM39853     2  0.3390     0.6144 0.008 0.808 0.000 0.032 0.152 0.000
#> GSM39854     2  0.3967     0.5288 0.000 0.776 0.008 0.132 0.084 0.000
#> GSM39857     6  0.3558     0.7637 0.000 0.028 0.168 0.012 0.000 0.792
#> GSM39860     5  0.0870     0.7570 0.000 0.012 0.012 0.000 0.972 0.004
#> GSM39861     3  0.4188     0.6902 0.140 0.008 0.756 0.000 0.000 0.096
#> GSM39864     1  0.1787     0.7816 0.932 0.016 0.020 0.032 0.000 0.000
#> GSM39868     4  0.4498     0.6050 0.160 0.052 0.036 0.748 0.000 0.004

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-skmeans-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-skmeans-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-skmeans-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-skmeans-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-skmeans-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-skmeans-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-skmeans-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-skmeans-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-skmeans-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-skmeans-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-skmeans-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-skmeans-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-skmeans-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-skmeans-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>              n disease.state(p) other(p) k
#> ATC:skmeans 56          0.06116   0.0871 2
#> ATC:skmeans 56          0.01508   0.0719 3
#> ATC:skmeans 50          0.01737   0.0119 4
#> ATC:skmeans 40          0.05999   0.1024 5
#> ATC:skmeans 47          0.00636   0.0253 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:pam**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "pam"]
# you can also extract it by
# res = res_list["ATC:pam"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'ATC' method.
#>   Subgroups are detected by 'pam' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-pam-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-pam-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 1.000           0.990       0.996         0.2660 0.733   0.733
#> 3 3 0.473           0.607       0.783         1.0578 0.691   0.579
#> 4 4 0.549           0.587       0.827         0.2524 0.796   0.571
#> 5 5 0.657           0.686       0.855         0.1026 0.822   0.509
#> 6 6 0.669           0.641       0.820         0.0456 0.895   0.603

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2   0.000      0.980 0.000 1.000
#> GSM39874     2   0.000      0.980 0.000 1.000
#> GSM39875     2   0.000      0.980 0.000 1.000
#> GSM39876     2   0.000      0.980 0.000 1.000
#> GSM39831     1   0.000      0.998 1.000 0.000
#> GSM39819     1   0.000      0.998 1.000 0.000
#> GSM39820     1   0.000      0.998 1.000 0.000
#> GSM39821     1   0.000      0.998 1.000 0.000
#> GSM39822     2   0.000      0.980 0.000 1.000
#> GSM39823     1   0.000      0.998 1.000 0.000
#> GSM39824     1   0.469      0.886 0.900 0.100
#> GSM39825     1   0.000      0.998 1.000 0.000
#> GSM39826     1   0.000      0.998 1.000 0.000
#> GSM39827     1   0.000      0.998 1.000 0.000
#> GSM39846     1   0.000      0.998 1.000 0.000
#> GSM39847     1   0.000      0.998 1.000 0.000
#> GSM39848     2   0.000      0.980 0.000 1.000
#> GSM39849     1   0.000      0.998 1.000 0.000
#> GSM39850     1   0.000      0.998 1.000 0.000
#> GSM39851     1   0.000      0.998 1.000 0.000
#> GSM39855     2   0.625      0.814 0.156 0.844
#> GSM39856     1   0.000      0.998 1.000 0.000
#> GSM39858     1   0.000      0.998 1.000 0.000
#> GSM39859     1   0.000      0.998 1.000 0.000
#> GSM39862     1   0.000      0.998 1.000 0.000
#> GSM39863     1   0.000      0.998 1.000 0.000
#> GSM39865     1   0.000      0.998 1.000 0.000
#> GSM39866     1   0.000      0.998 1.000 0.000
#> GSM39867     1   0.000      0.998 1.000 0.000
#> GSM39869     2   0.000      0.980 0.000 1.000
#> GSM39870     1   0.000      0.998 1.000 0.000
#> GSM39871     1   0.000      0.998 1.000 0.000
#> GSM39872     1   0.000      0.998 1.000 0.000
#> GSM39828     1   0.000      0.998 1.000 0.000
#> GSM39829     1   0.000      0.998 1.000 0.000
#> GSM39830     1   0.000      0.998 1.000 0.000
#> GSM39832     1   0.000      0.998 1.000 0.000
#> GSM39833     1   0.000      0.998 1.000 0.000
#> GSM39834     1   0.000      0.998 1.000 0.000
#> GSM39835     1   0.000      0.998 1.000 0.000
#> GSM39836     1   0.000      0.998 1.000 0.000
#> GSM39837     1   0.000      0.998 1.000 0.000
#> GSM39838     1   0.000      0.998 1.000 0.000
#> GSM39839     1   0.000      0.998 1.000 0.000
#> GSM39840     1   0.000      0.998 1.000 0.000
#> GSM39841     1   0.000      0.998 1.000 0.000
#> GSM39842     1   0.000      0.998 1.000 0.000
#> GSM39843     1   0.000      0.998 1.000 0.000
#> GSM39844     1   0.000      0.998 1.000 0.000
#> GSM39845     1   0.000      0.998 1.000 0.000
#> GSM39852     1   0.000      0.998 1.000 0.000
#> GSM39853     1   0.000      0.998 1.000 0.000
#> GSM39854     1   0.000      0.998 1.000 0.000
#> GSM39857     1   0.000      0.998 1.000 0.000
#> GSM39860     2   0.000      0.980 0.000 1.000
#> GSM39861     1   0.000      0.998 1.000 0.000
#> GSM39864     1   0.000      0.998 1.000 0.000
#> GSM39868     1   0.000      0.998 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2   0.000     0.9376 0.000 1.000 0.000
#> GSM39874     2   0.000     0.9376 0.000 1.000 0.000
#> GSM39875     2   0.000     0.9376 0.000 1.000 0.000
#> GSM39876     2   0.000     0.9376 0.000 1.000 0.000
#> GSM39831     1   0.000     0.8137 1.000 0.000 0.000
#> GSM39819     1   0.556     0.1806 0.700 0.000 0.300
#> GSM39820     1   0.254     0.7257 0.920 0.000 0.080
#> GSM39821     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39822     2   0.175     0.9273 0.000 0.952 0.048
#> GSM39823     3   0.394     0.5791 0.156 0.000 0.844
#> GSM39824     3   0.296     0.4123 0.000 0.100 0.900
#> GSM39825     3   0.445     0.5838 0.192 0.000 0.808
#> GSM39826     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39827     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39846     3   0.175     0.5354 0.048 0.000 0.952
#> GSM39847     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39848     2   0.129     0.9321 0.000 0.968 0.032
#> GSM39849     3   0.153     0.5303 0.040 0.000 0.960
#> GSM39850     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39851     1   0.000     0.8137 1.000 0.000 0.000
#> GSM39855     2   0.631     0.5266 0.000 0.504 0.496
#> GSM39856     3   0.175     0.5354 0.048 0.000 0.952
#> GSM39858     3   0.412     0.4408 0.168 0.000 0.832
#> GSM39859     3   0.334     0.5690 0.120 0.000 0.880
#> GSM39862     3   0.529     0.5319 0.268 0.000 0.732
#> GSM39863     1   0.000     0.8137 1.000 0.000 0.000
#> GSM39865     3   0.624     0.5041 0.440 0.000 0.560
#> GSM39866     1   0.000     0.8137 1.000 0.000 0.000
#> GSM39867     1   0.475     0.4685 0.784 0.000 0.216
#> GSM39869     2   0.175     0.9273 0.000 0.952 0.048
#> GSM39870     3   0.601     0.3063 0.372 0.000 0.628
#> GSM39871     3   0.236     0.5488 0.072 0.000 0.928
#> GSM39872     3   0.175     0.5354 0.048 0.000 0.952
#> GSM39828     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39829     1   0.186     0.7647 0.948 0.000 0.052
#> GSM39830     1   0.579     0.0138 0.668 0.000 0.332
#> GSM39832     1   0.000     0.8137 1.000 0.000 0.000
#> GSM39833     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39834     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39835     3   0.624     0.5041 0.440 0.000 0.560
#> GSM39836     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39837     3   0.631     0.5318 0.492 0.000 0.508
#> GSM39838     3   0.626     0.5038 0.448 0.000 0.552
#> GSM39839     3   0.595     0.3300 0.360 0.000 0.640
#> GSM39840     1   0.103     0.7993 0.976 0.000 0.024
#> GSM39841     1   0.000     0.8137 1.000 0.000 0.000
#> GSM39842     1   0.236     0.7472 0.928 0.000 0.072
#> GSM39843     3   0.617     0.5635 0.412 0.000 0.588
#> GSM39844     1   0.000     0.8137 1.000 0.000 0.000
#> GSM39845     3   0.553     0.5722 0.296 0.000 0.704
#> GSM39852     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39853     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39854     3   0.631     0.5336 0.496 0.000 0.504
#> GSM39857     3   0.362     0.5748 0.136 0.000 0.864
#> GSM39860     2   0.000     0.9376 0.000 1.000 0.000
#> GSM39861     3   0.400     0.5792 0.160 0.000 0.840
#> GSM39864     1   0.565     0.0961 0.688 0.000 0.312
#> GSM39868     3   0.617     0.5635 0.412 0.000 0.588

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000    0.87623 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000    0.87623 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000    0.87623 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000    0.87623 0.000 1.000 0.000 0.000
#> GSM39831     1  0.0000    0.88193 1.000 0.000 0.000 0.000
#> GSM39819     4  0.4319    0.51512 0.228 0.000 0.012 0.760
#> GSM39820     1  0.4204    0.73516 0.788 0.000 0.020 0.192
#> GSM39821     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39822     2  0.4746    0.70708 0.000 0.632 0.368 0.000
#> GSM39823     4  0.4804    0.05678 0.000 0.000 0.384 0.616
#> GSM39824     3  0.0000    0.39243 0.000 0.000 1.000 0.000
#> GSM39825     4  0.4431    0.27227 0.000 0.000 0.304 0.696
#> GSM39826     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39827     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39846     3  0.4746    0.60104 0.000 0.000 0.632 0.368
#> GSM39847     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39848     2  0.3688    0.80433 0.000 0.792 0.208 0.000
#> GSM39849     3  0.4564    0.61015 0.000 0.000 0.672 0.328
#> GSM39850     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39851     1  0.0000    0.88193 1.000 0.000 0.000 0.000
#> GSM39855     3  0.0000    0.39243 0.000 0.000 1.000 0.000
#> GSM39856     3  0.4746    0.60104 0.000 0.000 0.632 0.368
#> GSM39858     3  0.6783    0.50225 0.124 0.000 0.572 0.304
#> GSM39859     4  0.4776    0.06260 0.000 0.000 0.376 0.624
#> GSM39862     3  0.4855    0.02044 0.000 0.000 0.600 0.400
#> GSM39863     1  0.0000    0.88193 1.000 0.000 0.000 0.000
#> GSM39865     4  0.4916    0.22402 0.000 0.000 0.424 0.576
#> GSM39866     1  0.2345    0.83240 0.900 0.000 0.000 0.100
#> GSM39867     1  0.3942    0.60986 0.764 0.000 0.000 0.236
#> GSM39869     2  0.4746    0.70708 0.000 0.632 0.368 0.000
#> GSM39870     4  0.7667   -0.01637 0.224 0.000 0.336 0.440
#> GSM39871     3  0.4996    0.34337 0.000 0.000 0.516 0.484
#> GSM39872     3  0.4746    0.60104 0.000 0.000 0.632 0.368
#> GSM39828     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39829     1  0.4630    0.65782 0.732 0.000 0.016 0.252
#> GSM39830     4  0.3356    0.57101 0.176 0.000 0.000 0.824
#> GSM39832     1  0.0000    0.88193 1.000 0.000 0.000 0.000
#> GSM39833     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39834     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39835     4  0.4888    0.24227 0.000 0.000 0.412 0.588
#> GSM39836     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39837     4  0.2814    0.59968 0.000 0.000 0.132 0.868
#> GSM39838     4  0.4679    0.32384 0.000 0.000 0.352 0.648
#> GSM39839     4  0.7605    0.00341 0.212 0.000 0.336 0.452
#> GSM39840     1  0.1022    0.87065 0.968 0.000 0.000 0.032
#> GSM39841     1  0.0188    0.88148 0.996 0.000 0.000 0.004
#> GSM39842     1  0.2081    0.82943 0.916 0.000 0.000 0.084
#> GSM39843     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39844     1  0.0000    0.88193 1.000 0.000 0.000 0.000
#> GSM39845     4  0.4323    0.46791 0.020 0.000 0.204 0.776
#> GSM39852     4  0.0000    0.69180 0.000 0.000 0.000 1.000
#> GSM39853     4  0.4164    0.43600 0.264 0.000 0.000 0.736
#> GSM39854     4  0.2345    0.62732 0.100 0.000 0.000 0.900
#> GSM39857     4  0.4713    0.11973 0.000 0.000 0.360 0.640
#> GSM39860     2  0.0000    0.87623 0.000 1.000 0.000 0.000
#> GSM39861     4  0.4605    0.19127 0.000 0.000 0.336 0.664
#> GSM39864     4  0.3649    0.54415 0.204 0.000 0.000 0.796
#> GSM39868     4  0.0000    0.69180 0.000 0.000 0.000 1.000

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM39874     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM39875     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM39876     2  0.0000      0.919 0.000 1.000 0.000 0.000 0.000
#> GSM39831     1  0.0000      0.885 1.000 0.000 0.000 0.000 0.000
#> GSM39819     4  0.4555      0.527 0.224 0.000 0.056 0.720 0.000
#> GSM39820     1  0.3675      0.744 0.788 0.000 0.024 0.188 0.000
#> GSM39821     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000
#> GSM39822     5  0.0162      0.813 0.000 0.004 0.000 0.000 0.996
#> GSM39823     3  0.4300      0.470 0.000 0.000 0.524 0.476 0.000
#> GSM39824     5  0.4114      0.512 0.000 0.000 0.376 0.000 0.624
#> GSM39825     4  0.4297     -0.420 0.000 0.000 0.472 0.528 0.000
#> GSM39826     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000
#> GSM39827     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000
#> GSM39846     3  0.0000      0.565 0.000 0.000 1.000 0.000 0.000
#> GSM39847     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000
#> GSM39848     5  0.2813      0.661 0.000 0.168 0.000 0.000 0.832
#> GSM39849     3  0.0000      0.565 0.000 0.000 1.000 0.000 0.000
#> GSM39850     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000
#> GSM39851     1  0.0000      0.885 1.000 0.000 0.000 0.000 0.000
#> GSM39855     5  0.3074      0.719 0.000 0.000 0.196 0.000 0.804
#> GSM39856     3  0.0000      0.565 0.000 0.000 1.000 0.000 0.000
#> GSM39858     3  0.5299      0.637 0.120 0.000 0.668 0.212 0.000
#> GSM39859     3  0.4287      0.496 0.000 0.000 0.540 0.460 0.000
#> GSM39862     5  0.5115      0.576 0.000 0.000 0.092 0.232 0.676
#> GSM39863     1  0.0000      0.885 1.000 0.000 0.000 0.000 0.000
#> GSM39865     5  0.0162      0.814 0.000 0.000 0.000 0.004 0.996
#> GSM39866     1  0.2124      0.838 0.900 0.000 0.004 0.096 0.000
#> GSM39867     1  0.3366      0.648 0.768 0.000 0.000 0.232 0.000
#> GSM39869     5  0.0000      0.813 0.000 0.000 0.000 0.000 1.000
#> GSM39870     3  0.6408      0.531 0.220 0.000 0.508 0.272 0.000
#> GSM39871     3  0.3395      0.645 0.000 0.000 0.764 0.236 0.000
#> GSM39872     3  0.0000      0.565 0.000 0.000 1.000 0.000 0.000
#> GSM39828     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000
#> GSM39829     1  0.4054      0.676 0.732 0.000 0.020 0.248 0.000
#> GSM39830     4  0.3048      0.640 0.176 0.000 0.004 0.820 0.000
#> GSM39832     1  0.0000      0.885 1.000 0.000 0.000 0.000 0.000
#> GSM39833     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000
#> GSM39834     4  0.0162      0.804 0.000 0.000 0.004 0.996 0.000
#> GSM39835     5  0.0963      0.811 0.000 0.000 0.000 0.036 0.964
#> GSM39836     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000
#> GSM39837     4  0.4268      0.274 0.000 0.000 0.000 0.556 0.444
#> GSM39838     5  0.1197      0.805 0.000 0.000 0.000 0.048 0.952
#> GSM39839     3  0.6454      0.501 0.208 0.000 0.488 0.304 0.000
#> GSM39840     1  0.0794      0.875 0.972 0.000 0.000 0.028 0.000
#> GSM39841     1  0.0162      0.884 0.996 0.000 0.000 0.004 0.000
#> GSM39842     1  0.1792      0.831 0.916 0.000 0.000 0.084 0.000
#> GSM39843     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000
#> GSM39844     1  0.0000      0.885 1.000 0.000 0.000 0.000 0.000
#> GSM39845     4  0.4065      0.338 0.016 0.000 0.264 0.720 0.000
#> GSM39852     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000
#> GSM39853     4  0.5804      0.370 0.120 0.000 0.000 0.576 0.304
#> GSM39854     4  0.4462      0.575 0.064 0.000 0.000 0.740 0.196
#> GSM39857     3  0.4287      0.495 0.000 0.000 0.540 0.460 0.000
#> GSM39860     2  0.3816      0.557 0.000 0.696 0.000 0.000 0.304
#> GSM39861     3  0.4304      0.455 0.000 0.000 0.516 0.484 0.000
#> GSM39864     4  0.3109      0.614 0.200 0.000 0.000 0.800 0.000
#> GSM39868     4  0.0000      0.807 0.000 0.000 0.000 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0000     0.8641 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000     0.8641 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000     0.8641 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000     0.8641 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     1  0.3804     0.8573 0.576 0.000 0.424 0.000 0.000 0.000
#> GSM39819     3  0.3037     0.7084 0.000 0.000 0.808 0.176 0.000 0.016
#> GSM39820     3  0.1075     0.5815 0.048 0.000 0.952 0.000 0.000 0.000
#> GSM39821     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39822     5  0.0146     0.7260 0.000 0.004 0.000 0.000 0.996 0.000
#> GSM39823     4  0.5987    -0.1355 0.000 0.000 0.240 0.424 0.000 0.336
#> GSM39824     5  0.4141     0.4308 0.016 0.000 0.000 0.000 0.596 0.388
#> GSM39825     4  0.4344     0.3626 0.000 0.000 0.044 0.652 0.000 0.304
#> GSM39826     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39827     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39846     6  0.0146     0.7153 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM39847     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39848     5  0.4107     0.5445 0.280 0.036 0.000 0.000 0.684 0.000
#> GSM39849     6  0.0146     0.7153 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM39850     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39851     1  0.3706     0.9024 0.620 0.000 0.380 0.000 0.000 0.000
#> GSM39855     5  0.3934     0.5519 0.020 0.000 0.000 0.000 0.676 0.304
#> GSM39856     6  0.0146     0.7153 0.004 0.000 0.000 0.000 0.000 0.996
#> GSM39858     6  0.5066     0.5238 0.000 0.000 0.176 0.188 0.000 0.636
#> GSM39859     6  0.5821     0.0878 0.000 0.000 0.184 0.408 0.000 0.408
#> GSM39862     5  0.4949     0.5244 0.000 0.000 0.000 0.208 0.648 0.144
#> GSM39863     1  0.3706     0.9024 0.620 0.000 0.380 0.000 0.000 0.000
#> GSM39865     5  0.0146     0.7274 0.000 0.000 0.000 0.004 0.996 0.000
#> GSM39866     3  0.1075     0.5815 0.048 0.000 0.952 0.000 0.000 0.000
#> GSM39867     1  0.5217     0.5484 0.608 0.000 0.160 0.232 0.000 0.000
#> GSM39869     5  0.3198     0.5983 0.260 0.000 0.000 0.000 0.740 0.000
#> GSM39870     3  0.3236     0.7166 0.004 0.000 0.820 0.140 0.000 0.036
#> GSM39871     6  0.3920     0.6237 0.000 0.000 0.048 0.216 0.000 0.736
#> GSM39872     6  0.0363     0.7147 0.000 0.000 0.012 0.000 0.000 0.988
#> GSM39828     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39829     3  0.1075     0.5815 0.048 0.000 0.952 0.000 0.000 0.000
#> GSM39830     4  0.3190     0.5324 0.008 0.000 0.220 0.772 0.000 0.000
#> GSM39832     1  0.3706     0.9024 0.620 0.000 0.380 0.000 0.000 0.000
#> GSM39833     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39834     4  0.0260     0.7814 0.000 0.000 0.008 0.992 0.000 0.000
#> GSM39835     5  0.2404     0.7108 0.080 0.000 0.000 0.036 0.884 0.000
#> GSM39836     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39837     4  0.3854     0.2202 0.000 0.000 0.000 0.536 0.464 0.000
#> GSM39838     5  0.1564     0.7233 0.024 0.000 0.000 0.040 0.936 0.000
#> GSM39839     3  0.3172     0.7083 0.000 0.000 0.816 0.148 0.000 0.036
#> GSM39840     1  0.4264     0.8829 0.620 0.000 0.352 0.028 0.000 0.000
#> GSM39841     1  0.3841     0.9009 0.616 0.000 0.380 0.004 0.000 0.000
#> GSM39842     1  0.4827     0.8077 0.620 0.000 0.296 0.084 0.000 0.000
#> GSM39843     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39844     1  0.3706     0.9024 0.620 0.000 0.380 0.000 0.000 0.000
#> GSM39845     3  0.4246     0.2938 0.000 0.000 0.580 0.400 0.000 0.020
#> GSM39852     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000
#> GSM39853     4  0.5625     0.2733 0.164 0.000 0.000 0.504 0.332 0.000
#> GSM39854     4  0.4655     0.5436 0.112 0.000 0.000 0.680 0.208 0.000
#> GSM39857     4  0.4640     0.1812 0.000 0.000 0.048 0.576 0.000 0.376
#> GSM39860     2  0.6048     0.1314 0.296 0.416 0.000 0.000 0.288 0.000
#> GSM39861     4  0.4482     0.3122 0.000 0.000 0.048 0.628 0.000 0.324
#> GSM39864     4  0.3373     0.4812 0.008 0.000 0.248 0.744 0.000 0.000
#> GSM39868     4  0.0000     0.7855 0.000 0.000 0.000 1.000 0.000 0.000

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-pam-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-pam-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-pam-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-pam-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-pam-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-pam-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-pam-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-pam-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-pam-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-pam-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-pam-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-pam-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-pam-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-pam-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) other(p) k
#> ATC:pam 58         3.78e-05 1.94e-05 2
#> ATC:pam 50         5.00e-05 3.66e-04 3
#> ATC:pam 42         3.02e-04 5.94e-04 4
#> ATC:pam 50         6.55e-08 9.24e-07 5
#> ATC:pam 47         5.68e-09 1.20e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:mclust

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "mclust"]
# you can also extract it by
# res = res_list["ATC:mclust"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'ATC' method.
#>   Subgroups are detected by 'mclust' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 4.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-mclust-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-mclust-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.762           0.860       0.937         0.2742 0.710   0.710
#> 3 3 0.367           0.497       0.709         0.9580 0.681   0.576
#> 4 4 0.622           0.746       0.860         0.3056 0.659   0.385
#> 5 5 0.630           0.603       0.757         0.0983 0.915   0.710
#> 6 6 0.710           0.588       0.763         0.0647 0.892   0.563

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 4

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.0000      0.764 0.000 1.000
#> GSM39874     2  0.0000      0.764 0.000 1.000
#> GSM39875     2  0.0000      0.764 0.000 1.000
#> GSM39876     2  0.0000      0.764 0.000 1.000
#> GSM39831     1  0.0000      0.953 1.000 0.000
#> GSM39819     1  0.0000      0.953 1.000 0.000
#> GSM39820     1  0.0000      0.953 1.000 0.000
#> GSM39821     1  0.0000      0.953 1.000 0.000
#> GSM39822     2  0.8499      0.724 0.276 0.724
#> GSM39823     1  0.0376      0.952 0.996 0.004
#> GSM39824     1  0.2043      0.933 0.968 0.032
#> GSM39825     1  0.0376      0.952 0.996 0.004
#> GSM39826     1  0.2236      0.924 0.964 0.036
#> GSM39827     1  0.0000      0.953 1.000 0.000
#> GSM39846     1  0.2043      0.933 0.968 0.032
#> GSM39847     1  0.0000      0.953 1.000 0.000
#> GSM39848     2  0.7602      0.758 0.220 0.780
#> GSM39849     1  0.2043      0.933 0.968 0.032
#> GSM39850     1  0.0000      0.953 1.000 0.000
#> GSM39851     1  0.0000      0.953 1.000 0.000
#> GSM39855     1  0.3114      0.911 0.944 0.056
#> GSM39856     1  0.2043      0.933 0.968 0.032
#> GSM39858     1  0.0376      0.952 0.996 0.004
#> GSM39859     1  0.0376      0.952 0.996 0.004
#> GSM39862     1  0.2043      0.933 0.968 0.032
#> GSM39863     1  0.0000      0.953 1.000 0.000
#> GSM39865     1  0.9087      0.375 0.676 0.324
#> GSM39866     1  0.0000      0.953 1.000 0.000
#> GSM39867     1  0.0000      0.953 1.000 0.000
#> GSM39869     2  0.9248      0.653 0.340 0.660
#> GSM39870     1  0.0000      0.953 1.000 0.000
#> GSM39871     1  0.0376      0.952 0.996 0.004
#> GSM39872     1  0.2043      0.933 0.968 0.032
#> GSM39828     1  0.0672      0.950 0.992 0.008
#> GSM39829     1  0.0000      0.953 1.000 0.000
#> GSM39830     1  0.0000      0.953 1.000 0.000
#> GSM39832     1  0.0000      0.953 1.000 0.000
#> GSM39833     1  0.1184      0.945 0.984 0.016
#> GSM39834     1  0.0000      0.953 1.000 0.000
#> GSM39835     1  0.9044      0.388 0.680 0.320
#> GSM39836     1  0.0376      0.952 0.996 0.004
#> GSM39837     2  0.9833      0.494 0.424 0.576
#> GSM39838     1  0.9087      0.375 0.676 0.324
#> GSM39839     1  0.0376      0.952 0.996 0.004
#> GSM39840     1  0.0000      0.953 1.000 0.000
#> GSM39841     1  0.0000      0.953 1.000 0.000
#> GSM39842     1  0.0376      0.952 0.996 0.004
#> GSM39843     1  0.0376      0.952 0.996 0.004
#> GSM39844     1  0.0000      0.953 1.000 0.000
#> GSM39845     1  0.0000      0.953 1.000 0.000
#> GSM39852     1  0.0000      0.953 1.000 0.000
#> GSM39853     2  0.9933      0.444 0.452 0.548
#> GSM39854     1  0.9580      0.155 0.620 0.380
#> GSM39857     1  0.2043      0.933 0.968 0.032
#> GSM39860     2  0.7883      0.746 0.236 0.764
#> GSM39861     1  0.0000      0.953 1.000 0.000
#> GSM39864     1  0.0000      0.953 1.000 0.000
#> GSM39868     1  0.0000      0.953 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0237      1.000 0.004 0.996 0.000
#> GSM39874     2  0.0237      1.000 0.004 0.996 0.000
#> GSM39875     2  0.0237      1.000 0.004 0.996 0.000
#> GSM39876     2  0.0237      1.000 0.004 0.996 0.000
#> GSM39831     3  0.0747      0.621 0.016 0.000 0.984
#> GSM39819     3  0.5873      0.572 0.312 0.004 0.684
#> GSM39820     3  0.0424      0.627 0.008 0.000 0.992
#> GSM39821     3  0.3752      0.421 0.144 0.000 0.856
#> GSM39822     1  0.8650      0.696 0.572 0.136 0.292
#> GSM39823     3  0.6104      0.562 0.348 0.004 0.648
#> GSM39824     1  0.7389     -0.426 0.504 0.032 0.464
#> GSM39825     3  0.6033      0.565 0.336 0.004 0.660
#> GSM39826     1  0.8721      0.665 0.504 0.112 0.384
#> GSM39827     3  0.6307     -0.569 0.488 0.000 0.512
#> GSM39846     3  0.6295      0.452 0.472 0.000 0.528
#> GSM39847     3  0.1163      0.610 0.028 0.000 0.972
#> GSM39848     1  0.7287      0.551 0.696 0.092 0.212
#> GSM39849     3  0.6252      0.484 0.444 0.000 0.556
#> GSM39850     1  0.7188      0.579 0.492 0.024 0.484
#> GSM39851     3  0.0747      0.621 0.016 0.000 0.984
#> GSM39855     1  0.7480     -0.415 0.508 0.036 0.456
#> GSM39856     3  0.6280      0.466 0.460 0.000 0.540
#> GSM39858     3  0.6209      0.548 0.368 0.004 0.628
#> GSM39859     3  0.6057      0.565 0.340 0.004 0.656
#> GSM39862     1  0.6688      0.594 0.580 0.012 0.408
#> GSM39863     3  0.0892      0.621 0.020 0.000 0.980
#> GSM39865     1  0.5803      0.647 0.736 0.016 0.248
#> GSM39866     3  0.0747      0.621 0.016 0.000 0.984
#> GSM39867     1  0.7187      0.584 0.496 0.024 0.480
#> GSM39869     1  0.6967      0.670 0.668 0.044 0.288
#> GSM39870     3  0.0592      0.628 0.012 0.000 0.988
#> GSM39871     3  0.6228      0.546 0.372 0.004 0.624
#> GSM39872     3  0.5948      0.556 0.360 0.000 0.640
#> GSM39828     1  0.6286      0.574 0.536 0.000 0.464
#> GSM39829     3  0.0237      0.627 0.004 0.000 0.996
#> GSM39830     3  0.0000      0.627 0.000 0.000 1.000
#> GSM39832     3  0.0747      0.621 0.016 0.000 0.984
#> GSM39833     3  0.5465      0.290 0.288 0.000 0.712
#> GSM39834     3  0.6307     -0.570 0.488 0.000 0.512
#> GSM39835     1  0.8404      0.696 0.592 0.120 0.288
#> GSM39836     1  0.7838      0.609 0.488 0.052 0.460
#> GSM39837     1  0.8742      0.697 0.556 0.136 0.308
#> GSM39838     1  0.8570      0.698 0.564 0.120 0.316
#> GSM39839     3  0.6057      0.565 0.340 0.004 0.656
#> GSM39840     3  0.1860      0.580 0.052 0.000 0.948
#> GSM39841     3  0.0747      0.621 0.016 0.000 0.984
#> GSM39842     3  0.2625      0.549 0.084 0.000 0.916
#> GSM39843     3  0.6033      0.565 0.336 0.004 0.660
#> GSM39844     3  0.0747      0.621 0.016 0.000 0.984
#> GSM39845     3  0.1289      0.627 0.032 0.000 0.968
#> GSM39852     3  0.6305     -0.564 0.484 0.000 0.516
#> GSM39853     1  0.8803      0.696 0.544 0.136 0.320
#> GSM39854     1  0.8841      0.691 0.536 0.136 0.328
#> GSM39857     3  0.5948      0.556 0.360 0.000 0.640
#> GSM39860     1  0.3918      0.119 0.868 0.120 0.012
#> GSM39861     3  0.3192      0.615 0.112 0.000 0.888
#> GSM39864     3  0.0237      0.625 0.004 0.000 0.996
#> GSM39868     3  0.6305     -0.564 0.484 0.000 0.516

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000     1.0000 0.000 1.000 0.000 0.000
#> GSM39831     1  0.0000     0.7566 1.000 0.000 0.000 0.000
#> GSM39819     3  0.4277     0.6482 0.280 0.000 0.720 0.000
#> GSM39820     1  0.4907     0.1171 0.580 0.000 0.420 0.000
#> GSM39821     4  0.5329     0.3980 0.420 0.000 0.012 0.568
#> GSM39822     4  0.1610     0.8394 0.000 0.016 0.032 0.952
#> GSM39823     3  0.0895     0.8658 0.020 0.000 0.976 0.004
#> GSM39824     3  0.1406     0.8508 0.000 0.016 0.960 0.024
#> GSM39825     3  0.4095     0.7569 0.172 0.000 0.804 0.024
#> GSM39826     4  0.2987     0.8455 0.104 0.000 0.016 0.880
#> GSM39827     4  0.5244     0.4802 0.388 0.000 0.012 0.600
#> GSM39846     3  0.1042     0.8665 0.020 0.000 0.972 0.008
#> GSM39847     1  0.5025     0.5309 0.716 0.000 0.032 0.252
#> GSM39848     4  0.2662     0.8185 0.000 0.016 0.084 0.900
#> GSM39849     3  0.1406     0.8508 0.000 0.016 0.960 0.024
#> GSM39850     4  0.3161     0.8353 0.124 0.000 0.012 0.864
#> GSM39851     1  0.0188     0.7568 0.996 0.000 0.000 0.004
#> GSM39855     3  0.1406     0.8508 0.000 0.016 0.960 0.024
#> GSM39856     3  0.1520     0.8640 0.020 0.000 0.956 0.024
#> GSM39858     3  0.1151     0.8646 0.024 0.000 0.968 0.008
#> GSM39859     3  0.2596     0.8377 0.068 0.000 0.908 0.024
#> GSM39862     4  0.3946     0.8390 0.048 0.016 0.080 0.856
#> GSM39863     1  0.4898     0.6362 0.772 0.000 0.072 0.156
#> GSM39865     4  0.2593     0.8212 0.000 0.016 0.080 0.904
#> GSM39866     1  0.0524     0.7590 0.988 0.000 0.008 0.004
#> GSM39867     4  0.3324     0.8284 0.136 0.000 0.012 0.852
#> GSM39869     4  0.2142     0.8323 0.000 0.016 0.056 0.928
#> GSM39870     1  0.4989    -0.0871 0.528 0.000 0.472 0.000
#> GSM39871     3  0.1520     0.8565 0.020 0.000 0.956 0.024
#> GSM39872     3  0.1004     0.8592 0.004 0.000 0.972 0.024
#> GSM39828     4  0.3984     0.8409 0.132 0.000 0.040 0.828
#> GSM39829     1  0.4843     0.1931 0.604 0.000 0.396 0.000
#> GSM39830     1  0.5785     0.5280 0.664 0.000 0.272 0.064
#> GSM39832     1  0.0000     0.7566 1.000 0.000 0.000 0.000
#> GSM39833     4  0.4153     0.8411 0.132 0.000 0.048 0.820
#> GSM39834     4  0.3718     0.8077 0.168 0.000 0.012 0.820
#> GSM39835     4  0.2222     0.8320 0.000 0.016 0.060 0.924
#> GSM39836     4  0.2805     0.8452 0.100 0.000 0.012 0.888
#> GSM39837     4  0.1943     0.8467 0.008 0.016 0.032 0.944
#> GSM39838     4  0.1356     0.8498 0.008 0.000 0.032 0.960
#> GSM39839     3  0.0817     0.8662 0.024 0.000 0.976 0.000
#> GSM39840     1  0.3224     0.7229 0.864 0.000 0.016 0.120
#> GSM39841     1  0.1022     0.7558 0.968 0.000 0.000 0.032
#> GSM39842     1  0.3978     0.7161 0.836 0.000 0.056 0.108
#> GSM39843     3  0.4050     0.7611 0.168 0.000 0.808 0.024
#> GSM39844     1  0.0000     0.7566 1.000 0.000 0.000 0.000
#> GSM39845     3  0.6306     0.2116 0.392 0.000 0.544 0.064
#> GSM39852     4  0.4175     0.7635 0.212 0.000 0.012 0.776
#> GSM39853     4  0.0992     0.8490 0.008 0.004 0.012 0.976
#> GSM39854     4  0.0927     0.8497 0.008 0.000 0.016 0.976
#> GSM39857     3  0.1004     0.8592 0.004 0.000 0.972 0.024
#> GSM39860     4  0.2909     0.8121 0.000 0.020 0.092 0.888
#> GSM39861     3  0.5453     0.4909 0.320 0.000 0.648 0.032
#> GSM39864     1  0.3128     0.7444 0.884 0.000 0.076 0.040
#> GSM39868     4  0.4059     0.7775 0.200 0.000 0.012 0.788

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.3966      0.773 0.000 0.664 0.000 0.336 0.000
#> GSM39874     2  0.3966      0.773 0.000 0.664 0.000 0.336 0.000
#> GSM39875     2  0.3966      0.773 0.000 0.664 0.000 0.336 0.000
#> GSM39876     2  0.3966      0.773 0.000 0.664 0.000 0.336 0.000
#> GSM39831     1  0.0000      0.750 1.000 0.000 0.000 0.000 0.000
#> GSM39819     3  0.1732      0.721 0.080 0.000 0.920 0.000 0.000
#> GSM39820     1  0.4954      0.478 0.628 0.336 0.028 0.008 0.000
#> GSM39821     4  0.4733      0.725 0.348 0.000 0.000 0.624 0.028
#> GSM39822     5  0.0510      0.687 0.000 0.000 0.000 0.016 0.984
#> GSM39823     3  0.0000      0.753 0.000 0.000 1.000 0.000 0.000
#> GSM39824     3  0.4420      0.421 0.000 0.000 0.548 0.004 0.448
#> GSM39825     3  0.4353      0.483 0.008 0.328 0.660 0.004 0.000
#> GSM39826     4  0.5555      0.847 0.204 0.000 0.000 0.644 0.152
#> GSM39827     4  0.4805      0.770 0.312 0.000 0.000 0.648 0.040
#> GSM39846     3  0.0162      0.753 0.000 0.000 0.996 0.004 0.000
#> GSM39847     1  0.4287     -0.311 0.540 0.000 0.000 0.460 0.000
#> GSM39848     5  0.0162      0.688 0.000 0.000 0.000 0.004 0.996
#> GSM39849     3  0.2966      0.710 0.000 0.000 0.816 0.000 0.184
#> GSM39850     4  0.5482      0.849 0.204 0.000 0.000 0.652 0.144
#> GSM39851     1  0.0000      0.750 1.000 0.000 0.000 0.000 0.000
#> GSM39855     3  0.4420      0.421 0.000 0.000 0.548 0.004 0.448
#> GSM39856     3  0.2848      0.723 0.000 0.000 0.840 0.004 0.156
#> GSM39858     3  0.0000      0.753 0.000 0.000 1.000 0.000 0.000
#> GSM39859     3  0.0162      0.752 0.000 0.000 0.996 0.004 0.000
#> GSM39862     5  0.5631      0.201 0.200 0.000 0.000 0.164 0.636
#> GSM39863     1  0.0404      0.745 0.988 0.000 0.000 0.012 0.000
#> GSM39865     5  0.0162      0.689 0.000 0.000 0.000 0.004 0.996
#> GSM39866     1  0.0162      0.749 0.996 0.000 0.000 0.004 0.000
#> GSM39867     4  0.5462      0.852 0.212 0.000 0.000 0.652 0.136
#> GSM39869     5  0.0162      0.689 0.000 0.000 0.000 0.004 0.996
#> GSM39870     1  0.5171      0.465 0.616 0.336 0.040 0.008 0.000
#> GSM39871     3  0.0000      0.753 0.000 0.000 1.000 0.000 0.000
#> GSM39872     3  0.4193      0.637 0.024 0.000 0.720 0.000 0.256
#> GSM39828     4  0.6436      0.687 0.232 0.000 0.000 0.504 0.264
#> GSM39829     1  0.4875      0.481 0.632 0.336 0.024 0.008 0.000
#> GSM39830     1  0.6474      0.456 0.472 0.328 0.000 0.200 0.000
#> GSM39832     1  0.0000      0.750 1.000 0.000 0.000 0.000 0.000
#> GSM39833     4  0.6148      0.705 0.160 0.000 0.004 0.568 0.268
#> GSM39834     4  0.5450      0.852 0.228 0.000 0.000 0.648 0.124
#> GSM39835     5  0.4354      0.344 0.008 0.000 0.000 0.368 0.624
#> GSM39836     4  0.5692      0.834 0.204 0.000 0.000 0.628 0.168
#> GSM39837     5  0.4171      0.295 0.000 0.000 0.000 0.396 0.604
#> GSM39838     4  0.5548      0.183 0.068 0.000 0.000 0.492 0.440
#> GSM39839     3  0.0794      0.745 0.028 0.000 0.972 0.000 0.000
#> GSM39840     1  0.3242      0.534 0.784 0.000 0.000 0.216 0.000
#> GSM39841     1  0.0162      0.748 0.996 0.000 0.000 0.004 0.000
#> GSM39842     1  0.3530      0.540 0.784 0.000 0.000 0.204 0.012
#> GSM39843     3  0.4675      0.467 0.020 0.336 0.640 0.004 0.000
#> GSM39844     1  0.0000      0.750 1.000 0.000 0.000 0.000 0.000
#> GSM39845     2  0.8272     -0.245 0.172 0.336 0.328 0.164 0.000
#> GSM39852     4  0.5500      0.850 0.236 0.000 0.000 0.640 0.124
#> GSM39853     5  0.4242      0.212 0.000 0.000 0.000 0.428 0.572
#> GSM39854     5  0.4262      0.175 0.000 0.000 0.000 0.440 0.560
#> GSM39857     3  0.2891      0.714 0.000 0.000 0.824 0.000 0.176
#> GSM39860     5  0.0162      0.688 0.000 0.000 0.000 0.004 0.996
#> GSM39861     3  0.7816      0.142 0.136 0.336 0.408 0.120 0.000
#> GSM39864     1  0.3656      0.636 0.800 0.000 0.168 0.032 0.000
#> GSM39868     4  0.5549      0.846 0.244 0.000 0.000 0.632 0.124

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1 p2    p3    p4    p5    p6
#> GSM39873     2  0.0000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39874     2  0.0000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39875     2  0.0000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39876     2  0.0000      1.000 0.000  1 0.000 0.000 0.000 0.000
#> GSM39831     1  0.0000      0.777 1.000  0 0.000 0.000 0.000 0.000
#> GSM39819     3  0.3052      0.628 0.004  0 0.780 0.000 0.000 0.216
#> GSM39820     1  0.3765      0.411 0.596  0 0.000 0.000 0.000 0.404
#> GSM39821     4  0.1367      0.732 0.012  0 0.000 0.944 0.000 0.044
#> GSM39822     5  0.0405      0.739 0.000  0 0.000 0.008 0.988 0.004
#> GSM39823     3  0.0547      0.760 0.000  0 0.980 0.000 0.000 0.020
#> GSM39824     5  0.4758      0.270 0.000  0 0.360 0.000 0.580 0.060
#> GSM39825     6  0.3866      0.134 0.000  0 0.484 0.000 0.000 0.516
#> GSM39826     4  0.2830      0.738 0.000  0 0.000 0.836 0.020 0.144
#> GSM39827     4  0.2772      0.628 0.180  0 0.000 0.816 0.000 0.004
#> GSM39846     3  0.0000      0.760 0.000  0 1.000 0.000 0.000 0.000
#> GSM39847     4  0.4408      0.401 0.320  0 0.000 0.636 0.000 0.044
#> GSM39848     5  0.0000      0.739 0.000  0 0.000 0.000 1.000 0.000
#> GSM39849     3  0.3211      0.703 0.000  0 0.824 0.000 0.120 0.056
#> GSM39850     4  0.1267      0.753 0.000  0 0.000 0.940 0.000 0.060
#> GSM39851     1  0.0000      0.777 1.000  0 0.000 0.000 0.000 0.000
#> GSM39855     5  0.4758      0.270 0.000  0 0.360 0.000 0.580 0.060
#> GSM39856     3  0.3032      0.714 0.000  0 0.840 0.000 0.104 0.056
#> GSM39858     3  0.2793      0.651 0.000  0 0.800 0.000 0.000 0.200
#> GSM39859     3  0.2092      0.718 0.000  0 0.876 0.000 0.000 0.124
#> GSM39862     5  0.2730      0.587 0.000  0 0.000 0.192 0.808 0.000
#> GSM39863     1  0.0000      0.777 1.000  0 0.000 0.000 0.000 0.000
#> GSM39865     5  0.0363      0.740 0.000  0 0.000 0.012 0.988 0.000
#> GSM39866     1  0.0458      0.773 0.984  0 0.000 0.000 0.000 0.016
#> GSM39867     4  0.1387      0.753 0.000  0 0.000 0.932 0.000 0.068
#> GSM39869     5  0.0260      0.740 0.000  0 0.000 0.008 0.992 0.000
#> GSM39870     1  0.4093      0.268 0.516  0 0.008 0.000 0.000 0.476
#> GSM39871     3  0.0547      0.760 0.000  0 0.980 0.000 0.000 0.020
#> GSM39872     3  0.4435      0.529 0.000  0 0.672 0.000 0.264 0.064
#> GSM39828     4  0.3580      0.688 0.000  0 0.036 0.808 0.136 0.020
#> GSM39829     1  0.3756      0.417 0.600  0 0.000 0.000 0.000 0.400
#> GSM39830     6  0.5807     -0.133 0.324  0 0.000 0.200 0.000 0.476
#> GSM39832     1  0.0000      0.777 1.000  0 0.000 0.000 0.000 0.000
#> GSM39833     4  0.5414      0.274 0.000  0 0.000 0.468 0.416 0.116
#> GSM39834     4  0.0260      0.748 0.000  0 0.000 0.992 0.000 0.008
#> GSM39835     4  0.5011      0.260 0.000  0 0.000 0.508 0.420 0.072
#> GSM39836     4  0.3168      0.722 0.000  0 0.000 0.792 0.016 0.192
#> GSM39837     5  0.6129     -0.272 0.000  0 0.000 0.320 0.340 0.340
#> GSM39838     4  0.4099      0.680 0.000  0 0.000 0.708 0.048 0.244
#> GSM39839     3  0.2912      0.633 0.000  0 0.784 0.000 0.000 0.216
#> GSM39840     1  0.3679      0.597 0.760  0 0.000 0.200 0.000 0.040
#> GSM39841     1  0.0000      0.777 1.000  0 0.000 0.000 0.000 0.000
#> GSM39842     1  0.4233      0.558 0.720  0 0.000 0.216 0.004 0.060
#> GSM39843     6  0.3866      0.134 0.000  0 0.484 0.000 0.000 0.516
#> GSM39844     1  0.0000      0.777 1.000  0 0.000 0.000 0.000 0.000
#> GSM39845     6  0.5866      0.417 0.024  0 0.204 0.196 0.000 0.576
#> GSM39852     4  0.0790      0.742 0.000  0 0.000 0.968 0.000 0.032
#> GSM39853     6  0.6129     -0.426 0.000  0 0.000 0.320 0.340 0.340
#> GSM39854     4  0.5608      0.517 0.000  0 0.000 0.540 0.200 0.260
#> GSM39857     3  0.3123      0.709 0.000  0 0.832 0.000 0.112 0.056
#> GSM39860     5  0.0000      0.739 0.000  0 0.000 0.000 1.000 0.000
#> GSM39861     6  0.5629      0.372 0.012  0 0.292 0.136 0.000 0.560
#> GSM39864     1  0.5992      0.402 0.580  0 0.092 0.072 0.000 0.256
#> GSM39868     4  0.0865      0.742 0.000  0 0.000 0.964 0.000 0.036

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-mclust-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-mclust-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-mclust-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-mclust-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-mclust-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-mclust-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-mclust-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-mclust-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-mclust-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-mclust-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-mclust-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-mclust-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-mclust-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-mclust-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>             n disease.state(p) other(p) k
#> ATC:mclust 52         3.17e-05 2.25e-05 2
#> ATC:mclust 46         1.03e-10 2.18e-08 3
#> ATC:mclust 51         4.89e-11 5.94e-10 4
#> ATC:mclust 41         2.69e-08 8.43e-07 5
#> ATC:mclust 42         1.67e-08 3.70e-07 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.


ATC:NMF**

The object with results only for a single top-value method and a single partition method can be extracted as:

res = res_list["ATC", "NMF"]
# you can also extract it by
# res = res_list["ATC:NMF"]

A summary of res and all the functions that can be applied to it:

res
#> A 'ConsensusPartition' object with k = 2, 3, 4, 5, 6.
#>   On a matrix with 7957 rows and 58 columns.
#>   Top rows (796, 1592, 2387, 3182, 3978) are extracted by 'ATC' method.
#>   Subgroups are detected by 'NMF' method.
#>   Performed in total 1250 partitions by row resampling.
#>   Best k for subgroups seems to be 2.
#> 
#> Following methods can be applied to this 'ConsensusPartition' object:
#>  [1] "cola_report"             "collect_classes"         "collect_plots"          
#>  [4] "collect_stats"           "colnames"                "compare_signatures"     
#>  [7] "consensus_heatmap"       "dimension_reduction"     "functional_enrichment"  
#> [10] "get_anno_col"            "get_anno"                "get_classes"            
#> [13] "get_consensus"           "get_matrix"              "get_membership"         
#> [16] "get_param"               "get_signatures"          "get_stats"              
#> [19] "is_best_k"               "is_stable_k"             "membership_heatmap"     
#> [22] "ncol"                    "nrow"                    "plot_ecdf"              
#> [25] "rownames"                "select_partition_number" "show"                   
#> [28] "suggest_best_k"          "test_to_known_factors"

collect_plots() function collects all the plots made from res for all k (number of partitions) into one single page to provide an easy and fast comparison between different k.

collect_plots(res)

plot of chunk ATC-NMF-collect-plots

The plots are:

All the plots in panels can be made by individual functions and they are plotted later in this section.

select_partition_number() produces several plots showing different statistics for choosing “optimized” k. There are following statistics:

The detailed explanations of these statistics can be found in the cola vignette.

Generally speaking, lower PAC score, higher mean silhouette score or higher concordance corresponds to better partition. Rand index and Jaccard index measure how similar the current partition is compared to partition with k-1. If they are too similar, we won't accept k is better than k-1.

select_partition_number(res)

plot of chunk ATC-NMF-select-partition-number

The numeric values for all these statistics can be obtained by get_stats().

get_stats(res)
#>   k 1-PAC mean_silhouette concordance area_increased  Rand Jaccard
#> 2 2 0.966           0.962       0.983         0.3908 0.610   0.610
#> 3 3 0.657           0.761       0.895         0.5387 0.745   0.596
#> 4 4 0.661           0.789       0.888         0.1425 0.815   0.591
#> 5 5 0.606           0.587       0.792         0.1030 0.871   0.626
#> 6 6 0.571           0.437       0.698         0.0563 0.892   0.600

suggest_best_k() suggests the best \(k\) based on these statistics. The rules are as follows:

suggest_best_k(res)
#> [1] 2

Following shows the table of the partitions (You need to click the show/hide code output link to see it). The membership matrix (columns with name p*) is inferred by clue::cl_consensus() function with the SE method. Basically the value in the membership matrix represents the probability to belong to a certain group. The finall class label for an item is determined with the group with highest probability it belongs to.

In get_classes() function, the entropy is calculated from the membership matrix and the silhouette score is calculated from the consensus matrix.

show/hide code output

cbind(get_classes(res, k = 2), get_membership(res, k = 2))
#>          class entropy silhouette    p1    p2
#> GSM39873     2  0.0000      0.967 0.000 1.000
#> GSM39874     2  0.0000      0.967 0.000 1.000
#> GSM39875     2  0.0000      0.967 0.000 1.000
#> GSM39876     2  0.0000      0.967 0.000 1.000
#> GSM39831     1  0.0000      0.987 1.000 0.000
#> GSM39819     1  0.0000      0.987 1.000 0.000
#> GSM39820     1  0.0000      0.987 1.000 0.000
#> GSM39821     1  0.0000      0.987 1.000 0.000
#> GSM39822     2  0.0000      0.967 0.000 1.000
#> GSM39823     1  0.0000      0.987 1.000 0.000
#> GSM39824     2  0.0000      0.967 0.000 1.000
#> GSM39825     1  0.0000      0.987 1.000 0.000
#> GSM39826     1  0.0000      0.987 1.000 0.000
#> GSM39827     1  0.0000      0.987 1.000 0.000
#> GSM39846     1  0.3584      0.926 0.932 0.068
#> GSM39847     1  0.0000      0.987 1.000 0.000
#> GSM39848     2  0.0000      0.967 0.000 1.000
#> GSM39849     1  0.8081      0.671 0.752 0.248
#> GSM39850     1  0.0000      0.987 1.000 0.000
#> GSM39851     1  0.0000      0.987 1.000 0.000
#> GSM39855     2  0.0000      0.967 0.000 1.000
#> GSM39856     1  0.0000      0.987 1.000 0.000
#> GSM39858     1  0.0000      0.987 1.000 0.000
#> GSM39859     1  0.0000      0.987 1.000 0.000
#> GSM39862     2  0.0376      0.964 0.004 0.996
#> GSM39863     1  0.0000      0.987 1.000 0.000
#> GSM39865     2  0.0000      0.967 0.000 1.000
#> GSM39866     1  0.0000      0.987 1.000 0.000
#> GSM39867     1  0.0000      0.987 1.000 0.000
#> GSM39869     2  0.0000      0.967 0.000 1.000
#> GSM39870     1  0.0000      0.987 1.000 0.000
#> GSM39871     1  0.0000      0.987 1.000 0.000
#> GSM39872     1  0.0000      0.987 1.000 0.000
#> GSM39828     1  0.0000      0.987 1.000 0.000
#> GSM39829     1  0.0000      0.987 1.000 0.000
#> GSM39830     1  0.0000      0.987 1.000 0.000
#> GSM39832     1  0.0000      0.987 1.000 0.000
#> GSM39833     1  0.3431      0.930 0.936 0.064
#> GSM39834     1  0.0000      0.987 1.000 0.000
#> GSM39835     2  0.0672      0.962 0.008 0.992
#> GSM39836     1  0.0000      0.987 1.000 0.000
#> GSM39837     2  0.5294      0.853 0.120 0.880
#> GSM39838     2  0.9044      0.529 0.320 0.680
#> GSM39839     1  0.0000      0.987 1.000 0.000
#> GSM39840     1  0.0000      0.987 1.000 0.000
#> GSM39841     1  0.0000      0.987 1.000 0.000
#> GSM39842     1  0.0000      0.987 1.000 0.000
#> GSM39843     1  0.0000      0.987 1.000 0.000
#> GSM39844     1  0.0000      0.987 1.000 0.000
#> GSM39845     1  0.0000      0.987 1.000 0.000
#> GSM39852     1  0.0000      0.987 1.000 0.000
#> GSM39853     1  0.2948      0.942 0.948 0.052
#> GSM39854     1  0.4690      0.891 0.900 0.100
#> GSM39857     1  0.0938      0.977 0.988 0.012
#> GSM39860     2  0.0000      0.967 0.000 1.000
#> GSM39861     1  0.0000      0.987 1.000 0.000
#> GSM39864     1  0.0000      0.987 1.000 0.000
#> GSM39868     1  0.0000      0.987 1.000 0.000

show/hide code output

cbind(get_classes(res, k = 3), get_membership(res, k = 3))
#>          class entropy silhouette    p1    p2    p3
#> GSM39873     2  0.0000     0.8734 0.000 1.000 0.000
#> GSM39874     2  0.0000     0.8734 0.000 1.000 0.000
#> GSM39875     2  0.0000     0.8734 0.000 1.000 0.000
#> GSM39876     2  0.0000     0.8734 0.000 1.000 0.000
#> GSM39831     1  0.0424     0.8957 0.992 0.000 0.008
#> GSM39819     1  0.2537     0.8481 0.920 0.000 0.080
#> GSM39820     1  0.1163     0.8904 0.972 0.000 0.028
#> GSM39821     1  0.0000     0.8952 1.000 0.000 0.000
#> GSM39822     2  0.0000     0.8734 0.000 1.000 0.000
#> GSM39823     3  0.3551     0.7985 0.132 0.000 0.868
#> GSM39824     3  0.1529     0.7493 0.000 0.040 0.960
#> GSM39825     3  0.5882     0.5481 0.348 0.000 0.652
#> GSM39826     1  0.2945     0.8212 0.908 0.088 0.004
#> GSM39827     1  0.0000     0.8952 1.000 0.000 0.000
#> GSM39846     3  0.2448     0.8083 0.076 0.000 0.924
#> GSM39847     1  0.0747     0.8947 0.984 0.000 0.016
#> GSM39848     2  0.4654     0.7724 0.000 0.792 0.208
#> GSM39849     3  0.0424     0.7783 0.008 0.000 0.992
#> GSM39850     1  0.0237     0.8936 0.996 0.000 0.004
#> GSM39851     1  0.0424     0.8954 0.992 0.000 0.008
#> GSM39855     3  0.2878     0.7015 0.000 0.096 0.904
#> GSM39856     3  0.1643     0.8050 0.044 0.000 0.956
#> GSM39858     3  0.5591     0.6287 0.304 0.000 0.696
#> GSM39859     3  0.4291     0.7721 0.180 0.000 0.820
#> GSM39862     3  0.2959     0.6998 0.000 0.100 0.900
#> GSM39863     1  0.0424     0.8957 0.992 0.000 0.008
#> GSM39865     2  0.3879     0.8159 0.000 0.848 0.152
#> GSM39866     1  0.0424     0.8957 0.992 0.000 0.008
#> GSM39867     1  0.0475     0.8924 0.992 0.004 0.004
#> GSM39869     2  0.0747     0.8713 0.000 0.984 0.016
#> GSM39870     1  0.1753     0.8769 0.952 0.000 0.048
#> GSM39871     3  0.3752     0.7939 0.144 0.000 0.856
#> GSM39872     3  0.1753     0.8062 0.048 0.000 0.952
#> GSM39828     1  0.1411     0.8872 0.964 0.000 0.036
#> GSM39829     1  0.1163     0.8906 0.972 0.000 0.028
#> GSM39830     1  0.1163     0.8904 0.972 0.000 0.028
#> GSM39832     1  0.0424     0.8954 0.992 0.000 0.008
#> GSM39833     1  0.3832     0.8196 0.880 0.100 0.020
#> GSM39834     1  0.0000     0.8952 1.000 0.000 0.000
#> GSM39835     2  0.3112     0.8480 0.004 0.900 0.096
#> GSM39836     1  0.0829     0.8935 0.984 0.004 0.012
#> GSM39837     2  0.4409     0.7241 0.172 0.824 0.004
#> GSM39838     2  0.6155     0.4863 0.328 0.664 0.008
#> GSM39839     1  0.6204     0.1252 0.576 0.000 0.424
#> GSM39840     1  0.0424     0.8957 0.992 0.000 0.008
#> GSM39841     1  0.0424     0.8920 0.992 0.000 0.008
#> GSM39842     1  0.1529     0.8842 0.960 0.000 0.040
#> GSM39843     1  0.6215     0.1123 0.572 0.000 0.428
#> GSM39844     1  0.0000     0.8952 1.000 0.000 0.000
#> GSM39845     1  0.6267     0.0118 0.548 0.000 0.452
#> GSM39852     1  0.0237     0.8957 0.996 0.000 0.004
#> GSM39853     1  0.6565     0.2318 0.576 0.416 0.008
#> GSM39854     1  0.6398     0.3480 0.620 0.372 0.008
#> GSM39857     3  0.1411     0.8008 0.036 0.000 0.964
#> GSM39860     2  0.5397     0.6859 0.000 0.720 0.280
#> GSM39861     3  0.6307     0.1546 0.488 0.000 0.512
#> GSM39864     1  0.1411     0.8870 0.964 0.000 0.036
#> GSM39868     1  0.0747     0.8947 0.984 0.000 0.016

show/hide code output

cbind(get_classes(res, k = 4), get_membership(res, k = 4))
#>          class entropy silhouette    p1    p2    p3    p4
#> GSM39873     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM39874     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM39875     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM39876     2  0.0000      0.958 0.000 1.000 0.000 0.000
#> GSM39831     1  0.1798      0.885 0.944 0.000 0.040 0.016
#> GSM39819     3  0.3634      0.804 0.048 0.000 0.856 0.096
#> GSM39820     1  0.5792      0.299 0.552 0.000 0.416 0.032
#> GSM39821     1  0.0188      0.890 0.996 0.000 0.000 0.004
#> GSM39822     2  0.0336      0.953 0.000 0.992 0.000 0.008
#> GSM39823     3  0.2053      0.852 0.004 0.000 0.924 0.072
#> GSM39824     4  0.5097      0.142 0.000 0.004 0.428 0.568
#> GSM39825     3  0.1004      0.861 0.004 0.000 0.972 0.024
#> GSM39826     1  0.0188      0.890 0.996 0.000 0.000 0.004
#> GSM39827     1  0.0000      0.891 1.000 0.000 0.000 0.000
#> GSM39846     3  0.0921      0.863 0.000 0.000 0.972 0.028
#> GSM39847     1  0.0895      0.892 0.976 0.000 0.020 0.004
#> GSM39848     4  0.2814      0.740 0.000 0.132 0.000 0.868
#> GSM39849     3  0.2216      0.836 0.000 0.000 0.908 0.092
#> GSM39850     1  0.0188      0.890 0.996 0.000 0.000 0.004
#> GSM39851     1  0.1284      0.889 0.964 0.000 0.024 0.012
#> GSM39855     4  0.3401      0.700 0.000 0.008 0.152 0.840
#> GSM39856     3  0.1211      0.858 0.000 0.000 0.960 0.040
#> GSM39858     3  0.1118      0.857 0.000 0.000 0.964 0.036
#> GSM39859     3  0.1302      0.860 0.000 0.000 0.956 0.044
#> GSM39862     4  0.2943      0.737 0.000 0.032 0.076 0.892
#> GSM39863     1  0.2542      0.864 0.904 0.000 0.084 0.012
#> GSM39865     4  0.4155      0.674 0.000 0.240 0.004 0.756
#> GSM39866     1  0.0524      0.892 0.988 0.000 0.008 0.004
#> GSM39867     1  0.0000      0.891 1.000 0.000 0.000 0.000
#> GSM39869     4  0.4661      0.534 0.000 0.348 0.000 0.652
#> GSM39870     1  0.5682      0.178 0.520 0.000 0.456 0.024
#> GSM39871     3  0.0336      0.863 0.000 0.000 0.992 0.008
#> GSM39872     3  0.4661      0.472 0.000 0.000 0.652 0.348
#> GSM39828     1  0.1059      0.891 0.972 0.000 0.012 0.016
#> GSM39829     1  0.5882      0.474 0.608 0.000 0.344 0.048
#> GSM39830     1  0.4290      0.740 0.772 0.000 0.212 0.016
#> GSM39832     1  0.1520      0.889 0.956 0.000 0.024 0.020
#> GSM39833     1  0.5212      0.791 0.792 0.036 0.104 0.068
#> GSM39834     1  0.0817      0.885 0.976 0.000 0.000 0.024
#> GSM39835     4  0.6388      0.545 0.192 0.156 0.000 0.652
#> GSM39836     1  0.3123      0.784 0.844 0.000 0.000 0.156
#> GSM39837     2  0.0188      0.955 0.004 0.996 0.000 0.000
#> GSM39838     1  0.3591      0.763 0.824 0.008 0.000 0.168
#> GSM39839     3  0.2011      0.839 0.000 0.000 0.920 0.080
#> GSM39840     1  0.0376      0.892 0.992 0.000 0.004 0.004
#> GSM39841     1  0.2089      0.882 0.932 0.000 0.048 0.020
#> GSM39842     1  0.3205      0.846 0.872 0.000 0.104 0.024
#> GSM39843     3  0.2976      0.789 0.120 0.000 0.872 0.008
#> GSM39844     1  0.0672      0.892 0.984 0.000 0.008 0.008
#> GSM39845     3  0.4343      0.585 0.264 0.000 0.732 0.004
#> GSM39852     1  0.0188      0.890 0.996 0.000 0.000 0.004
#> GSM39853     2  0.3219      0.764 0.112 0.868 0.000 0.020
#> GSM39854     1  0.3105      0.797 0.856 0.140 0.000 0.004
#> GSM39857     3  0.3356      0.768 0.000 0.000 0.824 0.176
#> GSM39860     4  0.3166      0.746 0.000 0.116 0.016 0.868
#> GSM39861     3  0.2944      0.776 0.128 0.000 0.868 0.004
#> GSM39864     1  0.1576      0.886 0.948 0.000 0.048 0.004
#> GSM39868     1  0.0336      0.890 0.992 0.000 0.000 0.008

show/hide code output

cbind(get_classes(res, k = 5), get_membership(res, k = 5))
#>          class entropy silhouette    p1    p2    p3    p4    p5
#> GSM39873     2  0.0451     0.8648 0.000 0.988 0.004 0.000 0.008
#> GSM39874     2  0.0451     0.8648 0.000 0.988 0.004 0.000 0.008
#> GSM39875     2  0.0451     0.8648 0.000 0.988 0.004 0.000 0.008
#> GSM39876     2  0.0451     0.8648 0.000 0.988 0.004 0.000 0.008
#> GSM39831     4  0.4517     0.4540 0.388 0.000 0.012 0.600 0.000
#> GSM39819     3  0.6409     0.4071 0.304 0.004 0.576 0.064 0.052
#> GSM39820     4  0.5370     0.5955 0.048 0.004 0.184 0.716 0.048
#> GSM39821     4  0.1082     0.7711 0.028 0.000 0.000 0.964 0.008
#> GSM39822     2  0.0609     0.8573 0.000 0.980 0.000 0.000 0.020
#> GSM39823     3  0.2721     0.7344 0.012 0.000 0.892 0.028 0.068
#> GSM39824     3  0.4283     0.3662 0.008 0.000 0.644 0.000 0.348
#> GSM39825     3  0.3636     0.6256 0.272 0.000 0.728 0.000 0.000
#> GSM39826     4  0.1281     0.7706 0.032 0.000 0.000 0.956 0.012
#> GSM39827     4  0.3209     0.7133 0.180 0.000 0.008 0.812 0.000
#> GSM39846     3  0.0833     0.7513 0.004 0.004 0.976 0.000 0.016
#> GSM39847     4  0.1883     0.7735 0.048 0.000 0.012 0.932 0.008
#> GSM39848     5  0.2230     0.7448 0.000 0.116 0.000 0.000 0.884
#> GSM39849     1  0.6297     0.1025 0.532 0.000 0.256 0.000 0.212
#> GSM39850     4  0.1041     0.7720 0.032 0.000 0.000 0.964 0.004
#> GSM39851     1  0.4735    -0.2111 0.516 0.004 0.004 0.472 0.004
#> GSM39855     5  0.4367     0.2994 0.000 0.008 0.372 0.000 0.620
#> GSM39856     3  0.2561     0.7396 0.096 0.000 0.884 0.000 0.020
#> GSM39858     3  0.1365     0.7551 0.040 0.000 0.952 0.004 0.004
#> GSM39859     3  0.0981     0.7534 0.008 0.000 0.972 0.012 0.008
#> GSM39862     5  0.2353     0.6924 0.028 0.008 0.044 0.004 0.916
#> GSM39863     4  0.4314     0.6245 0.280 0.004 0.016 0.700 0.000
#> GSM39865     5  0.5674     0.5387 0.008 0.332 0.008 0.056 0.596
#> GSM39866     4  0.1153     0.7602 0.024 0.000 0.008 0.964 0.004
#> GSM39867     4  0.2642     0.7585 0.104 0.008 0.008 0.880 0.000
#> GSM39869     5  0.4934     0.4778 0.036 0.364 0.000 0.000 0.600
#> GSM39870     4  0.3908     0.6854 0.032 0.004 0.108 0.828 0.028
#> GSM39871     3  0.0865     0.7571 0.024 0.000 0.972 0.004 0.000
#> GSM39872     3  0.5650     0.0470 0.076 0.000 0.464 0.000 0.460
#> GSM39828     1  0.6515     0.1388 0.440 0.000 0.000 0.364 0.196
#> GSM39829     4  0.5999     0.5611 0.116 0.004 0.184 0.664 0.032
#> GSM39830     1  0.5583     0.1977 0.572 0.000 0.072 0.352 0.004
#> GSM39832     4  0.4805     0.3371 0.432 0.004 0.004 0.552 0.008
#> GSM39833     1  0.3795     0.4876 0.844 0.024 0.008 0.044 0.080
#> GSM39834     4  0.1918     0.7609 0.036 0.000 0.000 0.928 0.036
#> GSM39835     1  0.4891     0.1231 0.640 0.044 0.000 0.000 0.316
#> GSM39836     4  0.2358     0.6949 0.008 0.000 0.000 0.888 0.104
#> GSM39837     2  0.0566     0.8543 0.012 0.984 0.000 0.000 0.004
#> GSM39838     4  0.2845     0.6874 0.020 0.008 0.000 0.876 0.096
#> GSM39839     3  0.3828     0.6838 0.184 0.000 0.788 0.008 0.020
#> GSM39840     4  0.3752     0.6130 0.292 0.000 0.000 0.708 0.000
#> GSM39841     4  0.4541     0.4627 0.380 0.004 0.008 0.608 0.000
#> GSM39842     1  0.1483     0.5007 0.952 0.000 0.012 0.028 0.008
#> GSM39843     1  0.4517     0.0882 0.600 0.000 0.388 0.012 0.000
#> GSM39844     4  0.4286     0.5415 0.340 0.004 0.004 0.652 0.000
#> GSM39845     3  0.5364     0.3902 0.072 0.000 0.648 0.272 0.008
#> GSM39852     4  0.0854     0.7592 0.012 0.000 0.004 0.976 0.008
#> GSM39853     2  0.2067     0.7929 0.028 0.924 0.000 0.044 0.004
#> GSM39854     2  0.5191     0.2000 0.036 0.552 0.000 0.408 0.004
#> GSM39857     3  0.3154     0.6814 0.012 0.000 0.836 0.004 0.148
#> GSM39860     5  0.2522     0.7457 0.000 0.108 0.012 0.000 0.880
#> GSM39861     3  0.3863     0.6348 0.052 0.000 0.796 0.152 0.000
#> GSM39864     4  0.2351     0.7648 0.088 0.000 0.016 0.896 0.000
#> GSM39868     4  0.1200     0.7549 0.012 0.000 0.008 0.964 0.016

show/hide code output

cbind(get_classes(res, k = 6), get_membership(res, k = 6))
#>          class entropy silhouette    p1    p2    p3    p4    p5    p6
#> GSM39873     2  0.0146    0.84918 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM39874     2  0.0146    0.84979 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM39875     2  0.0146    0.84979 0.000 0.996 0.000 0.000 0.004 0.000
#> GSM39876     2  0.0000    0.84936 0.000 1.000 0.000 0.000 0.000 0.000
#> GSM39831     1  0.5773   -0.23523 0.452 0.000 0.000 0.392 0.004 0.152
#> GSM39819     3  0.7737   -0.04550 0.168 0.004 0.352 0.344 0.024 0.108
#> GSM39820     1  0.5466    0.44927 0.704 0.000 0.120 0.100 0.032 0.044
#> GSM39821     1  0.5258    0.09182 0.524 0.000 0.000 0.384 0.004 0.088
#> GSM39822     2  0.2255    0.81553 0.000 0.908 0.000 0.044 0.024 0.024
#> GSM39823     3  0.4335    0.59561 0.112 0.000 0.784 0.016 0.040 0.048
#> GSM39824     3  0.4002    0.46775 0.000 0.008 0.748 0.016 0.212 0.016
#> GSM39825     3  0.4719    0.52356 0.000 0.000 0.644 0.272 0.000 0.084
#> GSM39826     1  0.4602    0.44970 0.704 0.000 0.000 0.196 0.008 0.092
#> GSM39827     4  0.4886    0.47968 0.300 0.000 0.000 0.620 0.004 0.076
#> GSM39846     3  0.3156    0.64908 0.004 0.004 0.860 0.028 0.024 0.080
#> GSM39847     4  0.6196    0.38286 0.308 0.000 0.036 0.536 0.012 0.108
#> GSM39848     5  0.2265    0.55291 0.000 0.068 0.000 0.024 0.900 0.008
#> GSM39849     6  0.6325    0.44770 0.000 0.000 0.172 0.160 0.092 0.576
#> GSM39850     1  0.4820    0.37207 0.652 0.000 0.000 0.256 0.004 0.088
#> GSM39851     4  0.4527    0.58984 0.256 0.000 0.000 0.680 0.008 0.056
#> GSM39855     5  0.4370    0.16300 0.000 0.012 0.428 0.008 0.552 0.000
#> GSM39856     3  0.3785    0.63393 0.000 0.000 0.788 0.088 0.004 0.120
#> GSM39858     3  0.1483    0.68818 0.008 0.000 0.944 0.036 0.000 0.012
#> GSM39859     3  0.1167    0.68078 0.020 0.000 0.960 0.012 0.000 0.008
#> GSM39862     5  0.3489    0.49892 0.008 0.008 0.012 0.060 0.844 0.068
#> GSM39863     4  0.4663    0.26906 0.472 0.000 0.004 0.492 0.000 0.032
#> GSM39865     2  0.7925   -0.00419 0.092 0.428 0.024 0.116 0.296 0.044
#> GSM39866     1  0.1714    0.53936 0.936 0.000 0.024 0.024 0.000 0.016
#> GSM39867     1  0.5387    0.32360 0.612 0.048 0.000 0.292 0.004 0.044
#> GSM39869     5  0.6095    0.06354 0.000 0.376 0.000 0.124 0.468 0.032
#> GSM39870     1  0.4267    0.49290 0.772 0.000 0.140 0.056 0.008 0.024
#> GSM39871     3  0.1590    0.68832 0.008 0.000 0.936 0.048 0.000 0.008
#> GSM39872     5  0.6525   -0.04227 0.004 0.000 0.308 0.012 0.364 0.312
#> GSM39828     4  0.5733    0.51967 0.164 0.000 0.004 0.652 0.072 0.108
#> GSM39829     1  0.6584    0.21804 0.560 0.000 0.152 0.208 0.016 0.064
#> GSM39830     4  0.5667    0.50044 0.248 0.000 0.020 0.588 0.000 0.144
#> GSM39832     1  0.5901   -0.23452 0.436 0.000 0.000 0.384 0.004 0.176
#> GSM39833     4  0.4264    0.21731 0.004 0.024 0.028 0.768 0.012 0.164
#> GSM39834     1  0.2736    0.52450 0.876 0.000 0.000 0.020 0.028 0.076
#> GSM39835     6  0.5645    0.54158 0.004 0.008 0.000 0.212 0.184 0.592
#> GSM39836     1  0.5962    0.38880 0.624 0.000 0.000 0.160 0.108 0.108
#> GSM39837     2  0.3481    0.69232 0.000 0.776 0.000 0.192 0.000 0.032
#> GSM39838     1  0.5558    0.38621 0.652 0.000 0.000 0.176 0.056 0.116
#> GSM39839     3  0.5260    0.52365 0.012 0.000 0.628 0.260 0.004 0.096
#> GSM39840     4  0.4511    0.53038 0.332 0.000 0.000 0.620 0.000 0.048
#> GSM39841     4  0.4247    0.57749 0.268 0.004 0.000 0.688 0.000 0.040
#> GSM39842     6  0.4151    0.59381 0.040 0.000 0.000 0.276 0.000 0.684
#> GSM39843     4  0.4853    0.18513 0.004 0.000 0.224 0.664 0.000 0.108
#> GSM39844     1  0.5034   -0.32782 0.468 0.000 0.000 0.460 0.000 0.072
#> GSM39845     3  0.5165    0.43452 0.284 0.000 0.632 0.032 0.004 0.048
#> GSM39852     1  0.2796    0.52149 0.868 0.000 0.000 0.080 0.008 0.044
#> GSM39853     2  0.1524    0.82266 0.000 0.932 0.000 0.060 0.000 0.008
#> GSM39854     1  0.6507    0.07783 0.424 0.388 0.000 0.044 0.004 0.140
#> GSM39857     3  0.3501    0.62294 0.012 0.000 0.832 0.036 0.104 0.016
#> GSM39860     5  0.1901    0.55277 0.000 0.076 0.004 0.000 0.912 0.008
#> GSM39861     3  0.4775    0.49159 0.060 0.000 0.636 0.296 0.000 0.008
#> GSM39864     1  0.2933    0.48817 0.844 0.000 0.012 0.128 0.000 0.016
#> GSM39868     1  0.0984    0.54080 0.968 0.000 0.012 0.000 0.008 0.012

Heatmaps for the consensus matrix. It visualizes the probability of two samples to be in a same group.

consensus_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-consensus-heatmap-1

consensus_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-consensus-heatmap-2

consensus_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-consensus-heatmap-3

consensus_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-consensus-heatmap-4

consensus_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-consensus-heatmap-5

Heatmaps for the membership of samples in all partitions to see how consistent they are:

membership_heatmap(res, k = 2)

plot of chunk tab-ATC-NMF-membership-heatmap-1

membership_heatmap(res, k = 3)

plot of chunk tab-ATC-NMF-membership-heatmap-2

membership_heatmap(res, k = 4)

plot of chunk tab-ATC-NMF-membership-heatmap-3

membership_heatmap(res, k = 5)

plot of chunk tab-ATC-NMF-membership-heatmap-4

membership_heatmap(res, k = 6)

plot of chunk tab-ATC-NMF-membership-heatmap-5

As soon as we have had the classes for columns, we can look for signatures which are significantly different between classes which can be candidate marks for certain classes. Following are the heatmaps for signatures.

Signature heatmaps where rows are scaled:

get_signatures(res, k = 2)

plot of chunk tab-ATC-NMF-get-signatures-1

get_signatures(res, k = 3)

plot of chunk tab-ATC-NMF-get-signatures-2

get_signatures(res, k = 4)

plot of chunk tab-ATC-NMF-get-signatures-3

get_signatures(res, k = 5)

plot of chunk tab-ATC-NMF-get-signatures-4

get_signatures(res, k = 6)

plot of chunk tab-ATC-NMF-get-signatures-5

Signature heatmaps where rows are not scaled:

get_signatures(res, k = 2, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-1

get_signatures(res, k = 3, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-2

get_signatures(res, k = 4, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-3

get_signatures(res, k = 5, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-4

get_signatures(res, k = 6, scale_rows = FALSE)

plot of chunk tab-ATC-NMF-get-signatures-no-scale-5

Compare the overlap of signatures from different k:

compare_signatures(res)

plot of chunk ATC-NMF-signature_compare

get_signature() returns a data frame invisibly. TO get the list of signatures, the function call should be assigned to a variable explicitly. In following code, if plot argument is set to FALSE, no heatmap is plotted while only the differential analysis is performed.

# code only for demonstration
tb = get_signature(res, k = ..., plot = FALSE)

An example of the output of tb is:

#>   which_row         fdr    mean_1    mean_2 scaled_mean_1 scaled_mean_2 km
#> 1        38 0.042760348  8.373488  9.131774    -0.5533452     0.5164555  1
#> 2        40 0.018707592  7.106213  8.469186    -0.6173731     0.5762149  1
#> 3        55 0.019134737 10.221463 11.207825    -0.6159697     0.5749050  1
#> 4        59 0.006059896  5.921854  7.869574    -0.6899429     0.6439467  1
#> 5        60 0.018055526  8.928898 10.211722    -0.6204761     0.5791110  1
#> 6        98 0.009384629 15.714769 14.887706     0.6635654    -0.6193277  2
...

The columns in tb are:

  1. which_row: row indices corresponding to the input matrix.
  2. fdr: FDR for the differential test.
  3. mean_x: The mean value in group x.
  4. scaled_mean_x: The mean value in group x after rows are scaled.
  5. km: Row groups if k-means clustering is applied to rows.

UMAP plot which shows how samples are separated.

dimension_reduction(res, k = 2, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-1

dimension_reduction(res, k = 3, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-2

dimension_reduction(res, k = 4, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-3

dimension_reduction(res, k = 5, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-4

dimension_reduction(res, k = 6, method = "UMAP")

plot of chunk tab-ATC-NMF-dimension-reduction-5

Following heatmap shows how subgroups are split when increasing k:

collect_classes(res)

plot of chunk ATC-NMF-collect-classes

Test correlation between subgroups and known annotations. If the known annotation is numeric, one-way ANOVA test is applied, and if the known annotation is discrete, chi-squared contingency table test is applied.

test_to_known_factors(res)
#>          n disease.state(p) other(p) k
#> ATC:NMF 58         3.53e-03 4.44e-03 2
#> ATC:NMF 51         3.74e-04 3.30e-04 3
#> ATC:NMF 53         2.95e-06 9.37e-05 4
#> ATC:NMF 41         2.49e-04 1.65e-03 5
#> ATC:NMF 29         1.23e-02 9.43e-03 6

If matrix rows can be associated to genes, consider to use functional_enrichment(res, ...) to perform function enrichment for the signature genes. See this vignette for more detailed explanations.

Session info

sessionInfo()
#> R version 3.6.0 (2019-04-26)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: CentOS Linux 7 (Core)
#> 
#> Matrix products: default
#> BLAS:   /usr/lib64/libblas.so.3.4.2
#> LAPACK: /usr/lib64/liblapack.so.3.4.2
#> 
#> locale:
#>  [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
#>  [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
#>  [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
#> [10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       
#> 
#> attached base packages:
#> [1] grid      stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] genefilter_1.66.0    ComplexHeatmap_2.3.1 markdown_1.1         knitr_1.26          
#> [5] GetoptLong_0.1.7     cola_1.3.2          
#> 
#> loaded via a namespace (and not attached):
#>  [1] circlize_0.4.8       shape_1.4.4          xfun_0.11            slam_0.1-46         
#>  [5] lattice_0.20-38      splines_3.6.0        colorspace_1.4-1     vctrs_0.2.0         
#>  [9] stats4_3.6.0         blob_1.2.0           XML_3.98-1.20        survival_2.44-1.1   
#> [13] rlang_0.4.2          pillar_1.4.2         DBI_1.0.0            BiocGenerics_0.30.0 
#> [17] bit64_0.9-7          RColorBrewer_1.1-2   matrixStats_0.55.0   stringr_1.4.0       
#> [21] GlobalOptions_0.1.1  evaluate_0.14        memoise_1.1.0        Biobase_2.44.0      
#> [25] IRanges_2.18.3       parallel_3.6.0       AnnotationDbi_1.46.1 highr_0.8           
#> [29] Rcpp_1.0.3           xtable_1.8-4         backports_1.1.5      S4Vectors_0.22.1    
#> [33] annotate_1.62.0      skmeans_0.2-11       bit_1.1-14           microbenchmark_1.4-7
#> [37] brew_1.0-6           impute_1.58.0        rjson_0.2.20         png_0.1-7           
#> [41] digest_0.6.23        stringi_1.4.3        polyclip_1.10-0      clue_0.3-57         
#> [45] tools_3.6.0          bitops_1.0-6         magrittr_1.5         eulerr_6.0.0        
#> [49] RCurl_1.95-4.12      RSQLite_2.1.4        tibble_2.1.3         cluster_2.1.0       
#> [53] crayon_1.3.4         pkgconfig_2.0.3      zeallot_0.1.0        Matrix_1.2-17       
#> [57] xml2_1.2.2           httr_1.4.1           R6_2.4.1             mclust_5.4.5        
#> [61] compiler_3.6.0